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This paper proposes an intelligent network traffic scheduling algorithm based on deep reinforcement 

learning and graph neural network (GNN) to solve traffic scheduling problems in large-scale dynamic 

network environments. The algorithm combines the decision-making ability of deep reinforcement 

learning and the advantage of GNNs in processing graph structure data. Through hierarchical 

reinforcement learning framework, it realizes efficient decision-making process from macro-strategy 

formulation to micro-operation execution. Experimental results show that compared with traditional 

algorithms, the proposed algorithm has significant advantages in key performance indicators such as 

average delay time, throughput and resource utilization. The algorithm not only surpasses Dijkstra, 

Shortest Path First (SPF) and Weighted Round Robin (WRR) algorithms under standard test conditions, 

but also shows excellent robustness and generalization ability under complex scenarios such as different 

traffic demand intensity, link failure and network topology change. Experimental results show that the 

proposed traffic scheduling algorithm based on deep reinforcement learning and graph neural network 

has significant advantages in multiple key performance indicators. Specifically, in a large-scale network 

environment (including 100,000 traffic flows and 3,000 links, each with a bandwidth of 1 Gbps), compared 

with the Dijkstra algorithm, the shortest path first (SPF) algorithm, and the weighted round-robin (WRR) 

algorithm, the proposed algorithm achieves lower average latency (10.5 milliseconds vs. 16.2 

milliseconds), higher throughput (9800 Mbps vs. 8900 Mbps), and better resource utilization (92% vs. 

85%). In addition, the algorithm also shows good adaptability, maintaining low latency under different 

traffic demand intensities while improving overall network performance. In addition, through model 

optimization and parameter adjustment, the convergence speed and learning efficiency of the algorithm 

are significantly improved when dealing with large-scale networks, which provides strong technical 

support for automatic network traffic management. 

Povzetek: Predlagan je inteligenten algoritem za razporejanje omrežnega prometa, ki združuje globoko 

vpodbujevalno učenja in grafne nevronske mreže. Algoritem izboljšuje zamik, prepustnost in izkoriščenost 

virov v dinamičnih omrežjih. 

 

1   Introduction 
With the rapid development of cloud computing, 

Internet of Things (IoT), big data and 5G technologies, 

the scale and complexity of network traffic has 

increased dramatically, which poses a serious challenge 

to existing network traffic scheduling mechanisms. 

Traditional traffic scheduling algorithms, such as 

priority-based queuing policies, weighted fair queuing 

(WFQ) and dynamic bandwidth allocation (DBA), 

perform well in certain scenarios, but they often expose 

slow response speed, poor flexibility and inability to 

effectively handle bursty traffic in highly dynamic and 

changeable network environments. For example, in data 

center networks, due to the diversity and 

unpredictability of tasks, traditional scheduling 

algorithms are difficult to achieve efficient use of 

resources, resulting in bandwidth waste and delay 

increase. Similarly, in mobile communication networks, 

mobility of user equipment and changes in network 

topology require scheduling algorithms to be more  

 

adaptive and intelligent in order to maintain stable quality 

of service (QoS) [1]. 

 With the unceasing expanding of network scale and 

the complexity of application requirements, the traditional 

scheduling algorithm gradually shows its limitations when 

dealing with large-scale dynamic network.  In recent years, 

the methods based on machine learning, especially deep 

learning, have been introduced into the field of network 

scheduling, in order to optimize resource allocation and 

improve overall performance through adaptive learning 

mechanism.  Graph neural networks (GNNs) have 

attracted much attention because of their ability to capture 

the interactions between nodes and become an effective 

tool for solving complex network problems.  At the same 

time, deep reinforcement learning (DRL) techniques such 

as asynchronous dominant actor critic algorithm (A3C) 

and proximal strategy optimization (PPO) also 

demonstrate their decision-making capabilities in dynamic 

environments.  These methods not only improve the 

throughput of the network and reduce the delay, but also 
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enhance the robustness and flexibility of the system.  

However, most of the existing studies focus on specific 

scenarios, and lack of comprehensive consideration of 

large-scale networks and real-time changing conditions.  

This work aims to fill this gap and propose a new 

scheduling algorithm combining GNN and DRL to 

achieve more efficient and reliable network 

management.  

In recent years, network traffic trends are shown in 

Figure 1. The graph has three broken lines representing 

three different network types: fixed, cellular, and Wi-Fi. 

In 2017, fixed networks had the largest data 

transmission volume, about 3500 petabytes per year, 

while cellular networks and Wi-Fi had relatively small data 

transmission volumes, about 1000 and 800 petabytes per 

year, respectively. Over time, by 2024, data traffic on fixed 

networks has grown to about 9000 petabytes per year and 

cellular networks to about 6000 petabytes per year, but Wi-

Fi traffic has remained low at about 2000 petabytes per 

year. It can be seen that all types of networks have 

experienced significant growth during this period, with 

cellular networks growing the fastest. However, although 

cellular networks grew faster than the other two networks, 

data traffic was consistently lower than fixed networks 

throughout the period.  

 

 
Figure 1: Network traffic trends. 

 

In the field of automated network management, 

DRL shows great potential for intelligent and adaptive 

traffic scheduling by sensing network status in real time, 

predicting future traffic trends, and dynamically 

adjusting resource allocation policies. For example, 

through algorithms such as Deep Q Network (DQN) or 

Asynchronous Dominant Actor-Critic (A3C), network 

managers can build traffic scheduling systems that can 

learn and optimize autonomously, significantly 

improving network resource utilization and overall 

performance [2]. 

This research is dedicated to exploring the 

application of deep reinforcement learning in automatic 

network traffic scheduling, aiming to design and 

implement a new intelligent scheduling algorithm to 

meet the challenges of current network traffic 

management. Specifically, the objectives of the study 

include:(1) improving network resource utilization: 

optimizing network bandwidth allocation, reducing 

resource idle and waste, and improving overall network 

efficiency through intelligent scheduling policies. (2) 

Intelligent and adaptive traffic scheduling: Build a 

scheduling mechanism with real-time response 

capability, which can quickly adjust policies according 

to network state changes, ensure quality of service, and 

improve network flexibility and robustness.  

