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In this paper, a fuzzy multi-objective particle swarm optimization algorithm (FMOPSO) based on fuzzy 

set theory and multi-objective decision analysis is proposed, aiming at solving the uncertainty and multi-

objective optimization challenges in the problem of logistics center location. By combining the fuzzy 

affiliation function and particle swarm optimization algorithm, FMOPSO is able to efficiently find the 

global optimal solution while dealing with data uncertainty. The design and implementation of the 

FMOPSO algorithm is detailed in the study, and its parameter sensitivity is tested to ensure the robustness 

and reliability of the algorithm. In order to verify the effectiveness of the FMOPSO algorithm, a series of 

computational experiments are conducted and its performance is compared with existing state-of-the-art 

methods such as genetic algorithm GA, differential evolution DE and multi-objective particle swarm 

optimization MOPSO. The experimental results show that FMOPSO exhibits significant advantages in 

terms of convergence speed, solution quality and uncertainty handling. Specifically, the fastest 

convergence time of FMOPSO is 23 seconds, the average convergence time is 35 seconds, and the slowest 

convergence time is 48 seconds, which is significantly better than other algorithms. In addition, FMOPSO 

also performs best in terms of average objective function error, maximum objective function error, and 

minimum objective function error, which are 0.012, 0.035, and 0.007, respectively. These quantitative 

results demonstrate the high efficiency and accuracy of FMOPSO in practical applications. By testing the 

parameter sensitivity, we found that FMOPSO has low sensitivity to parameter variations, leading to only 

3.5% decrease in solution stability, which demonstrates its stability and reliability under different 

environmental conditions. In addition, FMOPSO shows unique advantages in handling high-dimensional 

data and complex constraints, and can better cope with real-world large-scale logistics center siting 

problems. In summary, this study demonstrates the superior performance of the FMOPSO algorithm in 

the logistics center location problem through detailed computational experiments and comparative 

analysis. The algorithm not only performs well in terms of numerical results, but also has a unique design 

and implementation approach, making it a powerful tool for solving such problems. 

Povzetek: Raziskava predstavlja razvoj algoritma FMOPSO, ki združuje teorijo mehkih množic in 

optimizacijo roja delcev, za učinkovito reševanje večciljnih logističnih problemov. 

 

1 Introduction 
In the context of globalization and e-commerce 

development, logistics and distribution centers, as the key 

nodes of the supply chain, have a direct impact on the 

operating costs, customer satisfaction and market 

competitiveness of enterprises in terms of their site 

selection decisions. Logistics and distribution centers not 

only undertake the functions of commodity storage, 

sorting, packaging and transportation, but also have a 

significant pull effect on regional economic development. 

However, the site selection decision faces many complex 

factors, including transportation network conditions, land 

costs, market demand forecasts, environmental 

regulations, policy support, etc. These factors are often 

contradictory and full of uncertainty. In practice, 

companies often need to find a balance between multiple 

objectives, such as minimizing total cost, maximizing 

market coverage, reducing environmental pollution, and  

 

improving response time. Traditional site selection models 

usually only optimize a single objective and ignore real- 

world multi-objective conflicts. In addition, information 

such as market demand, traffic congestion level, and 

policy changes are often difficult to accurately quantify, 

which poses a great challenge for decision makers [1]. The 

emergence of fuzzy decision theory provides a powerful 

tool to solve the above problems.  

The study of logistics and distribution center siting 

has developed into a mature field in the past decades. 

Early research focused on deterministic single-objective 

optimization models such as linear programming and 

integer programming. As the complexity of the problem 

increased, researchers began to explore stochastic 

programming, robust optimization, and fuzzy 

optimization to deal with uncertainty. In recent years, 

fuzzy decision theory has been increasingly used in the 

field of logistics. For example, the literature evaluates 

multiple alternatives for the location of logistics and 
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distribution centers in India using Fuzzy Hierarchical 

Analysis (Fuzzy AHP) [2]; another study achieves an 

integrated location of logistics centers through the Fuzzy 

Comprehensive Evaluation (FCE) method, which takes 

into account the indicators of the three major dimensions, 

namely, economic, environmental, and social [3]. 

Despite the fact that fuzzy decision theory performs 

well in solving multi-objective problems, there are still 

some limitations in existing research. First, most models 

assume that the decision maker's preferences are fully 

rational and quantifiable, whereas in real situations, 

human judgments are often fuzzy and subjective. Second, 

existing fuzzy decision-making models may be less 

efficient when dealing with large-scale data and high-

dimensional features. Finally, many studies lack empirical 

validation, and the practicality and effectiveness of their 

models need to be further tested [4]. 

In view of the above research background and the 

problems revealed in the literature review, this study aims 

to develop a novel multi-objective logistics and 

distribution center siting model based on fuzzy decision 

theory, which will pay special attention to the following 

objectives:(1) Constructing a decision-making framework 

capable of handling uncertainty and multi-objective 

conflicts simultaneously to achieve a more comprehensive 

decision on logistics and distribution center siting. (2) 

Improve the efficiency and accuracy of the model in 

handling complex data sets by introducing more advanced 

data processing techniques and algorithm optimization. 

(3) Test the model using real-world datasets to evaluate its 

performance in different scenarios and conduct 

comparative analysis with existing models. 

 

2   Theoretical framework 
 

2.1 Multi-objective decision-making theory 
Multi-Objective Decision Making (MADM) is an 

important branch of decision science, which deals with the 

problem of making optimal choices under multiple 

conflicting or complementary objectives [5]. In a typical 

MADM problem, the decision maker is faced with the 

problem of how to achieve the optimal combination of 

multiple objectives, which may be economic, social, 

environmental, or technological, under the condition of 

limited resources. Finding a single optimal solution is 

usually impossible due to the trade-offs among different 

objectives, so multi-objective decision theory focuses on 

generating a series of non-inferior solutions, i.e., Pareto-

optimal solutions, for the decision maker to make a final 

choice based on his/her personal preferences [6]. The 

application of multi-objective decision theory is especially 

critical in complex decision-making environments. For 

example, in the logistics distribution center location 

problem, decision makers must simultaneously consider 

multiple objectives such as cost minimization, service 

optimization, and environmental impact minimization. 

