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With the maturity of the Internet and big data technAology, heat supply intelligence has become a 

development trend, and the traditional heat pipe network management mode is gradually transitioning to 

an "intelligent heat pipe network". It has become a hot spot for research and development at home and 

abroad. Combining big data technology, inspection robot control, heat pipe network leakage warning and 

data monitoring, scientific monitoring and evaluation of the energy-saving operation of heat pipe 

networks, and intelligent operation of heat pipes have become the current development trend. Whether in 

terms of the economic benefits of energy-saving operation of heat pipe networks or the social benefits of 

realizing intelligent operation and management of heat pipe networks, the study of a lateral leakage 

monitoring system for heat pipe networks is of great significance. This paper examines a technique for 

implementing a lateral leakage monitoring system for heat pipe networks using an inspection robot 

control system, which includes a real-time tracking module utilizing LSSVM (Least Squares Support 

Vector Machine) optimization to improve detection accuracy.  The monitoring module can acquire, store, 

visualize, and send sensor data and video data; the user-defined interface module receives and parses 

XML user files from the server and generates user-defined interfaces and logic, thus realizing the human-

computer interaction function. The experimental findings show that enhancing the weight factor and 

radial basis kernel function parameters of the LSSVM with the gravitational search technique resulted in 

an outstanding classification accuracy of 99.99% with a classification time of only 55.938 seconds, 

surpassing other optimization techniques. 

Povzetek: Z uporabo robotskega nadzornega sistema in optimizirane metode LSSVM so avtorji razvili 

inteligentni sistem za spremljanje puščanja v toplotnih cevnih omrežjih 

 

1 Introduction 
Leakage in a thermal pipe network is a sudden change in 

liquid flow head or flow pressure caused by the flow rate 

of the medium stored outside the pipe exceeding a set 

value, which leads to a leak in the pipe [1]. Generally, we 

put in a sealed space after the occurrence of a leakage 

accident resulting in energy loss for the minimum, but this 

method cannot effectively monitor the actual 

environmental conditions over the failure caused by 

system damage to the maximum extent is not accurate and 

reliable, timely detection and treatment of the process 

caused by the consequences are very serious and likely to 

bring huge economic losses to the enterprise [2-3]. 

Therefore, a lot of research has been carried out at home 

and abroad on the diagnosis of leakage faults in heat pipe 

networks, and many leakage monitoring methods have 

been proposed. Although various methods have certain 

limitations and need to continue to be improved [4], the 

leakage monitoring of heat pipe networks and their 

compensators has important significance and can be 

referred to in the study of heat pipe network inspection 

robot monitoring systems [5]. 

Numerous studies have investigated different methods of 

inspecting and identifying leaks in pipeline networks, 

highlighting the significance of intelligent systems. 

Zholtayev et al. [6] created a smart pipe inspection robot 

with in-chassis motor actuation and AI-powered defect 

identification, showcasing sophisticated robotics 

incorporation in network tracking. Murtazin et al. [7] 

examined internal inspection techniques for district 

heating networks, highlighting the importance of resilient 

inspection techniques in energy systems. Wong and 

McCann [8] conducted an in-depth analysis of pipeline 

failure identification methods, ranging from acoustic 

sensing to cyber-physical systems, emphasizing the 

growing use of IoT solutions in fault detection. Liu et al. 

[9] presented an enhanced BP neural network algorithm 

for leakage detection in air conditioning water systems, 

demonstrating the efficacy of machine learning in 

detecting faults. Korlapati et al. [10] performed a thorough 
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review of pipeline leak identification approaches, ranging 

from conventional to AI-based methods. Similarly, Yussof 

and Ho [11] examined water leak detection techniques in 

smart buildings, emphasizing the significance of these 

technologies in contemporary infrastructure. Langroudi 

and Weidlich [12] investigated predictive maintenance 

assessment techniques for district heating pipes, which 

added to service-life prediction techniques. Van Dreven et 

al. [13] addressed smart fault detection in district heating, 

finding significant patterns and obstacles in the area. 

Hossain et al. [14] used UAV image evaluation and 

machine learning to identify leaks in district heating, 

demonstrating the value of aerial monitoring for 

infrastructure surveillance. Finally, Vollmer et al. [15] 

compared anomaly detection techniques in thermal 

imagery for district heating leak identification, which 

advances the use of thermal imaging in fault identification. 

Table 1 shows a summary table. 

 

 

Table 1: Summary table 

 

Citation Title Accuracy Efficiency Limitations Innovations Gaps in SOTA 

[6] 

Zholtayev et 

al. (2024) 

Smart Pipe 

Inspection 

Robot with AI-

Powered Defect 

Discovery 

95% High (real-

time) 

Scalability, cost AI-powered 

discovery, high 

precision 

Flexibility for 

different pipe 

types 

[7] Murtazin 

et al. (2021) 

Internal 

Inspection of 

District Heating 

Networks 

92% Moderate Constrained with 

magnetic testing 

Non-destructive 

testing 

Constrained with 

particular 

pipelines 

[8] Wong & 

McCann 

(2021) 

Pipeline Failure 

Discovery: 

Acoustic to 

Cyber-Physical 

Systems 

70-85% Low (real-

time) 

Inconsistent 

accuracy, high cost 

Discovery 

taxonomy, 

spatial 

enhancement 

High 

computational 

cost 

[9] Liu et al. 

