
https://doi.org/10.31449/inf.v48i22.6943 Informatica 48 (2024) 163–178 163

Automatic Network Traffic Scheduling Algorithm Based on

Hierarchical Reinforcement Learning

Huiling He1*

1School of Computing, Yangjiang Polytechnic Yangjiang 529500, China

E-mail: huiling_he@hotmail.com

Keywords: deep reinforcement learning, automation, GNN, network traffic, scheduling algorithm

Received: August 20, 2024

This paper proposes an intelligent network traffic scheduling algorithm based on deep reinforcement

learning and graph neural network (GNN) to solve traffic scheduling problems in large-scale dynamic

network environments. The algorithm combines the decision-making ability of deep reinforcement

learning and the advantage of GNNs in processing graph structure data. Through hierarchical

reinforcement learning framework, it realizes efficient decision-making process from macro-strategy

formulation to micro-operation execution. Experimental results show that compared with traditional

algorithms, the proposed algorithm has significant advantages in key performance indicators such as

average delay time, throughput and resource utilization. The algorithm not only surpasses Dijkstra,

Shortest Path First (SPF) and Weighted Round Robin (WRR) algorithms under standard test conditions,

but also shows excellent robustness and generalization ability under complex scenarios such as different

traffic demand intensity, link failure and network topology change. Experimental results show that the

proposed traffic scheduling algorithm based on deep reinforcement learning and graph neural network

has significant advantages in multiple key performance indicators. Specifically, in a large-scale network

environment (including 100,000 traffic flows and 3,000 links, each with a bandwidth of 1 Gbps), compared

with the Dijkstra algorithm, the shortest path first (SPF) algorithm, and the weighted round-robin (WRR)

algorithm, the proposed algorithm achieves lower average latency (10.5 milliseconds vs. 16.2

milliseconds), higher throughput (9800 Mbps vs. 8900 Mbps), and better resource utilization (92% vs.

85%). In addition, the algorithm also shows good adaptability, maintaining low latency under different

traffic demand intensities while improving overall network performance. In addition, through model

optimization and parameter adjustment, the convergence speed and learning efficiency of the algorithm

are significantly improved when dealing with large-scale networks, which provides strong technical

support for automatic network traffic management.

Povzetek: Predlagan je inteligenten algoritem za razporejanje omrežnega prometa, ki združuje globoko

vpodbujevalno učenja in grafne nevronske mreže. Algoritem izboljšuje zamik, prepustnost in izkoriščenost

virov v dinamičnih omrežjih.

1 Introduction
With the rapid development of cloud computing,

Internet of Things (IoT), big data and 5G technologies,

the scale and complexity of network traffic has

increased dramatically, which poses a serious challenge

to existing network traffic scheduling mechanisms.

Traditional traffic scheduling algorithms, such as

priority-based queuing policies, weighted fair queuing

(WFQ) and dynamic bandwidth allocation (DBA),

perform well in certain scenarios, but they often expose

slow response speed, poor flexibility and inability to

effectively handle bursty traffic in highly dynamic and

changeable network environments. For example, in data

center networks, due to the diversity and

unpredictability of tasks, traditional scheduling

algorithms are difficult to achieve efficient use of

resources, resulting in bandwidth waste and delay

increase. Similarly, in mobile communication networks,

mobility of user equipment and changes in network

topology require scheduling algorithms to be more

adaptive and intelligent in order to maintain stable quality

of service (QoS) [1].

 With the unceasing expanding of network scale and

the complexity of application requirements, the traditional

scheduling algorithm gradually shows its limitations when

dealing with large-scale dynamic network. In recent years,

the methods based on machine learning, especially deep

learning, have been introduced into the field of network

scheduling, in order to optimize resource allocation and

improve overall performance through adaptive learning

mechanism. Graph neural networks (GNNs) have

attracted much attention because of their ability to capture

the interactions between nodes and become an effective

tool for solving complex network problems. At the same

time, deep reinforcement learning (DRL) techniques such

as asynchronous dominant actor critic algorithm (A3C)

and proximal strategy optimization (PPO) also

demonstrate their decision-making capabilities in dynamic

environments. These methods not only improve the

throughput of the network and reduce the delay, but also

164 Informatica 48 (2024) 163–178 H. He

enhance the robustness and flexibility of the system.

However, most of the existing studies focus on specific

scenarios, and lack of comprehensive consideration of

large-scale networks and real-time changing conditions.

This work aims to fill this gap and propose a new

scheduling algorithm combining GNN and DRL to

achieve more efficient and reliable network

management.

In recent years, network traffic trends are shown in

Figure 1. The graph has three broken lines representing

three different network types: fixed, cellular, and Wi-Fi.

In 2017, fixed networks had the largest data

transmission volume, about 3500 petabytes per year,

while cellular networks and Wi-Fi had relatively small data

transmission volumes, about 1000 and 800 petabytes per

year, respectively. Over time, by 2024, data traffic on fixed

networks has grown to about 9000 petabytes per year and

cellular networks to about 6000 petabytes per year, but Wi-

Fi traffic has remained low at about 2000 petabytes per

year. It can be seen that all types of networks have

experienced significant growth during this period, with

cellular networks growing the fastest. However, although

cellular networks grew faster than the other two networks,

data traffic was consistently lower than fixed networks

throughout the period.

Figure 1: Network traffic trends.

In the field of automated network management,

DRL shows great potential for intelligent and adaptive

traffic scheduling by sensing network status in real time,

predicting future traffic trends, and dynamically

adjusting resource allocation policies. For example,

through algorithms such as Deep Q Network (DQN) or

Asynchronous Dominant Actor-Critic (A3C), network

managers can build traffic scheduling systems that can

learn and optimize autonomously, significantly

improving network resource utilization and overall

performance [2].

This research is dedicated to exploring the

application of deep reinforcement learning in automatic

network traffic scheduling, aiming to design and

implement a new intelligent scheduling algorithm to

meet the challenges of current network traffic

management. Specifically, the objectives of the study

include:(1) improving network resource utilization:

optimizing network bandwidth allocation, reducing

resource idle and waste, and improving overall network

efficiency through intelligent scheduling policies. (2)

Intelligent and adaptive traffic scheduling: Build a

scheduling mechanism with real-time response

capability, which can quickly adjust policies according

to network state changes, ensure quality of service, and

improve network flexibility and robustness.

Deep reinforcement learning has demonstrated its

powerful ability to solve complex decision-making

problems in many fields. In games such as AlphaGo and

AlphaStar, DRL successfully outperformed top human

players, demonstrating its potential in strategic planning

and decision optimization. In robotics, DRL is used to

learn complex motor skills such as walking, jumping, and

grasping objects, demonstrating its adaptability and

flexibility in the physical world. In the field of autonomous

vehicles, DRL applications enable vehicles to make safe

and efficient driving decisions in complex road

environments [3]. These cross-domain success stories not

only highlight the versatility and powerful functions of

DRL, but also provide innovative perspectives and feasible

technical paths for network traffic scheduling.

Although traditional network traffic scheduling

algorithms are stable in some fixed scenarios, their

limitations become particularly obvious when faced with

dynamic network environments. Firstly, rule-based

scheduling algorithms often rely on static rules and

predetermined policies, which limit their response speed

and adaptability to network state changes. Secondly,

although the optimal model-driven scheduling algorithm

can provide global optimal solution, it is computationally

complex and difficult to achieve real-time scheduling,

especially in large-scale network environment.