The literature proposes a site selection model based on 

fuzzy multi-objective planning, which effectively handles 

the multi-objective conflicts in logistics center location 

and demonstrates the potential of multi-objective decision 

theory in solving such problems [7]. 

 

2.2 Fuzzy set theory 
Fuzzy set theory was proposed in 1965, which is an 

extension of classical set theory to deal with the 

ambiguities and uncertainties prevailing in the real world 

[8]. In fuzzy sets, the degree of affiliation of an element to 

a set is not simply "belongs" or "does not belong", but is a 

continuous value between 0 and 1, indicating the degree 

to which the element belongs to the set. This characteristic 

makes fuzzy set theory a powerful tool for dealing with 

fuzzy information and uncertainty [9]. The role of fuzzy 

decision making in dealing with uncertainty cannot be 

underestimated. In a complex problem such as logistics 

and distribution center location, many key parameters 

such as market demand, traffic flow, and land price are 

fuzzy or changing. A multi-objective genetic algorithm 

based on fuzzy sets has been proposed in the literature to 

successfully solve the decision-making problem 

containing fuzzy objectives and constraints. With fuzzy 

decision making, decision makers can make more robust 

and adaptive decisions in uncertain environments [10]. 

 

2.3 Fuzzy multi-objective decision-making 

methods 
Combining fuzzy set theory with multi-objective 

decision-making theory can produce a series of effective 

fuzzy multi-objective decision-making methods, such as 

Fuzzy Analytic Hierarchy Process (FAHP) and Fuzzy 

Comprehensive Evaluation (FCE).FAHP quantifies the 

decision maker's preference for different options by 

constructing a fuzzy judgment matrix to quantify the 

decision maker's preference for different options, and then 

through fuzzy mathematical operations to derive the 

weight of each option, thus helping the decision maker to 

prioritize in a fuzzy environment. FCE is a comprehensive 

evaluation method, which is capable of transforming 

multiple fuzzy evaluation indexes into an overall 

evaluation result, and is suitable for decision-making 

problems involving multiple fuzzy criteria [11]. In the 

logistics distribution center location problem, the 

application of these methods can help decision makers 

find the best solution in the midst of uncertainty and multi-

objective conflicts. For example, the literature uses FAHP 

to evaluate multiple factors of logistics center location, 

including transportation accessibility, market proximity, 

and environmental impacts, resulting in a more 

comprehensive and rational decision-making result [12]. 

 

2.4 Current status of research on the location 

of logistics and distribution centers 
Multi-objective optimization is one of the commonly 

used models in logistics and distribution center siting, 

which considers multiple conflicting objectives, such as 

cost minimization, environmental impact minimization 

and customer satisfaction maximization. For example, the 

literature proposes a multi-objective optimization model 

based on fuzzy set theory, which is able to deal with 

uncertainties, such as fluctuations in demand and changes 
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in transportation costs, and thus provide more flexible 

solutions for decision makers [13]. Geographic 

Information System (GIS) plays an important role in 

logistics and distribution center site selection, which can 

help analyze the geographic characteristics of potential 

locations, such as transportation networks, population 

density, and infrastructure conditions. The literature uses 

GIS technology combined with machine learning 

algorithms to develop an intelligent site selection system, 

which can automatically evaluate the comprehensive 

advantages of different locations and provide data-driven 

decision support for logistics and distribution center site 

selection. Considering that market demand and operating 

conditions change over time, dynamic optimization 

strategies have become a hot research topic [14]. 

Literature proposes a dynamic planning-based site 

selection method, which is able to adjust the location of 

distribution centers based on real-time data to cope with 

the challenges posed by unforeseen events (e.g., natural 

disasters or epidemics) and to ensure the flexibility and 

robustness of the logistics system [15]. As the global 

concern for sustainable development increases, the 

location of logistics and distribution centers also needs to 

consider its impact on the environment. Literature has 

investigated the problem of siting green logistics and 

distribution centers by building a multi-objective model 

that includes carbon emissions and energy consumption to 

find an optimal solution that reduces both cost and 

environmental burden [15]. Intelligent optimization 

algorithms such as genetic algorithm, simulated 

annealing, and ant colony algorithm are widely used in the 

siting of logistics and distribution centers to solve high-

dimensional complex problems. The literature uses deep 

reinforcement learning algorithms to develop an 

autonomous learning site selection model that can learn 

from historical data and predict future trends to achieve 

intelligent site selection decisions [16]. 

 

Table 1: Comparison of Methods for Logistics and 

Distribution Center Location Selection 

Study Method 
Performance 

Indicators 
Limitations 

Literature 

[13] 

Multi-objective 

optimization 
model based on 

fuzzy set 

theory 

Cost 

minimization, 
environmental 

impact 

minimization, 
customer 

satisfaction 

maximization 

Insufficient 

consideration 

of geographical 
features 

Literature 
[14] 

Combination of 
GIS technology 

and machine 

learning 
algorithms 

Comprehensive 
advantage score 

Limited 

dynamic 
adjustment 

capability 

Literature 

[15] 

Dynamic 

programming 
approach 

Real-time 

responsiveness, 
flexibility 

Needs 

improvement 

in adaptability 
to unforeseen 

events 

Literature 
[16] 

Deep 

reinforcement 

learning 

Prediction 

accuracy, self-

learning ability 

High 

computational 

complexity 

As shown in table 1, in the existing research, 

although numerous studies have attempted to address the 

logistics and distribution center location selection problem 

using various approaches, these methods often exhibit 

certain shortcomings. For instance, while methods based 

on fuzzy set theory are capable of handling uncertainties, 

they may not fully account for geographical characteristics. 

On the other hand, approaches that integrate GIS 

technology with machine learning can provide a 

comprehensive assessment of site advantages but might 

lack effective mechanisms to cope with dynamically 

changing environments. Moreover, although deep 

reinforcement learning demonstrates strong predictive and 

self-learning capabilities, its high computational costs 

limit its widespread application. 