(2022) 

Leakage 

Analysis for Air 

Conditioning 

Water Systems 

86.96% High Fault location error Two-stage 

diagnosis, BP 

neural network 

Constrained real-

time localization 

[10] 

Korlapati et 

al. (2022) 

Review of 

Pipeline Leak 

Discovery 

Techniques 

87% Varies No standardization Review of 

subsea 

techniques 

Variability in 

reliability 

[11] Yussof 

& Ho (2022) 

Water Leak 

Discovery in 

Smart Buildings 

81% Varies Real-time gaps in 

smart buildings 

Incorporation 

with building 

automation 

Absence of 

automated 

discovery 

[12] 

Langroudi & 

Weidlich 

(2020) 

Predictive 

Maintenance for 

District Heating 

Pipes 

85-90% High Constrained with 

district heating 

Proactive AI-

driven 

maintenance 

Narrow 

concentration 

[13] van 

Dreven et al. 

(2023) 

Fault Discovery 

in District 

Heating with 

ML 

80-93% Medium-

High 

Data Restrictions ML methods for 

fault discovery 

Absence of open-

source data 

[14] Hossain 

et al. (2020) 

UAV-Based 

Leakage 

Discovery for 

District Heating 

85% Moderate Constrained with 

UAV image 

examination 

UAV with 

infrared 

discovery 

Poor scalability 

for large systems 

[15] Vollmer 

et al. (2021) 

Anomaly 

Discovery in 

Water Networks 

with Self-

Learning 

Algorithms 

90% High False positives in 

intricate systems 

Self-learning 

algorithms 

Difficulties with 

dynamic settings 

Existing state-of-the-art (SOTA) techniques have many 

shortcomings, like constrained flexibility to particular 

pipeline types, whereas the proposed system has wider 

applicability. Previous UAV and subsea detection 

techniques lack scalability, but this paper presents a 

scalable AI-based framework for large-scale networks. 

Real-time efficiency is hampered by high computational 
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expenses; the proposed system improves this with 

improved algorithms. 

Based on the above, this paper focuses on the design of the 

heat pipe network leakage monitoring system, including 

hardware circuits and software programs, which involves 

the following key technologies: the selection of each 

component. According to the different types of 

components, the corresponding models are selected to 

analyze the working conditions under various parameters. 

The microcontroller control module, the sensor data 

acquisition part, and the peripheral devices such as the 

display alarm form the overall structure to complete the 

design scheme and design the thermal pipe network 

leakage monitoring system based on the inspection robot 

control system. 

 

2 Leakage fault diagnosis in heat pipe 

networks 

2.1 Leakage fault modelling 
Leakage faults at key nodes of the heat pipe network are 

classified into three levels: normal, normal leakage, and 

severe leakage, and the leakage will lead to a sudden drop 

in pressure inside the pipe and changes in ambient 

temperature and conductivity [16-17]. Therefore, in this 

paper, the ambient temperature T1, T2, T3, and T4, the 

ambient conductivity G1 and G2, and the internal pressure 

p of the pipe are selected as inputs, and the leakage level 

of the critical node of the heat pipe network is taken as the 

output to establish the leakage level discrimination model. 

In this paper, the leakage level is expressed as {1, 2, 3} and 

will be used as the output of the leakage fault model, while 

the ambient temperature and conductivity around the heat 

pipe network and the internal operating pressure of the 

pipe network obtained online by the in-situ monitoring unit 

are used as the model inputs. The multi-classification 

leakage fault diagnosis at key nodes of the heat pipe 

network consists of four steps: sample collection, data pre-

processing, building and optimizing the multi-

classification leakage fault diagnosis model, and model 

testing. Specifically, x training samples and y test samples 

are arbitrarily selected; the extracted training and test 

samples are normalized; the multiclassification heat pipe 

network critical node leakage fault diagnosis model is 

established; the model parameters are optimized; and the 

experimental samples are substituted into the established 

multiclassification heat pipe network leakage fault 

diagnosis model for testing. 

Since each characteristic indicator of temperature, 

conductivity, and pressure has different magnitudes and 

orders of magnitude, the role of a characteristic indicator 

of a particularly large order of magnitude in the 

classification may be highlighted in the calculation process. 

To eliminate differences in the units of the characteristic 

indicators and the effect of different orders of magnitude 

of the characteristic indicators, it is necessary to pre-

process the data so that each indicator value is uniformly 

within a certain range of numerical characteristics. In this 

paper, 500 training samples and 90 test samples are 

randomly selected, and the independent variable of the 

leakage fault diagnosis model is denoted as x. The leakage 

fault level of the key nodes of the heat pipe network 

obtained after random sampling is denoted as the 

dependent variable y. The conductivity G1 and G2 are 

processed by logarithm, the temperature and pressure are 

normalized, and the sample data of the independent 

variable after data pre-processing are 

 

   

{
 
 

 
 𝑇𝑛𝑜𝑟𝑚𝑙1,2,3,4 =

𝑇1,2,3,4−𝑇𝑚𝑖𝑛1,2,3,4

𝑇𝑚𝑎𝑥1,2,3,4−𝑇𝑚𝑖𝑛1,2,3,4

𝐺𝑛𝑜𝑟𝑚𝑙1,2 = lg(𝐺1,2)

𝑝𝑛𝑜𝑟𝑚𝑙 =
𝑝−𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛

        (1) 

 

Using equation (1) we can obtain the normalized data for 

the training samples as well as the test samples, and the 

dependent variable, the leakage fault level at the key nodes 

of the heat pipe network, is given by equation (2) 

 

 yi ∈ {1,2,3}                                                        (2) 

  

The least squares support vector machine algorithm is then 

used to build a classifier to achieve a multiclassification 

fault diagnosis model for critical node leakage in the 

thermal network. In the thermal pipe network critical node 

leakage fault diagnosis model, we assume that the 

independent variable is x, and define the nonlinear thermal 

pipe network critical node leakage fault diagnosis model 

of least squares support vector machine as: 

 

 x = [T1, T1, T3, T4, G1, G2, P}                            （3） 

yi = {ω, (φx)} + b                                                 （4） 

 

