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New energy vehicles provide new solutions for low-carbon emissions. With the continuous expansion of 

the new energy vehicle industry, a more scientific supply chain management system is needed to 

effectively identify and evaluate risks. This study proposes a more scientific and comprehensive risk 

assessment method for the supply chain system of new energy vehicles based on a hierarchical 

holographic model and matter element extension model. The results showed that the proposed algorithm 

improved the classification performance of risk factors by 1.2%, 1.3%, and 1.5% compared to the 

clustering performance of the nearest frequency amount clustering, particle swarm optimization, and self-

organizing mapping algorithms. In terms of noise processing effectiveness, the Rand index has improved 

by an average of 55% and 41% compared to the kernel density threshold algorithm and spectral 

clustering algorithm, with smaller fluctuations and significant differences (P<0.05). The accuracy, recall, 

and F-measure were 9.4%, 8.5%, and 9.6% higher than traditional spectral clustering algorithms, with 

smaller fluctuations and significant differences (P<0.05). While reducing the risk handling time by 21%, 

the effect has improved by 6%, and the fluctuations during the risk handling process were smaller than 

those of the self-exploration model. Therefore, the proposed algorithm can cope with many uncertain 

factors in the complex supply chain management system, ensuring the sustainability and stability of the 

development of the new energy vehicle industry supply chain. 

Povzetek: Predlagana je metoda ocenjevanja tveganj v dobavni verigi električnih vozil, ki združuje 

hierarhični holografski model in model razširitve materialnih elementov. 

 

1 Introduction 
The issue of global warming caused by the increase in 

carbon emissions has become increasingly prominent and 

has received widespread attention from the international 

community. The importance of developing clean energy 

and energy transformation has deeply penetrated people's 

hearts [1]. New Energy Vehicles (NEVs) are an important 

way to achieve low-carbon emissions. The growth in the 

social demand for NEVs is being driven by national 

policies, while the Supply Chain System (SCS) for 

automobiles has also expanded significantly [2]. The SCS 

of NEVs involves business processes in all aspects of 

production, manufacturing, and sales. The companies 

involved in the process from raw materials to delivery to 

consumers have a significant amount of management and 

operational risks that need to be identified and evaluated 

[3]. Traditional supply chain risk identification and 

assessment rely on manual labor, which cannot avoid 

evaluation errors caused by many uncertain factors. 

Therefore, there is an urgent need for a new risk  

 

assessment method for the supply chain risks of NEVs. 

Many scholars have researched supply chain risk systems 

in various fields and proposed some identification and 

evaluation methods [4]. 

The first step in risk assessment is to identify the risks 

in SCS, and many experts have made some research 

progress in this direction [5]. Dhruv et al. proposed a 

method for exploring business process problems based on 

simulation data to avoid risk transfer during business 

operations. This method could effectively identify key 

risks in business processes and take targeted measures [6]. 

Sun et al. proposed an algorithm based on financial and 

supplier operational risks, which can analyze 

uncontrollable factors in the market, effectively capture 

risk incentives, and create conditions for in-depth analysis 

of risk causes. This method could effectively control the 

hidden risks of SCS in agricultural products [7]. Ge et al. 

proposed a supply chain risk identification model based on 

supply demand. This model conducted research from the 

end of the supply chain through reverse deduction to 

obtain the optimal solution for risk identification. The 
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identification model established by this method could 

effectively analyze the impact of decision preferences on 

risk [8]. Patibandla et al. proposed a global liquidity index 

evaluation model. This model could identify risk 

propagation for important nodes in the overall process and 

effectively improve the accuracy and reliability of risk 

identification [9]. Wu et al. proposed a risk identification 

model based on supplier standard selection. It combined 

the consideration of both price and quality factors to 

obtain a more reliable method for risk assessment. This 

method provided a basic framework for risk identification 

and guided supply chain risk identification [10]. 

After effectively identifying risks, the application of 

Risk Assessment Models (RAMs) to rate risks has 

received widespread attention. Yu W et al. proposed an 

NEVs RAM based on the functional-coefficient method, 

which can achieve supply chain risk warning and provide 

a quantitative method for risk assessment. This method 

has been applied to actual enterprise financial risk 

warnings, achieving high accuracy and feasibility [11]. 

