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In order to address the new challenges brought by large-scale wind power grid integration to the safe 

operation of the power system, a non-deterministic optimization whale swarm optimization algorithm is 

introduced to predict wind power. This method uses trend optimization function to optimize control 

coefficients and weight coefficients to ensure the algorithm randomness and avoid falling into local 

optima. On this basis, combined with the evolutionary strategy of bee species and the fast global search 

mechanism, a fast global optimization algorithm for bee species transition is proposed to achieve 

dynamic economic scheduling. The results showed that under clear weather conditions, the mean root 

mean square error of the prediction obtained by the non-deterministic optimization-whale optimization 

algorithm was only 2.68%, while the least squares support vector machine method was as high as 

5.43%. Under cloudy conditions, the mean root mean square error of this algorithm was only 5.82%, 

which was 6.28% lower than the particle swarm optimization back propagation algorithm. Under rainy 

conditions, the mean root mean square error of the algorithm was only 6.75%. In addition, the average 

running time of the rapid global optimization algorithm for bee species transition on dynamic economic 

scheduling problems was only 28.9 seconds. The runtime of the artificial bee colony algorithm was as 

long as 198.6. Overall, the wind power prediction algorithm and dynamic economic dispatch algorithm 

have achieved significant advantages in prediction accuracy and solution effectiveness. This is 

conducive to achieving efficient optimization and scheduling of the power system, improving the stability 

and economy of the power system. 

Povzetek: Razvita je nova metoda napovedovanja vetrne energije in dinamičnega ekonomskega 

razporejanja z uporabo naprednih optimizacijskih algoritmov, s čimer se povečuje stabilnost 

elektroenergetskega sistema.

1 Introduction 

Wind energy is one of the most extensively used new 

energy sources, which is influenced by factors such as 

terrain, time, and climate, and has strong peak resistance 

characteristics [1-2]. Meanwhile, wind power has strong 

randomness, volatility, and uncertainty. Therefore, 

accurate power prediction and optimized scheduling are 

of great significance [3]. Among them, wind power 

prediction exerts a crucial function in subsequent power 

dispatch, as it can estimate the amount of wind power 

generation in a certain period of time in the future. 

Operators can arrange power generation plans reasonably 

based on the prediction results. At present, wind power 

prediction methods contain single algorithm and hybrid 

algorithm prediction models. However, single algorithms 

often have problems such as insufficient prediction 

accuracy, while hybrid algorithms can help improve the 

convergence speed and accuracy of prediction algorithms 

[4]. In addition, Dynamic Economic Dispatch (DED) is  

 

 

crucial in the operation and management of the power 

system. Considering the significant changes in the 

dynamic characteristics and load demand, DED is 

generally solved by dispersing the entire scheduling. 

DED mainly aims to minimize power generation costs 

and break physical and operational limitations. In 

traditional electricity economic dispatch, the cost function 

is essentially a quadratic function. Mathematically 

speaking, the DED is a non-convex, non-linear, and 

large-scale optimization problem with various complex 

constraints. Related scholars have adopted the Artificial 

Bee Colony (ABC) algorithm, but this method is prone to 

getting stuck in local optima. Therefore, it is necessary to 

introduce more advanced algorithms to solve the DED 

problem, in order to achieve more efficient power system 

scheduling and management [5]. 

Wind power prediction is meaningful in improving the 

wind power resource utilization and ensuring its safe and 

stable operation. Zhang et al. believed that different time 

series inputs had a significant impact on short-term wind 
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power prediction. Therefore, a multi-source time 

attention network was proposed to predict its probability. 

The model weighted other similar products in both 

deterministic and probabilistic predictions [6]. Hossain et 

al. designed a prediction framework for 5-minute wind 

power generation, which combined Emperor Butterfly 

optimization, adaptive noise based complete ensemble 

empirical mode decomposition, and Long Short-Term 

Memory (LSTM). The prediction accuracy was 

effectively improved [7]. Abedinia et al. introduced a 

new empirical mode decomposition for intelligent wind 

power generation prediction to achieve wind 

measurement value decomposition. Meanwhile, the 

decomposed signal was input into the bagging neural 

network prediction model based on K-means clustering. 

The method achieved lower prediction error values [8]. 