0

2000

4000

6000

8000

10000

12000

14000

16000

2017 2018 2019 2020 2021 2022 2023 2024

Fixed (PB per year) Cellular (PB per year) Wi-Fi (PB per year)

Automatic Network Traffic Scheduling Algorithm Based on… Informatica 48 (2024) 163–178 165

Furthermore, these algorithms often assume that

network conditions and traffic patterns remain constant

and cannot effectively handle bursty traffic or rapid

changes in network topology, which is a major drawback

in today's dynamic network environments [4].

Table 1: Research progress.

Algorithm
Key

Characteristics
Advantages Limitations

Dijkstra's

Algorithm

Shortest path

priority

Simple computation, suitable for

static networks

Does not support dynamic weight

adjustments; slow response to

network changes

SPF (Shortest

Path First)

Routing based on

shortest path

Simple implementation, easy to

deploy

Slow response to network

topology changes; lacks

adaptability

WRR (Weighted

Round Robin)

Weighted round-

robin scheduling
Achieves a degree of fairness

Requires pre-configured weights;

cannot adjust in real-time to

handle sudden traffic surges

RED (Random

Early Detection)

Early random

packet drop to

avoid congestion

Can prevent network congestion

Effectiveness depends on precise

parameter settings; performs

poorly in highly dynamic

environments

Deep

Reinforcement

Learning (DRL) +

GNN

Combines deep

learning with

reinforcement

learning

Automatically learns optimization

strategies; capable of handling

complex and dynamic

environments

High computational cost during

initial training phase; may require

substantial data support

2 Theoretical basis and related

work
As shown in Table 1, although the current state-of-the-

art (SOTA) network traffic scheduling algorithms excel

in handling static or relatively stable network

environments, they exhibit significant limitations when

it comes to coping with highly dynamic traffic

conditions and sudden network failures. For instance,

traditional rule-based methods such as Priority Queue

(PQ) and Weighted Fair Queue (WFQ), while capable

of effectively allocating resources according to

predefined strategies, appear rigid and lack flexibility in

the face of rapidly changing network conditions; these

methods typically require manual parameter

configuration and struggle to adapt in real-time to

variations in traffic patterns. On the other hand,

congestion control mechanisms like Random Early

Detection (RED), which attempt to prevent congestion

by dropping some packets, are heavily dependent on the

accuracy of their parameter settings and often fail to

effectively mitigate congestion issues in highly dynamic

environments, sometimes even exacerbating network

performance instability. Furthermore, many existing

solutions do not adequately address the impact of local

network failures on overall service quality and the rapid

restoration of services. Therefore, developing an

intelligent scheduling algorithm that can both efficiently

utilize network resources and flexibly respond to

complex and ever-changing network conditions has

become an urgent research challenge. Your research

work, by integrating deep reinforcement learning with

graph neural networks, aims to overcome these

limitations, providing a more robust and adaptive solution

to meet the demands for reliability and resilience in

modern networks.

2.1 Principles of deep reinforcement learning
At the heart of reinforcement learning is the interaction of

an agent with its environment, with the goal of learning a

policy that causes the agent to take actions in a series of

states to maximize long-term rewards. The reinforcement

learning problem can be described by Markov Decision

Process (MDP), which consists of quadruples, where S is

the state space, S is the action space, and Equation 1 is the

immediate reward function [5, 6].

1(,) [| ,]t t tR s a R S s A a+= = =E
(1)

Deep learning is a sub-field of machine learning that

focuses on using deep neural networks for data

characterization and prediction. A typical deep neural

network consists of an input layer, multiple hidden layers,

and an output layer, with weights adjusted by a

backpropagation algorithm and gradient descent to

minimize the loss function, where  are the network

parameters [7].

Deep reinforcement learning combines the powerful

representational power of deep learning with the decision-

making optimization power of reinforcement learning.

Deep Q Networks (DQN) is a popular approach that uses

convolutional neural networks (CNN) to approximate

action value functions and stabilizes the learning process

through empirical playback and periodic updates of the

target network. Another approach is the Asynchronous

166 Informatica 48 (2024) 163–178 H. He

Dominant Actor-Critic (A3C) algorithm, which speeds

up learning through parallel agents and updates the

policy function using a policy gradient approach [8].

2.2 Network traffic scheduling theory

Network traffic scheduling aims to optimize network

resource allocation to meet quality of service (QoS)

requirements. Its basic principles include fairness,

efficiency and adaptability. Fairness ensures that all data

streams receive an appropriate share of bandwidth;

efficiency requires minimizing resource waste and latency;

and adaptability means that scheduling algorithms should

be able to respond quickly to changes in network

conditions [9].

NDN
NETWORK

笔记本
笔记本

AWS 管理控制台

Producers

Consumers

E-END Node
E-END Node

Consumers

Producers

E-END Node

Controllers

Figure 2: Network traffic flow patterns.

As shown in Figure 2, Producers are located

outside the cloud network and are responsible for

generating data content and publishing it to the network.

E-END nodes are located inside the cloud network and

are responsible for processing data requests from

producers and consumers and forwarding them to the

appropriate controllers. Controllers are located below

the E-END Node and are responsible for managing and

controlling the operation of the entire network.

Consumers are located outside the cloud network and

are responsible for getting what they want from the

network. Specifically, producers use pen washi icons to

indicate that they can send data content to the network.

This data is stored in barrels within yellow circles,

which represent E-END Nodes. When consumers need

access to a particular piece of content, they make a

request, which is passed to the corresponding E-END

Node. The E-END Node then forwards the request to

the controller for processing. Finally, the controller

returns the desired content to the consumer.

Common network traffic scheduling algorithms

include Priority Queue (PQ), Weighted Fair Queue (WFQ)

and Random Early Detection (RED). PQ allocates

bandwidth by priority, WFQ assigns weights based on

traffic type, and RED avoids congestion by dropping

packets randomly. However, these methods have limited

performance in dynamic and complex network

environments due to their lack of self-tuning and learning

capabilities [10].

The application of deep reinforcement learning in

traffic scheduling mainly focuses on intelligent resource

allocation and dynamic scheduling policy formulation. By

observing the network state, such s as bandwidth

utilization, delay and packet loss rate, the agent selects the

best action a to optimize the objective function, which is

specifically shown in Equation 2.  , it is a discount factor

tr and an instant reward [11].

Automatic Network Traffic Scheduling Algorithm Based on… Informatica 48 (2024) 163–178 167

0

() t

t

t

J r 


=

 
=  

 
E

(2)

Intelligent bandwidth allocation for data center

networks is implemented using deep reinforcement

learning, where agents learn a policy to predict future

traffic demand based on current network load and

historical data, thereby dynamically adjusting resource

allocation [12]. In fog computing environment, a

dynamic resource allocation algorithm based on deep

reinforcement learning is proposed, which can

effectively deal with dynamic load and resource

constraints, improve resource utilization and reduce

delay through intelligent scheduling.

Traditional network traffic scheduling algorithms,

such as Priority Queue (PQ), Weighted Fair Queue

(WFQ), and Random Early Detection (RED), while

performing well in static or relatively stable network

environments, have significant limitations in dealing

with the complexity and dynamics of modern networks.

For example, PQ and WFQ depend on preset rules and

weights, and cannot flexibly cope with sudden changes

in network traffic and diversified service requirements;

RED attempts to alleviate congestion through random

packet loss, but its effect is not ideal under highly

dynamic network conditions, and sometimes it even

exacerbates network performance instability.