Ghazal et al. proposed a risk matrix-based analysis and 

evaluation model and provided diverse and specific risk 

assessment methods for multi-criteria decision fuzzy 

problems. This method has the potential to effectively 

assess the degree of risk in complex environments, thereby 

providing a reliable decision-making basis for decision-

makers [12]. Sari et al. proposed a supply chain risk 

assessment method based on a coordination mechanism. 

This method provided a reliable measurement basis for the 

impact of uncertain factors in the market on risk 

assessment. Its effectiveness in assessing the supply chain 

risks of NEVs was highly scientific and accurate [13]. 

Sardar et al. proposed a logistics RAM based on Matter 

Element Extension (MEE) to optimize supply chain 

logistics business processes and reduce transportation 

costs and personnel work efficiency. This model could 

address nonlinear influencing factors in logistics 

transportation processes to obtain reliable risk nodes, 

providing a reference for risk control in physical 

transportation processes [14]. Li et al. proposed a 

Bayesian-based RAM that can effectively address the 

impact of subjective and objective environmental factors 

to ensure the accuracy of assessment data. This model 

could be applied to the SCS of Otis Elevator Company to 

accurately classify risk levels [15]. 

In conclusion, a variety of risk identification and 

assessment techniques have been developed for use in 

Supply Chain Management (SCM) systems. These have 

contributed to the advancement of SCM, ensuring its 

continued healthy development [16-17]. However, the 

accuracy and feasibility of existing NEV SCS risk 

assessment methods in meeting personalized supply chain 

needs and considering various complex factors still need 

to be improved, as shown in Table 1. 

This study proposes a risk assessment method for 

NEVs supply chain based on Hierarchical Holographic 

Model (HHM) and MEE model. This method helps 

identify important risk indicators in SCS, and enables 

weight calculation and priority ranking of indicators to 

reduce the scope of risk events. Its innovation lies in the 

combination of HHM and MEE models, which can 

identify risks in a framework and conduct systematic risk 

assessment, providing new ideas for NEVs SCM.

Table 1: Summary of related work. 
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Figure 1: Schematic diagram of HHM risk identification framework. 
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Figure 2: K-means effect diagram. 

2  Methods and materials 
This section constructs an HHM new energy supply chain 

risk identification model based on K-means Clustering (K-

means), obtains important risk indicators, and further 

classifies them. Then, an MEE RAM based on a Long 

Short-Term Memory (LSTM) network is constructed, and 

the classified indicators are weighted and ranked 

according to their importance. 

2.1 Risk identification model for HHM 

new energy supply chain based on K-

Means 

In the process of increasing consumer demand for NEVs, 

effective management of the NEVs supply chain becomes 

particularly important [18]. The risk identification of 

NEVs is the first step in supply chain risk management, 

which aims to detect risks and classify them for 

management. The process of NEVs, from raw material 

procurement to production and sales, is fraught with 

significant risks. It is therefore essential to implement a 

systematic and comprehensive method for the effective 

identification and classification of risks [19]. This study 

introduces a risk management model based on HHM, 

aiming to identify global risk factors from different 

perspectives. Fig.1 is a framework diagram for identifying 

supply chain risks. 

 

 

Through the HHM framework, all risks in the process 

of NEVs from production to sales have been identified, 

and noteworthy risk factors have been identified. Due to 

the large number of risk factors involved, these factors 

need to be further summarized and categorized [20]. This 

study introduces the K-means algorithm to further mine 

the supply chain risk data identified by the HHM 

framework, cluster similar data, and provide important 

basis for the analysis of risk causes. The principle of K-

means for big data is shown in Fig.2. 

The first step of HHM is to classify risks from 

different perspectives, which can be achieved through the 

K-means algorithm. This algorithm aims to divide the 

dataset into clusters centered around K by selecting the 

cluster center K. Before clustering, the data are 

standardized to ensure that the dimensions of each risk 

factor data are consistent, as shown in equation (1). 

 

x
z





−
=   (1) 

 

In equation (1), z  represents the Z-score 

standardization method. x  representing risk factor data. 


 is the mean.   represents standard deviation. After 

data preprocessing, the process of selection and clustering 

is continuously repeated to ultimately obtain the best data 

classification results. The data classification method is 

shown in equation (2). 
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j
C x = −
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In equation (2), ix
 is the training sample of the risk 

dataset. ju
 is a randomly selected cluster center. 

j
 is the 

current number of cluster centers. 
jC

 is the evaluation 

attribute of the current cluster. To further obtain more 

representative data classification and obtain the minimum 

value of the 
     ( )1 , 2 ,...,fitness A A A n

 objective 

function, there is a calculation formula as shown in 

equation (3). 