Sun et al. found that traditional wind power prediction 

had significant prediction errors. Therefore, a new ultra 

short-term probability prediction method was built. This 

method combined principal component analysis, wavelet 

decomposition, and LSTM. Then, the prediction model 

achieved excellent prediction accuracy in the data 

prediction [9]. Wu et al. found that large-scale wind 

power grid integration had impacts on the stability of the 

power system. Accordingly, a ultra short term prediction 

strategy on the basis of convolutional neural network and 

LSTM was proposed. Compared with traditional 

prediction models, this strategy had better spatiotemporal 

feature extraction ability [10]. 

As one of the notable means to promote the upgrading 

and transformation of energy systems, DED has attracted 

widespread attention. Chen et al. proposed a coordinated 

robust DED model to address the uncertainty of 

renewable energy. Meanwhile, a distributed framework 

was designed to solve the DED model and risk model in a 

decentralized manner. The designed approach achieved 

significant achievements in the calculation of the 448 

node T118D10 system [11]. In response to the scheduling 

difficulties caused by the integration of large-scale 

renewable energy, Song and Shi designed a DED model 

that considered several wind farms and various 

scheduling time scales. Simultaneously, an improved 

adaptive Cuckoo Search (CS) was  

Table 1: Summary table of related work 

Author Publication year Method Key indicators 

Zhang et al [6] 2021 
Multi-source time 

attention network 

The minimum root mean 

square error for prediction 

is 6.58% 

Hossain et al [7] 2023 

Complete Set 

Empirical Mode 

Decomposition and 

Long Short-Term 

Memory 

The highest prediction 

accuracy is 92.69% 

Abedinia et al [8] 2020 

Improved Empirical 

Mode Decomposition 

and Bagging Neural 

Network Based on 

K-means Clustering 

The highest prediction 

accuracy is 91.62% 

Sun et al [9] 2020 

Principal Component 

Analysis, Wavelet 

Decomposition 

Combined with Long 

Short-Term Memory 

Networks 

The minimum root mean 

square error for prediction 

is 5.81% 

Wu et al [10] 2021 

Convolutional Neural 

Network - Long 

Short-Term Memory 

Ultra Short-Term 

Wind Power 

Prediction Model 

The minimum predicted 

average absolute 

percentage error is 6.87% 

Chen et al [11] 2021 

Coordinated Robust 

DED Model and 

Distributed 

Framework 

In the T118D10 system 

with 448 nodes, the 

operating cost has been 

reduced by 10% 

Song and Shi [12] 2022 

DED model 

considering multiple 

wind farms and 

different scheduling 

Improved prediction 

accuracy to 95% 



Wind Power Prediction and Dynamic Economic Dispatch Strategy…                     Informatica 49 (2025) 71–86 73 

time scales 

 

Bai et al [13] 2021 

Multi-objective 

differential evolution 

algorithm for joint 

dynamic scheduling 

and improvement of 

wind power and 

thermal power 

Economic benefits have 

increased by over 15% 

Wang et al [15] 2020 

State Economy 

Scheduling 

Framework Based on 

Cloud and edge 

computing 

The backup usage of the 

generator set has decreased 

by 18.62% 

used to solve this problem. From the results, the proposed 

model achieved significant results [12]. Bai et al. 

conducted joint dynamic scheduling and thermal power to 

minimize economic costs and pollution emissions. 

Simultaneously, an improved multi-objective differential 

evolution strategy was applied to solve the joint dynamic 

scheduling model. The results indicated that the 

algorithm could effectively handle practical problems 

involving wind power [13]. Wang et al. designed a new 

DED scheme to address the variability and uncertainty in 

power systems. This plan balanced operating costs and 

reliability costs. The results indicated that the proposed 

scheme effectively reduced the reserve capacity of 

generator units and improved the safety and economy of 

power system operation [14]. Wang et al. designed an 

economic dispatching framework based on cloud and 

edge computing for micro-grid DED problems. This 

framework was mainly executed on remote cloud 

computing platforms and local digital signal processors. 

Compared with traditional methods, this method 

improved the economy and reliability of power dispatch 

[15]. The relevant work summary table is shown in Table 

1. 