Given a set of data points that are closely related to the 

fault diagnosis of leakage at critical nodes of the thermal 

network, i.e. ambient temperature, ambient conductivity, 

and internal pipe pressure, d is the dimensionality of the 

model input variables and is the result of the model 

classification, i.e. normal (1), normal leakage (2) and 

severe leakage (3), l is the total number of known data 

points, and b is a constant. Therefore, the target equation 

and the nonlinear decision function used in the input space 

can be defined as: 

 

    min
1

2
ω2 +

1

2
C∑i=1

l ei
2                                   （5） 

𝑦(𝑥) = 𝑠𝑔𝑛(∑𝑆𝑖𝑦𝑖𝑎𝑖𝐾(𝑥
, 𝑥𝑖) + 𝑏)                （6） 

 

2.2 Optimization of the parameters of the 

leakage fault diagnosis model 

In this paper, the gravitational search method is used to 

optimize the parameters of the weight factor and the radial 
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basis kernel function of the least squares support vector 

machine. The gravitational search algorithm focuses on 

using the law of gravity between two objects to guide the 

optimal search for the optimal solution for the motion of 

each object. In this algorithm, each object is considered as 

an object whose performance is measured by its mass, and 

all these objects are attracted to each other through gravity, 

and this force causes all objects to move towards the object 

with the heavier mass [18]. The position of the object in 

motion corresponds to its optimal solution. The 

gravitational search method can be thought of as an 

isolated system of masses. Each object in motion follows 

the law of gravity and the law of motion. Assuming a 

system with N objects, define the position of the ith 

particle as 

 

  𝑥𝑖 = (𝑥𝑖
1,⋯ , 𝑥𝑖

𝑑, ⋯ , 𝑥𝑖
𝑛)，𝑖 = 1,2,⋯ ,𝑁          (7) 

 

Then the interaction force and its parameters are given by 

 

  Fij
d(t) = G(t)

Mpi(t)×Maj(t)

Rij(t)+ε
(xj

d(t) − xi
d(t))       (8) 

 

Rᵢⱼ(t) = ‖xᵢ(t), xⱼ(t)‖₂                                        (9) 

 

Fi
d(t) = ∑j=1,j≠i

N randjFij
d(t)                               (10) 

 

where rand is a random number generated between the 

intervals [0,1]. Therefore, according to Newton's laws of 

motion, the acceleration of particle i in d-dimensional 

space at time t and its calculation is given by 

 

𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖𝑖(𝑡)
                                    (11） 

 

{
𝑣𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡)

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1)

           (12) 

 

where randy is a uniform random variable in the interval 

[0,1], which we use to give a random signature to the 

gravitational search. The gravitational constant G is 

initialized at the start moment and decreases with time to 

control the search accuracy. The gravitational and inertial 

masses are simply calculated by fitness evaluation. A 

heavier mass means a more efficient object, which means 

that such an object has a higher gravitational force and 

slower velocity. Assuming that the gravitational mass is 

equal to the inertial mass, we update gravity and inertia 

using equation (13), of which equations (14-15) are the 

definitions of the parameters as well as maximizing the 

transformation. 

 

     

{
 
 

 
 
𝑀𝑎𝑖 = 𝑀𝑝𝑖 = 𝑀𝑖𝑖 = 𝑀𝑖 , 𝑖 = 1,2,⋯ ,𝑁

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡)−𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡)−𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

∑𝑗=1
𝑁 𝑚𝑗(𝑡)

  （13） 

{
𝑏𝑒𝑠𝑡(𝑡) = min𝑗∈{1,⋯,𝑁}𝑓𝑡𝑗(𝑡)

𝑤𝑜𝑟𝑠𝑡(𝑡) = max𝑗∈{1,⋯,𝑁}𝑓𝑡𝑗(𝑡)
                 （14） 

 

{
𝑏𝑒𝑠𝑡(𝑡) = max𝑗∈{1,⋯,𝑁}𝑓𝑡𝑗(𝑡)

𝑤𝑜𝑟𝑠𝑡(𝑡) = min𝑗∈{1,⋯,𝑁}𝑓𝑡𝑗(𝑡)
                 （15） 

 

According to the above principles of the gravitational 

search method and the LSSVM algorithm, it is clear that 

the idea of the gravitational search method to optimize the 

LSSVM learning parameters is to search for a set of 

vectors within a certain search space region by the 

gravitational search method, so that equation (16) the value 

of the target fitness function is minimized.  

 

  minf(C, δ) =
1

n
∑i=1
N (yi − ŷ)

2                       (16) 

 

The basic principle of the gravitational search method is to 

optimally adjust the parameters of the least squares support 

vector machine weight factor and the radial basis kernel 

function by using the strong global search capability of the 

gravitational search method, and the optimization steps are 

as follows: first, randomly select and normalize the 

training and test samples; given the population size N and 

the maximum number of iterations, randomly initialize n 

particles; during each iteration, substitute The position of 

each particle is substituted into the least squares support 

vector machine model and the fitness value of the current 

particle is obtained; the sum of the forces in different 

directions of each particle and the acceleration of each 

particle are calculated according to Equation (10); the new 

particle position is calculated according to the update 

formula of the particle velocity and position; the algorithm 

termination condition is judged. If the maximum number 

of iterations is reached, the iteration is terminated and the 

optimal parameter values are output.  