 

1
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In equation (3), K  and N  are risk datasets selected 

from two different perspectives. 
( )2 2,i kDist x C

 is the 

distance between 
2

ix
 first level risk indicators and the 

central point 
2

kC
. According to the primary indicator 

attribute 
2

kC
, the number of risk points 

2
ix

 under this 

risk attribute is calculated, and 
2

kC
 is optimized through 

the calculation results to converge the objective function 

to the optimal clustering center [21-22]. By using the K-

means algorithm for clustering weights, the dataset is 

subjected to distance calculation to obtain clustering 

clusters, as shown in equation (4). 

 

21
Δ ( ( , ))

2
k k kw dist c x

m
 =   (4) 

 

In equation (4), kW
 is the weight factor calculated by 

the algorithm clustering. 
Δ k  is the standard deviation for 

calculating the distance between all data and the center 

point. Assuming the cluster center attribute target is 
3

kC
, 

after 
3k  rounds of clustering on the dataset, the distance 

increment is represented as 
Δ k . Following the 

preliminary risk classification, the second step of the 

HHM algorithm is initiated. This involves further 

optimization of the dataset partitioning perspective and the 

clustering process, with the objective of combining the 

cross effects between various risk clustering clusters. By 

combining the K-means algorithm with neural networks, 

the algorithm learns and clusters data unsupervised, 

resulting in better clustering centers [24]. 

 

The neural network structure can determine the 

selection of K-means centers through autonomous 

learning, while avoiding the influence of subjectivity. 

Therefore, neural networks are used to improve K-means. 

It takes the shortest distance between the original data and 

the neurons as the winning distance, and iteratively 

optimizes and adjusts the weights between all clustering 

centers and various risk data. The adjustment method is 

shown in equation (5). 

 
0( 1) ( ) ( , )( ( ))ij ij kj ijy t y t t N x y t+ = + −

 (5) 

 

In equation (5), kjx
 is the initially selected cluster 

center point. 
( )ijy t

 is the weight of the risk data node at 

time t . t  is the training time of the model. 
( , )t N

 is the 

distance function of the optimal clustering center when the 

training time reaches t . The distance between each risk 

data is calculated using the selected best clustering center, 

as shown in equation (6). 
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In equation (6), 
( )0

0 0
1 2 3, , ,...,

i
x x x x x=

 and 

( )0
0 0

1 2 3, , ,...,
i

y y y y y=
 are the set of cluster centers and 

the set of data points within the relevant clusters. Among 

them, 
0i  is the dimension in which the current risk data 

point observation perspective is located. 
0

0

i
x

 and 
0

0

i
y

 are 

variables in the current dataset dimension. 
( )0 0,d a b

 is 

the distance between the data points within the cluster and 

the cluster center. Different perspectives will lead to 

different risk factors, and the risk factors from different 

perspectives are interrelated, intersecting, and 

overlapping. Therefore, ineffective factors are eliminated 

through the risk factor identification framework of the 

HHM. 

When the initial dataset has multi-dimensional 

variables due to different perspectives, its calculation is 

shown in equation (7). 

 

1

1

1 1

1

1
( ) ( )T

X X
X

X X
k

 = − −  (7) 

In equation (7), 
1X


 is the covariance matrix of 

1X . 

X  is the mean risk point of the 
1X  risk dataset. 

1T  is 

the transpose. 
1k  is the total number of risk indicators in 

the dataset. After the eigenvectors of the covariance 

matrix are rotated, the resulting variance matrix is shown 

in equation (8). 
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In equation (8), U  is the rotation matrix of the risk 

matrix. The coordinate of rotation matrix U  is F . 
F
  is 

the covariance matrix of the rotation matrix F . 2
X  is 

the sample mean of the risk dataset.   is the variance 

of the risk indicator. 2k  is the total number of datasets. 

2T  is transposed. The improved algorithm distance is 

shown in equation (9). 
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Figure 3: Risk assessment framework. 
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Figure 4: LSTM architecture diagram. 
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In equation (9), ( )5 5
1 2 3, , ,..., hx x x x x=  and 

( )5 5
1 2 3, , ,..., ly y y y y=  are datasets from different 

perspectives. 3T  is transposed. 
5 5

1

,x y

−

  is the inverse matrix 

of 5X . 