In summary, domestic and foreign researchers have 

conducted extensive research on wind power prediction 

and DED in power systems, focusing on optimizing 

prediction algorithms and scheduling strategies to address 

the volatility and uncertainty of wind energy. Although 

these algorithms have improved accuracy, many methods 

suffer from local optima problems, are computationally 

complex, and lack interpretability. To this end, a series of 

intelligent algorithms have been introduced to improve 

wind power generation prediction and DED problem 

solutions. Among them, a Non-Deterministic 

Optimization-Whale Optimization Algorithm 

(NDO-WOA) is introduced for wind power prediction 

research. Meanwhile, the Bee Species Transition-Rapid 

Global Optimization Algorithm (BST-RGOA) is 

introduced to solve the DED problem. The research fills 

several key gaps between traditional wind power 

prediction and DED, including being trapped in local 

extremum trends, long computation times, and slow 

responses. The innovation of the research lies that the 

trend optimization function and weight coefficient are 

used to optimize the Whale Optimization Algorithm 

(WOA), which is prone to getting stuck in local extremes. 

Meanwhile, optimizing the original ABC algorithm using 

the bee species transition strategy function is beneficial 

for effectively solving the DED problem, thereby 

improving the stability and economy of the power 

system. 

2 Methods and materials 

With the rapid reduction of fossil fuels, reasonably 

utilizing wind energy is an important topic at present. In 

response to wind power prediction, the study introduces 

the NDO-WOA. The WOA is optimized by trend 

optimization functions and weight coefficients. On this 

basis, the BST-RGOA is introduced to solve the DED 

problem, in order to achieve effective power scheduling. 

2.1 Wind power prediction based on 

NDO-WOA 

Wind power generation can bring significant 

environmental benefits and has enormous development 

prospects in the new energy industry [16]. However, 

Wind Speed (WS) is often influenced by factors such as 

environment, weather, and terrain, resulting in strong 

randomness and volatility in wind power output. 

Therefore, predicting wind power is crucial [17-18]. The 

wind power output is primarily determined by the actual  
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Figure 1: Schematic diagram of wind speed frequency rose diagram 

WS and the generation parameters of the unit equipment. 

Accurately describing the WS variation pattern is crucial. 

Its distribution characteristics and direction in a certain 

area can usually be represented by a WS frequency rose 

chart, as shown in Figure 1. 

In Figure 1, the maximum WS in this area reaches over 

16m/s, and the range is roughly in the northwest. 

Although WS has strong volatility and randomness, 

historical research has found that WS fluctuations have a 

certain regularity. Probability distribution is applied to 

depict WS changes. The Weibull distribution is currently 

one of the most frequently used probability distribution 

models. This model can accurately fit the WS 

distribution, with a simple construction. Three basic 

parameters, namely shape parameters, scale parameters, 

and position parameters, need to be determined to 

simulate the actual changes in WS in a certain area. The 

model expression for Weibull distribution is displayed in 

equation (1). 

( )
1( )

kv

k k cf v c kv e
−

− −=
         (1) 

In equation (1), c  represents the scale parameter of the 

Weibull distribution, and k  signifies its shape 

parameter. v  represents the WS. The size of parameter 
k  is solved by the mean and standard deviation of the 

WS sequence, as shown in equation (2). 

2

(1 2 / )
1

(1 1/ )

v

m

k

v k

  +
= −
 +

         (2) 

In equation (2), mv
 represents the WS sequence mean, 

and v  represents the standard deviation of the WS 

sequence. The scale parameter is shown in equation (3). 

(1 1/ )

mv
c

k
=
 +

            (3) 

In equation (3),   is the gamma function. The output 

power of wind turbines will vary with the fluctuation of 

WS. After describing the WS using the probability 

distribution of WS, the wind power output is calculated. 

The specific expression is shown in equation (4). 

31

2
PP C A v=

            (4) 

In equation (4), P  signifies the output power of the 

wind turbine at a certain moment. PC
 signifies the 

utilization coefficient. PC
 signifies the area swept by 

the fan blades of the generator set. 


 represents air 

density. A  is shown in equation (5). 

 

2A R=               (5) 
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Figure 2: Actual power output of electric field units 

In equation (5), R  represents the blade radius of the 

unit. Taking a wind farm unit as an example, due to 

various uncertain factors such as the environment, the 

actual power output of the wind farm units is shown in 

Figure 2. 

2
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( )
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In equation (7), when 

max
0

2

T
t 

 is reached, the 

control coefficient gradually decreases, improving the 

efficiency and sufficiency of individual search without 

objectives. When 

max
max

2

T
t T 

 is satisfied, the 

decay rate of the control coefficient also decreases with 

time, allowing the whale population to explore and 

discriminate near the approximate optimal solution in 

local search, thereby improving the accuracy of local 

search.  