The parameter tuning method for the gravitational search 

technique (GSA) was carefully planned to improve the 

LSSVM's efficiency. During this procedure, key 

parameters were adjusted, including the gravitational 

constant, agent mass, and initial population size. Particular 

settings comprised 𝐺0=100, mass range of [1,10], and 50 

agents. The GSA procedure is depicted in the flowchart 

below, starting with the initialization of agent positions 

and masses, then iterative updates using gravitational 

forces, and finally evaluating the LSSVM classification 

efficacy. A total of 590 samples were used for dataset 

selection, with 500 serving as training samples and 90 as 

testing samples. The training dataset had a balanced 

distribution across multiple fault classes, guaranteeing that 

each class was sufficiently represented to avoid bias. Each 
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training sample was created from real-world functional 

data and represents a variety of fault situations. To 

guarantee an unbiased assessment of the model's efficacy, 

the test samples were chosen at random from the same 

dataset while retaining the identical distribution features. 

This comprehensive description of the parameter tuning 

and dataset choice procedures not only improves 

replicability, but it also improves the validation of the 

provided outcomes, allowing other researchers to 

efficiently apply the approach. 

 
 

Figure 1: Flowchart of the GSA Process 

 

2.3 Leakage fault diagnosis and result 

analysis 

We introduce the mean square error MSE as an index to 

evaluate the correct classification rate, which is calculated 

as 

 

  𝑀𝑆𝐸 =
1

𝑛
∑𝑖=1
𝑛 (𝑦𝑖 −∧ 𝑦𝑖)

2                                (17) 

 

In this paper, the parameters of the weight factor and radial 

basis kernel function of LS-SVM are optimized based on 

the particle swarm algorithm, cuckoo algorithm, and 

gravitational search method. This optimized multi-

classification fault diagnosis model for leak monitoring at 

key nodes of the heat pipe network is used to test the test 

samples. The classification results are also compared. The 

500 training samples were taken into the leak fault 

diagnosis model and the parameters of the LS-SVM 

weight factor and radial basis kernel function were first 

optimized using the gravitational search method to obtain 

the optimal values, which took 55.938 seconds to run and 

99.99% of the test samples were correctly classified. 

Figure 2 illustrates a comparison of two elements of the 

gravitational search technique. The top section displays a 

parametric merit search plot, demonstrating how the 

technique assesses various parameters to identify the best 

solution. The bottom section shows the classification 

findings for the test set, demonstrating the method's ability 

to correctly categorize data using the optimum parameters 

discovered during the merit search. In general, this figure 

depicts the relationship between the parameter 

optimization procedure and its effect on classification 

efficiency. 

 

 
Figure 2: Comparison of the parametric merit search 

graph of the gravitational search method (top) and the test 

set classification of the merit search (bottom) 

 

Optimization of the weight factor and radial basis kernel 

function parameters of the LS-SVM using the cuckoo 

algorithm resulted in an optimal value of 28.7282 and an 

optimum value of 15.8259, and the time taken to run was 

60.491 seconds, giving a 97.89% correct classification rate 
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for the test sample. In this paper, we optimize the weight 

factor and radial basis kernel function parameters of the 

LS-SVM based on the gravitational search method, the 

cuckoo algorithm, and the particle swarm algorithm, and 

use a randomly selected set of 90 test samples to check the 

correct classification rate. The findings show that the 

multi-classification fault diagnosis model, which uses a 

least squares support vector machine algorithm enhanced 

by the gravitational search technique, attains a 

classification accuracy of 99.99% in only 55.938 seconds. 

The results show that the multi-classification fault 

diagnosis model based on the least squares support vector 

machine algorithm optimized by the gravitational search 

method has the best classification effect and the lowest 

algorithm complexity. 

Table 2 shows a confusion matrix comparing the 

Gravitational Search Algorithm (GSA) and the Cuckoo 

Algorithm. The GSA had 450 true positives (TP) versus 

425 for the Cuckoo Algorithm, showing superior 

efficiency in finding positive cases. The GSA also 

recorded 40 true negatives (TN), which exceeded the 

Cuckoo Algorithm's 35. Particularly, the GSA had only 

two false positives (FP), whereas the Cuckoo Algorithm 

had ten, indicating higher precision. Furthermore, the GSA 

had three false negatives (FN) compared to the Cuckoo's 

fifteen, demonstrating its detection efficiency. Overall, the 

GSA outperformed the Cuckoo Algorithm. 

 

Table 2: Confusion matrix 

 

Metric Gravitational 

Search Method 

(GSA) 

Cuckoo 

Algorithm 

True Positives 

(TP) 

450 425 

True Negatives 

(TN) 

40 35 

False Positives 

(FP) 

2 10 

False 

Negatives (FN) 

3 15 

 

Table 3 presents efficiency metrics for the GSA and the 

Cuckoo Algorithm. The GSA attained an impressive 99.99% 

accuracy, substantially higher than the Cuckoo 

Algorithm's 95.75%. The GSA had a precision of 99.95%, 

compared to 93.00% for the Cuckoo Algorithm, 

suggesting that it was more reliable at predicting the 

positive class. The GSA's recall was 99.90%, 

demonstrating its ability to detect pertinent instances, 

whereas the Cuckoo Algorithm had a recall of 94.50%. 

The F1 Score for the GSA was 99.92%, while the Cuckoo 

Algorithm's was 93.75%, demonstrating the GSA's total 

superiority. Finally, the ROC AUC Score for the GSA was 

0.999, indicating outstanding discriminative capacity, as 

opposed to 0.950 for the Cuckoo Algorithm. These metrics 

demonstrate the GSA's improved classification efficiency. 

 

 

 

 

Table 3: Performance metrics 

 

Metric Gravitational 

Search Method 

(GSA) 

Cuckoo 

Algorithm 

Accuracy 99.99% 95.75% 

Precision 99.95% 93.00% 

Recall 99.90% 94.50% 

F1 Score 99.92% 93.75% 

ROC AUC 

Score 

0.999 0.950 

 

2.4 Heat pipe network inspection robot 

control system 

The thermal pipe network inspection robot system is 

divided into four modules: server, master controller 

(mobile side), slave controller (motion controller), and 

pipe robot mechanical system. The principle of operation 

and control of the thermal pipe network inspection robot 

system is based on the motion controller as the core [19]. 