Although existing state-of-the-art (SOTA)

technologies perform well in handling static network

environments, they still have limitations when dealing

with dynamic traffic conditions and network failures

[13]. For example, many methods rely on predefined

rules or models and have difficulty adapting to rapidly

changing traffic patterns in real time. In addition, these

algorithms often lack sufficient robustness in the face of

emergencies such as link failures, resulting in a sharp

drop in performance. In contrast, the proposed

algorithm, by combining graph neural networks with

hierarchical reinforcement learning, can more flexibly

adjust strategies to optimize resource allocation,

effectively alleviate the above challenges, and show

stronger adaptability and stability [14-15].

In this paper, a new scheduling algorithm is

proposed by combining graph neural network with

hierarchical reinforcement learning. GNN is used to

process topology information and reinforcement

learning is used to realize dynamic resource allocation.

The novelty lies in the ability to simultaneously improve

network performance and keep computing costs low.

The main findings include stable performance of the

proposed algorithm under different network sizes and

strong robustness to failures. In addition, parameter

sensitivity analysis shows how much the algorithm

depends on key hyperparameters, providing valuable

insights for future research.

In the field of production scheduling, it is an

important research direction to consider the

deterioration effect of workpieces, the impact of

different groups and time-related preparation time on

parallel batch scheduling of single machines and

parallel machines. Liao et al. [16] explored how to

optimize scheduling strategies in such complex situations.

Their proposed method provides a new perspective for

dealing with scheduling problems with these

characteristics. On the other hand, Janiak et al. [17]

focused on the job scheduling problem under non-

monotonic step value functions, which reflect the time-

varying characteristics of job values in certain practical

scenarios. Both studies emphasize the importance of

considering job characteristics and time factors when

making scheduling decisions, which is of great

significance for improving the efficiency of manufacturing

systems.

3 Methods and model design

3.1 System architecture and problem

definition
The network environment is abstracted into a graph

representing the set of nodes in the network and E

representing the set of links. Each node can be a router or

switch, and each link has a specific bandwidth
eb and

latency. Traffic flows from the source node to the

destination node with an assignment variable on the link

of, where it indicates that traffic passes through the link,

and vice versa [18].

The implementation process of the algorithm

includes: firstly, establishing the network model, setting up

the agent and its initial policy, determining the super

parameters such as learning rate and discount factor, and

then collecting the data of link utilization and traffic

demand through simulation or actual network operation.

The agent then periodically observes the current network

status and selects a traffic allocation scheme as an action

based on this information. The selected scenario is applied

to the network to adjust traffic paths, and then instant

rewards are calculated based on the new network state and

optimization goals. Using immediate rewards and new

state information, the agent's strategy is updated by

reinforcement learning algorithm. This process (from state

observation to policy update) iterates until a predetermined

training run or performance metric converges. Finally, the

trained model is evaluated in an independent test

environment to confirm its stability and effectiveness, and

then deployed to the actual network for real-time

scheduling. Through such steps, the algorithm can

dynamically adapt to network changes, continuously

optimize traffic scheduling, and achieve efficient and

reliable network management.

Our goal is to design an intelligent traffic scheduling

algorithm designed to minimize total latency and

maximize resource utilization while ensuring quality of

service (QoS) criteria are met. To do this, we define a

multi-objective optimization function that takes into

account total delay and link utilization [19], as shown in

Equation 3.

,

1

,

1

() min ,max
i

N

i i eN
i

e i e e E

i e p e

f x

J x d x
b

=



= 

  
    =  
  
    


 (3)

168 Informatica 48 (2024) 163–178 H. He

In order to simplify the optimization problem, we

introduce weight coefficients  and  to balance

delay
()v − and

()v + utilization, and construct the

following single-objective optimization function,

specifically Formula 4.

2

,

1

,

1

(; ,) 1
i

N

i i eN
i

e i e

i e p e E e

f x

J x d x
b

    =

=  

 
 
 = +
 
 
 


  (4)

where the first term represents the weighted sum of

the total delays and the second term represents the

squared error of the link utilization from the target value

(i.e. full load).

The constraints of the network environment

include the law of traffic conservation and link capacity

constraints, as shown in Equations 5 and 6.

, ,

() ()

1 if

Flow conservation: 1 if [1,],

0 otherwise

i

i e i e i

e v e v

v s

x x v t i N v V
 − + 

=


= − =   



 

(5)

,

1

Capacity constraint:
N

i i e e

i

f x b e E
=

   (6)

where, and represent the set of all links into and out

of the node, respectively.

To achieve the above optimization goals in a

dynamically changing network environment, we

employ a Deep Reinforcement Learning (DRL)

framework. By observing the network state, including

link utilization and traffic demand, an agent selects the

optimal action, i.e. traffic allocation policy, to minimize

the objective function (; ,)J x  
[13]

. The state can be

expressed as a combination of link utilization and traffic

demand, as shown in Equation 7.

()1{ } ,{ }N

e e E i is u f == (7)

The action space consists of all possible traffic

allocation policies. The immediate reward is calculated

based on the objective function and changes in the network

state to reflect the immediate effect of the traffic

scheduling policy [14].

The goal of the agent is to learn a policy that selects

the optimal action, i.e., traffic allocation policy, to

maximize the long-term cumulative reward for a given

network state. This involves the use of Deep Q Networks

(DQN), Asynchronous Dominant Actor-Critic (A3C), or

other advanced DRL algorithms to process high-

dimensional state spaces and action spaces for intelligent

decision-making [15].

3.2 Traffic scheduling algorithm design

based on deep reinforcement learning
In this study, we explore in depth the application of graph

neural networks (GNN) in a deep reinforcement learning

framework to solve network traffic scheduling problems.

GNNs can effectively process graph structure data and

capture dependencies between nodes through message

passing mechanism, which is very suitable for dealing with

network traffic scheduling and other graph-based problems

[20].

Global network

at

Data plane

A(s,a)

Worker N

Asynchronous update

Figure 3: GNN-DRL framework.

Automatic Network Traffic Scheduling Algorithm Based on… Informatica 48 (2024) 163–178 169

We first abstract the network environment into a

graph, where nodes represent routers or switches in the

network and edges represent links connecting nodes.

The definition of state space and action space remains

unchanged, but their representation is enhanced with

GNNs to more accurately capture network structure and

dynamics.

Figure 3 shows a network architecture diagram

with three main components: the global network,

worker nodes, and data plane. The graph depicts a

GNN-DRL framework in which multiple worker nodes

interact with each other through a global network to

make decisions based on their respective policies and

values, while all of this is informed by real-time data

collected from the environment by the data plane.

State space: With GNNs, we not only consider the

current utilization and traffic demand of links, but also

introduce information about adjacent links and the

interaction effects between links. The node eigenvectors

and edge eigenvectors of GNN are updated through the

information propagation process [21], which are

specifically expressed as Equation 8 and Equation 9.

(1) ()

v

t t

v e

e E

h h+



 
=   

 
 (8)

()() () () () () () ()

() ()

t t t t t t t

e e e s s e t t eh W h W h W h= + + (9)

where, is the set of adjacent edges of a node, and is

the source node and target node of edge e, respectively,

and is the weight matrix, and is the nonlinear activation

function [22].

Action space: Under the GNN framework, agents

can calculate the proportion of traffic allocation on links

more carefully based on the eigenvectors of nodes and

edges, thus achieving more accurate traffic scheduling

[23]. This is shown in Equation 10.

() ()

, , () ()

exp((,))
() () () , [1,],

exp((,))

t t

e i

i e i e t t

e i

e E

g h h
a t x t x t i N e E

g h h



 
 

= =     
 
 


∣

 (10)

where (,)g   is a learnable function, usually a fully

connected layer, used to calculate the attraction of a link

to traffic flows.

