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This research aims to propose a more sophisticated clustering and community detection technique in 

complex social networks through the use of neural networks; autoencoder, in particular. In the past, 

methods for network analysis and community detection used several graph algorithms, but with the 

emergence of deep learning, autoencoders are used for learning node features. These node 

representations are learnt using a neural network-based autoencoder and then clustering algorithms like 

k-means, agglomerative and spectral clustering are performed. These algorithms are then improved by 

incorporating with the Louvain algorithm for community detection. The proposed method, named the 

Spectral Louvain Algorithm, offers several advantages: it saves the stage of feature extraction, is suitable 

for Call Detail Record (CDR) and Social Network Analysis (SNA), does not require model retraining for 

different scale networks, and can work in mesh scale networks. It has better accuracy and performance 

than former approaches, even getting 100% of NMI and ARS, 78% of modularity in Karate Club and 89% 

of NMI, 93% of ARS and 86% of modularity in Dolphin data set with the least conductance. This method 

is particularly useful in discovering new relations and structures in a system and it is very efficient. 

Povzetek: Članek uvaja metodo Spektral Louvain za odkrivanje skupnosti v družbenih omrežjih, ki 

združuje avtomatske kodirnike, spektralno združevanje in Louvain algoritem. Metoda dosega visoko 

modularnost in prilagodljivost velikosti omrežij.

1 Introduction 

It is regarded one of the most important tasks of the 

network analysis studies – the identification of 

communities in complex networks[1]  which concerns the 

identification of the groups of nodes densely connected 

internally, while the links between groups are either sparse 

or lack at all. Detecting communities [1] can certainly help 

in understanding the functional organization in different 

fields including social networks (SN) [2], Biological 

networks (BioNet), communication networks (CN) [3], 

[4] etc. 

Classical methods of community identification include the 

use of graph concepts [5] where information flows such as 

modularity optimization [6], spectrum analysis of the 

graph[7], and hierarchical clustering [8]are used.  

These methods usually need a set of features to be 

designed manually and can be less effective for large-scale  

networks with complex patterns. Furthermore, these 

methods perform poorly in practice, especially when the 

data is noisy or high-dimensional and are not very scalable 

and very fragile [9]. 

Deep learning is a relatively novel technique that tackles 

feature extraction from raw data in different fields[10]. 

Auto-encoder [9] is a class of neural networks that can  

 

learn a compact and meaningful representation of the data 

input, based on the input requirement that the network be 

able to reconstruct the output data as closely as possible 

[9]. Auto-encoders are beneficial for community detection 

problems, especially when the internal structure of 

networks is intricate and could be multi-dimensional, Due 

to this capability of extracting features from data 

automatically  [9].  

This paper is communicating the three significant ways, 

Firstly, autoencoder algorithms [9] are used to reconstruct 

communities and provide the node embedding.  In this 

research, algorithms are implemented on two datasets, 

karate club datasets [11] and Dolphin’s datasets [12]. 

These datasets produce actual communities employing the 

adjacency matrix which defines the graph data required to 

discover the communities [13]. Secondly, various 

clustering methos are applied to learn the node 

embeddings. Thirdly, these clustering methods are 

combined with the Louvain community detection 

algorithm to improve the modularity [14]. The subsequent 

sections of this paper are structured as follows to outline 

the process: section ii contains the related work and 

associated research with potential limitations. Section iii 

contains the proposed methodology and contributions to 

explain the novelty of the approach, Section iv contains 

the research methodologies and techniques employed. 
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Section v contains benchmark datasets and community 

validation for preprocessing of benchmark data set 

Zachary’s karate club [11] and dolphins [12] . section vi 

of our work includes an analytical approach. Section vii 

covers the preliminaries and proposed algorithms; section 

viii covers the results and outcomes in which few 

Evaluation Methods for Assessing Algorithm 

Performance are discussed. ix contains the outcome and 

concludes our findings. section ix contains the future 

scope. section xii contains the nomenclature table. 

2 Related works 

For the past decades, the algorithms concerned with the 

classification of communities have evolved greatly, and 

the recent focus has been on the application of deep 

learning techniques in enhancing traditional methods [10]. 

In addition to the well-known techniques, such as 

modularity optimization and spectral clustering, deep 

learning-based methods, especially with the use of 

autoencoders, have become an interesting topic for 

research in the field of community detection in complex 

networks [15]. 

Autoencoder derived methodologies use neural network-

based architecture to extract the relevant features and learn 

the representations of the Network data [9]. This has the 

following advantages: feature extraction is done 

automatically and the training with the end-to-end model. 

These approaches try to identify complex densities and 

forms in networks, which are different from traditional 

algorithms. 

The earlier methods that are still widely used are 

modularity optimization by [16] and spectral clustering by 

von Lux burg [17] while the other methods include self-

organizing hierarchal clustering by Jain and Dubes [18] 

Moreover, the Louvain method developed by Blondel [19] 

has recently attracted much interest because of its ability 

to efficiently maximize modularity and identify 

communities in huge networks. 

Few recent studies have also been carried out in this area 

by authors D. Jin et al., [20] who offer a review of several 

community detection approaches with emphasis on how 

deep learning can be incorporated. One of the limitations 

pointed out here is the lack of standardization in 

evaluation metrics and benchmark datasets, which 

prevents the easy comparability of various community 

detection algorithms [20]. Thomas Kipf & Max Welling 

[21] learned that the graph convolutional networks that 

incorporate node features and graph structure outperform 

other methods in semi supervised learning problems. 

According to Yang et al. community detectors make use 

of graph neural networks [22] doing so captures various 

relationships between the nodes. Bhattacharya et al. [23] 

offered the most closely related method Embedded graph 

convolutional networks improve community detection by 

learning node representations and utilizing structural data. 

In their paper Xing Su et al.[24] provides a comprehensive 

review of different types of deep learning in relation to 

community detection while elucidating the existing 

progress and issues in this field. Zhang et al. [22] the 

author presents contrastive graph autoencoders for 

community detection to enhance the clustering efficiency 

by using the contrastive learning approach. Apicella et al. 

[25] discussed the adaptive filters in graph convolution 

networks and revealed how the community detection 

enhances the clustering performance due to contrastive 

learning. X. Li et al.[26] work relates to temporal graph 

convolutional networks for detection of communities in 

dynamic graph solving for evolving structures.  

From the preceding discussion, it is apparent that deep 

learning and autoencoder-based techniques in 

combination with clustering methods along with the help 

of community detection algorithms offer new prospects 

for improving the effectiveness of community detection 

system. The rationale is to enhance understanding of the 

structures using conventional approaches along with 

utilization of neural networks and, consequently, discover 

new patterns in different fields of science. 

3 Proposed methodology and 

contributions 

3.1 Flow of work 
This research introduces a novel community detection 

method that leverages feature discovery using 

autoencoders, network structure using spectral clustering 

and community detection using the Louvain algorithm. 