Deep reinforcement learning has demonstrated its 

powerful ability to solve complex decision-making 

problems in many fields. In games such as AlphaGo and 

AlphaStar, DRL successfully outperformed top human 

players, demonstrating its potential in strategic planning 

and decision optimization. In robotics, DRL is used to 

learn complex motor skills such as walking, jumping, and 

grasping objects, demonstrating its adaptability and 

flexibility in the physical world. In the field of autonomous 

vehicles, DRL applications enable vehicles to make safe 

and efficient driving decisions in complex road 

environments [3]. These cross-domain success stories not 

only highlight the versatility and powerful functions of 

DRL, but also provide innovative perspectives and feasible 

technical paths for network traffic scheduling. 

Although traditional network traffic scheduling 

algorithms are stable in some fixed scenarios, their 

limitations become particularly obvious when faced with 

dynamic network environments. Firstly, rule-based 

scheduling algorithms often rely on static rules and 

predetermined policies, which limit their response speed 

and adaptability to network state changes. Secondly, 

although the optimal model-driven scheduling algorithm 

can provide global optimal solution, it is computationally 

complex and difficult to achieve real-time scheduling, 

especially in large-scale network environment. 
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Furthermore, these algorithms often assume that 

network conditions and traffic patterns remain constant 

and cannot effectively handle bursty traffic or rapid 

changes in network topology, which is a major drawback 

in today's dynamic network environments [4]. 

 

 

Table 1: Research progress. 

Algorithm 
Key 

Characteristics 
Advantages Limitations 

Dijkstra's 

Algorithm 

Shortest path 

priority 

Simple computation, suitable for 

static networks 

Does not support dynamic weight 

adjustments; slow response to 

network changes 

SPF (Shortest 

Path First) 

Routing based on 

shortest path 

Simple implementation, easy to 

deploy 

Slow response to network 

topology changes; lacks 

adaptability 

WRR (Weighted 

Round Robin) 

Weighted round-

robin scheduling 
Achieves a degree of fairness 

Requires pre-configured weights; 

cannot adjust in real-time to 

handle sudden traffic surges 

RED (Random 

Early Detection) 

Early random 

packet drop to 

avoid congestion 

Can prevent network congestion 

Effectiveness depends on precise 

parameter settings; performs 

poorly in highly dynamic 

environments 

Deep 

Reinforcement 

Learning (DRL) + 

GNN 

Combines deep 

learning with 

reinforcement 

learning 

Automatically learns optimization 

strategies; capable of handling 

complex and dynamic 

environments 

High computational cost during 

initial training phase; may require 

substantial data support 

 

2   Theoretical basis and related 

work 
As shown in Table 1, although the current state-of-the-

art (SOTA) network traffic scheduling algorithms excel 

in handling static or relatively stable network 

environments, they exhibit significant limitations when 

it comes to coping with highly dynamic traffic 

conditions and sudden network failures. For instance, 

traditional rule-based methods such as Priority Queue 

(PQ) and Weighted Fair Queue (WFQ), while capable 

of effectively allocating resources according to 

predefined strategies, appear rigid and lack flexibility in 

the face of rapidly changing network conditions; these 

methods typically require manual parameter 

configuration and struggle to adapt in real-time to 

variations in traffic patterns. On the other hand, 

congestion control mechanisms like Random Early 

Detection (RED), which attempt to prevent congestion 

by dropping some packets, are heavily dependent on the 

accuracy of their parameter settings and often fail to 

effectively mitigate congestion issues in highly dynamic 

environments, sometimes even exacerbating network 

performance instability. Furthermore, many existing 

solutions do not adequately address the impact of local 

network failures on overall service quality and the rapid 

restoration of services. Therefore, developing an 

intelligent scheduling algorithm that can both efficiently 

utilize network resources and flexibly respond to 

complex and ever-changing network conditions has 

become an urgent research challenge. Your research 

work, by integrating deep reinforcement learning with 

graph neural networks, aims to overcome these  

 

limitations, providing a more robust and adaptive solution 

to meet the demands for reliability and resilience in 

modern networks. 

 

2.1 Principles of deep reinforcement learning 
At the heart of reinforcement learning is the interaction of 

an agent with its environment, with the goal of learning a 

policy that causes the agent to take actions in a series of 

states to maximize long-term rewards. The reinforcement 

learning problem can be described by Markov Decision 

Process (MDP), which consists of quadruples, where S is 

the state space, S is the action space, and Equation 1 is the 

immediate reward function [5, 6]. 
 

1( , ) [ | , ]t t tR s a R S s A a+= = =E  
(1) 

Deep learning is a sub-field of machine learning that 

focuses on using deep neural networks for data 

characterization and prediction. A typical deep neural 

network consists of an input layer, multiple hidden layers, 

and an output layer, with weights adjusted by a 

backpropagation algorithm and gradient descent to 

minimize the loss function, where   are the network 

parameters [7]. 

Deep reinforcement learning combines the powerful 

representational power of deep learning with the decision-

making optimization power of reinforcement learning. 

Deep Q Networks (DQN) is a popular approach that uses 

convolutional neural networks (CNN) to approximate 

action value functions and stabilizes the learning process 

through empirical playback and periodic updates of the 

target network. Another approach is the Asynchronous 
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Dominant Actor-Critic (A3C) algorithm, which speeds 

up learning through parallel agents and updates the 

policy function using a policy gradient approach [8]. 

 

2.2 Network traffic scheduling theory 

Network traffic scheduling aims to optimize network 

resource allocation to meet quality of service (QoS) 

requirements. Its basic principles include fairness, 

efficiency and adaptability. Fairness ensures that all data 

streams receive an appropriate share of bandwidth; 

efficiency requires minimizing resource waste and latency; 

and adaptability means that scheduling algorithms should 

be able to respond quickly to changes in network 

conditions [9]. 
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Figure 2: Network traffic flow patterns. 

 

As shown in Figure 2, Producers are located 

outside the cloud network and are responsible for 

generating data content and publishing it to the network. 

E-END nodes are located inside the cloud network and 

are responsible for processing data requests from 

producers and consumers and forwarding them to the 

appropriate controllers. Controllers are located below 

the E-END Node and are responsible for managing and 

controlling the operation of the entire network. 

Consumers are located outside the cloud network and 

are responsible for getting what they want from the 

network. Specifically, producers use pen washi icons to 

indicate that they can send data content to the network. 

This data is stored in barrels within yellow circles, 

which represent E-END Nodes. When consumers need 

access to a particular piece of content, they make a 

request, which is passed to the corresponding E-END 

Node. The E-END Node then forwards the request to 

the controller for processing. Finally, the controller 

returns the desired content to the consumer. 