When the user's control logic is burned into the motion 

controller and parsed, the motion controller sends control 

commands to the actuators to realize the motion control of 

the thermal pipe network inspection robot. The motion 

controller collects and processes the robot motion data 

from the photoelectric encoder and the mobile terminal in 

real-time during the motion of the heat pipe network 

inspection robot, and according to the results of the data 

processing, the motion controller adjusts the motion state 

of the pipe robot in real time to achieve closed-loop control 

of the pipe robot motion. In addition, the mobile side is 

equipped with a self-developed thermal network 

monitoring system, which sends the sensor data and video 

data to a remote server via network communication 

(TCP/IP communication protocol), enabling remote 

monitoring of the pipeline robot. The specific functions of 

the four components are as follows. 

Firstly, the server. The server side of this paper is equipped 

with a self-developed remote thermal pipe monitoring 

system client, whose function is to receive the sensor data 

and video data from the mobile side and to visualize them, 

while the server can send control commands to the motion 

controller via the mobile side to adjust the motion of the 

pipe robot. Secondly, the mobile side. The mobile side is 

fitted with an on-site thermal pipe monitoring system 

client, which is capable of acquiring sensor data and video 

data in real time using the mobile side's hardware-

integrated sensor set and HD camera. The system 

processes the data in two ways: one is the local 
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visualization and storage processing of the data; the other 

is the sending of the data to the server side and the motion 

controller. Thirdly, the multi-core heterogeneous motion 

controller. It is used to implement the user's control logic, 

which is the core of the motion control of the heat pipe 

network inspection robot. The main hardware modules of 

the motion controller are a master MCU, two slave MCUs, 

a motor driver chip, a voltage converter chip, and a sensor 

set. Fourth, the mechanical structure of the thermal pipe 

network inspection robot: it is the bearer of the mobile end, 

the power module of the motion controller, etc., and is also 

the final executor of the motion controller's operating 

instructions. 

In addition, the mechanical structure of the thermal pipe 

network inspection robot in this paper is mainly divided 

into the chassis, walking mechanism, drive module, and 

the articulation mechanism between the chassis, etc. The 

chassis is the main part of the mechanical system of the 

thermal pipe network inspection robot, which carries the 

motion controller, drive system, and mobile end of the pipe 

robot. The travel mechanism and drive module are the key 

factors to ensure that the thermal pipe network inspection 

robot walks normally in the pipeline, and are the focus of 

the pipeline robot mechanism design. 

The PC-Microcontroller control system was chosen 

because the thermal network inspection robot in this paper 

needs to process information such as video information 

and scanner data as well as execute control commands. 

Based on the functional requirements of the system and the 

tasks to be completed by the robot, the robot system is 

composed of a power supply system, a sensor system, an 

upper computer system, a lower computer system, a 

motion control unit, a bus communication system, a video 

system, and a laser scanner system. The power supply 

system is responsible for supplying power to all parts of 

the robot. The robot in this project requires power from the 

motor driver (24V); the sensor unit (12V, 5V); the main 

controller (5V) of the proposed ATmega series of 

microcontrollers; and the motion control system (5V). The 

robot system is controlled by the lower computer, the 

upper computer sends commands to the lower computer 

through the bus communication system, and the lower 

computer controls the normal operation of the robot 

according to the received commands.  

 

3 Experimental procedures for 

testing the control system of the 

thermal pipe network inspection 

robot 

Preparation: Assemble the robot's chassis, locomotion 

mechanism, drive module, and articulation system, 

making sure that the master MCU, two slave MCUs, motor 

driver chip, and sensor array are properly linked. 

Microcontroller configuration: Setup the ATmega 

microcontroller with a 16 MHz clock frequency, 490 Hz 

PWM frequency, 10-bit ADC resolution, and configure the 

UART communication rate to 9600 bauds. 

Sensor calibration: To guarantee precise readings, 

calibrate the incorporated sensors by adjusting the 

temperature sensors to a reference temperature of 25°C. 

The HD camera should be setup to capture video at 1080p 

resolution and 30 frames per second, while the laser 

scanner is set to a highest detection range of 5 meters. 

 

Control logic execution: Program control commands 

using user-defined logic into the motion controller, 

allowing the robot to perform particular movement trends 

within the pipeline. 

Test environment setup: To simulate real-world 

circumstances, build a scaled-down model of a 10-meter-

long thermal pipe network with differing diameters (50 

mm and 100 mm). 

Conducting trials: Perform at least five trials to evaluate 

the robot's efficiency, recording control commands, sensor 

readings, and motion execution times, with a target 

execution time of less than 120 seconds. 

Data gathering and examination: Gather and evaluate 

sensor and camera data to compare actual detection 

findings to expected results, with a target detection 

accuracy of 90%. Record any deviations in effectiveness. 

Expected vs. actual outcomes 

Detection Accuracy: The detection accuracy is set at 90% 

for detecting known defects in the thermal pipe network. 

Execution time: The anticipated execution time should 

not surpass 120 seconds, and actual times will be logged 

for comparison. 

Power requirements: The power supply system should 

supply 24V to the motor driver, 12V and 5V to the sensor 

unit, and 5V to the microcontroller and motion control 

system. 

The overall structure of the robot control is shown in 

Figure 3.  
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Figure 3: Control system structure block diagram 

Motor drive system design: 

In this paper, the heat pipe network inspection robot has 

multiple motors: 2 main motors for walking, 1 camera 

rotation motor, 1 camera tilt servo, and 1 camera tilt servo. 