With the aid of GNNs, the design of reward

mechanism
long ()r t

can consider the influence of

network structure more deeply. For example, long-term

impact rewards can be based on GNNs predicting the

next network state, more accurately reflecting the

impact of traffic scheduling on future network states

[24]. This is shown in Equation 11.

long

(1) ()
() e e

l

e E e e

u t u t
r t w

b b

 +
=  

 
 (11)

where
lw is the weight of the long-term impact

reward, (1)eu t + and ()eu t are the utilization of the link at

the next time and at the current time, respectively.

In addition, GNNs can help agents better understand

the dependencies between different links in the network,

so that when designing penalty terms, penalties can be

allocated more reasonably to avoid network congestion

[25]. This is shown in Equation 12, where is the weight of

the penalty term.

2

pun

()
() max 0, 1e

p

e E e

u t
r t w

b

 
= −  

 
 (12)

In synergy with deep reinforcement learning and

graph neural networks (GNNs), we innovatively integrate

GNNs into a hierarchical reinforcement learning (HRL)

framework to optimize network traffic scheduling

decisions. High-level agents use GNNs to capture global

network characteristics and form macro policies to guide

traffic priority allocation; low-level agents use GNNs to

deeply understand local network structure and implement

refined traffic allocation. GNNs provide rich state

representations for high-level agents to help them predict

the long-term effects of traffic scheduling; at the same

time, they enable low-level agents to more accurately

perceive inter-link interactions and achieve optimal

resource allocation. Through this hierarchical design, the

algorithm not only improves the decision quality and

learning efficiency, but also enhances the understanding

and adaptability of complex network structures, bringing

ground-breaking solutions to automated network traffic

scheduling. This combination makes full use of the

advantages of GNNs in graph structure data processing,

complements the hierarchical decision-making mechanism

of HRL framework, and jointly promotes the efficient

performance of algorithms in large-scale dynamic network

environments [26].

In the framework of Hierarchical Reinforcement

Learning (HRL), the integration of Graph Neural

Networks (GNNs) provides a highly specialized solution

to network traffic scheduling problems. HRL decomposes

complex scheduling tasks into macro-strategy formulation

and micro-operation execution through hierarchical

decision-making, which significantly improves learning

efficiency and decision-making flexibility. The

introduction of GNNs further enhances the adaptability

and optimization capabilities of this framework, especially

when dealing with network environments with complex

graph structures [27].

High-level agents are responsible for macro-policy

formulation, including traffic priority allocation, and their

core lies in global understanding of the entire network

state. GNNs can effectively capture the dependencies

between nodes in the network through message passing

mechanism, and provide richer and more comprehensive

state representation for high-level agents. Specifically,

GNNs update the node eigenvectors and edge eigenvectors

by the following equations [28] to reflect the dynamic

changes of the network, as shown in Equations 13 and 14.

170 Informatica 48 (2024) 163–178 H. He

(1) () () () ()

v

t t t t t

v v v e e

e E

h W h W h+



 
= +  

 
 (13)

()(1) () () () () () ()

() ()

t t t t t t t

e e e s s e t t eh W h W h W h+ = + + (14)

where, ()t

vh and ()t

eh are eigenvectors of nodes v

and edges e in time, respectively, ()t

vW
,

()t

eW
,

()t

sW and

()t

tW are weight matrices, and  are nonlinear

activation functions. Through iterative updating of

GNNs, high-level agents can formulate more efficient

and forward-looking macro policies based on a global

view of the entire network [29].

Low-level agents focus on executing specific

traffic allocation decisions to achieve priorities assigned

by higher-level agents. GNNs help the underlying

agents to understand the local network structure,

especially the interactions between links. Specifically,

based on the output of GNNs, the bottom agent

calculates an optimal traffic allocation policy through

the following formula, which is specifically shown in

Formula 15.

() ()

low , , () ()

exp((,))
() () () , [1,],

exp((,))

t t

e i

i e i e t t

e i

e E

g h h
a t x t x t i N e E

g h h



 
 

= =     
 
 


∣

 (15)

where (,)g   is a learnable function that calculates

the attraction of link e to traffic flow i. With the aid of

GNNs, the underlying agent can analyze the interaction

between links in more detail to ensure that the traffic

allocation strategy not only meets the requirements of

the macro policy, but also maximizes the utilization

efficiency of network resources [30-31].

The combination of GNNs and HRL framework

not only improves the decision quality of agents, but

also speeds up the convergence speed of learning

process. Specifically, GNNs enhance the performance

of the HRL framework through the following

mathematical formalization:

State representation update: GNNs update the

feature vectors of nodes and edges through information

transfer mechanism, providing more accurate state

representation for high-level agents and low-level

agents.

Macro-policy formulation: High-level agents use

the global network state provided by GNNs to update

their state as expressed in Equation 16 by the following

equation.

(1) () () () ()

high high high

t t t t t

e e

e E

h W h W h+



 
= + 

 
 (16)

Micro-operation execution: Based on the output of

GNNs, the underlying agent calculates the optimal

traffic allocation policy by the following formula, which

is expressed as Formula 17.

() ()

low , , () ()

exp((,))
() () () , [1,],

exp((,))

t t

e i

i e i e t t

e i

e E

g h h
a t x t x t i N e E

g h h



 
 

= =     
 
 


∣

 (17)

Through the mathematical formalization mentioned

above, GNNs combined with HRL framework realize

highly specialized treatment of network traffic scheduling

problem, which can not only deal with complex network

structure, but also maintain stable and efficient

performance in dynamic changing environment. This

innovative scheme opens up a new research direction for

automatic network traffic management and is expected to

play an important role in the future development of

network technology.

3.3 Model optimization and parameter

adjustment
Under the framework of deep reinforcement learning,

model optimization and parameter adjustment are key

steps to ensure algorithm performance and learning

efficiency. In this section, the initialization strategy,

parameter adjustment method and convergence analysis

are introduced in detail, so as to realize efficient and stable

learning of the algorithm.

Model initialization strategies are critical to avoid

falling into undesirable local optima. We adopt a pre-

trained initialization strategy combined with initial

strategy parameters obtained in offline learning phase.

Specifically, we first pretrain the agent offline using

historical datasets to obtain initial policy parameters. The

goal of pre-training is to maximize the cumulative reward

on the offline dataset [32], expressed as Equation 19.

0 (, ,)~

0

arg max
T

t

s a r D t

t

r 
=

 
=  

 
E (19)

where D is the historical dataset,  is the discount

factor, and T is the sequence length.

Then, we use the parameters obtained from pre-

training as initialization parameters in the online learning

stage, i.e., Equation 20.

init 0 = (20)

This initialization strategy can accelerate the

convergence speed of online learning phase, help agents

adapt to real environment quickly, and avoid bad local

optimization caused by random initialization.

Parameter tuning is central to optimizing the

performance of deep reinforcement learning models. We

adopt a parameter adjustment method based on adaptive

learning rate to adapt to different learning stages. The 

adjustment of the learning rate follows the following rule,

expressed as Equation 21.

0() / (1)t t  = + (21)

Automatic Network Traffic Scheduling Algorithm Based on… Informatica 48 (2024) 163–178 171

In addition, we employ momentum techniques to

accelerate convergence and help agents escape shallow

local optima. The m update rules for the momentum

term are equations 22 and 23.

() (1) () (())m t m t t J t  = − +  (22)

(1) () ()t t m t + = (23)

where  is the momentum coefficient and

(())J t
is the policy gradient.

In order to ensure the convergence of the

algorithm, we carry out a detailed convergence analysis.