To tackle these challenges, this paper introduces a 

novel method that combines fuzzy decision theory with 

Particle Swarm Optimization (PSO) — FMOPSO. This 

approach not only enables effective multi-objective 

decision-making under uncertainty but also enhances the 

algorithm's ability to find optimal solutions through the 

incorporation of PSO. Specifically, the FMOPSO 

algorithm maintains high search efficiency while 

effectively balancing multiple conflicting objectives, 

thereby providing decision-makers with a series of Pareto-

optimal solutions. This makes our model particularly 

suitable for addressing real-world logistics location 

problems involving complex constraints and large datasets. 

Through specific case studies, we have validated that the 

proposed method outperforms traditional approaches in 

terms of convergence speed, solution quality, and 

uncertainty handling, demonstrating its effectiveness in 

solving such problems. 

 

3   Methodology 
3.1 Study design 

In this study, a multi-objective optimization method 

based on fuzzy decision theory is used to solve the 

logistics distribution center location problem. Considering 

the uncertainties in site selection decisions, fuzzy set 

theory is used to quantify and deal with these 

uncertainties. In addition, multi-objective decision 

analysis was used to deal with conflicts between different 

objectives. 

 

3.2 Data collection and pre-processing 
The data collection phase involves obtaining 

information from public databases, industry reports and 

expert interviews on logistics demand forecasts, 

geographic information system (GIS) data, transportation 

costs, environmental impact indices and land use at 

potential sites. Data preprocessing includes cleaning, 

normalization, and fuzzification steps.  

The data collection phase is a critical step in our study, 

involving the gathering of comprehensive information 

from multiple sources to ensure the accuracy and 

relevance of our analysis. We obtained data from public 

databases, industry reports, and expert interviews, 

focusing on logistics demand forecasts, geographic 

information system (GIS) data, transportation costs, 
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environmental impact indices, and land use at potential 

sites. This diverse set of data provides a robust foundation 

for our multi-objective decision-making process. 

Data Cleaning: Initially, we performed data cleaning 

to remove any inconsistencies, errors, or missing values. 

This step ensures that the data used for analysis is reliable 

and complete. Outliers were identified and either 

corrected or removed, depending on their nature and the 

overall context of the dataset. 

Normalization: To facilitate meaningful comparisons 

across different datasets, we normalized the collected data. 

Normalization was carried out using standard techniques 

such as min-max scaling, which transforms the data to a 

common scale, typically between 0 and 1. This step is 

essential for ensuring that no single attribute 

disproportionately influences the final results due to its 

scale. 

A key aspect of our approach is the fuzzification of 

data, which is necessary for incorporating uncertainty and 

imprecision into the decision-making process. Fuzzy set 

theory allows us to represent and handle these 

uncertainties more effectively. In this study, we used 

specific fuzzy membership functions to convert crisp data 

into fuzzy sets. For instance, triangular and trapezoidal 

membership functions were employed to quantify 

logistics demand forecasts and environmental impact 

indices. 

We used a triangular membership function to model 

the logistics demand forecasts. The function is defined by 

three points: (a, b, c), where a and c are the lower and 

upper bounds of the forecast, and b is the most likely value. 

This function helps to capture the uncertainty in demand 

predictions, providing a more realistic representation of 

the data. 

For environmental impact indices, a trapezoidal 

membership function was utilized. This function is 

defined by four points: (a, b, c, d), where a and d are the 

lower and upper bounds, and b and c are the points where 

the function reaches its maximum value. The trapezoidal 

function is particularly useful for representing ranges with 

a flat top, which is common in environmental data. 

By applying these membership functions, we 

transformed the crisp values into fuzzy sets, allowing for 

a more nuanced and flexible representation of the data. 

This fuzzification process is crucial for handling the 

inherent uncertainties and vagueness in the input data, 

ensuring that the subsequent analysis and decision-making 

are robust and reflective of real-world conditions. 

 

3.3 Multi-objective fuzzy decision modeling 

framework and its application 
In complex system decision making, multi-objective 

optimization problems are not only a hot topic in academic 

research, but also an important challenge in industry. 

Especially in the application scenario of logistics and 

distribution center siting, which involves numerous 

uncertainties, the multi-objective fuzzy decision theory is 

an ideal tool for solving this kind of problems because of 

its ability to deal with vagueness and uncertainty 

effectively. In this section, the details of constructing a 

multi-objective fuzzy decision-making model are 

discussed in depth. In the process of constructing a multi-

objective fuzzy decision model, the first step is to fuzzify 

the objective function. Suppose we have m objectives, 

each objective function ( )iZ x  (i = 1, 2, ... , m) needs to be 

converted to a fuzzy number ( )iZ x  to reflect the 

uncertainty of the objective values. For example, the 

objective function for cost minimization can be expressed 

as the fuzzy number
1( )Z x , while the objective function 

for service coverage maximization can be expressed as 

Reference [17]. 

For each objective function ( )iZ x , we define the 

corresponding affiliation function ( )
iZ z , which is used 

to quantify the degree of goal achievement. The value of 

the affiliation function is in the interval [0, 1], and the 

closer the value is to 1, the higher the degree of goal 

attainment. The form of the affiliation function can be 

triangular, trapezoidal or other shapes, depending on the 

characteristics of the goal and the preferences of the 

decision maker. 

The multi-objective fuzzy decision-making model 

can be formally expressed as Equation (1) [18]. 

1 2minimize ( ) ( ( ), ( ),..., ( ))mZ Z Z=Z x x x x  

(1) 

Where, x  is a vector of decision variables and ( )iZ x  

is the defuzzified objective function for the ith objective, 

representing the fuzzy value of objective i at different 

decision points x . 

The constraints also need to be fuzzified to adapt to 

the uncertainty environment. The fuzzified inequality 

constraints and equation constraints can be expressed as 

Eqs. (2)-(3). 

( ) 0, 1,2,...,jg j p =x  (2)  

( ) 0, 1,2,...,kh k q= =x  (3) 

where ( )jg x  and ( )kh x  are the fuzzified inequality 

and equation constraint functions, respectively. 