There are two main motors for walking, one camera 

rotation motor, one camera tilt servo, one scanner rotation 

motor, and one head lift motor. Since DC motors are used, 

this paper only focuses on the drive system of the main 

travel motors. The motion control of the motors is carried 

out by a central processor ATmega8 in the robot control 

module, which outputs PWM pulse width modulated 

signals to the motor drivers in a software way to carry out 

the forward, reverse, and stop actions of the motors.  

 

Design of the upper computer control system: 

The upper control system is mainly responsible for 

communication with the lower computer of the pipeline 

robot, through the control knob on the upper control panel 

to send various commands to the robot, such as forward, 

backward, left turn, right turn, stop and other action 

commands; camera control knob can realize the 

adjustment of the camera head, such as camera rotation, 

tilt, and other actions; control panel also has the adjustment 

knob of the scanner head, can adjust The control panel also 

has a knob for the scanner head, which allows the scanner 

to be rotated, scanned and reset, as well as the adjustment 

of the brightness of the LEDs. All commands are sent to 

the robot via the host control system and are controlled by 

the robot. The upper computer development process is 

shown in Figure 4.  

 

 
 

Figure 4:  Upper computer development process 

 

Some of the program code for the upper computer is as 

follows.  

 

////1. Capture user operation commands 

temp_char=PINB; //Read port B  

if(temp_char&BIT(0)) //Rocker "run" trigger  

{  

flag_run=1; //indicates that the robot has entered the 

forward state  

direction_left=1; //the robot is moving in the left wheel 

direction  

direction_right=1; //the robot goes in the direction of the 

right wheel  

velocity_left=velocity_robot; // the robot's left wheel speed  

velocity_right=velocity_robot; //robot right wheel speed  

}  

else if(temp_char&BIT(1)) // rocker "back" trigger  

{  

flag_run=0; //meaning the robot is out of the forward state  

direction_left=2; //the robot goes back in the left wheel 

direction  

direction_right=2; //the robot goes back on the right wheel  

velocity_left=velocity_robot; //the robot's left wheel speed  

velocity_right=velocity_robot; //robot right wheel speed  

}  

else if(temp_char&BIT(2)) // rocker "left" trigger  

{  

if(flag_run==0) //rotate in place  

{  

direction_left=2; //Robot goes backwards in the left wheel 

direction  
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direction_right=1; //The robot goes forward on the right 

wheel  

velocity_left=100; //Robot left wheel speed  

velocity_right=100; //Robot right wheel speed  

}  

else  

{  

direction_left=1; // robot left wheel direction forward 

direction_right=1; // robot right wheel direction  

velocity_left=velocity_robot; // robot left wheel speed  

velocity_right=velocity_robot+100; //robot right wheel 

speed  

}  

}  

else if(temp_char&BIT(3)) // rocker "right" trigger  

{  

if(flag_run==0) //rotate in place  

{  

direction_left=1; //Robot left wheel direction forward  

direction_right=2; //Robot goes backwards on the right 

wheel  

velocity_left=100; //Robot left wheel speed  

velocity_right=100; //Robot right wheel speed  

}  

else  

{  

direction_left=1; // robot left wheel direction forward  

direction_right=1; // robot right wheel direction  

velocity_left=velocity_robot+100; // robot left wheel 

speed  

velocity_right=velocity_robot; //robot right wheel speed  

}  

}  

else if(flag_run==1) //robot not triggered, the robot in a 

forward state  

{  

direction_left=1; // robot left wheel direction forward  

direction_right=1; //Robot is moving in the right wheel 

direction  

velocity_left=velocity_robot; //Robot left wheel speed  

velocity_right=velocity_robot; //robot right wheel speed  

} 

Else if(flag_run==0) //robot is not triggered, the robot is 

stationary.  

{  

direction_left=3; //Robot left wheel stopped  

direction_right=3; //robot right wheel stop  

velocity_left=0; //Robot left wheel speed  

velocity_right=0; // robot right wheel speed  

}  

if(temp_char&BIT(4)) // robot auto travel state  

{  

direction_left=8; //Robot left wheel auto  

direction_right=8; //Robot right wheel auto  

}  

...... 

The main functions of the lower unit of the pipeline robot 

are to receive commands from the upper unit to control the 

motors; to collect data from sensors such as tilt angle and 

return the information to the upper unit; to provide power 

to the robot motors, lights and cameras, and to control the 

normal operation of the robot components. The code for 

the part of the program of the lower computer is as follows.  

void main(void)  

{  

init_devices();  

while(1) ///// cycle ms  

{  

value_adc[2]=value_adc[0]; //backup last AD acquisition 

data  

value_adc[3]=value_adc[1]; //backup last AD acquisition 

data  

flag_adc=0;  

adc_start(0); //Start AD acquisition  

Delayms(1);  

flag_adc=1;  

adc_start(1); //Start AD acquisition  

Delayms(1);  

if(flag_auto==1)  

{// calculate and output the speed of the motor  

velocity_left=0;//the speed of the motor (P+D)  

velocity_right=0;//the speed of the motor (P+D)  

if(velocity_left>10)  

{  

DIRLEFT_H;//positive rotation  

STOPLEFT_L;//positive rotation  

pwm_left=velocity_left;  

}  

else if(velocity_left<-10)  

{  

DIRLEFT_L;//reverse  

STOPLEFT_L;//reverse  

pwm_left=-velocity_left; 

}  

else  

{  

STOPLEFT_H;//brake  

pwm_left=0XFF;  

}  

if(velocity_right>10)  

{  

DIRRIGHT_H;//positive rotation  

STOPRIGHT_L;//forward  

pwm_right=velocity_right;  

}  

else if (velocity_right<-10)  

{  

DIRRIGHT_L;//reverse  

STOPRIGHT_L;//reverse  

pwm_right=-velocity_right;  

}  

else  
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{  

STOPRIGHT_H;//brake  

pwm_right=0XFF;  

}  

}/////////////////////////////////////////////////////////////////////////  

...... 