Common network traffic scheduling algorithms 

include Priority Queue (PQ), Weighted Fair Queue (WFQ) 

and Random Early Detection (RED). PQ allocates 

bandwidth by priority, WFQ assigns weights based on 

traffic type, and RED avoids congestion by dropping 

packets randomly. However, these methods have limited 

performance in dynamic and complex network 

environments due to their lack of self-tuning and learning 

capabilities [10]. 

The application of deep reinforcement learning in 

traffic scheduling mainly focuses on intelligent resource 

allocation and dynamic scheduling policy formulation. By 

observing the network state, such s  as bandwidth 

utilization, delay and packet loss rate, the agent selects the 

best action a  to optimize the objective function, which is 

specifically shown in Equation 2.  , it is a discount factor 

tr  and an instant reward [11]. 
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Intelligent bandwidth allocation for data center 

networks is implemented using deep reinforcement 

learning, where agents learn a policy to predict future 

traffic demand based on current network load and 

historical data, thereby dynamically adjusting resource 

allocation [12]. In fog computing environment, a 

dynamic resource allocation algorithm based on deep 

reinforcement learning is proposed, which can 

effectively deal with dynamic load and resource 

constraints, improve resource utilization and reduce 

delay through intelligent scheduling. 

Traditional network traffic scheduling algorithms, 

such as Priority Queue (PQ), Weighted Fair Queue 

(WFQ), and Random Early Detection (RED), while 

performing well in static or relatively stable network 

environments, have significant limitations in dealing 

with the complexity and dynamics of modern networks. 

For example, PQ and WFQ depend on preset rules and 

weights, and cannot flexibly cope with sudden changes 

in network traffic and diversified service requirements; 

RED attempts to alleviate congestion through random 

packet loss, but its effect is not ideal under highly 

dynamic network conditions, and sometimes it even 

exacerbates network performance instability. 

Although existing state-of-the-art (SOTA) 

technologies perform well in handling static network 

environments, they still have limitations when dealing 

with dynamic traffic conditions and network failures 

[13]. For example, many methods rely on predefined 

rules or models and have difficulty adapting to rapidly 

changing traffic patterns in real time. In addition, these 

algorithms often lack sufficient robustness in the face of 

emergencies such as link failures, resulting in a sharp 

drop in performance. In contrast, the proposed 

algorithm, by combining graph neural networks with 

hierarchical reinforcement learning, can more flexibly 

adjust strategies to optimize resource allocation, 

effectively alleviate the above challenges, and show 

stronger adaptability and stability [14-15]. 

In this paper, a new scheduling algorithm is 

proposed by combining graph neural network with 

hierarchical reinforcement learning.  GNN is used to 

process topology information and reinforcement 

learning is used to realize dynamic resource allocation.  

The novelty lies in the ability to simultaneously improve 

network performance and keep computing costs low.  

The main findings include stable performance of the 

proposed algorithm under different network sizes and 

strong robustness to failures.  In addition, parameter 

sensitivity analysis shows how much the algorithm 

depends on key hyperparameters, providing valuable 

insights for future research.  

In the field of production scheduling, it is an 

important research direction to consider the 

deterioration effect of workpieces, the impact of 

different groups and time-related preparation time on 

parallel batch scheduling of single machines and 

parallel machines. Liao et al. [16] explored how to 

optimize scheduling strategies in such complex situations. 

Their proposed method provides a new perspective for 

dealing with scheduling problems with these 

characteristics. On the other hand, Janiak et al. [17] 

focused on the job scheduling problem under non-

monotonic step value functions, which reflect the time-

varying characteristics of job values in certain practical 

scenarios. Both studies emphasize the importance of 

considering job characteristics and time factors when 

making scheduling decisions, which is of great 

significance for improving the efficiency of manufacturing 

systems. 

3    Methods and model design 

3.1 System architecture and problem 

definition  
The network environment is abstracted into a graph 

representing the set of nodes in the network and E 

representing the set of links. Each node can be a router or 

switch, and each link has a specific bandwidth 
eb  and 

latency. Traffic flows from the source node to the 

destination node with an assignment variable on the link 

of, where it indicates that traffic passes through the link, 

and vice versa [18]. 

The implementation process of the algorithm 

includes: firstly, establishing the network model, setting up 

the agent and its initial policy, determining the super 

parameters such as learning rate and discount factor, and 

then collecting the data of link utilization and traffic 

demand through simulation or actual network operation.  

The agent then periodically observes the current network 

status and selects a traffic allocation scheme as an action 

based on this information.  The selected scenario is applied 

to the network to adjust traffic paths, and then instant 

rewards are calculated based on the new network state and 

optimization goals.  Using immediate rewards and new 

state information, the agent's strategy is updated by 

reinforcement learning algorithm.  This process (from state 

observation to policy update) iterates until a predetermined 

training run or performance metric converges.  Finally, the 

trained model is evaluated in an independent test 

environment to confirm its stability and effectiveness, and 

then deployed to the actual network for real-time 

scheduling.  Through such steps, the algorithm can 

dynamically adapt to network changes, continuously 

optimize traffic scheduling, and achieve efficient and 

reliable network management.  

Our goal is to design an intelligent traffic scheduling 

algorithm designed to minimize total latency and 

maximize resource utilization while ensuring quality of 

service (QoS) criteria are met. To do this, we define a 

multi-objective optimization function that takes into 

account total delay and link utilization [19], as shown in 

Equation 3. 
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In order to simplify the optimization problem, we 

introduce weight coefficients   and  to balance 

delay 
( )v −  and 

( )v +  utilization, and construct the 

following single-objective optimization function, 

specifically Formula 4. 
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where the first term represents the weighted sum of 

the total delays and the second term represents the 

squared error of the link utilization from the target value 

(i.e. full load). 

The constraints of the network environment 

include the law of traffic conservation and link capacity 

constraints, as shown in Equations 5 and 6. 
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where, and represent the set of all links into and out 

of the node, respectively. 

To achieve the above optimization goals in a 

dynamically changing network environment, we 

employ a Deep Reinforcement Learning (DRL) 

framework. By observing the network state, including 

link utilization and traffic demand, an agent selects the 

optimal action, i.e. traffic allocation policy, to minimize 

the objective function ( ; , )J x    
[13]

. The state can be 

expressed as a combination of link utilization and traffic 

demand, as shown in Equation 7. 

( )1{ } ,{ }N

e e E i is u f ==                        (7) 

The action space consists of all possible traffic 

allocation policies. The immediate reward is calculated 

based on the objective function and changes in the network 

state to reflect the immediate effect of the traffic 

scheduling policy [14]. 