The process starts with feature learning for node data, 

using autoencoder and converting high-dimensional data 

to low-dimensional data where typically, a massive 

amount of effort is required in feature engineering. The 

autoencoders are involved in capturing structural 

relationships within the network that may be hidden. To 

localize these node embeddings, a process called spectral 

clustering is used to detect nonlinear separations between 

communities and therefore provide an optimal partition of 

nodes which is determined by eigenvectors of Laplacian 

matrix of the graph. Lastly the Louvain algorithm is 

applied to enhance the modularity for the formation of 

proper communities of nodes. This hybrid methodology, 

termed Spectral Louvain, improves both accuracy and 

scalability of community detection, making it ideal for 

real-world complex network analysis. 

3.2 Novelty of the study 
The novelty of proposed approach consists in its hybrid 

integration of autoencoders, spectral clustering, and the 

Louvain algorithm which has not been extensively 

explored in the existing literature. Although each of these 

techniques has been employed in previous research, the 

combination presented here —particularly in the parallel 

process—is more effective to enhance the feature learning 

capability, the global structure perception, and modularity 

optimization step. Moreover, the disclosed method can 

learn and improve without retraining if the network size 

changes, which is the main advantage in terms of 

scalability over the prior art. 

3.3 Key Ffndings 
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The proposed Spectral Louvain method shows its higher 

efficiency comparing to other community detection 

methods in terms of accuracy and scalability. 

Experimentation carried out on widely used benchmark 

datasets Zachary’s Karate Club, Dolphin social networks 

substantiate the effectiveness of the proposed solution in 

delivering better results across multiple metrics. 

Specifically, the method achieved perfect scores in both 

Normalized Mutual Information (NMI) and Adjusted 

Rand Score (ARS) on the Karate Club dataset[27], while 

yielding high values in NMI, ARS, and modularity on the 

Dolphin dataset. These results highlight clear 

advancements in the performance profiles of different 

community detection tasks in terms of modularity and the 

smallest conductance. In the light of such a discussion, the 

Spectral Louvain approach emerges as one of the most 

effective and feasible methods to identify the communities 

in large scale networks. 

4  Research methodologies and 

techniques employed 

 In the present methodology, A novel community 

detection approach leverages auto-encoders for feature 

learning followed with the clustering and community 

detection method is used to increase the performance of 

traditional methodology. 

4.1 Auto-Encoder feature learning 

Auto-encoder structure is used to learn node 

representations from the data in the network [9]. The 

autoencoder encodes the input data and tries to reconstruct 

it in the next layer while learning a compressed 

representation in the middle layer. The transformation of 

original network into an embedding space is more 

conducive for clustering [25]. The autoencoder with low 

noise is usually defined as: 

  z = 𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑥)       (1) 

 

(x̂) = 𝑓𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑧)       (2) 

loss function of a simple autoencoder is defined as: 

        L(x, x̂)  = ||x − x̂||2   (3) 

where x signifies the input and x̂ is the reconstruction 

produced by the decoder. 

4.2 Clustering techniques 

Various clustering techniques are applied to learned node 

embeddings to partition nodes into communities [23] : 

• K-means clustering: Splits nodes into K groups by 

similarity within a specified embedding space [28]. The 

purpose of the K-means algorithm is to reduce the total of 

the difference between each point and the centroids. given 

by: 

Q = min
{𝑚𝑘}𝑘=1

𝐾
∑ min

𝑘
||𝑋𝑖 − 𝑚𝑘||2𝑛

𝑖=1       (4) 

where 𝑋𝑖  represents the input data and 𝑚𝑘 is the 

centroid of the kth cluster [29]. 

• Spectral clustering: Clusters the nodes by assigning 

eigenvectors  [30] of the Laplacian of the graph G = (V, 

E). The Laplacian of the graph is defined as   [22]: 

 

L = 𝐷 − 𝐴     (5) 

D is the diagonal matrix of the node degrees and A is with 

the adjacency matrix of the graph G. The eigenvectors, 

therefore, correspond to the small eigenvalues of L, are for 

clustering tasks in low-dimensional space [17]. 

• Agglomerative clustering: The process of combining 

more nodes into fewer clusters according to the specified 

distance measure [31]. The method applied in finding the 

distances between two clusters CA, CB based on the 

average linkage metric is defined as [32]: 

            d(𝐶𝐴, 𝐶𝐵) =
1

|𝐶𝐴|,|𝐶𝐵|
∑ ∑ 𝑑(𝑗∈𝐶𝐵𝑖∈𝐶𝐴

i, j )          (6) 

d (i, j) is the distance between the points i and j of cluster 

CA and CB [32]. 

4.3 Community detection methods 

Among the community detection methods, the most 

popular ones are the Girvan Newman[3] and Louvain 

methods [14] . 

• Girvan-Newman: Proceeds by repeatedly scanning for 

edges with high betweenness centrality to identify the 

community structure [33]. 

• Louvain algorithm: Recurrently relinquishes nodes to 

enhance the modularity of the network since communities 

tend to connect to other communities within the same 

community [1] [14]. 

4.4 Combining community detection with 

clustering 

Integration of community detection with clustering 

approaches such as K-means, Agglomerative Clustering, 

and Spectral Clustering adds significant value, as it not 

only considers the network structure but also optimizes the 

Modularity score. This approach is compared with 

communities generated by the autoencoder algorithm, and 

the combination of these clustering and community 

detection algorithms offers a more accurate and detailed 

detection of community structures in both large-scale 

networks [19], [34] and complex Network [35]. 

• Louvain K-means: The procedure used here is a merger 

of the Louvain method and K-means clustering to find 

community. 

• Louvain agglomerative: Automate the Louvain method 

using agglomerative clustering for enhanced detection of 

clusters. 

• Spectral louvain: Also, this approach incorporates the 

use of the Louvain method in conjunction with spectral 
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clustering to improve community detection. 

4.5 Evaluation and validation 

The proposed method is then tested and assessed based on 

existing real-life data sets with reference solutions to 

calculate the communities found [2]. Evaluating Quality, 

the proposed method is tested and evaluated based on a 

comparison with existing communities with the same data 

set Karate Club and Dolphin to calculate the found 

communities. Evaluation of the quality [2] of detected 

communities: based on modularity [6] and normalized 

mutual information (NMI) [27], the silhouette score [36]. 

The approach formulated here has some advantages over 

other methods: It combines the auto-encoder feature 

learning with the combination of K-means, Spectral 

Clustering, Agglomerative Clustering, Girvan-Newman, 

and Louvain methods to improve the potential of the 

method in detecting complicated graphs and structures in 

network data. This integration helps to achieve better and 

more stable community detection by combining the 

advantages of deep learning feature extraction and graph-

based methods. In addition, the approach is scalable, it can 

control a large set of networks.  

 

 

 

Figure 1: workflow for community detection by using the deep learning AI 

 

5 Benchmark datasets and 

community validation 

Benchmark datasets are used in many research projects to 

assess the effectiveness of the algorithms being used. In 

this study, two prominent benchmark datasets were 

employed: Zachary’s Karate Club [11] and the Dolphins 

[12].  