 

3.4 Solution methods 
In the decision-making problem of logistics 

distribution center location, it often faces a complex 

system with multiple objectives and constraints. 

Traditional optimization techniques may be difficult to 

capture the essence of the problem, especially when the 

objectives and constraints carry uncertainties. For this 

reason, we propose an innovative solution method, Fuzzy 

Multi-Objective Particle Swarm Optimization Algorithm 

(FMOPSO), which is an advanced algorithm that 

integrates Particle Swarm Optimization (PSO) and Fuzzy 

Logic. The particle swarm algorithm we used is shown in 

Fig. 1 [19]. 
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Initialize the velocity and position of each particle

Calculate the individual optimal value for each particle

Calculate the global optimum for the whole population

Calculate the fitness value for each particle

Evolve the velocity and position of the particles

Perform boundary condition processing

Satisfy the end condition?

Yes

Output the result

End

Starting

No

 

 

Figure 1: Particle swarm algorithm framework 

 

The initialization phase is a key step in FMOPSO and 

involves the generation of particle swarms and the 

fuzzification of the objective function. First, we randomly 

generate a swarm of particles, each representing a possible 

decision scenario, i.e., the potential location of the 

distribution center. The position and velocity vectors of 

the particles are randomly initialized to ensure that the 

search space is fully explored. A fuzzy affiliation function 

is defined for each objective function to quantify the 

mapping of the objective function values to the interval [0, 

1], reflecting the fuzzy nature of the degree of goal 

attainment. For example, if we have two objectives: 

minimize transportation cost and maximize customer 

satisfaction, we can define two fuzzy affiliation functions

( )C x  and ( )S x , where x denotes the particle location 

[20]. 

In the evaluation phase, the performance of each 

particle at its location is transformed into a series of fuzzy 

affiliation values to form a fuzzy target vector for that 

particle. For example, the fuzzy target vector of particle i 

is [ ( ), ( )]i C i S ix x =μ . In addition, we need to check 

whether each particle satisfies all the constraints after 

fuzzification. This step ensures that all feasible solutions 

are reasonably taken into account. The core of FMOPSO 

is to update the individual optimal and global optimal 

positions. For each particle i, if the fuzzy target vector of 

its current position is better than the fuzzy target vector of 

its historical optimal position ipbest  , then ipbest  will 

be updated to the current position. At the same time, 

updating the set of global optimal solutions using the 

Pareto dominance principle ensures that the algorithm 

recognizes all non-inferior solutions. 

Velocity and position updates of particles are based 

on the basic rules of PSO, but fuzzy target vectors play a 

key role in this process. The velocity update formula is 

shown in Equation (4) [21,22]. 

1 1 , ( ) 2 2 ( )( 1) ( ) ( ) ( )
i ii i pbest i x t gbest x tv t w v t c r c r+ =  +   − +   −μ μ μ μ  

(4) 

where ,pbest iμ  and gbestμ  are the personal optimal 

and global optimal fuzzy goal vectors of particle i, 

respectively, and ( )ix tμ  is the fuzzy goal vector of particle 

i's current position. 
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Whether the conditions for termination have 

been met

Yes

End

No  

 

Figure 2: FMOPSO methodological framework 

 

As shown in Fig. 2, in the FMOPSO algorithm, the 

multi-objective logistics and distribution center siting 

problem is transformed into fuzzy objective vectors by 

randomly initializing the particle swarm and defining the 

fuzzy affiliation function to ensure a comprehensive 

exploration of the solution space. In the algorithm 

iteration, the fuzzy objective performance of the particles 

to satisfy the constraints is evaluated, and the optimal 

solution is updated using the Pareto principle, which 

guides the adjustment of the particle speeds and positions 

until the convergence criteria are satisfied. The final 

output of the non-inferior solution set of the Pareto frontier 

provides decision makers with diverse choices based on 

the balance of cost and satisfaction [23, 24]. 

 

4   Case studies 
4.1 Case background 

In a hotbed of emerging markets in Asia, a major 

retailer is on the cusp of expansion, with plans to open a 

new Regional Distribution Center (RDC) within its 

service territory. As its business grows rapidly, the 

company is faced with an unprecedented challenge - how 

to maintain competitiveness while balancing economic 

efficiency with social and environmental responsibility. 

To this end, it set three core objectives as the cornerstones 

of its decision-making: first, to minimize total logistics 

costs, which include transportation costs, warehousing 

costs, and day-to-day operating expenses; second, to 

maximize customer service satisfaction, i.e., to ensure that 

goods are delivered to customers efficiently and on time, 

and to enhance brand loyalty; and third, to minimize 

environmental impact, and to work to reduce its carbon 

footprint and other forms of environmental damage in 

response to the global green initiatives. 

In order to achieve these goals, firms must overcome 

a number of constraints, including: (1) Geographic 

advantage: the location of the distribution center needs to 

be in close proximity to major transportation networks, 

such as highways, railroads, and ports, in order to allow 

for the rapid consolidation and distribution of goods. (2) 

Cost control: Land acquisition and construction costs must 

not exceed budget ceilings, and long-term operating costs 

must also be taken into account. (3) Future adaptability: 

the design and size of the distribution center should be 

flexible enough to cope with future business growth and 

avoid the need for another expansion in the short term [25, 

26]. 
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Objective 1: Minimize total logistics costs. The total 

logistics cost consists of transportation cost, warehousing 

cost and operation cost, which can be expressed as 

equation (5). 

total transport warehouse operationC C C C= + +   (5) 

Where transportC  is the transportation cost, warehouseC  

is the warehousing cost and operationC  is the operating cost. 

Objective 2: Maximize customer service satisfaction. 

Customer service satisfaction can be measured by metrics 

such as on-time delivery rate, order completeness, and 

customer feedback, which can be expressed as a fuzzy 

affiliation function Equation 6. 