The goal of the agent is to learn a policy that selects 

the optimal action, i.e., traffic allocation policy, to 

maximize the long-term cumulative reward for a given 

network state. This involves the use of Deep Q Networks 

(DQN), Asynchronous Dominant Actor-Critic (A3C), or 

other advanced DRL algorithms to process high-

dimensional state spaces and action spaces for intelligent 

decision-making [15]. 

 

3.2 Traffic scheduling algorithm design 

based on deep reinforcement learning 
In this study, we explore in depth the application of graph 

neural networks (GNN) in a deep reinforcement learning 

framework to solve network traffic scheduling problems. 

GNNs can effectively process graph structure data and 

capture dependencies between nodes through message 

passing mechanism, which is very suitable for dealing with 

network traffic scheduling and other graph-based problems 

[20]. 
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Figure 3: GNN-DRL framework. 
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We first abstract the network environment into a 

graph, where nodes represent routers or switches in the 

network and edges represent links connecting nodes. 

The definition of state space and action space remains 

unchanged, but their representation is enhanced with 

GNNs to more accurately capture network structure and 

dynamics. 

Figure 3 shows a network architecture diagram 

with three main components: the global network, 

worker nodes, and data plane. The graph depicts a 

GNN-DRL framework in which multiple worker nodes 

interact with each other through a global network to 

make decisions based on their respective policies and 

values, while all of this is informed by real-time data 

collected from the environment by the data plane. 

State space: With GNNs, we not only consider the 

current utilization and traffic demand of links, but also 

introduce information about adjacent links and the 

interaction effects between links. The node eigenvectors 

and edge eigenvectors of GNN are updated through the 

information propagation process [21], which are 

specifically expressed as Equation 8 and Equation 9. 
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where, is the set of adjacent edges of a node, and is 

the source node and target node of edge e, respectively, 

and is the weight matrix, and is the nonlinear activation 

function [22]. 

Action space: Under the GNN framework, agents 

can calculate the proportion of traffic allocation on links 

more carefully based on the eigenvectors of nodes and 

edges, thus achieving more accurate traffic scheduling 

[23]. This is shown in Equation 10. 
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where ( , )g    is a learnable function, usually a fully 

connected layer, used to calculate the attraction of a link 

to traffic flows. 

With the aid of GNNs, the design of reward 

mechanism 
long ( )r t

 
can consider the influence of 

network structure more deeply. For example, long-term 

impact rewards can be based on GNNs predicting the 

next network state, more accurately reflecting the 

impact of traffic scheduling on future network states 

[24]. This is shown in Equation 11. 
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where 
lw  is the weight of the long-term impact 

reward, ( 1)eu t + and ( )eu t  are the utilization of the link at 

the next time and at the current time, respectively. 

In addition, GNNs can help agents better understand 

the dependencies between different links in the network, 

so that when designing penalty terms, penalties can be 

allocated more reasonably to avoid network congestion 

[25]. This is shown in Equation 12, where is the weight of 

the penalty term. 

 
2

pun

( )
( ) max 0, 1e

p

e E e

u t
r t w

b

 
= −  

 
            (12) 

 

In synergy with deep reinforcement learning and 

graph neural networks (GNNs), we innovatively integrate 

GNNs into a hierarchical reinforcement learning (HRL) 

framework to optimize network traffic scheduling 

decisions. High-level agents use GNNs to capture global 

network characteristics and form macro policies to guide 

traffic priority allocation; low-level agents use GNNs to 

deeply understand local network structure and implement 

refined traffic allocation. GNNs provide rich state 

representations for high-level agents to help them predict 

the long-term effects of traffic scheduling; at the same 

time, they enable low-level agents to more accurately 

perceive inter-link interactions and achieve optimal 

resource allocation. Through this hierarchical design, the 

algorithm not only improves the decision quality and 

learning efficiency, but also enhances the understanding 

and adaptability of complex network structures, bringing 

ground-breaking solutions to automated network traffic 

scheduling. This combination makes full use of the 

advantages of GNNs in graph structure data processing, 

complements the hierarchical decision-making mechanism 

of HRL framework, and jointly promotes the efficient 

performance of algorithms in large-scale dynamic network 

environments [26]. 

In the framework of Hierarchical Reinforcement 

Learning (HRL), the integration of Graph Neural 

Networks (GNNs) provides a highly specialized solution 

to network traffic scheduling problems. HRL decomposes 

complex scheduling tasks into macro-strategy formulation 

and micro-operation execution through hierarchical 

decision-making, which significantly improves learning 

efficiency and decision-making flexibility. The 

introduction of GNNs further enhances the adaptability 

and optimization capabilities of this framework, especially 

when dealing with network environments with complex 

graph structures [27]. 

High-level agents are responsible for macro-policy 

formulation, including traffic priority allocation, and their 

core lies in global understanding of the entire network 

state. GNNs can effectively capture the dependencies 

between nodes in the network through message passing 

mechanism, and provide richer and more comprehensive 

state representation for high-level agents. Specifically, 

GNNs update the node eigenvectors and edge eigenvectors 

by the following equations [28] to reflect the dynamic 

changes of the network, as shown in Equations 13 and 14. 
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where, ( )t

vh  and ( )t

eh  are eigenvectors of nodes v

and edges e in time, respectively, ( )t

vW
,

( )t

eW
, 

( )t

sW  and 

( )t

tW  are weight matrices, and   are nonlinear 

activation functions. Through iterative updating of 

GNNs, high-level agents can formulate more efficient 

and forward-looking macro policies based on a global 

view of the entire network [29]. 

Low-level agents focus on executing specific 

traffic allocation decisions to achieve priorities assigned 

by higher-level agents. GNNs help the underlying 

agents to understand the local network structure, 

especially the interactions between links. Specifically, 

based on the output of GNNs, the bottom agent 

calculates an optimal traffic allocation policy through 

the following formula, which is specifically shown in 

Formula 15. 
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 (15) 

 

where ( , )g    is a learnable function that calculates 

the attraction of link e to traffic flow i. With the aid of 

GNNs, the underlying agent can analyze the interaction 

between links in more detail to ensure that the traffic 

allocation strategy not only meets the requirements of 

the macro policy, but also maximizes the utilization 

efficiency of network resources [30-31]. 

The combination of GNNs and HRL framework 

not only improves the decision quality of agents, but 

also speeds up the convergence speed of learning 

process. Specifically, GNNs enhance the performance 

of the HRL framework through the following 

mathematical formalization: 

State representation update: GNNs update the 

feature vectors of nodes and edges through information 

transfer mechanism, providing more accurate state 

representation for high-level agents and low-level 

agents. 