Zachary's karate club: 

• Description: This data set consists of the social 

relations of 34 members of a karate club [37],[11] 

which later leads to the division of the club into two 

groups. 

• Relevance: It provides a clear ground truth suitable for 

comparing the efficacy of community detection 

algorithms. 

• Dolphins: 

• Description: For this case, the dataset composed of 62 

bottlenose dolphins exhibits the social network found 

through association indices [12]. 

• Relevance: It shows a denser and more sophisticated 

network taken from real life, which is useful to test 

community detection algorithms. 

 

With a given set of datasets and a deep learning approach, 

the increased benchmarking, validation, and 

reproducibility with the combination of clustering and the 

community detection algorithm presented here reveals the 

effectiveness of the methodology in terms of community 

detection in a variety of networks [38], [39], [40]. 

6 Analytical approach  

The analytical approach in this research combines modern 

methods for the identification of communities in complex 

networks [35]. First, the autoencoder algorithms are used 

to learn compact and semantically relevant node 

representations from the given input matrices. These 

representations are then used to provide an efficient way 

to cluster the nodes into communities using several 

clustering algorithms [9]. They are K-means, Spectral 

clustering, Agglomerative clustering, Girvan Newman 

and Louvain methods. Thus, combining the capabilities of 

deep learning for feature extraction and the graph-based 

clustering approach for the extraction of structural and 

complex pattern features, it will be possible to improve the 

existing approach and reveal high-level patterns in 

network data. Based on the quality of the detected 

communities [2] the model parameters such as modularity, 

normalized mutual information (NMI) [27,32], and  

Silhouette scores are analyzed [36], and the model is tested 

for scalability on datasets of different sizes. 

6.1 Community detection algorithm and 

evaluation workflow 
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The analytical approach in this research combines modern 

methods for the identification of communities in complex 

networks [1], [35] . First, the autoencoder algorithms are 

used to learn compact and semantically relevant node 

representations from the given input matrices. These 

representations are then utilized to cluster the nodes into 

communities using various clustering algorithms. [30]. 

They are K-means [29], Spectral clustering [17],  

Agglomerative clustering [31], Girvan Newman [16] and  

Louvain method [14]. Thus, combining the capabilities of 

deep learning for feature extraction and the graph-based 

clustering approach for the extraction of structural and 

complex pattern features, it will be possible to improve the 

existing approach and reveal high-level patterns in 

network data. Based on the quality of the detected 

communities the model parameters such as modularity 

[16], normalized mutual information (NMI) [27], adjusted 

Rand score (ARS) [35], and silhouette score are analyzed 

to assess the quality of the detected communities, and the 

proposed model is also tested for scalability on the two 

benchmark datasets of different size karate club and 

dolphin. The given figure 1 depicts the process workflow 

of the proposed community detection model for checking 

the effectiveness of comprehensive network structures. 

7 Preliminaries 
Consider a network graph G, comprising Ve nodes and Ev 

edges, G (Ve, Ev). The adjacency matrix  [5] A of G, where 

Aij ∈ {0, 1, signifies the presence of an edge between, 

nodes i and j [5]. 

7.1 Algorithm overview autoencoder 

The proposed method utilizes Graph Autoencoder (GAE) 

to learn latent representations of nodes from the network's 

adjacency matrix. This helps the auto encoder to learn the 

embeddings [7]. Represented by the algorithm 1-5. 

Algorithm 1, The Graph Autoencoder (GAE) 

Communities is used as an algorithm that can learn the  

latent features for graphs. It establishes a model with the 

help of input parameters latent_dim and adj_matrix and 

sets the autoencoder encoder. The encoder is a sequential 

neural network with dense layers to map the graph’s  

adjacency matrix to a latent space. The decoder then maps 

the embeddings back to the original space to reconstruct 

the input in the matrix form of the adjacency matrix using 

the learned embeddings. 

 

Algorithm 2, The Graph Autoencoder is a model that takes 

input data, applies a forward pass of an unspecified 

algorithm to produce a latent representation, and then 

passes it through the decoder to reconstruct the original 

input. 

 

Algorithm 3, The loss function computes the difference of 

true and the predicted adjacency matrix in order to 

measure how well the model is performing by changing 

the parameters of autoencoder. 

  

 

Algorithm 4, concerns reading data from a GML file to 

transform the graph into a format used by the Graph Auto-

encoder model, an adjacency matrix. The algorithm 

primarily processes the GML file by reading the graph and 

converting it into a dense adjacency matrix, which is then 

used as the input graph and its corresponding adjacency 

matrix. 

 

 

 

 

 

Algorithm 1: Graph Autoencoder Community 

Input: - latent_dim, adj_matrix   

Output: -Initialized GraphAutoencoder model 

1: procedure init(LatentDim, adj_matrix) 

2:     Initialize superclass   

3:     Set self.LatentDim to LatentDim 

4:     self. encoder ← Sequential([ 

5:           Dense (Latnt_dim, activation ==" LeakyReLU"), 

6:           Dense (2 * LatntDim, activation= “LeakyReLU”), 

7:           Dense (4 * LatntDim, activation = “LeakyReLU”), 

8:           Fully connected (8 * LatntDim, activation LeakyReLU)]) 

9:     self.decoder ← Dense(adj_matrix. shape[0], 

activation=’sigmoid’) 

10: end procedure 

Algorithm 2: Graph Autoencoder Call Function 

Input: inputs 

Output: Decoded output 

1: procedure call(inputs) 

2:     Encoded ← selfEncoder(inputs) 

3:     Decoded ← selfDecoder(encoded) 

4:     return Decoded 

5: End procedure 

 

Algorithm 3: Loss Function 

Input: - YTrue, YPred 

Output: - Loss value 

1: procedure loss_function (YTrue, YPred) 

2:   return mean (binary_crossentropy (YTrue, YPred)) 

3: end procedure 
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Algorithm 5, Predict the communities by using 

Girvan Newman Predictions and Louvain communities. 

 
   Algorithm 5: Generate Community Prediction 

Input: - Graph, graph_from_similarity_embeddings, seed 

Output: - predictions, louvain_predictions  

1: procedure Girvan_Newman_Predictions (Graph, 

graph_from_similarity_embeddings, seed) 

2:                                     > #set random seed for reproducibility of the results: 

3:       communities ← girvan_newman (Graph) 

4:       node_groups ← [] 

5:       for i in range 4 do 

6:              for c in next(communities) do 

7:                           if i = 2 then 

8:                           node_groups. append(c) 

9:                          end if 

10:            end for 

11:      end for 

12: louvain_communities←louvain_communities (graph_    

from_similarity_embeddings) 

13.   Predictions ← [0] * ILen (GraphNodes) 

14:     louvain_predictions = [0] * ILen (GraphNodes) 

15:      for i in the range lLen (NodeGroups) do 

16:            for (j, k) in zip(node_groups[i],        

                          louvain_communities[i]) do                                 

17:                 if ‘0’ is present in Graph. nodes then 

18:                       predictions[j] ← i 

19:                 else 

20:                       predictions[j-1] ← i 

21:                 end if 

22:                 louvain_predictions[k] ← i 

23:            end for 

24:     end for 

25:     return predictions, louvain_predictions 

26.  end procedure 

   

The learned embeddings are then clustered using 

Clustering [5], agglomerative clustering [31], and various 

techniques, including K-means [28], Spectral after that the 

Final communities are generated using the community 

detection algorithms [38] Girvan Newman [33] and 

Louvain methods [14].  