1 if ( ) ,
( )

0 if ( ) ,

target

Satisfaction

target

TTR x TTR
x

TTR x TTR TTR



= 

 −
(6) 

Where ( )TTR x  denotes on-time delivery rate,

targetTTR  is the target delivery rate, TTR  is the 

tolerance bias, and ( )Satisfaction x  is the fuzzy affiliation 

of customer service satisfaction. 

Objective 3: Minimize environmental impact. The 

environmental impact can be evaluated by a combination 

of several indicators, such as carbon emissions, energy 

consumption and waste management, which is expressed 

by a fuzzy affiliation function as Equation 7 [27]. 

2

1
( )

( )
1

Impact

threshold

x
EC x

EC

 =
 

+  
 

    (7) 

In order to ensure the feasibility of the siting decision, 

the firm must also satisfy the following constraints: 

Constraint 1: Geographic Advantage. The 

distribution center should be located in a convenient area, 

which can be expressed as the distance from the nearest 

transportation hub is less than or equal to the maximum 

allowable distance maxD , which can be expressed as 

Equation 8 [28]. 

( ,hub) maxD x D    (8) 

where ( ,hub)D x  denotes the distance from 

location x to the nearest transportation hub. 

Constraint 2: Cost control: land acquisition and 

construction costs should not exceed the budget ceiling

maxB  which can be expressed as

land construction maxC C B+   where landC  is the cost of 

land and constructionC  is the cost of construction. 

Constraint 3: Future Adaptability. The capacity of the 

distribution center should meet the needs of future 

business growth, which can be expressed by the minimum 

inventory turnover rate minR : ( ) minR x R  where R(x) is 

the inventory turnover rate for location x. 

 

4.2 Implementation process 
The first step in implementation is a detailed data 

collection and pre-processing process. The company sends 

a team of professionals to the potential site area to collect 

a series of key information on land prices, transportation 

infrastructure layout, population density distribution, local 

environmental regulations, and so on. These raw data are 

then imported into the data analysis platform for 

standardized processing to ensure that indicators of 

different scales can be fairly compared. What's more, 

considering the uncertainty and fuzziness of the data itself, 

a fuzzification method was adopted to process the data, 

converting quantitative data into fuzzy numbers by means 

of an affiliation function, as a way to accurately reflect the 

uncertainty of the information and to lay a solid 

foundation for the subsequent model construction. 

Based on the preprocessed data, the company 

constructed a multi-objective fuzzy optimization model 

that encompasses three core objectives of cost 

minimization, customer service satisfaction maximization 

and environmental impact minimization, while strictly 

adhering to the constraints of geographic advantage, cost 

control and future adaptability. In order to explore the 

optimal solution in the complex decision space, the 

company adopts the innovative FMOPSO algorithm. This 

algorithm can effectively deal with the ambiguity and 

uncertainty in multi-objective decision making by 

searching in the ambiguity space of the objective function 

through group intelligence, and gradually approximating 

the Pareto optimal frontier, i.e., a series of non-inferiority 

solution sets, each of which represents a kind of 

equilibrium state between different objectives [29]. 

At the end of the model solving process, the decision 

makers of a company are faced with the task of analyzing 

in depth the set of Pareto optimal solutions generated by 

the FMOPSO algorithm. Decision makers not only need 

to evaluate the combined performance of each solution in 

terms of cost, service quality and environmental 

responsibility, but also need to consider its fit with the 

long-term strategic plan of the organization. The whole 

implementation process demonstrates how complex data 

analysis, advanced algorithms and strategic decision-

making can be combined to solve the multi-objective 

optimization challenge of logistics and distribution center 

location in a scientific way. Through this case, the 

enterprise can not only improve operational efficiency and 

reduce costs, but also establish a responsible corporate 

image in the competitive market and win wide recognition 

from consumers and society [30, 31]. 

 

4.3 Analysis of results 
After completing the site selection decision process, 

we compiled a series of key data and analysis results to 

provide a more intuitive understanding of the advantages 

and disadvantages of different site selection options. 

Below are four summary tables showing the cost-benefit 

analysis, environmental impact assessment, customer 

service quality metrics, and overall score comparison. 

As shown in Table 2, we can observe the differences 

in the performance of different addresses in terms of cost-

effectiveness. Address A-01 has a relatively high net 

present value (NPV) and return on investment (ROI) 

despite having a low total cost, suggesting that this 
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location is a better investment. Address A-02 has the 

highest total cost, but also the highest expected revenue, 

resulting in its NPV and ROI being the highest of the three, 

showing strong profitability and investment 

attractiveness. 

 

Table 2: Cost-benefit analysis 

Address 

number 

Total cost ($ 

million) 

Expected income ($ 

million) 

Net Present Value (NPV, 

$ million) 

Return on investment 

(ROI, %) 

A-01 560 1200 490 87.5 

A-02 620 1350 570 91.9 

A-03 580 1100 370 63.8 

As shown in Table 3, the EIA reflects the potential 

environmental impacts of the different siting options. The 

A-01 address has relatively high CO₂ emissions and 

energy consumption, but low wastewater emissions and 

solid waste generation. The A-02 address exhibits low 

values for all environmental indicators, suggesting that the 

location has relatively low environmental impacts, which 

is conducive to the enterprise's ability to achieve 

sustainable development. The A-03 address has generally 

higher environmental impact indicators, especially CO₂ 

emissions and energy consumption, which may increase 

the environmental liabilities and operational costs of the 

enterprise. Therefore, the environmental friendliness of 

the A-02 address is more in line with the requirements of 

green development in site selection. 

 

Table 3: Environmental impact assessment 

Address 
number 

CO₂ emissions 
(tons/year) 

Energy consumption 
(kWh/year) 

Wastewater discharge 
(m3/year) 

Solid waste 
(tons/year) 

A-01 1200 350,000 800 20 

A-02 1050 320000 750 18 

A-03 1300 380000 850 22 

Table 4 Customer Service Quality Indicators: as 

shown in Table 3, customer service quality indicators are 

an important measure of the impact of the location options 

on customer service. a-01 addresses are longer in average 

delivery time, but have higher customer satisfaction and 

order accuracy and lower out-of-stock rates. a-02 

addresses perform well on all customer service quality 

indicators, especially on delivery time and customer 

satisfaction, which suggests that the location is able to 

provide more efficient and customer-satisfying services. 