Macro-policy formulation: High-level agents use 

the global network state provided by GNNs to update 

their state as expressed in Equation 16 by the following 

equation. 

 

( 1) ( ) ( ) ( ) ( )

high high high

t t t t t

e e

e E

h W h W h+



 
= + 

 
           (16) 

 

Micro-operation execution: Based on the output of 

GNNs, the underlying agent calculates the optimal 

traffic allocation policy by the following formula, which 

is expressed as Formula 17. 
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 (17) 

 

Through the mathematical formalization mentioned 

above, GNNs combined with HRL framework realize 

highly specialized treatment of network traffic scheduling 

problem, which can not only deal with complex network 

structure, but also maintain stable and efficient 

performance in dynamic changing environment. This 

innovative scheme opens up a new research direction for 

automatic network traffic management and is expected to 

play an important role in the future development of 

network technology. 

 

3.3 Model optimization and parameter 

adjustment 
Under the framework of deep reinforcement learning, 

model optimization and parameter adjustment are key 

steps to ensure algorithm performance and learning 

efficiency. In this section, the initialization strategy, 

parameter adjustment method and convergence analysis 

are introduced in detail, so as to realize efficient and stable 

learning of the algorithm. 

Model initialization strategies are critical to avoid 

falling into undesirable local optima. We adopt a pre-

trained initialization strategy combined with initial 

strategy parameters obtained in offline learning phase. 

Specifically, we first pretrain the agent offline using 

historical datasets to obtain initial policy parameters. The 

goal of pre-training is to maximize the cumulative reward 

on the offline dataset [32], expressed as Equation 19.  
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E            (19) 

 

where D is the historical dataset,   is the discount 

factor, and T is the sequence length. 

 

Then, we use the parameters obtained from pre-

training as initialization parameters in the online learning 

stage, i.e., Equation 20.  

 

init 0 =                                 (20) 

 

This initialization strategy can accelerate the 

convergence speed of online learning phase, help agents 

adapt to real environment quickly, and avoid bad local 

optimization caused by random initialization. 

Parameter tuning is central to optimizing the 

performance of deep reinforcement learning models. We 

adopt a parameter adjustment method based on adaptive 

learning rate to adapt to different learning stages. The   

adjustment of the learning rate follows the following rule, 

expressed as Equation 21.  

 

0( ) / (1 )t t  = +                    (21) 
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In addition, we employ momentum techniques to 

accelerate convergence and help agents escape shallow 

local optima. The m  update rules for the momentum 

term are equations 22 and 23.  

( ) ( 1) ( ) ( ( ))m t m t t J t  = − +          (22) 

( 1) ( ) ( )t t m t + =                     (23) 

where   is the momentum coefficient and 

( ( ))J t  
is the policy gradient. 

In order to ensure the convergence of the 

algorithm, we carry out a detailed convergence analysis. 

First, we define the convergence criterion of the 

algorithm, that is, when k  the change of policy 

parameters in successive iterations   is less than a 

certain threshold ò , the algorithm is considered to 

converge, which is expressed as Equation 24.  

|| ( 1) ( ) ||t t t T k +    −ò                 (24) 

In addition, we monitored trends in cumulative 

rewards to assess the algorithm's long-term 

performance. The jackpot ( )R t  is defined by Equation 

25.  
1

( )
t T

t

t

R t r





+ −

−

=

=                             (25) 

By observing how it changes over time, we can 

assess whether the algorithm converges steadily to the 

optimal policy. 

Through the above model initialization strategy, 

parameter adjustment method and convergence 

analysis, we can effectively optimize the deep 

reinforcement learning model, ensure the efficient and 

stable learning of the algorithm when dealing with 

network traffic scheduling problems, maximize 

resource utilization and minimize delay, and achieve 

network quality of service (QoS) optimization. 

4. Experimental design and results 

analysis  

4.1 Experimental environment settings  
To verify the effectiveness and superiority of the 

proposed traffic scheduling algorithm based on deep 

reinforcement learning and graph neural networks, we 

use an exhaustive dataset from real-world data center 

networks. The dataset contains the operation status 

records of thousands of links in a month, as well as 

dynamic change information of more than 100,000 

traffic flows, covering key network indicators such as 

link utilization, traffic demand, and delay time. The data 

comes from one of the world's leading cloud service 

providers and covers network traffic inside and outside 

its data centers, providing a rich and realistic sample of 

network behavior. 

 

4.2 Performance evaluation indicators  
In order to evaluate the effectiveness and superiority of 

the proposed traffic scheduling algorithm based on deep 

reinforcement learning and graph neural network, we 

carefully designed a series of performance indicators to 

measure the overall performance of the algorithm from 

multiple perspectives. First, we focus on the response 

speed and efficiency of the algorithm. By measuring the 

average delay time from the source node to the target node, 

we can intuitively reflect the speed and real-time 

performance of the algorithm in traffic scheduling. Low 

latency means that the algorithm can respond quickly to 

network demands, effectively reducing the time packets 

stay in the network, thus improving user experience and 

network efficiency. Secondly, throughput, as a key 

indicator of network performance, directly reflects the total 

amount of traffic that the network can successfully 

transmit in unit time. By comparing the throughput of 

different algorithms, we can evaluate the carrying capacity 

and overall performance of the algorithm when handling 

large amounts of data traffic. The high throughput not only 

demonstrates the efficiency of the algorithm, but also its 

potential to improve overall network performance. Finally, 

resource utilization considerations reveal how intelligent 

the algorithm is in resource management. An ideal 

scheduling algorithm should be able to achieve efficient 

use of network resources, avoid resource waste, and thus 

reduce network operation costs. By monitoring the average 

utilization of links in the network, we can quantify the 

efficiency of the algorithm in resource allocation and 

determine its economy and sustainability in practical 

applications. 

 

4.3 Comparative analysis of results  
Specifically, the experiment involved a massive network 

scale, including 100,000 traffic flows and 3,000 links, each 

with a bandwidth set at 1 Gbps, designed to simulate the 

complex environment of large real-world networks. To 

balance the algorithm's performance between immediate 

response and long-term planning, the immediate reward 

weight is set to 0.7 and the long-term reward weight is set 

to 0.3, ensuring that the algorithm is both responsive to 

network changes and proactive. The dynamic penalty 

coefficient increases linearly with time, with an initial 

value of 0.01 and an increase of 0.001 per unit time to adapt 

to the dynamic changes of network states and avoid 

excessive utilization of network resources. The target 

network update rate is set to 0.01, which ensures smooth 

transition between the main network and the target 

network and helps the algorithm to converge stably. The 

value of discount factor γ is 0.99, which emphasizes the 

importance of long-term reward in the learning process of 

the algorithm and promotes long-term optimization of the 

strategy. These parameters are carefully configured to 

create an experimental framework that not only conforms 

to the actual network environment, but also fully 

demonstrates the performance of the algorithm. 