First, we define the convergence criterion of the

algorithm, that is, when k the change of policy

parameters in successive iterations  is less than a

certain threshold ò , the algorithm is considered to

converge, which is expressed as Equation 24.

|| (1) () ||t t t T k +    −ò (24)

In addition, we monitored trends in cumulative

rewards to assess the algorithm's long-term

performance. The jackpot ()R t is defined by Equation

25.
1

()
t T

t

t

R t r





+ −

−

=

=  (25)

By observing how it changes over time, we can

assess whether the algorithm converges steadily to the

optimal policy.

Through the above model initialization strategy,

parameter adjustment method and convergence

analysis, we can effectively optimize the deep

reinforcement learning model, ensure the efficient and

stable learning of the algorithm when dealing with

network traffic scheduling problems, maximize

resource utilization and minimize delay, and achieve

network quality of service (QoS) optimization.

4. Experimental design and results

analysis

4.1 Experimental environment settings
To verify the effectiveness and superiority of the

proposed traffic scheduling algorithm based on deep

reinforcement learning and graph neural networks, we

use an exhaustive dataset from real-world data center

networks. The dataset contains the operation status

records of thousands of links in a month, as well as

dynamic change information of more than 100,000

traffic flows, covering key network indicators such as

link utilization, traffic demand, and delay time. The data

comes from one of the world's leading cloud service

providers and covers network traffic inside and outside

its data centers, providing a rich and realistic sample of

network behavior.

4.2 Performance evaluation indicators
In order to evaluate the effectiveness and superiority of

the proposed traffic scheduling algorithm based on deep

reinforcement learning and graph neural network, we

carefully designed a series of performance indicators to

measure the overall performance of the algorithm from

multiple perspectives. First, we focus on the response

speed and efficiency of the algorithm. By measuring the

average delay time from the source node to the target node,

we can intuitively reflect the speed and real-time

performance of the algorithm in traffic scheduling. Low

latency means that the algorithm can respond quickly to

network demands, effectively reducing the time packets

stay in the network, thus improving user experience and

network efficiency. Secondly, throughput, as a key

indicator of network performance, directly reflects the total

amount of traffic that the network can successfully

transmit in unit time. By comparing the throughput of

different algorithms, we can evaluate the carrying capacity

and overall performance of the algorithm when handling

large amounts of data traffic. The high throughput not only

demonstrates the efficiency of the algorithm, but also its

potential to improve overall network performance. Finally,

resource utilization considerations reveal how intelligent

the algorithm is in resource management. An ideal

scheduling algorithm should be able to achieve efficient

use of network resources, avoid resource waste, and thus

reduce network operation costs. By monitoring the average

utilization of links in the network, we can quantify the

efficiency of the algorithm in resource allocation and

determine its economy and sustainability in practical

applications.

4.3 Comparative analysis of results
Specifically, the experiment involved a massive network

scale, including 100,000 traffic flows and 3,000 links, each

with a bandwidth set at 1 Gbps, designed to simulate the

complex environment of large real-world networks. To

balance the algorithm's performance between immediate

response and long-term planning, the immediate reward

weight is set to 0.7 and the long-term reward weight is set

to 0.3, ensuring that the algorithm is both responsive to

network changes and proactive. The dynamic penalty

coefficient increases linearly with time, with an initial

value of 0.01 and an increase of 0.001 per unit time to adapt

to the dynamic changes of network states and avoid

excessive utilization of network resources. The target

network update rate is set to 0.01, which ensures smooth

transition between the main network and the target

network and helps the algorithm to converge stably. The

value of discount factor γ is 0.99, which emphasizes the

importance of long-term reward in the learning process of

the algorithm and promotes long-term optimization of the

strategy. These parameters are carefully configured to

create an experimental framework that not only conforms

to the actual network environment, but also fully

demonstrates the performance of the algorithm.

In order to fully evaluate the effectiveness and

superiority of the proposed traffic scheduling algorithm

based on deep reinforcement learning and graph neural

networks (referred to as the "proposed algorithm"), we

designed a series of rigorous comparative experiments to

compare its performance with three widely recognized

traditional traffic scheduling algorithms: Dijkstra

172 Informatica 48 (2024) 163–178 H. He

algorithm, Shortest Path First (SPF) algorithm and

Weighted Round Robin (WRR) algorithm. The table

below summarizes the results for key performance

metrics, including latency, throughput, and resource

utilization, as well as robustness and generalization tests

in different network environments.

Table 2: Comprehensive performance comparison.

Arithmeti

c

Averag

e delay

time

(ms)

Throughpu

t (mbps)

Average

resource

utilizatio

n (%)

Proposed

algorithm
10.5 9800 92

Dijkstra 16.2 8900 85

Shortest

Path First

(SPF)

14.8 9200 88

Weighted

Round

Robin

(WRR)

15.1 9000 86

Table 2 shows the comparison of the proposed

algorithm and the traditional algorithm in three key

performance indicators: average delay time, throughput

and average resource utilization. The average delay time

of the proposed algorithm is only 10.5 ms, which is

much lower than that of Dijkstra algorithm (16.2 ms).

Meanwhile, the throughput of the proposed algorithm is

up to 9800 Mbps and the resource utilization ratio is

92%, which are higher than other algorithms. This

shows that the proposed algorithm can effectively

improve the data transmission capacity and resource

utilization efficiency of the network while ensuring low

latency.

Table 3: Performance under different flow demand

intensity.

Traffic

demand

intensity

Average

delay

time

(ms)

Throughput

(mbps)

Average

resource

utilization

(%)

Low 9.2 9600 90

Centre 10.5 9800 92

Tall 11.8 9900 93

Table 4: Performance under link failure.

Percentag

e of failed

links

Averag

e delay

time

(ms)

Throughpu

t (mbps)

Average

resource

utilizatio

n (%)

5% 11.0 9750 91

Percentag

e of failed

links

Averag

e delay

time

(ms)

Throughpu

t (mbps)

Average

resource

utilizatio

n (%)

10% 12.3 9650 90

15% 13.6 9550 89

Table 3 details the performance of the proposed

algorithm under different traffic requirements. As the

traffic demand gradually increases from low to high, the

average delay time of the proposed algorithm increases

slightly from 9.2 ms to 11.8 ms, showing good

adaptability. At the same time, the throughput is increased

from 9600 Mbps to 9900 Mbps, and the resource

utilization ratio is also increased from 90% to 93%, which

indicates that the proposed algorithm not only maintains

low latency when dealing with high traffic demand, but

also effectively improves the overall performance of the

network.

Table 4 shows the robustness of the proposed

algorithm under different failure link ratios. When the

proportion of failed links is 5%, the average delay time is

11.0 ms, the throughput is 9750 Mbps, and the resource

utilization is 91%. With the increase of the proportion of

failed links, the performance of the proposed algorithm

decreases, but it still maintains a high level. For example,

when the proportion of failed links is 15%, the average

delay time is 13.6 ms, the throughput is 9550 Mbps, and

the resource utilization ratio is 89%. This shows that the

proposed algorithm can maintain good performance in the

face of network failures.

To further expand the breadth and depth of the

experiment, we added two additional tables showing

performance at different network sizes and levels of

network congestion. These additional tests were designed

to verify the robustness and effectiveness of the proposed

traffic scheduling algorithm based on deep reinforcement

learning and graph neural networks (the "proposed

algorithm") in the face of network scale expansion and

network congestion challenges.

Table 5 analyzes the performance of the proposed

algorithm under different network topologies. The

proposed algorithm shows good performance in ring

network, tree network and mesh network.