A-03 addresses have the longest average delivery time, the 

lowest customer satisfaction, and relatively low order 

accuracy, which may affect the firm's competitiveness in 

the market. Therefore, A-02 addresses have a clear 

advantage in improving the quality of customer service. 

 

Table 4: Customer service quality indicators 

Address number Average delivery time (hours) Customer satisfaction (out of 10) Order accuracy (%) Stock-out rate (%) 

A-01 12 8.5 98.5 1.2 

A-02 10 9.0 99.0 1.0 

A-03 14 8.2 97.5 1.5 

Table 5 Comprehensive Score Comparison: as shown 

in Table 4, the comprehensive score comparison 

demonstrates the combined performance of the site 

options across multiple dimensions. address A-02 scored 

first in all three dimensions of cost-effectiveness, 

environmental friendliness, and quality of service and had 

the highest composite score, suggesting that the location 

has strengths in multiple dimensions, making it an all-

around excellent site option. address A-01, although it 

performed well in some individual categories, had a 

composite score was slightly lower than A-02. address A-

03 had the lowest scores in all areas and the lowest 

composite score, indicating that the site performed the 

worst in the overall evaluation. Therefore, based on the 

composite score, address A-02 is the best site option. 
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Table 5: Comparison of composite scores 

Address number Cost-effectiveness score Environmentally Friendly Score Quality of Service Score Composite score (out of 100) 

A-01 85 75 88 83 

A-02 90 80 92 87 

A-03 70 65 85 73 

4.4 Comparative analysis of models 
In order to visualize the results of the Fuzzy Multi-

Objective Particle Swarm Optimization Algorithm 

(FMOPSO) used in this study in comparison with similar 

models, the following four tables will be used to make 

detailed comparisons in terms of four aspects: speed of 

convergence, quality of solution, parameter sensitivity, 

and the ability to deal with uncertainty, respectively. 

 

 

Figure 3: Convergence curve 

 

Table 6: Convergence speed comparison 

mould 
Fastest convergence time 

(seconds) 

Average convergence time 

(seconds) 

Slowest convergence time 

(seconds) 

FMOPSO 23 35 48 

MOPSO 28 45 60 

GA 35 50 65 

DE 40 55 70 

FLS-GA 30 42 55 

As shown in Fig. 3, our algorithm has an advantage 

in convergence speed. Convergence speed is an important 

indicator for evaluating the efficiency of optimization 

algorithms, as shown in Table 6. The FMOPSO algorithm 

outperforms the other models in terms of the fastest, 

average, and slowest convergence times, showing that it 

has a higher computational efficiency in the solution 

process. This means that the FMOPSO algorithm is able 

to find a satisfactory solution in a shorter period of time, 

which is a significant advantage for real-world problems 

that require fast decision making. In contrast, other models 

such as MOPSO, GA, DE and FLS-GA perform slightly 

worse in convergence speed, which may increase the 

solution time and computational cost. 
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Table 7: Comparison of the quality of solutions 

mould Average objective function error Maximum objective function error Minimum objective function error 

FMOPSO 0.012 0.035 0.007 

MOPSO 0.015 0.042 0.009 

GA 0.018 0.048 0.012 

DE 0.014 0.040 0.008 

FLS-GA 0.013 0.038 0.006 

The quality of the solution is a key factor in 

measuring the performance of the optimization algorithm, 

as shown in Table 7. The FMOPSO algorithm is lower 

than the other models in terms of average objective 

function error, maximum objective function error, and 

minimum objective function error, suggesting that it is 

able to provide a more accurate and higher quality 

solution. This accuracy is critical for site selection 

decisions as it ensures the reliability and utility of the 

results obtained. The other models, while also providing 

reasonable solutions, are not as accurate as the FMOPSO 

algorithm, which may affect the degree of optimization of 

the final decision. 

 

 

Figure: 4 Comparison of parameter sensitivity 

 

 

As shown in Fig. 4, the parameter sensitivity reflects 

the algorithm's ability to adapt to parameter changes. The 

FMOPSO algorithm has the lowest percentage decrease in 

solution stability due to parameter changes, indicating that 

it is insensitive to changes in parameter settings and has 

good robustness. This property makes the FMOPSO 

algorithm more reliable in practical applications because 

it does not require frequent parameter adjustments to 

maintain good performance. In contrast, other models 

have poorer stability of the solution when the parameters 

change, and may require finer parameter tuning to ensure 

the quality of the solution. 

 

 

 

 

 

 

Table 8: Comparison of uncertainty handling 

capabilities 

mould 
Fluctuation of solutions under uncertainty 

(%) 

FMOPSO 5.2% 

MOPSO 7.1% 

GA 9.4% 

DE 6.9% 

FLS-GA 6.5% 
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As shown in Table 8, uncertainty handling ability is 

an important indicator for evaluating the stability of an 

algorithm in maintaining stability in the face of 

uncertainty. The FMOPSO algorithm has the smallest 

fluctuation in the solution under uncertainty scenarios, 

indicating that it has a high degree of stability in dealing 

with uncertain information, which is crucial for risk 

management and strategy development in site selection 

decisions. Other models can also handle uncertainty, but 

the magnitude of fluctuation is large, which may increase 

the risk of decision making. Therefore, the FMOPSO 

algorithm is more advantageous in dealing with complex 

and uncertain site selection problems. 