In order to fully evaluate the effectiveness and 

superiority of the proposed traffic scheduling algorithm 

based on deep reinforcement learning and graph neural 

networks (referred to as the "proposed algorithm"), we 

designed a series of rigorous comparative experiments to 

compare its performance with three widely recognized 

traditional traffic scheduling algorithms: Dijkstra 
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algorithm, Shortest Path First (SPF) algorithm and 

Weighted Round Robin (WRR) algorithm. The table 

below summarizes the results for key performance 

metrics, including latency, throughput, and resource 

utilization, as well as robustness and generalization tests 

in different network environments. 

 

Table 2: Comprehensive performance comparison. 

Arithmeti

c 

Averag

e delay 

time 

(ms) 

Throughpu

t (mbps) 

Average 

resource 

utilizatio

n (%) 

Proposed 

algorithm 
10.5 9800 92 

Dijkstra 16.2 8900 85 

Shortest 

Path First 

(SPF) 

14.8 9200 88 

Weighted 

Round 

Robin 

(WRR) 

15.1 9000 86 

 

Table 2 shows the comparison of the proposed 

algorithm and the traditional algorithm in three key 

performance indicators: average delay time, throughput 

and average resource utilization. The average delay time 

of the proposed algorithm is only 10.5 ms, which is 

much lower than that of Dijkstra algorithm (16.2 ms). 

Meanwhile, the throughput of the proposed algorithm is 

up to 9800 Mbps and the resource utilization ratio is 

92%, which are higher than other algorithms. This 

shows that the proposed algorithm can effectively 

improve the data transmission capacity and resource 

utilization efficiency of the network while ensuring low 

latency. 

 

Table 3: Performance under different flow demand 

intensity. 

Traffic 

demand 

intensity 

Average 

delay 

time 

(ms) 

Throughput 

(mbps) 

Average 

resource 

utilization 

(%) 

Low 9.2 9600 90 

Centre 10.5 9800 92 

Tall 11.8 9900 93 

 

Table 4: Performance under link failure. 

Percentag

e of failed 

links 

Averag

e delay 

time 

(ms) 

Throughpu

t (mbps) 

Average 

resource 

utilizatio

n (%) 

5% 11.0 9750 91 

Percentag

e of failed 

links 

Averag

e delay 

time 

(ms) 

Throughpu

t (mbps) 

Average 

resource 

utilizatio

n (%) 

10% 12.3 9650 90 

15% 13.6 9550 89 

 

Table 3 details the performance of the proposed 

algorithm under different traffic requirements. As the 

traffic demand gradually increases from low to high, the 

average delay time of the proposed algorithm increases 

slightly from 9.2 ms to 11.8 ms, showing good 

adaptability. At the same time, the throughput is increased 

from 9600 Mbps to 9900 Mbps, and the resource 

utilization ratio is also increased from 90% to 93%, which 

indicates that the proposed algorithm not only maintains 

low latency when dealing with high traffic demand, but 

also effectively improves the overall performance of the 

network. 

Table 4 shows the robustness of the proposed 

algorithm under different failure link ratios. When the 

proportion of failed links is 5%, the average delay time is 

11.0 ms, the throughput is 9750 Mbps, and the resource 

utilization is 91%. With the increase of the proportion of 

failed links, the performance of the proposed algorithm 

decreases, but it still maintains a high level. For example, 

when the proportion of failed links is 15%, the average 

delay time is 13.6 ms, the throughput is 9550 Mbps, and 

the resource utilization ratio is 89%. This shows that the 

proposed algorithm can maintain good performance in the 

face of network failures. 

To further expand the breadth and depth of the 

experiment, we added two additional tables showing 

performance at different network sizes and levels of 

network congestion. These additional tests were designed 

to verify the robustness and effectiveness of the proposed 

traffic scheduling algorithm based on deep reinforcement 

learning and graph neural networks (the "proposed 

algorithm") in the face of network scale expansion and 

network congestion challenges. 

Table 5 analyzes the performance of the proposed 

algorithm under different network topologies. The 

proposed algorithm shows good performance in ring 

network, tree network and mesh network.  

 

Table 5: Performance under network topology changes. 

Network 

topology 

change 

Average 

delay 

time 

(ms) 

Throughput 

(mbps) 

Average 

resource 

utilization 

(%) 

Ring 

network 
10.7 9750 91 

Tree 

network 
11.2 9680 90 

Mesh 

network 
12.0 9700 92 
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Table 6: Performance at different network sizes. 

Network 

size 

Averag

e delay 

time 

(ms) 

Throughpu

t (mbps) 

Average 

resource 

utilizatio

n (%) 

Small 

scale 

(N=10K) 

9.5 9700 91 

Medium 

scale 

(N=50K) 

10.5 9800 92 

Large-

scale 

(N=100K

) 

11.5 9900 93 

 

By comparing the data in Table 6 and Table 7, we 

find that the proposed algorithm can maintain relatively 

stable performance in the face of network scale 

expansion and different degrees of network congestion. 

Especially when the network scale increases to large 

scale (N= 100K), the average delay time, throughput 

and average resource utilization of the algorithm 

increase only slightly, showing its strong adaptability 

and stability in dealing with large-scale network 

environment. In the test of different network congestion 

degree, the algorithm also shows good robustness, even 

in the case of network congestion aggravation, it can 

maintain high throughput and resource utilization, and 

ensure that network performance is not seriously affected. 

These results further demonstrate the superior performance 

and application potential of the proposed algorithm in 

complex network environments. 

Figure 4 shows the trend in network throughput as the 

network grows. It can be seen that as the network scale 

expands, although the throughput decreases, it remains in 

a stable range overall, fluctuating around 9500 Mbps. This 

means that even if the network scale increases, the overall 

performance of the system is still relatively stable, and 

there is no obvious performance bottleneck or significant 

performance degradation. This phenomenon indicates that 

well-designed network systems have good scalability and 

can cope with a certain range of load pressures. 

 

Table 7: Performance under different congestion levels. 