2.2 Construction of MEE RAM combining 

hybrid weight method 

The resolution of important risk identification issues has 

laid the foundation for the construction of RAMs. The 

RAM for new energy can effectively judge the degree of 

risk after identifying it, providing important basis for the 

formulation of risk solutions. This study proposes the 

LSTM algorithm, which can avoid the influence of 

nonlinear factors in the SCM process and has a certain 

degree of inclusiveness in evaluating missing risk data. 

Fig.3 shows the risk assessment framework. 

In Fig.3, the behavior of the LSTM model is controlled by 

gates. Its structure mainly consists of three gate gates: 

forget gate, input gate, and output gate, which can 

effectively detect the feature sequence of risk data 

indicators, assign weights to risk indicators, and sort them 

according to their importance. The LSTM model used in 

the study consists of two hidden layers, each with 128 

hidden units, and is trained using the Adam optimizer. In 

the data preprocessing stage, the raw data are standardized 

and the first 80% of the dataset is divided into a training 
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set and the last 20% as a testing set to address uncertainty 

in the risk assessment process. Fig.4 shows the structure 

of LSTM. 

Based on the risk identification results of K-means, the 

classified risk indicators are sorted by their importance to 

obtain the weights of each indicator. By using gradient 

descent, the weights and thresholds of the loss function are 

repeatedly corrected to improve the accuracy of the 

algorithm, as shown in equation (10). 

 

1t t
t

w w
g

y

− −
=   (10) 

 

In equation (10), weight calculation begins at point 
1t = . tw

 and -1tw
 are the weight values at times t  and 

-1t . tg
 is the gradient. The weight attenuation coefficient 

of risk assessment indicators is shown in equation (11). 
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In equation (11), tm
 and tv

 are the first and second 

momenta.   is the attenuation coefficient. The 

calculation steps for weights are as follows: the first is to 

adaptively adjust the learning rate, and then calculate the 

difference between the predicted and true values. The loss 

function is shown in equation (12). 
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In equation (12), MAE  and MSE  are the absolute 

and mean square values of the loss function. LOG  is the 

logarithmic loss. G  is the risk level prediction data output 

by the function. X  is the true data of risk level. The final 

step in weight calculation is accuracy judgment. If the 

accuracy does not meet the requirements, it will be 

recalculated until it converges to the optimal value. To 

avoid getting stuck in local optima during algorithm 

training and reduce deep learning time, a topology 

structure of adding three layers of neural networks to the 

neural network is used. The establishment of the classical 

domain is shown in equation (13). 
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In equation (13), jN  is the risk level. j  is the risk 

indicator to be sorted. 
*

iC  is the characteristic value of the 

ranking of various supply chain risk indicators. jiV  is the 

ranking range of risk level characteristic values between 

indicators j  and i . The asymmetric closeness of risk 

level indicators is shown in equation (14). 
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In equation (14), ( )jK N  is the closeness between 

the risk element to be evaluated and the existing risk level. 

ijD  is the distance of the risk indicator. iw  is the 

comprehensive weight value of each risk indicator. The 

maximum closeness obtained from the calculation is used 

as the final output of the MEE RAM, which is the risk 

assessment indicator of the model. The final risk 

assessment process is shown in Fig.5. 

In Fig.5, the supply chain risk assessment process for 

NEVs includes risk identification, risk assessment, risk 

ranking, and final risk indicator output. 

3 Results 

This section introduces the dataset used for model training 

and presents the results of risk identification performance 

testing on the HHM model based on the K-means 

algorithm. 

The results are then compared with the performance of 

other risk identification algorithms. Subsequently, the 

LSTM-based MEE RAM is trained on different datasets 

and its effectiveness is analyzed. 

3.1 Performance testing of HHM risk 

identification model based on K-Means 

The experimental platform adopts AMD Ryzen 55600 

H with Radeon Graphics, with a main frequency of 3.30 

GHz and 16 GB of memory. The dataset is collected from 

manufacturing, supply, and sales enterprises of NEVs. 

Data indicators are about the management risks and 

operational risk factors of the automotive supply chain. To 

verify the risk identification effectiveness of the K-means-

based HHM and its classification performance on risk 

indicator datasets, three additional clustering algorithms 
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are used for performance analysis. They include Recent-

Frequency-Monetary Clustering (RFM), Particle Swarm 

Optimization (PSO), and Self-Organizing Map (SOM). 