Table 5: Performance under network topology changes.

Network

topology

change

Average

delay

time

(ms)

Throughput

(mbps)

Average

resource

utilization

(%)

Ring

network
10.7 9750 91

Tree

network
11.2 9680 90

Mesh

network
12.0 9700 92

Automatic Network Traffic Scheduling Algorithm Based on… Informatica 48 (2024) 163–178 173

Table 6: Performance at different network sizes.

Network

size

Averag

e delay

time

(ms)

Throughpu

t (mbps)

Average

resource

utilizatio

n (%)

Small

scale

(N=10K)

9.5 9700 91

Medium

scale

(N=50K)

10.5 9800 92

Large-

scale

(N=100K

)

11.5 9900 93

By comparing the data in Table 6 and Table 7, we

find that the proposed algorithm can maintain relatively

stable performance in the face of network scale

expansion and different degrees of network congestion.

Especially when the network scale increases to large

scale (N= 100K), the average delay time, throughput

and average resource utilization of the algorithm

increase only slightly, showing its strong adaptability

and stability in dealing with large-scale network

environment. In the test of different network congestion

degree, the algorithm also shows good robustness, even

in the case of network congestion aggravation, it can

maintain high throughput and resource utilization, and

ensure that network performance is not seriously affected.

These results further demonstrate the superior performance

and application potential of the proposed algorithm in

complex network environments.

Figure 4 shows the trend in network throughput as the

network grows. It can be seen that as the network scale

expands, although the throughput decreases, it remains in

a stable range overall, fluctuating around 9500 Mbps. This

means that even if the network scale increases, the overall

performance of the system is still relatively stable, and

there is no obvious performance bottleneck or significant

performance degradation. This phenomenon indicates that

well-designed network systems have good scalability and

can cope with a certain range of load pressures.

Table 7: Performance under different congestion levels.

Network

congestion

level

Average

delay

time

(ms)

Throughput

(mbps)

Average

resource

utilization

(%)

Minor

congestion
10.7 9750 91

Moderate

congestion
12.2 9600 90

Major

congestion
13.8 9450 89

Figure 4: Network throughput at different scales.

174 Informatica 48 (2024) 163–178 H. He

Figure 5: Convergence curve.

As shown in Figure 5, the learning curve

demonstrates the improvement of the deep reinforcement

learning (DRL) algorithm over time, represented by the

cumulative reward per episode. The blue line represents

the episode reward, which fluctuates significantly during

training but eventually converges towards a stable level.

This graph provides valuable insights into the algorithm's

performance, including its convergence speed, stability,

and final performance. The initial rapid increase in reward

indicates a fast-learning pace, while subsequent

fluctuations suggest that the algorithm is still adjusting

and optimizing its policy. Despite these variations, the

overall trend suggests that the algorithm gradually learns

from experience and adapts to the environment, ultimately

achieving a steady state after numerous episodes. This

figure highlights the importance of monitoring the

learning process for understanding the effectiveness of the

DRL approach and identifying potential areas for further

optimization.

 To assess the status of the proposed algorithm, we

compare it with several advanced learning-based methods.

As shown in Table 7, the performance was excellent in

terms of latency, throughput, and resource utilization.

However, the algorithm has certain limitations, such as the

need for high-performance GPU support during the

training phase. These characteristics show that although

our method is very effective in practical applications, it

still needs to be further optimized in terms of hardware

requirements to reduce costs.

As can be seen from Table 8, the proposed algorithm

outperforms other modern learning scheduling methods

on all three key performance metrics. This shows that the

proposed algorithm not only has significant advantages

over traditional algorithms, but also performs well when

compared with other learning-based methods.

To further verify the scalability of the proposed

algorithm in larger networks and its real-time adaptability,

additional experiments are performed. Specifically, we

tested the algorithm's performance under dynamically

growing or shrinking network topologies.

Table 9 shows the performance of the proposed

algorithm under dynamic network topology change. The

proposed algorithm can maintain relatively stable

performance no matter the network scale is expanded or

reduced. The experiment results indicate the validity and

scalability of our method.

Table 8: Comprehensive performance comparison with

modern learning scheduling methods.

Algorithm

Average

Latency

(ms)

Throughput

(Mbps)

Average

Resource

Utilization

(%)

Proposed

Algorithm
10.5 9800 92

CNN-based

Scheduling
12.0 9500 89

A3C 13.5 9400 88

PPO 14.2 9300 87

Table 9: Performance under dynamic network topology

changes.

Network

Scale

Change

Average

Latency

(ms)

Throughput

(Mbps)

Average

Resource

Utilization

(%)

Expansion

(N=10K ->

N=100K)

10.5 ->

11.5

9700 ->

9900
92 -> 93

Reduction

(N=100K -

> N=10K)

11.5 ->

10.5

9900 ->

9700
93 -> 92

Automatic Network Traffic Scheduling Algorithm Based on… Informatica 48 (2024) 163–178 175

Table 10: Statistical analysis of performance under link failure.

Link Failure

Percentage

Average Latency (ms)

± Standard Deviation

Throughput (Mbps) ±

Standard Deviation

Average Resource

Utilization (%) ±

Standard Deviation

5% 11.0 ± 0.5 9750 ± 100 91 ± 1

10% 12.3 ± 0.7 9650 ± 150 90 ± 2

15% 13.6 ± 0.8 9550 ± 200 89 ± 2

Although the proposed algorithm performs well in

terms of latency and resource utilization, the

computational complexity of GNNs and hierarchical

reinforcement learning can be large, especially in real-

time network management scenarios. Specifically, the

initial training phase requires high-performance GPU

support to handle large amounts of data and complex

model parameters. However, once the model training is

complete, real-time decisions can be made on a normal

CPU. A large amount of memory is needed to store model

parameters and intermediate results in the training

process, but the memory requirement is low in the

reasoning stage. After optimization, the algorithm can

meet the real-time requirements in practical applications.

In terms of robustness and failure scenarios, experimental

results dealing with link failures and topology changes

have demonstrated the good robustness of the proposed

algorithm. To further enhance the statistical analysis of

the experimental results, we report the mean deviation and

confidence intervals around the results. For example, the

standard deviations of the performance metrics (such as

average delay time, throughput and resource utilization) of

the proposed algorithm are small under the link failure

rates of 5%, 10% and 15%, which indicates that the

proposed algorithm has good stability and robustness.

These statistical analyses further confirm the reliability

and consistency of the proposed algorithm in the face of

network failures and topology changes.

It can be seen from Table 10 that the proposed

algorithm can maintain high performance even in the case

of network failure, and the standard deviation is small,

indicating that it has good stability and robustness.

As shown in Table 11, parameter sensitivity analysis

was performed to understand the impact of

hyperparameters on performance in the DRL framework.

A higher learning rate may lead to instability, while a

lower learning rate may prolong convergence time. The

optimal learning rate is about 0.001. Discount factors

affect the importance of long-term rewards. The optimal

discount factor is 0.95, which balances short-term and

long-term rewards.

Table 11: Hyperparameter sensitivity analysis.