Network 

congestion 

level 

Average 

delay 

time 

(ms) 

Throughput 

(mbps) 

Average 

resource 

utilization 

(%) 

Minor 

congestion 
10.7 9750 91 

Moderate 

congestion 
12.2 9600 90 

Major 

congestion 
13.8 9450 89 

 

 
Figure 4: Network throughput at different scales. 
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Figure 5: Convergence curve. 

 

As shown in Figure 5, the learning curve 

demonstrates the improvement of the deep reinforcement 

learning (DRL) algorithm over time, represented by the 

cumulative reward per episode. The blue line represents 

the episode reward, which fluctuates significantly during 

training but eventually converges towards a stable level. 

This graph provides valuable insights into the algorithm's 

performance, including its convergence speed, stability, 

and final performance. The initial rapid increase in reward 

indicates a fast-learning pace, while subsequent 

fluctuations suggest that the algorithm is still adjusting 

and optimizing its policy. Despite these variations, the 

overall trend suggests that the algorithm gradually learns 

from experience and adapts to the environment, ultimately 

achieving a steady state after numerous episodes. This 

figure highlights the importance of monitoring the 

learning process for understanding the effectiveness of the 

DRL approach and identifying potential areas for further 

optimization. 

 To assess the status of the proposed algorithm, we 

compare it with several advanced learning-based methods.  

As shown in Table 7, the performance was excellent in 

terms of latency, throughput, and resource utilization.  

However, the algorithm has certain limitations, such as the 

need for high-performance GPU support during the 

training phase.  These characteristics show that although 

our method is very effective in practical applications, it 

still needs to be further optimized in terms of hardware 

requirements to reduce costs. 

As can be seen from Table 8, the proposed algorithm 

outperforms other modern learning scheduling methods 

on all three key performance metrics.  This shows that the 

proposed algorithm not only has significant advantages 

over traditional algorithms, but also performs well when 

compared with other learning-based methods. 

To further verify the scalability of the proposed 

algorithm in larger networks and its real-time adaptability, 

additional experiments are performed.  Specifically, we 

tested the algorithm's performance under dynamically 

growing or shrinking network topologies.  

Table 9 shows the performance of the proposed 

algorithm under dynamic network topology change.  The 

proposed algorithm can maintain relatively stable 

performance no matter the network scale is expanded or 

reduced.  The experiment results indicate the validity and 

scalability of our method.  

 

Table 8: Comprehensive performance comparison with 

modern learning scheduling methods. 

Algorithm 

Average 

Latency 

(ms) 

Throughput 

(Mbps) 

Average 

Resource 

Utilization 

(%) 

Proposed 

Algorithm 
10.5 9800 92 

CNN-based 

Scheduling 
12.0 9500 89 

A3C 13.5 9400 88 

PPO 14.2 9300 87 

 

Table 9: Performance under dynamic network topology 

changes. 

Network 

Scale 

Change 

Average 

Latency 

(ms) 

Throughput 

(Mbps) 

Average 

Resource 

Utilization 

(%) 

Expansion 

(N=10K -> 

N=100K) 

10.5 -> 

11.5 

9700 -> 

9900 
92 -> 93 

Reduction 

(N=100K -

> N=10K) 

11.5 -> 

10.5 

9900 -> 

9700 
93 -> 92 
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Table 10: Statistical analysis of performance under link failure. 

Link Failure 

Percentage 

Average Latency (ms) 

± Standard Deviation 

Throughput (Mbps) ± 

Standard Deviation 

Average Resource 

Utilization (%) ± 

Standard Deviation 

5% 11.0 ± 0.5 9750 ± 100 91 ± 1 

10% 12.3 ± 0.7 9650 ± 150 90 ± 2 

15% 13.6 ± 0.8 9550 ± 200 89 ± 2 

 

Although the proposed algorithm performs well in 

terms of latency and resource utilization, the 

computational complexity of GNNs and hierarchical 

reinforcement learning can be large, especially in real-

time network management scenarios.  Specifically, the 

initial training phase requires high-performance GPU 

support to handle large amounts of data and complex 

model parameters.  However, once the model training is 

complete, real-time decisions can be made on a normal 

CPU.  A large amount of memory is needed to store model 

parameters and intermediate results in the training 

process, but the memory requirement is low in the 

reasoning stage.  After optimization, the algorithm can 

meet the real-time requirements in practical applications.  

In terms of robustness and failure scenarios, experimental 

results dealing with link failures and topology changes 

have demonstrated the good robustness of the proposed 

algorithm.  To further enhance the statistical analysis of 

the experimental results, we report the mean deviation and 

confidence intervals around the results.  For example, the 

standard deviations of the performance metrics (such as 

average delay time, throughput and resource utilization) of 

the proposed algorithm are small under the link failure 

rates of 5%, 10% and 15%, which indicates that the 

proposed algorithm has good stability and robustness.  

These statistical analyses further confirm the reliability 

and consistency of the proposed algorithm in the face of 

network failures and topology changes. 

It can be seen from Table 10 that the proposed 

algorithm can maintain high performance even in the case 

of network failure, and the standard deviation is small, 

indicating that it has good stability and robustness.  

As shown in Table 11, parameter sensitivity analysis 

was performed to understand the impact of 

hyperparameters on performance in the DRL framework.  

A higher learning rate may lead to instability, while a 

lower learning rate may prolong convergence time.  The 

optimal learning rate is about 0.001.  Discount factors 

affect the importance of long-term rewards.  The optimal 

discount factor is 0.95, which balances short-term and 

long-term rewards. 

 

 

 

 

 

 

 

Table 11: Hyperparameter sensitivity analysis. 

Hyperparameter 
Optimal 

value 

Performance 

variation range 

Learning rate 0.001 ± 10% 

Reward discount 

factor 
0.95 ± 5% 

 

4.4 Discussion 
Through the comparative analysis of the above 

experimental results, our traffic scheduling algorithm 

based on deep reinforcement learning and graph neural 

network shows significant advantages in multiple 

dimensions. Firstly, the algorithm can maintain a low 

average delay time under different network sizes and 

traffic demand intensities, which is attributed to the 

intelligent decision-making mechanism of the algorithm, 

which can quickly adapt to network changes and achieve 

efficient resource allocation. Secondly, the algorithm also 

performs well in resource utilization, especially in high 

traffic demand environment, not only maintains low 

latency, but also achieves near-optimal throughput, which 

shows that the algorithm not only improves network 

performance, but also pays attention to rational utilization 

of resources and avoids resource waste. However, any 

algorithm has its limitations. Although the algorithm 

demonstrated excellent performance in this study, its 

computational resource requirements are high, especially 

when dealing with large-scale networks. This is because 

the training process of deep reinforcement learning and 

graph neural networks is complex and requires a lot of 

computing and storage resources. Moreover, the real-time 

performance of the algorithm is also a problem worth 

considering, especially when the network scale expands 

sharply, the decision time of the algorithm may increase, 

which affects the efficiency of real-time scheduling.  