This integration of autoencoder-based feature learning and 

clustering algorithms and community detection [39] 

algorithms enhance the ability to detect communities in  

complex networks [34]. Among all these approaches we  

find the best approach that with the combination of 

spectral and Louvain represented by algorithms 6. 

 

Algorithm 6: Spectral Louvain 

Input: - Graph G, number of clusters k, resolution parameter  

gamma, 

 random seed 

Output: - Final partition 

1: procedure spectral_louvain (G, k, gamma, seed) 

2:                # Set random seed for reproducibility of the results 

3: ># Step 1: Calculate the Laplacian matrix of the graph L 

4: L ← laplacian_matrix(G). todense () 

5: 

6:  ># Step 2: Let the eigenvectors be v=(v1, v2,……..vn) of L 

 such that Lv=kv where k is an eigenvalue of L 

7: obtain the eigenvalues (EigVal) and the corresponding  

eigenvectors (EigVect): EigVal, EigVect (v)← eigh(L) 

8:    indices ← argsort (EigVal)[: k] 

9:   U← EigVect [: indices] 

10: 

11: ># Step 3: clustering of the rows of U is obtained through k-means 

 clustering. 

12:   kmeans ← KMeans(n_clusters=k) 

13:   initial_partition ← kmeans. fit_predict(U) 

14: 

15: ># Step 4: use the Louvain Algorithm to the initial partition 

16: partition ← best_partition (G, partition = initial_partition, resolution 

 = gamma) 

17: 

18: ># Perform step 3 and step 4 until the process converges. 

19:       While true do 

20:                  old_partition ← partition 

21: 

22:># Step 5. is to conduct k-means clustering on the   rows of U. 

23:                kmeans ← KMeans(n_clusters=k) 

24:                initial_partition ← kmeans. fit_predict(U) 

25: 

26: ># Step 6: The Louvain Algorithm for the initial formation of a 

 partition is equal to best_partition 

27:  Louvain_Algorithm = best_partition (G, partition = initial_partition 

, resolution=gamma) 

28: 

29:               if partition == old_partition then 

30:                          break 

31:               end if 

32:      end while 

33: 

34: ># Output the final partition 

35: return partition 

36: end procedure 

The proposed method of combining autoencoder-based 

deep learning of features with multiple clustering methods 

improves and optimizes the process of community 

detection in networks data. Integration in this structure 

guarantees well distributed and coherent neighborhoods in 

Louvain Partition Algorithm. The algorithm will also keep 

on running and the divide will keep adjusting and will only 

Algorithm 4: To read GML data 

Input: - path 

Output: - Graph G, Adjacency Matrix  

1: procedure read_gml_data(path)  

2:                 G ← read_gml(path, label=’id’) 

3:                 adjacency ← AdjacencyMatrix(G). todense() 

4:                 return G, adjacency 

5: end procedure 
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stop whenever it reaches a state that signifies a good and 

stable community structure. Finally, the function returns 

the final partition as a dictionary in which each node is 

paired with its community index; thus, presenting an 

improved and efficient community detection. 

7.2 Time complexity 

• Graph autoencoder training: The time complexity [5] 

is O (Ve. d2.L). Where Ve signifies the total number of 

vertices in the graph, d signifies the number of hidden 

dimensions, and L symbolizes the number of layers in 

the autoencoder. 

• K-means clustering: The worst-case complexity of 

time is [28] O (Ve. k. t) where k implies number of 

clusters and t signifies the number of iterations [28]. 

• Spectral clustering: The worst-case time complexity is 

calculated as O (Ve
 3). due to eigen value and vector 

computations [30]. 

• Louvain method: The time complexity is O (Ev log Ve). 

7.1 Space complexity 

• Graph autoencoder: The space complexity[5] is O (Ve. 

d+d2.L). 

• Clustering algorithms: The space complexity for K-

means, Spectral Clustering, is O (Ve
 2). 

• Community detection algorithms: The space 

complexity for Louvain [5], O (Ve + Ev) where ‘Ve’ is 

the number of nodes and ‘Ev’ is the number of edges [5]. 

• Combining the complexities: The Graph Autoencoder 

(GAE) training and the clustering and community 

detection algorithms, the overall complexities are: 
 

Time Complexity: O (Ve
 3) 

Space Complexity: O (Ve
 2) 

 

8 Results and discussion 

The research also shows that integrating feature learning 

through autoencoders alongside multiple clustering 

procedures enhances community detection remarkably. 

When it comes to assessing benchmark data sets, such as 

Karate Club and Dolphins, the method proves proficient 

in perceiving complex patterns/structures within the 

network data. 

8.1 Evaluation methods for assessing 

algorithm performance 

• Modularity score:    Modularity measures the strength of 

connections within groups [6], Higher modularity value 

displays stronger community structure on the divisions 

detected, in the networks.  

   Q =
1

2𝐸𝑣
∑ (𝐴𝑖.𝑗 −  

𝑘𝑖𝑘𝑗

2𝐸𝑣
) 𝛿(𝑐𝑖 , 𝑐𝑗)

𝑘𝑖,𝑗

𝑖,𝑗
       (7) 

where: 

• 𝐴𝑖.𝑗 is the actuality of the adjacency_matrix [5] of the 

graph, 

• Here, the value 𝑘𝑖 and 𝑘𝑗  are the degrees of nodes. 

• 𝐸𝑣 is defined as the total of all edges of the graph . 

• The nodes are arranged in several communities or 

groups and the particular nodes i and j belong to the 

communities of nodes 𝑐𝑖 and 𝑐𝑗. 

• δ(𝑐𝑖 , 𝑐𝑗) Kronecker [6] delta function [16] meaning it 

equals 1 if the indices  𝑐𝑖 and 𝑐𝑗  are equal and 0 if they 

are different [5]. 

• Silhouette score: It describes the extent of the 

resemblance of an object within the cluster to the other 

clusters[36] . It is defined as:    

d =  𝑏(𝑚) − 𝑎(𝑚)  (8) 

           𝑆(𝑚) =
𝑑

max (𝑎(𝑚),𝑏(𝑚))
                          (9) 

where: 

The intra-cluster distance a(m) measures the mean 

distance of ith data point from the other points belonging 

to its cluster [36].The inter-cluster distance b(m) average 

of the shortest distance from the ith point to all the points 

belonging to the different cluster [36]. d signifies the 

difference between the two distances.It must be noted that 

the overall silhouette coefficient is the average of s(m) for 

all instances [41]. Consequently, the silhouette score 

nearly equal to 1, testify that all the data points belong to 

the appropriate cluster. 