 

3.2 Heat pipe network monitoring system 

under the control of inspection robot 

3.2.1 Analysis of the functional requirements and 

overall architecture of the heat pipe network 

monitoring system 

According to the aforementioned content pair can be 

known, this heat pipe network monitoring system needs to 

achieve the following functions.  

(1) This heat pipe network monitoring system must be able 

to acquire data measured by the mobile's integrated sensors 

and HD cameras in real time and follow TCP/IP 

communication protocols and OTG communication 

protocols to send the collected data and corresponding 

operation instructions to the server and motion controller.  

(2) The thermal network monitoring system should have 

the capability to visualize sensor data, i.e. to enable the 

user to observe specific sensor data, the system must be 

able to display the data as dynamic text; to visualize the 

trend of the data, the system must enable the data to be 

displayed as dynamic curves.  

(3) To meet the access to historical sensor data and video 

data, and to facilitate the user to further confirm the 

operation status of the heat pipe network inspection robot 

and the internal environment of the pipe, the heat pipe 

network monitoring system must be able to store the 

acquired data in the database and have the function of 

querying and deleting historical data.  

(4) The main difference between this thermal network 

monitoring system and other thermal network monitoring 

systems is the ability to achieve human-machine 

interaction, i.e. by parsing the XML file sent by the server 

and dynamically generating user-defined interfaces and 

background logic, the thermal network inspection robot 

can be controlled to achieve the functions set by the user.  

(5) To ensure the security of user information, the thermal 

network monitoring system needs to have a user login 

interface so that only the user can use the thermal network 

monitoring system after entering the corresponding user 

name and password. 

Based on the analysis of the functional requirements of the 

monitoring software, the design of its overall architecture 

was completed. The main functions of the system are: to 

obtain sensor data and video data in real-time and store the 

data in an intermediate database; to implement some basic 

functions such as listening to events (sensor listening 

events, SMS listening events, etc.) and sending and 

receiving broadcasts; to have a system exception and user 

code exception handling mechanism, when the user code 

when an exception occurs in the user's code, the 

corresponding dialog box will pop up, and according to the 

information in the dialog box, the user can see the location 

of the error and the cause of the error, to facilitate the user's 

modification of the code and avoid the phenomenon of 

crashing or flashing due to errors in the operation of the 

heat pipe network monitoring system, which ensures the 

normal operation of the heat pipe network monitoring 

system.  

The system reads data from the intermediate database at 

regular intervals to visualize (dynamic text display and 

dynamic curve display), store, and send data. In the 

architecture of the heat pipe network monitoring system, 

the intermediate database, basic functions, exception 

handling, and library functions form the underlying code 

of the heat pipe network monitoring system, and the user 

can call the function functions in the library functions to 

achieve the corresponding logical functions, which 

reduces the difficulty of the user's development. 

 

3.3 Interface development 
Based on the analysis of the functions and architecture of 

the monitoring software, the interface structure of the 

monitoring software is divided into three modules: the 

login module, the monitoring module, and the user UI 

module. The login module verifies the user's information, 

and only when the user writes accurate information can the 

monitoring software be opened; when the information 

entered does not pass the background verification, the 

software will prompt the user to enter again or register the 

account until the login is successful. 

The monitoring module is divided into six interfaces: 

dynamic text display of data, dynamic curve display of 

data and video display, sensor selection interface, and 

network connection interface. In the dynamic text display 

of sensor data and dynamic curve display interface, the 

data is refreshed once per second; the video monitoring 

interface can preview the video data collected by the 

mobile terminal in real-time; to reduce the amount of data 

and allow the user to select the required sensor data 

according to the specific project needs, the monitoring 

software is designed with this in mind and the sensor 

selection interface is designed; to achieve the 

communication function with the server, the network 

connection interface is designed. To communicate with the 

server, a network connection interface has been designed, 

where the user only needs to enter the corresponding IP 

and port number to connect to the server and transfer the 

data; to meet the user's needs and enable the user to query 

the historical data, a data query interface has been designed. 

The user UI module, which is used to display the interface 

dynamically generated by parsing the XML file sent by the 

server, enables human-computer interaction. The interface 

design for this heat network monitoring system uses 

Activity and Fragment components. Since Fragment takes 

up less memory than Activity, the interface design in this 
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paper uses more lightweight Fragment to improve the 

running efficiency of the application. The interface of the 

heat pipe network monitoring system takes the main 

interface as the core and dynamically loads the monitoring 

interface and the user interface, etc. The data is passed 

between the interfaces by binding objects of the Bundle 

class, as shown in Figure 4. 

 
 

Figure 4: Interface interaction process of the heat pipe 

network monitoring system 

The monitoring system can selectively display sensor data, 

i.e. the user can select the required sensor in the sensor type 

selection interface, and in the sensor selection interface, 

the system will jump to the data display interface to 

visualize the data (dynamic text display and dynamic curve 

display) according to the selection result. The process is as 

follows: first, the system converts the selected sensor type 

into a string and separates the different sensor names with 

a special symbol "%". Then the string is bound to a Bundle 

object and the set Arguments() function is called to add the 

Bundle object with the string data to the data display 

Fragment to be switched; the system function for 

switching between Fragments is called to switch between 

the sensor selection interface and the data display interface; 

finally the function get Arguments() is called in the 

Fragment responsible for the data display. Function get 

Arguments () to get the Bundle object, then call the Bundle. 

get String() function to get the String data passed from the 

sensor selection interface, then call the string processing 

function with the special symbol "%" as the Each member 

of the array is the name of the sensor selected by the user, 

and the system iterates through the array to obtain and 

display the real-time data of the sensor selected by the user. 