The clustering results of each algorithm on the risk 

indicator datasets of manufacturing, supply, and sales 

enterprises are shown in Fig.6. In Fig.6 (d), the research 

algorithm selects cluster centers from three datasets, with 

data clusters concentrated in [-0.5, 1.5], [2, 4.1], and [0.2, 

Canopy 

generation

Calculating K-means 

clustering centers

Classifying 

clustering centers to 

form a new cover
Clustering results

Grouping 

points to the 

nearest center

 

Figure 5: Schematic diagram of RAM structure. 

1.8]. The clustering clusters of the comparative algorithm 

are significantly more dispersed, with an average distance 

reduction of 1.2%, 1.3%, and 1.5% from each data point 

to the center point. There are individual data adhesion and 

excessive dispersion phenomena, with smaller 

fluctuations and significant differences (P<0.05). The 

research algorithm can effectively cluster different risk 

assessment indicator datasets and has high reliability and 

accuracy. 

To verify the noise resistance of the proposed HHM risk 

identification model, the noise processing capability of the 

K-means algorithm is tested. Dynamic Localized 

Clustering with Kernel Density Thresholding (DLCKDT), 

spectral clustering, and the proposed algorithm are tested 

and compared using 30% and 70% random noise. The 

Rand index is used as an evaluation indicator, and the 

results are shown in Fig.7. In Fig.7 (a), when the research 

algorithm is subjected to a 30% random noise distribution, 

the Rand index curve consistently remains above the other 

two clustering algorithms, exhibiting minimal 

fluctuations, thereby indicating high stability. The Rand 

index of the DLCKDT and spectral clustering algorithms 

is, on average, 55% and 41% lower than that of the 

proposed algorithm. Furthermore, the curve demonstrates 

a decline following an initial increase, indicating reduced 

stability with diminished fluctuations and notable 

discrepancies (P<0.05). In Fig.7 (b), at a higher 30% 

random noise distribution, the Rand indices of all three 

types show a decreasing trend. However, the Rand curve 

of the proposed algorithm still performs the best, within 

the range of [0.65, 0.9], with a fluctuation range 45% 

smaller than that of the DLCKDT algorithm. The curve of 

spectral clustering algorithm first increases and then 

decreases, gradually becoming ineffective. This indicates 

that the research algorithm has better noise processing 

capabilities and can maintain high risk identification 

stability in practical applications. 

In NEVs SCM, risk datasets for different business 

processes are collected, including planning risk, 

production risk, sales risk, and transportation risk. To 

verify the accuracy of the research algorithm in risk 

identification, the algorithm is applied to performance 

testing and compared with traditional spectral clustering 

algorithms. The results are shown in Table 2. The research 

algorithm performs the best in accuracy, recall, and F-

measure on different datasets, with each indicator being 

9.4%, 8.5%, and 9.6% higher than traditional spectral 

clustering algorithms, with smaller fluctuations and 

significant differences (P<0.05). The performance test 

results of the two algorithms remain consistent in each 

dataset, with a difference of less than 3%. This indicates 

that the proposed algorithm has high stability, accuracy, 

and feasibility in practical risk assessment. 

3.2 Analysis of the effectiveness of MEE 

RAM based on LSTM 

To verify the learning and practical application 

effectiveness of the LSTM-based MEE RAM, the model 

training period is set to 200. The time and effectiveness of 

risk management are used as 
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Figure 6: Comparison of the effectiveness of data categorization by algorithms.
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Figure 7: Comparison of noise resistance among various algorithms. Table 2: Comparison of testing performance of 

various algorithms. 
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Data set 

K-means Spectral clustering algorithm 

Accura

cy 

Rec

all 

F-

measure 

Accura

cy 

Recal

l 

F-

measure 

Planning risk 0.74 0.64 0.61 0.64 0.59 0.57 

Production risk 0.75 0.68 0.60 0.63 0.60 0.63 

Sales risk 0.76 0.67 0.63 0.70 0.61 0.60 

Transportation 

risk 
0.81 0.63 0.67 0.73 0.58 0.59 
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Figure 8: Time and effect curves of the risk of the MEE model. 

evaluation indicators for the model, and the results are 

shown in Fig.8. In Fig.8 (a), as the SCM cycle increases, 

the RAM shows a gradually decreasing trend in the 

processing time curve for risks. The management cycle 

decreases by an average of 23% from 0 to 200, resulting in 

a decrease in the average processing time of the model, 

with smaller fluctuations and significant differences 

(P<0.05). In Fig.8 (b), as the SCM cycle increases, the risk 

management effectiveness of the RAM continues to 

improve. When the operational management cycle reaches 

20, the risk management capability improves the most, 

increasing by 6%. The proposed model can effectively 

perform deep learning on risk data, resulting in 

continuously improving risk management capabilities. 