• Normalized mutual information (NMI) score:  

NMI  is employed in comparison of two clustering 

results [27]. As: 

        𝑁𝑀𝐼(𝑀, 𝑁) =
2.𝐼(𝑀;𝑁)

H(M)+H(N)
                (10) 

Where 

• The last is the mutual information of two clustering 

results M and N, which is defined as I(M;N) [27]. 

• Information entropies of M and N are represented by 

H(M) And H(N). An NMI value closer to 1 suggests that 

the predicted clusters are nearly identical to the actual 

clusters of the data. 

• Conductance:  

It is one of the measures of evaluation of the quality of the 

clusters or communities that are formed. For a subset of 

nodes S, it is defined as: 

(𝑆) =
|{(𝑈,𝑉)€ 𝐸:𝑢€𝑆 ,𝑣€ 𝑆|

min (vol(S),Vol(
V

S
))

                                  (11) 
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where: 

• ∣{(u,v)∈E: The desired quantity is defined as [42] 

|{(u,v)∈E: u∈S,v∈/S}|[3,6], the fraction of edges between 

the subset S and the rest of the graph. 

• vol(S) [42] sum of the degree of the nodes in S. 

• vol(V∖S) [42] sum of elements or degree of the nodes 

are not in the set S. 

 

• Adjusted rand score (ARS): 

The Adjusted Rand Score defines the similarity of two 

clusterings, by taking into account all the possible pairs of 

samples and counting the number of pairs included in the 

same or different clusters of the clustering prediction and 

the true clustering [27]. The ARS is adjusted for the 

chance grouping of elements: 

                𝐴𝑅𝑆 =
𝑅𝐼−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝐼

max(𝑅𝐼)−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝐼
                           (12) 

where: 

RI is the Rand Index. Expected RI is the expected value of 

the Rand index [43] which namely shows an expected of 

the current structure of a set of clusters. 

8.2 Comparison table  

The Comparison Table of Methods for community 

detection focuses on the key features, benefits and the 

limitations of each method based on factors including the 

accuracy, scalability and the computational complexity of 

the type of clustering and the applicability to large scale 

graphs. It is represented by table 1. 

Table 1:  Comparison table of methods 

S.No Method Approach Evaluation 

Metrics 

(Accuracy, 

NMI, ARS, 

Precision, 

etc.) 

Scalab

ility 

Modularity 

Optimization 

Key Benefits Strengths Limitations 

1 Autoenco

der + K-

Means 

Clusterin

g [44] 

get low-dimensional 
embeddings and 

feature learning using 

Autoencoder further 
applies K-Means for 

clustering   

Accuracy, 
Macro 

Precision, 

ARS, 
Modularity 

High Low Useful 
dimensionality 

reduction 

accompanied by 
uncomplicated 

clustering at the 

same time 

Uncomplicated, 
topological, 

high-speed 

clustering in the 
spatially 

smoother 

dimensions. 

Assumes 
spherical 

clusters, 

struggles with 
complex data 

2 Autoenco

der + 

Agglome

rative 

Clusterin

g  [45] 

An autoencoder is 
used to learn 

embeddings and 

hierarchical 
agglomerative 

clustering is 

performed. 

accuracy, 
NMI, ARS. 

Macro- 

precision, 
Macro- 

recall, 

Macro- F1-
score. 

Moder
ate 

Moderate However, the 
proposed model 

is capable of 

capturing 
power-law 

distributions 

that represent 
hierarchical 

structures in the 

latent 
representation 

space. 

Discovers the 
community 

relationships, 

which are 
particularly 

useful for 

hierarchical 
ones. 

Poor 
scalability in 

large datasets, 

computational
ly expensive 

and sensitive 

to linkage 
criteria. 

3 Autoenco

der + 

Louvain 

Algorith

m [46] 

The modularity of 

Louvain is used to 
optimize the 

Autoencoder 

embeddings. 

Modularity, 

NMI, ARS, 
Macro 

precision 

High High Implements a 

modularity 
optimization of 

Louvain that 

improves with 
learned 

representations. 

The algorithm 

discovery is 
highly scalable 

to large 

networks also 
Optimizes 

modularity, 

Even when 

there are good 
embeddings 

Louvain may 

fail to capture 
small 

communities 

because of its 
greediness, 

Limited in 

very dense 
graphs  

S.No Method Approach Evaluation 

Metrics 

(Accuracy, 

NMI, ARS, 

Precision, 

etc.) 

Scalab

ility 

Modularity 

Optimization 

Key Benefits Strengths Limitations 
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4 Autoenco

der + 

Louvain 

+ 

Agglome

rative   

[10]  

Integrates 
embeddings of 

autoencoder about 

what has been learnt 
into agglomerative 

clustering then 

employ Louvain to 
detect the dense 

communities   

NMI, 
Modularity, 

ARS 

Moder
ate 

High The described 
method is based 

on hierarchical 

and modularity-
based clustering 

of data and is 

aimed at 
creating a multi-

scale network. 

It seems to 
balance the 

global and the 

local structures. 

Low 
efficiency and 

high demand 

on 
computation. 

5 Autoenco

der + 

Spectral 

Clusterin

g [17] 

While autoencoder is 

applied to learn the 
feature 

representations of 

nodes, spectral 
clustering is used to 

generate latent space 

and partition 
communities. 

NMI, ARS, 

Modularity, 
Macro 

Precision, 

Macro 
Recall. 

High Moderate More efficiently 

partitions latent 
space by the 

help of spectral 

characteristics. 

Captures global 

structure, good 
for non-linear 

separations 

Very 

sensitive to 
the total of 

vertices in the 

graph, 
preventively 

expensive on 

large datasets 

6 Proposed 

Algorith

m 

Autoenco

der + 

Spectral 

Louvain 

[47] 

Embeddings from the 
autoencoder are 

segmented via 

spectral clustering, 
followed by Louvain 

for modularity. 

Modularity, 
NMI, ARS, 

Macro 

Precision, 
Conductance, 

Macro 

Recall, 
Accuracy 

High High Combines the 
approach of the 

global graph 

structure using 
the spectral 

approach with 

the optimized 
modularity 

approach. 

Efficient in 
unsupervised 

learning, 

detection of 
global clusters 

with strong 

modularity 
optimization, 

scalable 

Spectral 
clustering has 

a problem of 

high 
computational 

complexity if 

the graph is 
large. 

7 Autoenco

der + 

Louvain 

+ K-

Means 

[48] 

 autoencoder used for 

embeddings, Louvain 
for modularity 

optimization, , and K-

Means for improving 
the clustering results. 

Accuracy, 

Modularity, 
Macro 

Precision, 

Average 
Rand Score. 

Moder

ate 

Moderate Optimal trade-

off between the 
optimization of 

modularity and 

the clustering. 

 present a fast 

and 
interpretable 

community 

detection. 

Struggles 

with complex 
network 

structures, K-

Means is 
known for its 

difficulties in 

identifying 
non-convex 

clusters; still, 

Louvain may 
fail to identify 

smaller 

communities. 