 

 

 

 

 



176 Informatica 48 (2024) 501–505 H. He 

Therefore, in the future research, optimization algorithm 

computational efficiency and real-time performance will 

be one of the important directions. 

Our algorithm outperforms Dijkstra, Shortest Path 

First (SPF), and Weighted Round Robin (WRR) 

algorithms in terms of average latency, throughput, and 

resource utilization. Dijkstra algorithm and SPF algorithm 

are effective in finding the shortest path, but lack of 

dynamic perception of network state when dealing with 

complex network environment, resulting in low resource 

utilization. Although WRR algorithm is more uniform in 

resource allocation, it is not flexible and adaptive enough 

in the face of network congestion, and can not effectively 

reduce delay or improve throughput. In contrast, our 

algorithm, by combining deep reinforcement learning with 

graph neural networks, is able to better understand and 

predict the state of the network, thus making more 

optimized decisions and exhibiting more comprehensive 

advantages. 

To sum up, our traffic scheduling algorithm based on 

deep reinforcement learning and graph neural network 

shows excellent performance in a variety of network 

scenarios, especially when dealing with large-scale 

networks and high traffic demand, the algorithm can 

maintain low latency, high throughput and efficient 

resource utilization. Despite the limitation of high 

computational resource requirements, further 

technological innovation and optimization are expected to 

overcome this challenge and enable the algorithm to be 

applied in a wider network environment. Future research 

will focus on real-time improvement of algorithms, 

optimization of computational efficiency and expansion of 

network security, in order to contribute to building a more 

intelligent, efficient and secure network system. 

Although the proposed algorithm has significant 

performance advantages, the use of Graph Neural 

Networks (GNNs) and hierarchical reinforcement learning 

also brings an increase in computational complexity. The 

initial training phase requires significant computational 

resources and data support, which can be a trade-off. 

Specifically, GNNs require high computational resources 

when dealing with large-scale networks, especially in the 

training phase; hierarchical reinforcement learning 

similarly requires a large number of iterations to converge 

to the optimal policy. In addition, in order to train an 

effective model, the algorithms require a large amount of 

historical and simulated data, which may be difficult to 

obtain in practical applications. Although the algorithms 

can be trained to make quick decisions in real-time 

environments, the real-time responsiveness of the 

algorithms may be compromised in certain extreme 

situations, such as sudden large-scale traffic or frequent 

network failures. 

The proposed algorithm shows superior performance 

in scenarios such as network failures, changes in traffic 

demand, and topology changes. In the case of network 

failure, DRL enables the algorithm to learn how to reroute 

traffic in case of link failure, reducing the delay due to a 

single point of failure. The GNN is able to identify critical 

nodes and paths in the network so that it can quickly find 

alternative paths in the event of a failure to ensure the 

continuity and stability of the network. For changes in 

traffic demand, the adaptive nature of DRL enables the 

algorithm to dynamically adjust resource allocation 

according to the current traffic demand. When the traffic 

demand increases, the algorithm can intelligently allocate 

more bandwidth to high-priority data streams while 

maintaining low latency. GNN helps the algorithm to 

understand the dependencies between different nodes for 

more effective traffic scheduling. In terms of topology 

changes, GNN handles changes in network topology well 

because it can predict the best paths by learning the 

connection patterns between nodes. Even when the 

network topology changes, the algorithm can quickly 

adapt to the new structure and find the optimal traffic 

scheduling scheme. 

Together, these factors enable the proposed algorithm 

to remain efficient and stable in the face of complex and 

changing network environments. This novel approach not 

only improves the overall performance of the network, but 

also enhances its reliability and robustness in practical 

applications. Future research can further optimize the 

algorithm to reduce the computational overhead and 

improve its practicality. 

5   Conclusion 
In this paper, an intelligent solution based on deep 

reinforcement learning and graph neural network (GNN) 

is proposed for traffic scheduling problem in large-scale 

dynamic network environment. The algorithm 

innovatively combines GNNs and hierarchical 

reinforcement learning framework, and realizes efficient 

decision-making from macro strategy to micro-operation. 

Experimental results show that compared with traditional 

algorithms, the proposed algorithm achieves significant 

advantages in key performance indicators such as average 

delay time, throughput and resource utilization, especially 

in the face of complex scenarios such as network scale 

expansion, network congestion and network topology 

change, the robustness and generalization ability of the 

algorithm are fully verified. In addition, we optimize the 

learning efficiency of the algorithm through model 

initialization strategy, parameter adjustment method and 

convergence analysis, and ensure its stability and 

efficiency in dealing with large-scale network 

environment. 

The results of this study not only provide new 

theoretical references and technical means for the field of 

network traffic scheduling, but also open up new research 

directions for automatic network traffic management. In 

the future, we plan to further explore the application of the 

algorithm in more complex network environments, 

including multimodal data fusion, cross-domain network 

scheduling and real-time network anomaly detection, with 

a view to contributing more to the development of future 

network technologies. Through continuous optimization 

and expansion of algorithm functions, we believe that the 

proposed intelligent traffic scheduling scheme will play a 

more important role in future network technology 

applications, laying a solid foundation for more efficient 

and intelligent network resource management. 
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Abbreviations 

Abbreviation Full name Description 

GNNs 
Graph Neural 

Networks 

A type of neural network designed to handle graph-structured 

data, capable of modeling complex relationships between 

nodes. 

DRL 
Deep Reinforcement 

Learning 

A machine learning approach that combines deep learning and 

reinforcement learning techniques, enabling agents to learn 

optimal policies through trial and error in complex 

environments. 

A3C 

Asynchronous 

Advantage Actor-

Critic 

A reinforcement learning algorithm based on asynchronous 

parallel execution, aimed at improving training efficiency and 

stability. 

PPO 
Proximal Policy 

Optimization 

An improved policy gradient method designed to address the 

high variance issues in traditional policy gradient methods 

while maintaining good convergence. 

N 
Number of Nodes in 

the Network 

A parameter representing the scale of the network, typically 

used to describe the size or complexity of the network. 

 

 

 