Introducing trend optimization functions can ensure that 

the algorithm maintains a dynamic balance between 

global and local searches at any time. In addition, the 

WOA lacks mutation ability when reaching the threshold 

limit, resulting in low local search accuracy. To this end, 

weight coefficients are introduced in the study to ensure 

the randomness of the algorithm, which is beneficial for 

escaping local optima and avoiding falling into local 

optima. The wind power prediction process on the basis 

of NDO-WOA is displayed in Figure 3. In Figure 3, 

firstly, the WOA running parameters are initialized, 

including the number of whale individuals, iteration 

times, and search space. Then, an initial solution is 

randomly generated in the search space, which is the 

position of individual whales. Each individual represents 

a potential solution. Subsequently, the trend optimization 

function is used to dynamically adjust the control 

coefficients and adjust the sensitivity of the prediction 

model. 

The weight coefficients are updated based on the 

optimization results to balance multiple influencing 

factors of the model. Next, the updated parameters and 

weights are used to construct a wind power prediction 

model. The minimum prediction error is saved again to 

evaluate the performance of the model. A single 

coordinate is updated and a new  
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Figure 3: Wind and solar power prediction process based on NDO-WOA 

prediction loop is executed to further optimize parameters 

and compare errors until the termination condition is met. 

Finally, based on the obtained optimal solution, wind 

power prediction is carried out to ensure that the model 

has good adaptability and predictive ability in dynamic 

environments. 

In order to analyze the relationship between the 

convergence time and population size of the WOA, the 

study sets the population size to 1N
. The dimension size 

is W , and the number of iterations is E . The time 

complexity of both WOA and NDOWOA is 

1· ·O E N W（ ）
. As the population size 1N

 increases, the 

time complexity also increases, which affects the 

execution efficiency of the algorithm.  

 

 

 

 

 

In the WOA, each individual performs 1 addition, 3 

subtractions, and 4 multiplications per iteration. In the 

NDO-WOA, each individual undergoes 1 addition, 4 

subtractions, 5 multiplications, and 1 division. Compared 

with the WOA, the NDO-WOA can locate the optimal 

solution faster, thereby shortening the convergence time. 

2.2 Dynamic economic scheduling based on 

BST-RGOA 

The study achieves wind power prediction through 

NDO-WOA. Then, it is applied to DED. The power 

demand of DED varies over time, and its objective 

function is the total production cost of several generator 

units at a certain interval, which is a quadratic function 

from the active power output of the generator units 

[19-20]. The expression for total production cost is shown 

in equation (8). 
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2 min( ) sin( ( ))it it i it i it i i i it itF P a P b P c e f P P= + + + − (8) 

In equation (8), itP
 signifies the actual output power of 

the i -th engine at time t . ia
, ib

 and ic
 represent 

cost coefficients. ie
 and if  are consumption 

coefficients. 
min

itP
 signifies the minimum output power 

of the i -th generator set. In the DED model, 

unconstrained scheduling can result in generator units 

operating within unsafe ranges, leading to equipment 

failures or power outages.  

Therefore, it is necessary to set reasonable constraints to 

maintain the stability and security of the system. The 

research mainly considers load and loss, output power of 

generator units, and the rise and fall speed of each unit. In 

practical applications, the setting of constraints is not just 

a theoretical consideration, but based on a large amount 

of empirical data and standards. The research mainly 

analyzes the performance of generator sets under 

different loads and environmental conditions to identify 

their safe operating range. In addition, by analyzing 

historical data and combining industry standards with 

engineers' practical experience, corresponding constraints 

have been set. The expression for the load and loss 

constraints of the system is shown in equation (9). 

1

GN

it D L

i

P P P
=

= +
            (9) 

In equation (9), DP
 signifies the total system load. LP

 

signifies the loss. GN
 signifies the total online generator 

units to be scheduled. The output power of each generator 

set has an upper and lower limit, as shown in equation 

(10). 

min max

it it itP P P 
          (10) 

In equation (10), 
max

itP
 signifies the maximum output 

power of the i -th generator set. If the power generation 

increases, the constraint conditions for the rising and 

falling speeds of each unit are shown in equation (11). 

1t

it it iP P UR−− 
           (11) 

In equation (11), iUR
 signifies the upper slope. 

1t

itP −

 

represents the power generation of generator set i  in the 

previous hour. If the power generation decreases, the 

constraint condition is shown in equation (12). 