To further validate the research model's ability to handle 

supply chain risks, the data were collected from January 

2022 to December 2023, covering the entire operational 

cycle of the NEV industry chain. This ensured the 

timeliness and representativeness of the data. The data 

come from four primary risk assessment indicators: 

planning, manufacturing, production, and technology. For 

each primary indicator, the data contain specific 

characteristics of multiple risk factors, and the planning 

indicators include production plan changes and supply 

plan delay features. Manufacturing indicators include 

production equipment failure rate and characteristics of 

raw material supply interruption. Production indicators 

include production efficiency and product quality 

qualification rate characteristics. Technical indicators 

include the cycle of technological innovation and the cost 

characteristics of technology introduction. Each primary 

indicator dataset contains 100 data points. Comparing the 

performance of the autonomous exploration models, as the 

risk data continue to increase, the processing time curves 

of each model are displayed in Fig.9. In Fig.9 (a), the risk 

treatment time curve of the research model shows a 

continuous downward trend, with a total reduction of 40s 

in treatment time, and has high stability, with a fluctuation 

range between [50, 75]. The autonomous exploration 

model spends an average of 21% more time on risk 

management than the research model, and the processing 

time fluctuates greatly, with smaller fluctuations and 

significant differences (P<0.05). Overall, there is no 

significant improvement. In Figures  
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Figure 9: Comparison of risk management effects of different models. 
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Figure 10: Comparison of detection errors among various algorithms. 
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Figure 11: Comparison of prediction performance of various models. 

9 (b), (c), and (d), there is no significant change in the 

processing performance of the two models, and the 

average data difference is within 5% compared to Fig.9 

(a). The research method can effectively enhance the 

processing capability of supply chain risk assessment 

indicators and has high stability and accuracy. 

To verify the actual evaluation effect of the research 

model on risk indicators, Root Mean Square Error 

(RMSE) and Mean Square Error (MSE) are used as 

evaluation indicators. The research model is applied to the 

Moving MNIST, TaxiBJ, Hu-man 3.6m, and KTN 

datasets for testing, and compared and analyzed with 

models based on other prediction algorithms. The 

comparison models are Fuzzy Recurrent Neural Network 

(FRNN), ConvLSTM, and PredRNN algorithms, and the 

results are shown in Fig.10. Research algorithms have 

minimum error values in different datasets. Among them, 

in Fig.10 (a), the RMSE of the research algorithm is 16, 

which is 3.2%, 2.1%, and 1.5% lower than the FRNN, 

CLSTM, PRNN, and MIM algorithms. Its MSE is 32, 

which is 5.8%, 0.7%, and 1.7% lower than the FRNN, 

ConvLSTM, and PredRNN algorithms, with smaller 

fluctuations and significant differences (P<0.05). In 

Figures 10 (b), (c), and (d), there is no significant 

difference in the test data results of each algorithm among 

the three different datasets, with a difference within 5%. 

The proposed model has higher accuracy and stability in 

risk assessment. 

To verify the effectiveness and generalization ability of 

the proposed MEE model, different sampling rates are 

used to validate its risk assessment performance. 

Precision-Recall (PR) curve is used as an evaluation 

indicator. The Area Under the Curve (AUC) during its 

training process is compared with other CNN and K-

Nearest Neighbors (KNN) algorithms, and the results are 

shown in Fig.11. In Fig.11 (a), the research method has 

high PR values at different sampling rates, with the best 

performance observed at sampling rates of 0.1 and 0.4. In 

Fig.11 (b), as the number of iterations increases, the AUC 

values of each method show a continuous increasing trend. 

The average AUC value of the research algorithm is the 

highest, reaching 0.915, which is 9% and 3% higher than 

traditional CNN and KNN algorithms, with smaller 

fluctuations and significant differences (P<0.05). 