Through a comprehensive assessment of key data and 

analysis results from the site selection decision process, 

we found that the A-02 address demonstrated significant 

advantages in a number of dimensions, including cost-

effectiveness, environmental impact, and customer service 

quality. Specifically, although the A-02 address has a 

higher total cost, it has the highest expected revenue, net 

present value and return on investment, indicating that it 

has good economic benefits. In terms of environmental 

impact, the A-02 address has relatively low emissions and 

energy consumption, which is conducive to the realization 

of green development of enterprises. Meanwhile, A-02 

address also performs well in customer service quality 

indicators, which can win the competitive advantage for 

the enterprise in the market. Through the comparative 

analysis of the fuzzy multi-objective particle swarm 

optimization algorithm (FMOPSO) and other similar 

models, we find that the FMOPSO algorithm outperforms 

the other models in terms of convergence speed, solution 

quality, parameter sensitivity, and the ability to deal with 

uncertainty. The fast convergence and high solution 

quality of the FMOPSO algorithm help to improve the 

efficiency and reliability of the siting decision, and its low 

sensitivity to parameter changes and strong uncertainty 

handling ability make the algorithm more robust and 

practical in practical applications. The A-02 address as a 

siting option has a high overall score and is the best siting 

choice in this study. Meanwhile, the application of 

FMOPSO algorithm in the site selection decision model 

shows excellent performance and provides powerful 

decision support for enterprises in the complex and 

changing site selection environment. 

 

4.4 Comparative analysis of models 
To evaluate the robustness of the Fuzzy Multi-

Objective Particle Swarm Optimization (FMOPSO) 

algorithm, we conducted a parameter sensitivity analysis 

focusing on key parameters such as the inertia weight, 

cognitive coefficient, and social coefficient. The inertia 

weight controls the balance between global and local 

search, while the cognitive and social coefficients 

influence the particles' movement towards their personal 

best and the global best, respectively. 

The inertia weight w was varied from 0.2 to 0.9 in 

increments of 0.1. A lower inertia weight encourages more 

exploration, whereas a higher value promotes 

exploitation. Our results indicate that an inertia weight of 

0.7 provided the best trade-off between exploration and 

exploitation, leading to faster convergence and higher 

solution quality. However, the FMOPSO algorithm 

showed relatively low sensitivity to changes in the inertia 

weight, with only a 5% decrease in solution stability when 

the weight was set to extreme values (0.2 or 0.9). 

The cognitive coefficient was tested in the range of 

1.0 to 2.5. This parameter affects how much a particle is 

influenced by its own best position. A higher value leads 

to more individualistic behavior, while a lower value 

promotes more collective behavior. We found that a 

cognitive coefficient of 1.5 yielded the most stable and 

high-quality solutions. The sensitivity analysis revealed 

that the FMOPSO algorithm's performance was relatively 

insensitive to variations in , with a 3% decrease in solution 

stability at the extremes of the tested range. 

The social coefficient was also tested in the range of 

1.0 to 2.5. This parameter determines the influence of the 

global best position on the particle's movement. A higher 

value encourages more collective behavior, while a lower 

value allows for more individual exploration. An optimal 

value of 2.0 was identified, providing a good balance 

between exploration and exploitation. The FMOPSO 

algorithm showed a 4% decrease in solution stability when 

was set to the extremes of the tested range. 

Overall, the FMOPSO algorithm demonstrated 

robust performance across a wide range of parameter 

settings, indicating its reliability and adaptability in real-

world applications. This insensitivity to parameter 

changes is a significant advantage, as it reduces the need 

for fine-tuning and ensures consistent performance even 

under varying conditions. 

The computational complexity of the FMOPSO 

algorithm is an important consideration, especially given 

the large search space and multiple objectives involved in 

logistics and distribution center location problems. The 

time complexity of the standard PSO algorithm is 

generally ( )O T N D  , where T is the number of 

iterations, N is the population size, and D is the 

dimensionality of the problem. In the case of FMOPSO, 

the additional fuzzy logic operations introduce a constant 

factor, but the overall complexity remains linear with 

respect to these parameters. 

For practical implementation, the choice of N and T 

is crucial. In our study, we used a population size of 50 

and a maximum of 100 iterations, which provided a good 

balance between computational efficiency and solution 

quality. As the problem dimensionality increases, the 

computational cost grows linearly, making the algorithm 

scalable to larger problems. However, for very high-

dimensional problems, the number of iterations may need 

to be increased to ensure adequate exploration of the 

search space, which can lead to higher computational 

costs. 

To address potential scalability issues, parallel 

computing techniques can be employed to distribute the 

computational load. Additionally, adaptive strategies, 

such as dynamically adjusting the population size and the 

number of iterations based on the problem's 

characteristics, can further enhance the algorithm's 
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efficiency. These considerations are essential for ensuring 

that the FMOPSO algorithm remains practical and 

efficient, even as the complexity of the optimization 

problem increases. 

The implementation of the FMOPSO algorithm 

involves several key steps, each of which is critical for 

achieving high-quality solutions. Here, we provide more 

detailed information on the specific implementation 

details, including the selection of initial parameters and 

their impact on the results. 

Population Size N: We initialized the population with 

50 particles. This size was chosen based on a trade-off 

between computational efficiency and the diversity of the 

search. A larger population can explore the search space 

more thoroughly but at the cost of increased 

computational time. 

Number of Iterations T: The algorithm was run for a 

maximum of 100 iterations. This number was determined 

through preliminary experiments, which showed that 100 

iterations were sufficient to achieve convergence for the 

majority of test cases. 

Inertia Weight w: Set to 0.7, which balances 

exploration and exploitation effectively. 

Cognitive Coefficient: Set to 1.5, promoting a 

balanced individual and collective behavior. 

Social Coefficient: Set to 2.0, encouraging more 

collective behavior and convergence towards the global 

best. 

Population Size: Increasing the population size can 

improve the diversity of the search, potentially leading to 

better solutions. However, this comes at the cost of 

increased computational time. For our problem, a 

population size of 50 was found to be a good compromise. 

Number of Iterations: A higher number of iterations 

can improve the quality of the solution, but it also 

increases the computational cost. The 100 iterations used 

in our study were sufficient to achieve stable and high-

quality solutions. For more complex problems, a higher 

number of iterations may be necessary. 

Triangular Membership Function for Logistics 

Demand Forecasts: The triangular membership function 

was defined with points (a, b, c) to represent the lower 

bound, most likely value, and upper bound of the demand 

forecasts. This function effectively captures the 

uncertainty in demand predictions. 

The trapezoidal membership function was defined 

with points (a, b, c, d) to represent the lower and upper 

bounds and the flat top of the environmental data. This 

function is particularly suitable for representing ranges 

with a flat top, common in environmental indices. 