1t

it it iP P DR−−             (12) 

In equation (12), iDR
 represents the lower slope. The 

voltage constraint is shown in equation (13). 

min maxiU U U            (13) 

In equation (13), minU
 and maxU

 represent extreme 

voltage values.  

The ABC is introduced to solve the DED in the power 

system. In the ABC algorithm, different roles of the bee 

colony are responsible for different tasks. Following bees 

mainly conduct local searches, while reconnaissance bees 

and lead bees are responsible for exploring the entire 

solution space. In the traditional ABC algorithm, the 

number of leading bees and following bees accounts for 

50% of the total bees, which limits the global search 

ability and results in low efficiency. In the stage of 

searching for food sources, the ABC algorithm uses 

specific formulas to determine whether to extract food 

sources. When the threshold limit is reached, the 

algorithm lacks mutation ability and is prone to falling 

into local optima. In addition, during the stage of 

following bees to search for food sources, the ABC 

algorithm determines whether to develop food sources 

through roulette wheel, which leads to low local search 

accuracy of the algorithm. In response to these problems, 

the BST-RGOA is proposed by combining bee species 

transition and fast global search mechanism. In the bee 

species transition strategy, the bee species transition 

strategy function is mainly introduced in the early stage 

of the ABC. This function is an optimization method 

based on natural selection and group cooperation 
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Figure 4: Dynamic economic scheduling flowchart based on BST-RGOA 

mechanisms, inspired by the foraging behavior and 

species evolution of bees. The design objective is to 

improve the global search capability and local search 

accuracy of the ABC, in order to achieve better solutions 

in complex optimization problems. Leading bees 

optimize based on this function, thereby improving its 

global search ability. The calculation of this function is 

shown in equation (14). 

2( ) 1 ( )
s

q s
S

= − 
          (14) 

In equation (14), S  is the maximum number of 

iterations. s  represents the current iteration count.   

represents a random number in [0,1]. The number of 

leading bees is represented by equation (15). 

( )Y q s M= 
          (15) 

In equation (15), M  represents the total bee colonies. 
Y  signifies the total leading bees. As the iteration 

progresses, the strategy function gradually decreases, 

resulting in a decrease in the number of leading bees and 

an increase in the proportion of following bees, thereby 

enhancing the local exploration ability. The descent rate 

of the evolutionary strategy function accelerates in later 

the stage. The update of food sources tends to be stable 

and gradually approaches the optimal solution. The 

number of leading bees is relatively reduced, and the 

proportion of following bees is increased. On this basis, 

the study further introduces a fast global search 

mechanism. In the ABC algorithm, reconnaissance bees 

are mainly responsible for finding better food sources. In 

order to improve local exploration  
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Table 2: Summary table of experimental parameters 

Parameter Name PSO-BP WOA NDO-WOA LS-SVM 

Learning rate 0.01 / / 0.1 

Maximum number 

of iterations 
100 50 100 200 

Number of 

particles 
30 / / / 

Convergence 

criteria/ 

Mean Squared 

Error (MSE) < 

0.01 

MSE < 0.05 MSE < 0.01 MSE < 0.05 

Table 3: RMSE values for different control coefficients and weight coefficients 

Number Control coefficient Weight coefficient RMSE (%) 

1 0.1 1 12.62 

2 0.5 1 9.35 

3 1.5 1 6.28 

4 2.0 1 7.69 

5 0.1 2 14.68 

6 0.5 2 9.54 

7 1.5 2 4.67 

8 2.0 2 7.54 

 

ability, when the upper threshold is reached, the 

BST-RGOA introduces better food sources from the 

previous iteration through a fast global search 

mechanism, thereby optimizing the food source search 

mechanism in the next iteration. The dynamic economic 

scheduling flowchart based on the BST-RGOA is shown 

in Figure 4. 

3 Results 

The study first validates the prediction ability of the wind 

power prediction model based on the NDO-WOA under 

different time scales and meteorological conditions. 

Subsequently, the dynamic economic scheduling effect 

based on BST-RGOA is verified under different 

population sizes, including convergence effect and 

running time. 

3.1 Analysis of wind power prediction 

results based on NDO-WOA 

To present the prediction ability of the NDO-WOA under 

different time scales and meteorological conditions, the 

wind power output data of a wind farm in a certain region 

at different time points are used for power prediction 

analysis. The test dataset for the 4-hour prediction scale is 

the data from 20:00 to 23:45 on January 8, 2022. The test 

dataset for 24-hour prediction scale is from 8:00 on 

January 9th to 7:45 on January 10th. Meanwhile, the 

comparative algorithms selected for the study include 

WOA, Least Squares Support Vector Machine 

(LS-SVM), and Particle Swarm Optimization Back 

Propagation (PSO-BP) algorithm. The summary table of 

experimental parameters is shown in Table 2. The 

parameters in the table can be used for repeated 

experiments in other studies. 