8 Graph 

Convolut

ional 

Network

s (GCN)-

based 

methods 

[25], [49] 

 Finds node 

embeddings for a 

graph that allows for 
accounting for both 

features and 

relationships using 
graph convolutional 

networks. 

Accuracy, 

NMI, ARS, 

Macro 
Precision, 

Macro F1-

score,  

Moder

ate 

Moderate Both nodes 

features and 

pairwise 
connection in 

graph structures 

are employed 
for enhanced 

clustering. 

Effective with 

labelled data, 

node features, 
exceptional in 

graph-structured 

data and node 
classification. 

Requires 

labelled data, 

retraining for 
new tasks, 

Onerous to 

compute 
particularly 

when deep 

models or 
large graph 

scenarios are 

in real-life 
applications. 

9 GNN-

based 

methods 

[50] 

General framework 

for Graph Neural 
Networks 

Architecture to 

incorporate 
information of the 

closer neighbours. 

Accuracy, 

Macro-
Precision, 

Macro- 

Recall,  
ARS,  

Macro- F1-

score 
NMI, 

Moder

ate 

High Versatile 

containing both 
node and link 

information but 

suffer. 

Can work with 

unsupervised, 
semi-

supervised, or 

supervised 
tasks, learning 

from graph 

structures, An 
all-around tool 

and robust for a 

variety of graph 
computations. 

High 

computational 
cost solution 

and over-

smoothing 
issue in the 

deep 

architecture.   
struggle when 

applied to 

large-scale 
graphs 

consume high 

memory  

S. 

No 
Method Approach Evaluation 

Metrics 

(Accuracy, 

NMI, ARS, 

Precision, 

etc.) 

Scalab

ility 
Modularity 

Optimization 
Key Benefits Strengths Limitations 
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10 Graph 

Attention 

Network

s (GATs)  

[51] 

 Utilizes attention 
mechanism in 

assigning importance 

of neighbours in node 
embedding learning. 

NMI, ARS, 
Macro 

Precision, 

Macro F1-
score 

Moder
ate 

High Enhances the 
node and the 

edge feature 

representation 
using attention. 

  Introducing an 

effective method 

for node 

representation 

learning while 

having a precise 

control over the 

relevance of the 

neighbours. 

Captures 

importance of 

different edges  

High 
computational 

complexity, A 

computational
ly intensive 

approach and 

its memory 
demand 

increases with 

the size of the 
graph. 

11 Deep 

Walk 

[52] 

(Random Walk + 

Deep Learning) 
Acquires node 

representations by 

randomly walking on 
the graph with the 

Skip-Gram approach. 

NMI, ARS, 

Modularity, 
Macro 

Precision, 

Macro 
Recall, 

Accuracy 

High Moderate General-

purpose, 
generative node 

embedding that 

restores 
community 

information. 

 Adaptable to 

local and global 
graphs and easy 

to implement. 

Sensitive to 

hyperparamet
ers and 

sometimes 

fails to 
identify 

delicate 

community 
structure. 

Limited with 

dynamic 
graphs, 

12 Girvan-

Newman 

[33] 

Edge Betweenness 

Centrality, 
Successively, 

removes edges with 

the highest 
betweenness 

centrality for the 

purpose of detecting 
communities. 

Modularity, 

NMI, Macro 
Precision, 

Macro 

Recall, 

Low High Highly suitable 

when clusters 
are very distinct 

from each other. 

Highly suitable 

when clusters 
are very distinct 

from each other. 

 Highly 

computational
ly complex 

and not 

feasible for 
very large 

graphs. 

13 Node2Ve

c [53] 
(Biased Random 
Walk + Embeddings) 

Improves Deep Walk 

by incorporating 
biased random walks 

that allows enhanced 

exploration of the 
node 

neighbourhoods. 

Accuracy, 
NMI, ARS, 

Macro 

Precision, 
Macro 

Recall, 

High Moderate  The exploration 
and exploitation 

approach 

enhances the 
richness of the 

embeddings. 

Works well for 
identifying 

perfect clusters, 

when the data is 
clean. 

Struggles 
with multi-

scale 

community 
structures, 

Sensitive to 

parameter 
tuning. Not 

suitable for 

multi-scale 
community 

structures, 

14 Label 

Propagat

ion [54] 

Propagation-based 
Algorithm, it 

sequentially transmits 

labels through a 
graph in accordance 

with the Neighbour 

information. 

Accuracy, 
NMI, ARS, 

Macro 

Precision, 
Macro 

Recall, 

High Moderate High efficiency 
for large graphs 

and simple to 

deploy at a 
large scale. 

Highly scalable 
and simple. 

 May result in 
oversimplifie

d 

communities 
because 

labels spread 

out. 
Unreliable 

with 

overlapping 
communities, 

15 Info 

map[55] 

Flow-based 

Clustering, finds 
communities using 

information theory 

where minimum 
description length of 

random walks are 

identified. 

Modularity, 

NMI, ARS 
and Macro 

Precision 

High High  maintain both 

speed and 
accuracy for 

large graphs. 

Suitable for 

large graph 
problem. 

Preserves 

graph 
structure but 

may fail to 

identify the 
small 

communities. 

 

8.3 Evaluation metrics  

In the case of all performance measures, better 

performance always possesses the higher value of a 

measure; however, the importance of some particular 

measures, such as precision, recall, or overall accuracy, 

may be higher in one situation than in another depending 

on the context in which it is used or required. In this 

research, these metrics are employed in the autoencoder 

based community detection and then clustering to 

determine the effectiveness of the algorithm in detecting 

the communities in the networks. The performances of the 

community detection algorithms are assessed with a set of 

classification measures out of which some are discussed 

for proper evaluation of the results. The presented 

evaluation offers quantitative evidence of each 

algorithm’s utility, stability, and transferability across 



Community Detection in Social Networks: A Deep Learning… Informatica 49 (2025) 195–212 205 

various datasets, which makes the conclusions falsifiable 

and universal [56]. 

8.3.1  Precision 

• Micro precision: Subtracts the false positive count from 

the true positive count in all the discovered communities 

with the help of autoencoder and clustering method 

occurred at the global level for measures precision. 

•  Macro precision: Sums up the precision of every 

detected community without any preference for a 

particular community, offers an equal score or a clear 

picture of all the communities’ performance. 

•  Weighted precision: Takes the arithmetic mean of each 

detected communities’ precision and the number of true 

cases in each community is used to weigh each community  

average so that larger communities have more weight than 

the smaller ones. 

8.3.2   Recall 

• Macro recall: Calculate the recall for each of the detected 

communities, and then average this measure considering 

all of them as similar to each other. 

•  Micro recall: Measures recall globally by summing the 

number of true-positives and false-negatives[57] 

regarding all the communities that have been 

distinguished by the autoencoder and the clustering 

algorithm. 

• Weighted recall: Computes the average of recall of each 

detected community to balance their contribution to the 

final metric, keeping in mind bigger communities should 

contribute more. 