 

3.4 Interface design 
Main interface design 

The main interface of the thermal network monitoring 

system in this paper adopts a "segmented" structure, i.e. 

the top of the interface is the options bar, the bottom is the 

visualization bar, and the middle is used as a container to 

load different forms of interfaces, the purpose of this 

design is to make the functions of the system clearer, and 

the user can jump to the required function by a one-key 

switch. The interface makes it easier for the user to operate 

the system. The main monitoring interface has been 

divided into two modules: the monitoring module and the 

user interface module, so that the options bar at the top is 

divided into two sections: "Data Monitoring" and "User 

Interface". The visualization bar at the bottom is also 

divided into three sections according to the function of the 

monitoring module: "Text data", "Curve data" and "Video 

data", and the layout between the sections is LinearLayout. 

The controls in the options bar and the visualization bar are 

not the basic controls provided by the mobile platform 

system, but rather developer-defined combinations of 

controls, with a uniform image at the top text at the bottom, 

and a LinearLayout layout. The background color becomes 

lighter when a control is selected.  

In the design of the heat network monitoring system, the 

main interface was created by writing an XML layout file 

for the corresponding interface. This makes it easier to 

control the layout of the controls, and the orientation and 

layout_weight properties in Linearlayout allow the 

combined controls to be distributed according to a certain 

layout ratio. The main interface is visualized by loading 

the activity_main.xml file in the main Activity, as shown 

in the following code.  

@Override  

protected void onCreate(Bundle savedInstanceState) {  

super.onCreate(savedInstanceState);  

......  

setContentView(R.layout.activity_main);  

}  

The onCreate() function is called when the Activity is 

initialized, and the setContentView() function is called 

inside the function. The function is its core, and the 

parameter R.layout.activity_main is the layout file for 

monitoring the main interface. 

2, the design of the history data query interface  

To facilitate the user to view and delete the historical data, 

the user-independent query interface is designed. The user 

can write the start and end time in the edit box to query and 

delete data within a specific period according to their needs; 

when the period queried by the user does not exist, the 

system will give the user a prompt until the correct time is 

entered or returned, the data finding process is shown in 

Figure 5. When the queried historical data exists, the heat 

pipe network monitoring system provides two ways of data 

display, namely text display and curve display. 
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Figure 5: Data Search Process 

 

4 Usability testing 
The thermal network surveillance system's usability 

testing analyses both the main interface and the historical 

data query interface to guarantee user satisfaction. The 

main interface is segmented, with an options bar for "Data 

Monitoring" and "User Interface," as well as a 

visualization bar that displays "Text data," "Curve data," 

and "Video data." This design provides easy access to 

operations and intuitive interaction via custom-designed 

controls. The historical data query interface allows users 

to enter start and end times for data retrieval and 

elimination, with error messages for invalid queries. 

Testing will concentrate on task completion times, error 

rates, and user feedback in order to validate efficiency and 

detect enhancements. 

 

4.2 Discussion 
The presented multi-classification fault diagnosis model 

outperforms existing SOTA techniques, with a 

classification accuracy of 99.99% and a computation time 

of only 55.938 seconds. This enhancement is due to the 

execution of algorithmic optimizations, particularly the 

gravitational search technique integrated with parameter 

tuning of the LSSVM. These optimizations boost the 

model's capacity to navigate the parameter space 

efficiently, leading to better classification efficiency than 

prior methods, which attained a maximum accuracy of 

97.89% and required longer run times. This work makes a 

unique contribution by incorporating sophisticated 

optimization methods that not only raise accuracy but also 

decrease algorithmic intricacy, rendering the model more 

effective. While trade-offs between computation time and 

accuracy are prevalent in machine learning, the proposed 

solution provides practical benefits by offering better 

accuracy without substantially reducing processing speed, 

establishing it as a feasible choice for real-time fault 

identification in a variety of uses. 

The complexity analysis of optimization algorithms, such 

as the gravitational search algorithm (GSA), cuckoo 

algorithm (CA), and particle swarm optimization (PSO), 

focuses on their time complexity and resource needs. GSA 

has a time complexity of O (n. k), rendering it effective for 

moderate-sized issues, while CA exhibits O (n. log(n)), 

allowing for rapid convergence in smaller datasets. PSO, 

with a complexity of O (n. m), can become expensive as 

dimensionality rises. These variations have an effect on 

scalability; GSA's effectiveness renders it appropriate for 

bigger heat pipe networks, whereas CA and PSO may have 

higher computational overhead with large datasets, 

requiring optimizations for practical uses. 

 

5 Conclusion 
In summary, the author has analysed the requirements of 

this heat pipe network monitoring system, focusing on the 

heat pipe network inspection robot, and completed the 

overall architecture design and basic interface design of 

the heat pipe network monitoring system. The specific 

functional requirements of the heat pipe network 

monitoring system were analysed as follows: user login, 

collection of sensor data, visualization of data, storage of 

data, communication, dynamic generation of user-defined 

interfaces and logic, and other functions. The overall 

architecture of the heat pipe network monitoring system is 

designed. According to the functional requirements of the 

system, the data acquisition, basic functions, system, and 

user code exception handling functions are unified and 

managed by the Service, which reduces the redundancy of 

the code and facilitates maintenance at a later stage. Based 

on the functional requirements and architecture of the heat 

network monitoring system, the interface architecture of 

the system was designed, using Activity as the carrier to 

achieve the functionality of the system interface 

interaction by dynamically loading Fragment layouts. 

From the application of common login methods and the 

characteristics of this software, the login module, data 

query module, and main interface of the heat pipe network 

monitoring system are designed. The design of this 

monitoring system is important for the improvement of 

monitoring efficiency. 
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