Therefore, when studying algorithms for weight 

calculation and importance ranking of risk indicators, it 

has high accuracy and reliability. 

To verify the universality of the proposed method, two 

similar algorithms, Random Forest Classifier (RFC) and 

Naive Bayes Classifier (NBC), are compared, and 

accuracy, Receiver Operating Characteristic Area under 

the Curve (AUC-ROC), and processing time are used as 

evaluation metrics. The results are shown in Table 3. 

Table 3 shows that the proposed method has the highest 

accuracy, reaching 97.2%, which is significantly better 

than the 87.6% and 89.8% of RFC and AUC-ROC, with 

smaller fluctuations and significant differences (P<0.05). 

The AUC-ROC of the proposed method is 0.921, which is 

close to 1 and higher than the 0.882 and 0.871 of RFC and 

AUC-ROC, respectively, with smaller fluctuations and 

significant differences (P<0.05). The proposed method 

has the shortest processing time, with a reduction of 3.2 

and 2.2 on the basis of RFC and AUC-ROC, respectively. 

The results show that the proposed method exhibits 

significant superiority in all indicators, is more suitable for 

handling complex multidimensional data, and has strong 

universality. 

Table 3: Performance comparison of various algorithms. 

Algorithm Accuracy AUC-ROC Processing Time (s) 

RFC 87.6% 0.882 18.4 

AUC-ROC 89.8% 0.871 17.4 

Research method 97.2% 0.921 15.2 
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4 Discussion and conclusion 

The SCM of NEVs is crucial for the development of the 

NEV industry and provides important directions for the 

transformation and upgrading of the automotive industry. 

At present, various supply chain RAMs have been 

proposed. However, in complex and ever-changing 

environments, many existing methods are difficult to 

balance the accuracy and real-time performance of the 

assessment. Therefore, a NEV supply chain risk 

assessment method based on HHM and MEE models has 

been proposed, which can effectively globally identify and 

classify risk factors, and classify and evaluate key risk 

indicators. 

The results indicated that the proposed risk identification 

model based on HHM had good performance in clustering 

risk data, with an improvement of 1.2%, 1.3%, and 1.5% 

compared to the other three clustering algorithms, with 

significant differences (P<0.05). Christie C R et al. 

proposed a supply chain RAM based on fuzzy 

comprehensive evaluation. Although the interaction of risk 

factors was considered, the ability to capture local features 

was limited when processing complex supply chain data, 

and the clustering accuracy was poor [23]. The proposed 

method improved the Rand index by an average of 55% 

and 41% compared to DLCKDT and spectral clustering 

algorithms, with smaller fluctuations and significant 

differences (P<0.05). Thesenvitz et al. proposed a supply 

chain risk identification model based on Analytic 

Hierarchy Process (AHP), which can analyze the 

relationship between risk factors at different levels of the 

supply chain. However, it was sensitive to data noise and 

had average noise resistance performance [24]. The 

accuracy of the proposed method was 9.4%, 8.5%, and 

9.6% higher than traditional spectral clustering algorithms, 

with significant differences (P<0.05). The average 

processing time of the proposed MEE model decreased by 

an average of 23%, and the risk management ability 

increased by 6%, with significant differences (P<0.05). 

Compared with the independent exploration model, there 

has been a 21% reduction in time and less volatility in risk 

management. RMSE and MSE were significantly lower 

than the other three algorithms by 3.2%, 2.1%, and 1.5% 

on average (P<0.05). Tamsah et al.'s supply chain RAM 

based on hesitant fuzzy evaluation considers the 

complexity of the supply chain, but it takes a long time to 

process large-scale data, making it difficult to meet real-

time decision-making requirements [25]. 

In summary, the proposed NEV supply chain risk 

assessment method based on HHM and MEE models 

outperforms existing methods in clustering accuracy, noise 

resistance, processing efficiency, and error rate. The 

proposed algorithm has high accuracy and feasibility in 

risk identification and assessment, and can be effectively 

used in automotive SCM to obtain a more comprehensive 

and scientific evaluation method. However, the training 

process of the proposed algorithm mainly utilizes existing 

risk factor data. In the development process of NEVs, the 

scientificity of SCM may also be affected by the 

emergence of new battery technologies or new market 

demands. Therefore, predicting new influencing factors 

and taking preventive measures in advance can be a future 

development direction. 
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