Hyperparameter
Optimal

value

Performance

variation range

Learning rate 0.001 ± 10%

Reward discount

factor
0.95 ± 5%

4.4 Discussion
Through the comparative analysis of the above

experimental results, our traffic scheduling algorithm

based on deep reinforcement learning and graph neural

network shows significant advantages in multiple

dimensions. Firstly, the algorithm can maintain a low

average delay time under different network sizes and

traffic demand intensities, which is attributed to the

intelligent decision-making mechanism of the algorithm,

which can quickly adapt to network changes and achieve

efficient resource allocation. Secondly, the algorithm also

performs well in resource utilization, especially in high

traffic demand environment, not only maintains low

latency, but also achieves near-optimal throughput, which

shows that the algorithm not only improves network

performance, but also pays attention to rational utilization

of resources and avoids resource waste. However, any

algorithm has its limitations. Although the algorithm

demonstrated excellent performance in this study, its

computational resource requirements are high, especially

when dealing with large-scale networks. This is because

the training process of deep reinforcement learning and

graph neural networks is complex and requires a lot of

computing and storage resources. Moreover, the real-time

performance of the algorithm is also a problem worth

considering, especially when the network scale expands

sharply, the decision time of the algorithm may increase,

which affects the efficiency of real-time scheduling.

176 Informatica 48 (2024) 501–505 H. He

Therefore, in the future research, optimization algorithm

computational efficiency and real-time performance will

be one of the important directions.

Our algorithm outperforms Dijkstra, Shortest Path

First (SPF), and Weighted Round Robin (WRR)

algorithms in terms of average latency, throughput, and

resource utilization. Dijkstra algorithm and SPF algorithm

are effective in finding the shortest path, but lack of

dynamic perception of network state when dealing with

complex network environment, resulting in low resource

utilization. Although WRR algorithm is more uniform in

resource allocation, it is not flexible and adaptive enough

in the face of network congestion, and can not effectively

reduce delay or improve throughput. In contrast, our

algorithm, by combining deep reinforcement learning with

graph neural networks, is able to better understand and

predict the state of the network, thus making more

optimized decisions and exhibiting more comprehensive

advantages.

To sum up, our traffic scheduling algorithm based on

deep reinforcement learning and graph neural network

shows excellent performance in a variety of network

scenarios, especially when dealing with large-scale

networks and high traffic demand, the algorithm can

maintain low latency, high throughput and efficient

resource utilization. Despite the limitation of high

computational resource requirements, further

technological innovation and optimization are expected to

overcome this challenge and enable the algorithm to be

applied in a wider network environment. Future research

will focus on real-time improvement of algorithms,

optimization of computational efficiency and expansion of

network security, in order to contribute to building a more

intelligent, efficient and secure network system.

Although the proposed algorithm has significant

performance advantages, the use of Graph Neural

Networks (GNNs) and hierarchical reinforcement learning

also brings an increase in computational complexity. The

initial training phase requires significant computational

resources and data support, which can be a trade-off.

Specifically, GNNs require high computational resources

when dealing with large-scale networks, especially in the

training phase; hierarchical reinforcement learning

similarly requires a large number of iterations to converge

to the optimal policy. In addition, in order to train an

effective model, the algorithms require a large amount of

historical and simulated data, which may be difficult to

obtain in practical applications. Although the algorithms

can be trained to make quick decisions in real-time

environments, the real-time responsiveness of the

algorithms may be compromised in certain extreme

situations, such as sudden large-scale traffic or frequent

network failures.

The proposed algorithm shows superior performance

in scenarios such as network failures, changes in traffic

demand, and topology changes. In the case of network

failure, DRL enables the algorithm to learn how to reroute

traffic in case of link failure, reducing the delay due to a

single point of failure. The GNN is able to identify critical

nodes and paths in the network so that it can quickly find

alternative paths in the event of a failure to ensure the

continuity and stability of the network. For changes in

traffic demand, the adaptive nature of DRL enables the

algorithm to dynamically adjust resource allocation

according to the current traffic demand. When the traffic

demand increases, the algorithm can intelligently allocate

more bandwidth to high-priority data streams while

maintaining low latency. GNN helps the algorithm to

understand the dependencies between different nodes for

more effective traffic scheduling. In terms of topology

changes, GNN handles changes in network topology well

because it can predict the best paths by learning the

connection patterns between nodes. Even when the

network topology changes, the algorithm can quickly

adapt to the new structure and find the optimal traffic

scheduling scheme.

Together, these factors enable the proposed algorithm

to remain efficient and stable in the face of complex and

changing network environments. This novel approach not

only improves the overall performance of the network, but

also enhances its reliability and robustness in practical

applications. Future research can further optimize the

algorithm to reduce the computational overhead and

improve its practicality.

5 Conclusion
In this paper, an intelligent solution based on deep

reinforcement learning and graph neural network (GNN)

is proposed for traffic scheduling problem in large-scale

dynamic network environment. The algorithm

innovatively combines GNNs and hierarchical

reinforcement learning framework, and realizes efficient

decision-making from macro strategy to micro-operation.

Experimental results show that compared with traditional

algorithms, the proposed algorithm achieves significant

advantages in key performance indicators such as average

delay time, throughput and resource utilization, especially

in the face of complex scenarios such as network scale

expansion, network congestion and network topology

change, the robustness and generalization ability of the

algorithm are fully verified. In addition, we optimize the

learning efficiency of the algorithm through model

initialization strategy, parameter adjustment method and

convergence analysis, and ensure its stability and

efficiency in dealing with large-scale network

environment.

The results of this study not only provide new

theoretical references and technical means for the field of

network traffic scheduling, but also open up new research

directions for automatic network traffic management. In

the future, we plan to further explore the application of the

algorithm in more complex network environments,

including multimodal data fusion, cross-domain network

scheduling and real-time network anomaly detection, with

a view to contributing more to the development of future

network technologies. Through continuous optimization

and expansion of algorithm functions, we believe that the

proposed intelligent traffic scheduling scheme will play a

more important role in future network technology

applications, laying a solid foundation for more efficient

and intelligent network resource management.

Automatic Network Traffic Scheduling Algorithm Based on… Informatica 48 (2024) 163–178 177

References
[1] Cavone G, van den Boom T, Blenkers L, Dotoli M,

Seatzu C, De Schutter B. An MPC-based

rescheduling algorithm for disruptions and

disturbances in large-scale railway networks. IEEE

Transactions on Automation Science and

Engineering. 2022; 19(1): 99-112.

https://doi.org/10.1109/tase.2020.3040940

[2] Chen J, Chen J, Guo K. Queue-aware service

orchestration and adaptive parallel traffic

scheduling optimization in SDNFV-Enabled cloud

computing. IEEE Transactions on Cloud

Computing. 2023; 11(4): 3525-40.

https://doi.org/10.1109/tcc.2023.3294239

[3] Chen JY, Wang Y, Ou JT, Fan CY, Lu XY, Liao

CHS, et al. ALBRL: Automatic load-balancing

architecture based on reinforcement learning in

software-defined networking. Wireless

Communications & Mobile Computing. 2022;

2022. https://doi.org/10.1155/2022/3866143

[4] Chung JM, Jo SW, Ahn MH. ARQ supportive EDF

scheduling for wireless networks servicing real-

time applications. IEEE Communications Letters.

2013; 17(7): 1329-31.

https://doi.org/10.1109/lcomm.2013.052013.13026

1

[5] Coleman M, Tarte L, Chau S, Levine B, Reddy A.

A data-driven approach to prioritizing bus schedule

revisions at new york city transit. Transportation

Research Record. 2018; 2672(8): 86-95.

https://doi.org/10.1177/0361198118796717

[6] Corman F, Quaglietta E. Closing the loop in real-

time railway control: Framework design and

impacts on operations. Transportation Research

Part C-Emerging Technologies. 2015; 54: 15-39.

https://doi.org/10.1016/j.trc.2015.01.014

[7] Dabiran F, Rabiee HR, Salehi M, Amidian AA. A

traffic-aware scheduling algorithm for IEEE 802.16

mesh mode. Scientia Iranica. 2014; 21(3): 803-14.

https://doi.org/

[8] Dai B, Li HT, Wang YF. SP-DG: A programmable

packet-level scheduling for queuing delay

guarantees in time-critical networks. Computer

Networks. 2024; 250.

https://doi.org/10.1016/j.comnet.2024.110614

[9] Ganesan E, Hwang IS, Liem AT, Ab-Rahman MS.