In order to conduct parameter sensitivity analysis of 

control coefficients and weight coefficients in the 

NDO-WOA, corresponding experiments are designed to 

compare the performance of the algorithm under different 

parameter settings on the Rosenbrock function. This 

function is often used as a benchmark test for optimizing 

algorithms, which can be used to evaluate algorithm 

performance. The study uses RMSE as a performance 

evaluation  
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Figure 5: Wind power prediction results at different time scales 
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Figure 6: RMSE values for power prediction of various models at different time scales 

metric. The RMSE values for different control 

coefficients and weight coefficients are shown in Table 3. 

According to Table 3, when the control coefficient is 1.5 

and the weight coefficient is 2, the NDO-WOA has the 

best performance and can be applied to subsequent wind 

power prediction analysis. 

The prediction results at different time scales are 

displayed in Figure 5. Figure 5 (a) displays the results at a 

4-hour prediction scale. The results NDO-WOA were 

similar to the actual power values, with the best fitting 

effects. The results of the WOA were the worst. Figure 5 

(b) illustrates the results at the 24-hour prediction scale. 

The prediction results of the NDO-WOA were still 

similar to the actual power. The wind power prediction 

model based on NDO-WOA has excellent predictive 

performance at different time scales. 

This study continues to analyze the prediction accuracy 

of various algorithms at various time scales, with Root 

Mean Square Error (RMSE) as an evaluation indicator. 

The power prediction RMSE of each model is displayed 

in Figure 6. As shown in Figure 6 (a), at the 4-hour 

prediction scale, the average predicted RMSE of the 

NDO-WOA was only 7.36%. Compared with WOA and 

LS-SVM, NDO-WOA reduced by 8.49% and 2.94%, 

respectively. The average RMSE value of PSO-BP 

algorithm was as high as 11.02%, which was 3.66% 

higher than that of NDO-WOA. In Figure 6 (b), at the 

24-hour prediction scale, the average predicted RMSE of 

the NDO-WOA was only 10.01%. The average RMSE 

predicted by WOA was as high as 19.34%, LS-SVM 

algorithm was as high as 14.61%, and PSO-BP algorithm 

was as high as  
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Figure 7: Power prediction results of various algorithms under different meteorological conditions 

13.68%. The designed NDO-WOA has high prediction 

accuracy. 

Then, the study verifies the prediction ability of various 

algorithms under different meteorological conditions, 

selecting three typical weather data of sunny, cloudy, and 

rainy days for power prediction analysis. The sample data 

for sunny days is from 7:00 to 17:50 on January 8, 2022. 

The sample data for cloudy days is from 8:00 to 18:50 on 

January 11. The sample data for rainy days is from 9:00 

to 19:50 on January 6, 2022. The power prediction results 

of each algorithm under different meteorological 

conditions are shown in Figure 7. From Figure 7 (a), 

under sunny conditions, there was not much difference 

between each algorithm and the actual power, but the 

wind power prediction curve based on the NDO-WOA 

had the best fitting effect with the actual power curve. 

According to Figure 7 (b), under cloudy conditions, the 

results from the NDO-WOA were closest to the actual 

power, while the WOA had the largest deviation from the 

actual power. In Figure 7 (c), under rainy conditions, the 

wind power prediction results of NDO-WOA were still 

better than other algorithms, with a maximum deviation 

of only 35kW from the actual power. The NDO-WOA 

wind power prediction has more significant effects. 