 

4.5 Discussion 
In this section, we will provide a detailed discussion 

on the comparison of the FMOPSO algorithm with 

existing state-of-the-art solutions, such as Genetic 

Algorithms (GA), Differential Evolution (DE), and Multi-

Objective Particle Swarm Optimization (MOPSO), in 

terms of convergence speed, solution quality, and 

uncertainty handling. Through these comparisons, we will 

highlight the advantages of the FMOPSO algorithm and 

its suitability for logistics center location problems under 

uncertain conditions. 

As shown in Figure 3 and Table 9, the FMOPSO 

algorithm significantly outperforms other algorithms in 

terms of convergence speed. Specifically, FMOPSO 

exhibits the best performance in the fastest, average, and 

slowest convergence times. This advantage is mainly 

attributed to the combination of fuzzy decision theory and 

particle swarm optimization, which allows FMOPSO to 

maintain global search while quickly finding local optimal 

solutions. In contrast, although GA, DE, and MOPSO can 

also find high-quality solutions, their slower convergence 

speeds may increase computational costs and time. 

 

Table 9: Convergence speed comparison 

Model 

Fastest 

Convergence 

Time (seconds) 

Average 

Convergence 

Time (seconds) 

Slowest 

Convergence 

Time (seconds) 

FMOPSO 23 35 48 

MOPSO 28 45 60 

GA 35 50 65 

DE 40 55 70 

FLS-GA 30 42 55 

 

According to the results in Table 6, the FMOPSO 

algorithm also excels in solution quality. Whether in terms 

of average objective function error, maximum objective 

function error, or minimum objective function error, 

FMOPSO consistently outperforms the other algorithms. 

This means that FMOPSO can provide more accurate and 

higher-quality solutions. This advantage stems from the 

effective handling of data uncertainty and fuzziness 

through the fuzzification process, enhancing the 

robustness and reliability of the model. While GA, DE, 

and MOPSO can also provide reasonable solutions, they 

are slightly less accurate. 

 

Table 10: Solution quality comparison 

Model 

Average 

Objective 
Function Error 

Maximum 

Objective 
Function Error 

Minimum 

Objective 
Function Error 

FMOPSO 0.012 0.035 0.007 

MOPSO 0.015 0.042 0.009 

GA 0.018 0.048 0.012 

DE 0.014 0.040 0.008 

FLS-GA 0.013 0.038 0.006 

 

The FMOPSO algorithm demonstrates superior 

performance in handling uncertainties. As shown in 

Figure 4 and Table 10, FMOPSO exhibits low sensitivity 

to parameter changes, indicating that it can maintain stable 

performance under varying environmental conditions. 

This makes FMOPSO more reliable in practical 

applications, as it does not require frequent parameter 

adjustments to maintain good performance. In contrast, 

GA, DE, and MOPSO show poorer stability when 

parameters change and may require more fine-tuning to 

ensure solution quality. 
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Table 11: Parameter sensitivity comparison 

Model 
Percentage Decrease in Solution Stability Due to 

Parameter Changes (%) 

FMOPSO 3.5% 

MOPSO 7.0% 

GA 8.5% 

DE 6.0% 

FLS-GA 5.5% 

 

As show in table 11, FMOPSO shows unique 

advantages in handling high-dimensional data and 

complex constraints. By employing fuzzy membership 

functions, FMOPSO can better handle uncertainties and 

fuzziness in the data, leading to the discovery of better 

solutions in high-dimensional spaces. Additionally, the 

adaptive mechanisms in FMOPSO enable effective 

searching under complex constraints without getting stuck 

in local optima. This capability is particularly important 

for solving large-scale logistics center location problems, 

which often involve multiple conflicting objectives and 

complex constraints. 

In summary, the FMOPSO algorithm outperforms 

existing classic algorithms such as GA, DE, and MOPSO 

in terms of convergence speed, solution quality, and 

uncertainty handling. These advantages are not only 

reflected in the numerical results but also in the unique 

design and implementation methods. Specifically, by 

integrating fuzzy decision theory and particle swarm 

optimization, FMOPSO can better handle uncertainties 

and complex constraints, making it particularly suitable 

for real-world logistics center location problems. 

Additionally, FMOPSO's strong capabilities in handling 

high-dimensional data and large datasets further enhance 

its practicality and effectiveness. These features make 

FMOPSO a powerful tool for solving logistics and 

distribution center location problems. 

 

5   Conclusion 
Facing the dual challenges of global competition and 

environmental sustainability, the site selection decision of 

logistics and distribution centers has become a key link in 

determining the success or failure of enterprises. In this 

context, this study introduces a multi-objective 

optimization method based on fuzzy set theory and 

integrates the particle swarm optimization algorithm to 

develop the FMOPSO model for the multi-objective and 

uncertainty problems inherent in the site selection 

decision. Through systematic research design, including 

data collection, preprocessing and fuzzification, as well as 

model construction and solving, we successfully applied 

FMOPSO to solve the difficult problem of site selection 

decision-making in the case of a retail enterprise in Asia. 

During the research process, we first conducted extensive 

data collection, covering key information such as logistics 

demand forecasts, GIS data, transportation costs, 

environmental impact indices, and land use. In the data 

preprocessing stage, we performed data cleaning, 

standardization and fuzzification to ensure the accuracy 

and consistency of model inputs. Subsequently, a multi-

objective fuzzy decision-making model was constructed 

with cost minimization, customer service satisfaction 

maximization, and environmental impact minimization as 

the objective functions, and solved by the FMOPSO 

algorithm to generate a series of Pareto optimal solutions. 

The case study reveals that the A-02 address not only 

excels in economic benefits, but also achieves a high level 

of environmental responsibility and customer satisfaction, 

making it the optimal siting solution. Meanwhile, the 

FMOPSO algorithm exceeds the traditional algorithm in 

convergence speed, solution quality, parameter sensitivity 

and ability to deal with uncertainty, which highlights its 

advantages in solving complex decision problems. 
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