SDN-Enabled FiWi-IoT smart environment

network traffic classification using supervised ML

models. Photonics. 2021; 8(6): 201.

https://doi.org/10.3390/photonics8060201

[10] Giridhar A, Kumar PR. Scheduling automated

traffic on a network of roads. IEEE Transactions on

Vehicular Technology. 2006; 55(5): 1467-74.

https://doi.org/10.1109/tvt.2006.877472

[11] Hu WB, Wang H, Yan LP, Bo D. A hybrid cellular

swarm. optimization method for traffic-light

scheduling. Chinese Journal of Electronics. 2018;

27(3):611-6.

https://doi.org/10.1049/cje.2018.02.002

[12] Jiang YB, Qiu ZL, Zhang MS, Li J. Integration of

unicast and multicast scheduling in a two-stage

switch architecture with low scheduling overhead.

Iet Communications. 2012; 6(17): 2825-32.

https://doi.org/10.1049/iet-com.2012.0105

[13] Lee SK, Shah SAR, Seok W, Moon J, Kim K, Shah

SHR. An optimal network-aware scheduling

technique for distributed deep learning in

distributed HPC platforms. Electronics. 2023;

12(14):3021.

https://doi.org/10.3390/electronics12143021

[14] Li T, Wang NM, Zhang M, He ZW. Dynamic

reversible lane optimization in autonomous driving

environments: balancing efficiency and safety.

Journal of Industrial and Management

Optimization. 2024; 20(3): 901-25.

https://doi.org/10.3934/jimo.2023108

[15] Lian YD, Yang QF, Xie W, Zhang LW. Cyber-

physical system-based heuristic planning and

scheduling method for multiple automatic guided

vehicles in logistics systems. IEEE Transactions on

Industrial Informatics. 2021; 17(11): 7882-93.

https://doi.org/10.1109/tii.2020.3034280

[16] Liao B, Pei J, Yang S, et al. Single-machine and

parallel-machine parallel-batching scheduling

considering deteriorating jobs, various group, and

time-dependent setup time. Informatica, 2018;

29(2):281-301.

https://doi.org/10.15388/Informatica.2018.168

[17] Janiak A, Krysiak T, Trela R. A Problem of

scheduling jobs with non-monotonic stepwise

values. Informatica, 2014; 25(1): 37-53.

https://doi.org/10.15388/Informatica.2014.03

[18] Khemaissia I, Mosbahi O, Khalgui M, Li ZW, Qu

T. Coherence and Feasibility of Real-Time

Software Tasks in Networked Adaptive Systems.

IEEE Access. 2018; 6: 35824-43.

https://doi.org/10.1109/access.2018.2845942

[19] Kleinmann A, Wool A. Automatic construction of

statechart-based anomaly detection models for

multi-threaded industrial control systems. ACM

Transactions on Intelligent Systems and

Technology. 2017; 8(4): 1-21.

https://doi.org/10.1145/3011018

[20] Liao DY, Wang CN. Neural-network-based

delivery time estimates for prioritized 300-mm

automatic material handling operations. IEEE

Transactions on Semiconductor Manufacturing.

2004; 17(3): 324-32.

https://doi.org/10.1109/tsm.2004.831533

[21] Lin WS, Sheu JW. Metro Traffic regulation by

adaptive optimal control. IEEE Transactions on

Intelligent Transportation Systems. 2011; 12(4):

1064-73. https://doi.org/10.1109/tits.2011.2142306

[22] Liu L, Shibasaki R, Zhang Y, Kosuge N, Zhang

MY, Hu Y. Data-driven framework for extracting

178 Informatica 48 (2024) 501–505 H. He

global maritime shipping networks by machine

learning. Ocean Engineering. 2023; 269: 113494.

https://doi.org/10.1016/j.oceaneng.2022.113494

[23] Maniatis SI, Nikolouzou EG, Venieris IS. End-to-

end QoS specification issues in the converged

MAP wired and wireless environment. IEEE

Communications Magazine. 2004;42(6):80-6.

https://doi.org/10.1109/mcom.2004.1304236

[24] Ouyang LQ, Lam WHK, Li ZC, Huang D.

Network user equilibrium model for scheduling

daily activity travel patterns in congested networks.

Transportation Research Record. 2011;

(2254):131-9. https://doi.org/10.3141/2254-14

[25] Radzi NAM, Suhaimy N, Ahmad W, Ismail A,

Abdullah F, Jamaludin MZ, et al. Context aware

traffic scheduling algorithm for power distribution

in smart grid network. IEEE Access. 2019; 7:

104072-84.

https://doi.org/10.1109/access.2019.2931722

[26] Raubenheimer H, Engelbrecht A. A Division-of-

Labour approach to traffic light scheduling.

Applied Sciences-Basel. 2024; 14(17): 8022.

https://doi.org/10.3390/app14178022

[27] Sciortino JC. Autonomous ESM systems. Naval

Engineers Journal. 1997; 109(6): 73-84.

https://doi.org/10.1111/j.1559-

3584.1997.tb01947.x

[28] Shan T, Yang O, Zhang GZ. A traffic scheduling

framework in broadband wireless access systems.

Computer Communications. 2003;26(14):1602-13.

https://doi.org/10.1016/s0140-3664(03)00060-4

[29] Shor J, Robertazzi TG. Traffic sensitive algorithms

and performance-measures for the generation of

self-organizing radio network schedules. IEEE

Transactions on Communications. 1993;41(1):16-

21. https://doi.org/10.1109/26.212359

[30] van der Heijden MC, van Harten A, Ebben MJR,

Saanen YA, Valentin EC, Verbraeck A. Using

simulation to design an automated underground

system for transporting freight around Schiphol

Airport. Interfaces. 2002; 32(4): 1-18.

https://doi.org/10.1287/inte.32.4.1.49

[31] Wang X, Li I, Wang D, Zhuang HQ, Morgera SD.

Incorporating retransmission in quality-of-service

guaranteed multiuser scheduling over wireless

links. IEEE Transactions on Vehicular Technology.

2009;58(8):4388-97.

https://doi.org/10.1109/tvt.2009.2021983

[32] Wang Y, Qiu DW, Strbac G. Multi-agent deep

reinforcement learning for resilience-driven routing

and scheduling of mobile energy storage systems.

Applied Energy. 2022; 310: 118575.

https://doi.org/10.1016/j.apenergy.2022.118575

Abbreviations

Abbreviation Full name Description

GNNs
Graph Neural

Networks

A type of neural network designed to handle graph-structured

data, capable of modeling complex relationships between

nodes.

DRL
Deep Reinforcement

Learning

A machine learning approach that combines deep learning and

reinforcement learning techniques, enabling agents to learn

optimal policies through trial and error in complex

environments.

A3C

Asynchronous

Advantage Actor-

Critic

A reinforcement learning algorithm based on asynchronous

parallel execution, aimed at improving training efficiency and

stability.

PPO
Proximal Policy

Optimization

An improved policy gradient method designed to address the

high variance issues in traditional policy gradient methods

while maintaining good convergence.

N
Number of Nodes in

the Network

A parameter representing the scale of the network, typically

used to describe the size or complexity of the network.