8.3.3  F1-Score 

•  Micro F1-Score: The mean of micro precision and micro 

recall, that gives the overall estimate of the autoencoder 

and clustering algorithm [57]. 

 Macro F1-Score: The combination of both macro 

precision and macro recall provides a balanced assessment 

of the algorithm’s effectiveness for each discovered 

community [57]. 

 Weighted F1-Score: Sums up all the F1-scores of each 

detected community and then divides by the number of 

true instances in each community to provide an estimated 

F1-score: [57] of the algorithm in the general framework 

of community detection. 

8.4 Tables and figures 

The following table 2 to table 5 represents the  

Classification Report of several clustering algorithms [56]  

such as K-Means [28], Spectral Clustering, agglomerative 

clustering [8], community detection algorithm Girvan-

Newman’s [33] and Louvain Algorithm [14], and their 

combinations of Louvain K-means, Louvain 

Agglomerative, Spectral Louvain All these algorithms are 

applied on two different data sets Zachary karate club  [11] 

and Dolphin datasets [12].  

 

Table 2: Evaluation metrics result - (Zachary Karate club dataset) 

 

Table 3: Evaluation metrics result - (Dolphin dataset) 

 

 

 

S.No. Algorithms NMI ARS Modularity Conductance Silhouette Score 

1 KMeans  Clustering 0.57 0.67 0.6 0.61 0.23 

2 Spectral Clustering 0.68 0.77 0.65 0.59 0.23 

3 Agglomerative Clustering 0.73 0.77 0.65 0.59 0.21 

4 Girvan Newman 0.84 0.88 0.71 0.57 0.22 

5 Louvain Algorithm 0.56 0.41 0.2 0.85 0.1 

6 Louvain KMeans 0.68 0.77 0.65 0.59 0.23 

7 Louvain Agglomerative 0.84 0.88 0.66 0.58 0.23 

8 Spectral Louvain 1 1 0.78 0.50 0.23 

S.No. Algorithms NMI ARS Modularity Conductance Silhouette Score 

1 KMeans Clustering 0.33 0.19 0.62 0.6 0.2 

2 Spectral Clustering 0.87 0.90 0.8 0.53 0.16 

3 
Agglomerative  

Clustering 
0.21 0 0.58 0.62 0.23 

4 Girvan Newman 0.88 0.88 0.81 0.52 0.15 

5 Louvain Algorithm 0.55 0.4 0.62 0.71 0.08 

6 Louvain KMeans 0.32 0.16 0.61 0.61 0.1 

7 
Louvain  

Agglomerative 
0.32 0.16 0.61 0.61 0.1 

8 Spectral Louvain 0.89 0.93 0.86 0.50 0.23 
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Table 4: Classification evaluation metric result (Zachary Karate Club Dataset) 

Table 5: Classification evaluation metric result (Dolphin Dataset) 

 

Details of the comparative studies that can be made using 

the assessment metrics for classification and community 

detection proposed here regarding each of the 

corresponding Figures (2 - 13) are stated in the caption for 

each of such figures. From Table 2 it can be noticed that 

the Louvain Agglomerative has a better performance in 

terms of NMI (0. 84), ARS (0. 88), and Modularity (0. 66) 

and has proved to be better than alternatives like K-means 

and Spectral Clustering. The Spectral Louvain method 

also yields high results with the optimum Modularity 

score of 0. 78 coupled with the minimum Conductance 

score of  

0. 50 which proves that there is a better way to recognize 

the communities of interconnection and thereby reducing 

inter-community links. Table 3 showed that up to this 

point, the Spectral Louvain algorithm outperforms all 

methods by registering the highest value for NMI 0.89, 

ARS 0. 93 and Modularity 0. 86. This suggests a strong 

capability in terms of reconstructing community structure 

within the context of the Dolphin dataset. The low 

Conductance score (0.52), This shows great performance 

of the proposed Spectral Louvain method and validate the 

algorithm on the basis of the conductivity measure that 

demonstrates its ability, to draw sharp and distinct line 

between communities. Other methods such as Girvan 

Newman and Agglomerative Clustering are also quite 

efficient and accurate, however they do not have the broad 

characteristics of the Spectral Louvain approach, most 

importantly in terms of NMI and ARS indicators that 

determine clustering accuracy as well as stability. The 

results in Tables 4 and 5 compare the performance of 

various communities’ detection algorithms across two 

datasets: the Zachary Karate Club and the Dolphin. 

 

 

 

 

 

Several evaluation parameters have been displayed in the 

tables such as Accuracy, Macro Precision, Macro Recall, 

Macro F1 Score, Weighted Precision, Weighted Recall, 

and Weighted F1 Score. Out of all the methods, Louvain 

K-means and Spectral Louvain performed significantly 

better in most of the cases, especially in the weighted 

metrics and Spectral Louvain touches the near perfect 

score of around (0.94 to 0.95) in case of Dolphin dataset, 

Spectral Clustering and Louvain Agglomerative are two 

methods, successful in optimizing different sample data 

sets. Based on the results obtained, Spectral Louvain with 

overall performance of 1. 0 i.e. 100% on all the measures 

evaluated has been identified as the best fit for Zachary 

Karate Club data set. Other algorithms like Agglomerative 

Clustering and Louvain Agglomerative also have good 

results, however Louvain alone performs poorly with 

metrics such as Macro F1 Score and Weighted F1 Score. 

K Means and GN are still quite sound but not as precise as 

Spectral Louvain. In given Figures 2-13,  

Each algorithm is represented by its corresponding serial 

number as follows: Being an integer, method can be 1 for 

K-means Clustering, 2 for Spectral Clustering, 3 for 

Agglomerative Clustering, 4 for Girvan Newman, 5 for 

Louvain, 6 for Louvain K-means, 7 for Louvain 

Agglomerative, and 8 for Spectral Louvain. Thus, based 

on the above Figures 2-13 and from the results given in 

table 2-6, it can be concluded that Algorithm 8 (Spectral 

Louvain) performs better than other algorithms with 

reasonable accuracy on most of the metrics, especially for 

the Karate Club dataset. Yet, even in the case of the 

Dolphin dataset, which also yields better results when the 

proposed methodology is applied compared to other 

algorithms.  

 

 

 

 

S.No

. 

Algorithms Accuracy Macro 

Precision 

Macro 

Recall 

Macro  

F1 Score 

Weighted  

Precision 

Weighted  

Recall 

Weighted      

 F1 Score 

1 KMeans 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

2 Spectral Clustering 0.94 0.94 0.94 0.94 0.94 0.94 0.94 
3 Agglomerative Clustering 0.94 0.94 0.94 0.94 0.95 0.94 0.94 

4 Girvan Newman 0.97 0.97 0.97 0.97 0.97 0.97 0.97 

5 Louvain 0.24 0.22 0.1 0.14 0.53 0.24 0.33 
6 Louvain KMeans 0.06 0.06 0.06 0.06 0.06 0.06 0.06 

7 Louvain Agglomerative 0.97 0.97 0.97 0.97 0.97 0.97 0.97 

8 Spectral Louvain 1 1 1 1 1 1 1 

S. 