The study continues to validate the predicted RMSE 

values of various algorithms under different 

meteorological conditions, as shown in Figure 8. In 

Figure 8 (a), under sunny conditions, the average 

predicted RMSE of the NDO-WOA was only 2.68%. The 

average RMSE of LS-SVM was 5.43%, significantly 

higher than that of NDO-WOA. The RMSE value of 

PSO-BP algorithm was 6.49%, significantly higher than 

that of NDO-WOA. In Figure 8 (b), under cloudy 

conditions, the average predicted RMSE of the  
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Figure 8: Predicted RMSE and MAE values under different meteorological conditions 

Table 4: MAPE values of various algorithms 

Wind direction 
MAPE(%) 

PSO-BP LS-SVM WOA NDO-WOA 

0° 5.21 6.35 7.14 4.86 

45° 5.89 6.03 7.51 4.68 

90° 4.95 6.54 7.24 4.37 

135° 5.51 6.28 7.07 4.71 

 

NDO-WOA was only 5.82%, which was a decrease of 

12.04% compared with the WOA. Compared with the 

PSO-BP algorithm, it reduced by 6.28%. As shown in 

Figure 8 (c), under rainy conditions, the average 

predicted RMSE of NDO-WOA was only 6.75%, 

significantly lower than other algorithms. This once again 

confirms the effectiveness of wind power prediction 

based on NDO-WOA. 

Further research is conducted to verify the accuracy of 

wind power prediction for various algorithms in 

geographical locations with different wind directions. A 

total of 1563 pieces of wind speed and power data are 

collected under different wind directions and divided into 

training and testing sets. Each algorithm  is trained and 

predicts on the test set. Meanwhile, the study uses Mean 

Absolute Percentage Error (MAPE) as the evaluation 

metric, and the MAPE values of each algorithm are 

shown in Table 4. According to Table 4, the MAPE value 

of NDO-WOA was significantly lower than other 

algorithms in different wind directions, with only 4.37% 

in the case of a wind direction of 90°. The MAPE values 

of PSO-BP, LS-SVM, and WOA reached 4.95%, 6.54%, 

and 7.24%, respectively when the wind direction was 

90°. The NDO-WOA achieves significant advantages in 

predicting wind power in different wind directions, which 

is suitable for different wind farms with different 

meteorological conditions. 
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Table 5: Simulation environment 

Project Parameter settings 

Processor Inter(R)Core (TM)i5-4590S3.00G Hz 

Operating system Windows 7 Ultimate 64-bit 

Memory 8GB 

Programming software MATLABR2014a 

Table 6: Parameter settings for wind turbines 

Coefficient Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 

ia
 0.0080 0.0012 0.0030 0.0015 0.0012 

ib
 3.0 2.0 1.8 1.8 2.1 

ic
 25 120 60 40 100 

ie
 100 180 140 200 160 

minP  10 40 20 50 30 

maxP  75 250 125 300 175 

iUR
 30 50 30 50 40 

iDR
 30 50 30 50 40 

 

3.2 Analysis of dynamic economic 

scheduling results based on 

BST-RGOA 

To verify the dynamic economic scheduling effect based 

on the BST-RGOA, the study selects ABC, 

Non-dominated Sorting Genetic Algorithm-III 

(NSGA-III), and CS for comparison. The study uniformly 

runs each algorithm independently 50 times under the 

condition of 50 dimensions and 1000 iterations, while 

conducting simulation analysis under population sizes of 

30, 50, and 100. Table 5 displays the simulation 

environment. 

In the simulation study, the parameter environment of 

five wind turbines in the wind farm are shown in Table 6. 

The convergence curves of each algorithm under different 

population sizes are displayed in Figure 9. The horizontal 

axis signifies the iteration, and the vertical axis stands for 

the fitness value. From Figure 9 (a), when the population 

size was 30, the initial position of the convergence curve 

of BST-RGOA was smaller than that of ABC, with 

higher search performance. It can find the optimal  

 

solution within a limited number of iterations, which can 

achieve lower power generation costs when solving the 

DED problem. As shown in Figure 9 (b), when the 

population size was 50, as the iteration increased, the 

convergence curve of the BST-RGOA gradually showed 

more twists and turns, indicating that the algorithm 

repeatedly jumped out of local optima. As shown in 

Figure 9 (c), when the population size was 100, the 

convergence curve slope of the BST-RGOA was 

significantly higher than that of other algorithms. 

BST-RGOA can effectively select the number of units in 

the DED problem, which in turn helps to reduce cost. 