No 

Algorithms Accuracy Macro 

Precision 

Macro 

Recall 

Macro   

F1 Score 

Weighted  

Precision 

Weighted 

Recall 

Weighted      

 F1 Score 

1 KMeans Clustering 0.27 0.22 0.21 0.22 0.3 0.27 0.28 
2 Spectral Clustering 0.02 0.01 0.02 0.02 0.01 0.02 0.01 

3 Agglomerative Clustering 0.6 0.73 0.7 0.59 0.82 0.6 0.58 

4 Girvan Newman 0 0 0 0 0 0 0 

5 Louvain 0.02 0.01 0 0.01 0.03 0.02 0.02 

6 Louvain KMeans 0.71 0.77 0.78 0.71 0.84 0.71 0.71 

7 Louvain Agglomerative 0.71 0.77 0.78 0.71 0.84 0.71 0.71 
8 Spectral Louvain 0.94 0.92 0.95 0.93 0.95 0.94 0.94 
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Figure 2: Evaluation Metrics Result (ARS Score) 

 

Figure 3: Evaluation Metrics Result (NMI Score) 

 
Figure 4: Evaluation Metrics Result (Modularity Score) 

 

Figure 5: Evaluation Metrics Result (Conductance Score)     

 

 

 

Figure 6: Classification Evaluation Metrics Result 

(Accuracy )   

 

Figure 7: Evaluation Metrics Result (Silhouette Score)   

 

Figure 8: Classification Evaluation Metrics Result 

(Macro Precision) 
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Figure 9: Classification Evaluation Metrics Result 
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Figure 11: Classification Evaluation Metrics Result 
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Figure 12: Classification Evaluation Metrics Result 
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Figure 13: Classification Evaluation Metrics Result 
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On the same kind of network, there is another algorithm 

called Algorithm 4 (Girvan Newman) and Algorithm 7 

(Louvain Agglomerative) which is also good for the 

Karate Club data set, but not effective at all in case of the 

Dolphin data set. For instance, Algorithm 4 (Girvan 

Newman), it outperforms itself on the Karate club dataset, 

whereas it yields zero remarks on the Dolphin dataset on 

all sorts of measures. Moreover, Graph 5 (Louvain) 

algorithm and algorithm 6 (Louvain K-Means) algorithm 

portray significant poor performance on the Dolphin 

dataset. 

Thus, the Algorithms Spectral Louvain based on the 

proposed methodology is the best overall but as with 

Dolphin dataset its superiority is less than in the Karate 

Club dataset but still better than other algorithms. 

Agglomerative also have good results, however Louvain 

alone performs poorly with metrics such as Macro F1 

Score and Weighted F1 Score. K Means and GN are still 

quite sound but not as precise as Spectral Louvain.  

9 Conclusion 

This paper presents the autoencoder based Spectral 

Louvain Algorithm for community detection and 

clustering in complex networks with the performance 

evaluation on the Zachary karate club and Dolphin 

networks. The general proposal of this paper utilized 

autoencoders to learn nodal representations for nodes, and 

then used k-means clustering, agglomerative and spectral 

and the Louvain algorithm for the detection of 

communities. The results offered a few advantages: 

Individual feature extraction is not required in this model, 

does not require re-training of the network for different 

sizes of the network and is valuable in large networks. 

The empirical results confirm that the Spectral Louvain 

outperforms the previous methods as it reached 100% of 

NMI and ARS in Zachary karate club and 78% modularity 

whereas in Dolphin it had 89% NMI, 93% of ARS and 

86% modularity having lowest conductance. Also, during 

the classification assessment, it possesses a higher 

accuracy of 94% in the Dolphin dataset than those 

methods as K-means and Girvan Newman with 27% and 

0% respectively. At Zachary Karate Club, Spectral 

Louvain got a score of 100 percent on all the evaluation 

criteria and hence validated its ability of detecting 

communities and ranking precision in various settings. 

Therefore, Spectral Louvain can be stated as a successful 

and accurate method of community detection in large 

networks, free from criticisms that were made concerning 

earlier approaches and convenience in terms of practical 

implementation. This research will serve as valuable input 

in the development of the autoencoder in community 

detection making deeper learning pointed towards 

complex social network analysis. 

10   Future work  

Future research could focus on several areas to further 

advance the field of community detection. One area is 

scalability, developing methods to efficiently handle 

larger networks with billions of nodes and edges. Another 

important area is dynamic networks, extending 

algorithms, an important area is dynamic networks, 

extending algorithms to capture evolving communities in 

dynamic networks over time. Applying these algorithms 

to diverse real-world networks, such as social media, 

biological networks, and financial systems, will also help 

validate their effectiveness in practical scenarios. 

Additionally, refining the existing algorithms to reduce 

computational complexity and improve speed without 

compromising accuracy is another promising area for 

future work. 

The experiments demonstrated the effectiveness of 

combining autoencoder-based feature learning with 

traditional clustering techniques for community detection. 

The results highlighted the potential of hybrid methods, 

particularly Spectral Louvain, in accurately identifying 

communities within complex networks.   

11 Nomenclature table 
Here is the expanded Nomenclature Table including 

additional terminology used 

 

Abbreviation/Term Definition 

AI Artificial Intelligence 

Autoencoder 
A type of artificial neural network used to learn 

efficient representations (for coding) of data 

GCN Graph Convolutional Networks 

GNN Graph Neural Networks 

NMI Normalized Mutual Information 

ARS Adjusted Rand Score 

RI  Rand Index 

SNA Social Network Analysis 

CDR Call Detail Record 

F1 
F1-Score (The avg./mean of Precision and 

Recall) 

K-means 
A method of vector quantization used for 
clustering analysis in data mining 

Spectral Clustering 
A clustering algorithm which relies on the 

eigenvalues of a graph Laplacian matrix 

Louvain Algorithm 
A modularity-based community detection 

technique. 

Modularity 
A way of summarizing how well a network fits 
together into communities. 

Precision 
True positives divided by total positive 

predictions 

Recall True positives divided by total actual positives 

Micro-Precision 
Precision calculated across all instances 
regardless of community size 

Macro-Precision 
Average precision of each community, treating 

all equally 

Weighted-

Precision 

Precision weighted by the size of each 

community 

Silhouette Score 
Determines the quality of mapping of an object 
into its cluster. 

Conductance 
Assesses the quality of clusters by addressing 

inter-cluster links. 

LatntDim 

Latent Space, in which raw data is located and 

subsequently mapped into a lower-dimensional 

space by an autoencoder. 
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Embedding 
Ongoing embedding of graph nodes in a 

continuous space. 

Adjacency Matrix 
A matrix used to represent a graph, with rows 
and columns indicating nodes and entries 

indicating edges 

Eigenvalue 
A scalar indicating the variance captured in 
principal component analysis or spectral 

clustering 

Node Embedding 
A method of mapping nodes to a continuous 
vector space for machine learning tasks 

Graph Laplacian 
A matrix used in graph theory that reflects the 

structure of a graph 
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