The study analyzes the convergence speed of various 

algorithms in the DED problem, with economic cost as 

the optimization objective. The convergence speed 

comparison results of various algorithms in the DED 

problem are shown in Figure 10. BST-RGOA already 

found the lowest economic cost after 36 iterations. The 

ABC only converges after 45 iterations, which was 9 

times higher than the BST-RGOA. Meanwhile, the 

NSGA-III algorithm tended to converge with up to 46 

iterations. The CS algorithm converged after  
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Figure 9: Convergence curves of various algorithms under different population sizes 
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Figure 10: Comparison of convergence rates of various algorithms in DED problems 

45 iterations, and its minimum cost was as high as 924 

yuan, which was significantly higher than the 

BST-RGOA. Specifically, the main operations in each 

iteration of the BST-RGOA include evaluating fitness, 

updating solutions, and performing mutations. If the 

problem size is set to 2N
, the time complexity of each 

iteration is 2·O N H（ ）
, where H  represents the number 

of operations. The overall time complexity is 

2· ·O B N M（ ）
, where B  is the number of iterations. Due 

to its fast convergence speed and smaller B  value, 

BST-RGOA has lower overall time complexity compared 

with other algorithms. The spatial complexity of the 

BST-RGOA is mainly composed of the space required to 

store the current solution and temporary variables. As the 

iteration progresses, multiple solutions will be stored. Its 

spatial complexity is represented as 2O N K+（ ）
, where 

K  is the number of stored solutions, which is relatively 

small.  
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Figure 11: The running time of each algorithm under different iterations 

Therefore, the spatial complexity of this algorithm is low. 

The BST-RGOA has a faster convergence speed and 

achieves better convergence results. 

This study further explores the running time of various 

algorithms in solving the DED problem. The running 

time of each algorithm in different iterations is shown in 

Figure 11. From Figure 11, the average running time of 

the BST-RGOA on the DED problem was only 28.9s. 

The ABC was as high as 198.6s. Meanwhile, the running 

time of the NSGA-III was 53.6, which was 24.7s longer 

than the BST-RGOA. The running time of the CS 

algorithm was as long as 135.8s, which was significantly 

inferior to the BST-RGOA. This indicates that the 

designed BST-RGOA has high search efficiency in DED 

problems. 

4 Discussion and conclusion 

The large-scale integration of wind power into the grid 

poses new difficulties to the safe operation of the power 

system. Therefore, the study introduced the NDO-WOA 

and BST-RGOA to achieve wind power prediction and 

solve the DED. The results indicated that in wind power 

prediction experiments, at the 4-hour and 24-hour 

prediction scales, the wind power prediction results of the 

NDO-WOA were similar to the actual power values, and 

the fitting effect was the best. Meanwhile, under different 

meteorological conditions, the wind power prediction 

results of the NDO-WOA were also closest to the actual 

power. The WOA had the greatest deviation from the 

actual power. Zhang H used a multi-source time attention 

network for wind power prediction. The algorithm 

achieved an average RMSE of 6.58% in good weather 

conditions and exceeded 10% in severe weather 

conditions [6]. The NDO-WOA predicted an average 

RMSE of only 2.68% under clear weather conditions. 

The predicted mean RMSE under rainy conditions was 

only 6.75%. NDO-WOA can accurately capture the 

instantaneous changes in wind power generation, while 

multi-source time attention networks perform poorly in 

dealing with uncertainty and extreme weather conditions. 

In the simulation analysis of the BST-RGOA, when the 

population size was 30, the initial position of the 

convergence curve of BST-RGOA was smaller than that 

of ABC, and it had higher search ability. When the 

population size was 50, as the iteration increased, the 

convergence curve of the BST-RGOA gradually showed 

more twists and turns. It could jump out of local optima 

multiple times. When the population size was 100, the 

convergence curve slope of the BST-RGOA was 

significantly higher than that of other algorithms, which 

could effectively reduce costs in solving DED problems. 

In addition, the BST-RGOA achieved the lowest 

economic cost of only 913 yuan after only 36 iterations. 

The ABC algorithm only converged after 45 iterations, 

which was 9 times higher than the BST-RGOA. The CS 

algorithm converged after 45 iterations, and its minimum 

cost was as high as 924 yuan. Bai et al. adopted an 

improved multi-objective differential evolution 

algorithm, which utilized the advantages of feasible 

solutions and non-dominated sorting selection strategies 

to improve optimization performance. The results 

indicate that the algorithm can provide the best 

reasonable compromise solution that balances both 

environmental and economic aspects [13]. The 

BST-RGOA mainly focuses on improving economy, 

without considering environmental factors, and needs 

further improvement. Overall, The NDO-WOA and 

BST-RGOA can achieve efficient optimization 

scheduling of power systems. However, when conducting 

power optimization scheduling, the research only 

considers minimizing economic costs. Further 

consideration can be given to minimize pollution 

emissions and voltage deviations. 
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