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In this research, a unique method for automatically and simultaneously choosing significant features 

as well as cluster numbers from a dataset is proposed. The Social Group Optimization (SGO) algorithm 

is used as a metaheuristic. The SGO incorporates two new ideas for threshold setting and encoding. 

During the optimization phase, several features and cluster centers are encoded using the encoding 

scheme. The dataset variance is utilized to determine the value of the threshold for both clusters as well 

as features. A new clustering criterion is employed to enhance the efficiency of the search process. We 

compare the proposed algorithm's performance to eight newly developed clustering algorithms and 

evaluate it on nine well-known real-world datasets. The statistical significance of the SGO-based 

approach, evaluated through classification accuracy, is assessed using T-tests. Results indicate that the 

SGO method is extremely statistically significant in 6 cases, very statistically significant in 2 cases, and 

statistically significant in 1 case compared to the second-best algorithm. Additionally, this method 

effectively identifies the optimal number of clusters and features from the dataset without user 

input. Microarray data is also analyzed using this method to demonstrate the algorithm's accuracy and  

success. 

Povzetek: Raziskava predstavlja metodo SGO_FSC, ki združuje hkratno optimizacijo izbire značilnosti 

in gručenja z algoritmom socialne optimizacije skupin, kar izboljšuje analizo. 

 

1 Introduction  
An unlabeled dataset is divided into clusters of related 

data points via clustering. Those data points which 

resemble one another but are distinct from those in other 

groups make up each group, which is referred to as a 

cluster [1]. Numerous fields, such as pattern recognition, 

image segmentation, spatial database analysis, textual 

document analysis, machine learning, and pattern 

recognition, use clustering. Numerous clustering 

algorithms are reported in the literature [2,3], typically 

categorized into two types: hierarchical and partitional. 

Hierarchical clustering creates a structure of divisions that 

include the arrangement of each level within the following 

level in the structure [4]. Nevertheless, there are numerous 

drawbacks to hierarchical clustering methods. These 

include the fact that data points can only be moved inside 

the cluster to which they have already been assigned and 

the fact that they cannot differentiate between clusters that 

overlap [5]. In contrast to this, the data is divided into a 

number of sets of separate clusters in partitional 

clustering. This study specifically concentrates on 

partitional clustering. 

All the features are treated equally by many 

partitional clustering algorithms regardless of their 

relevance, which may only sometimes be suitable. Certain 

attributes may be inconsequential or duplicative, 

particularly in datasets with many dimensions, which can 

impede attaining superior outcomes. Therefore, selecting 

relevant features that enhance the clustering process is 

crucial. This selection not only improves clustering 

accuracy but also reduces computational time and storage 

space. Furthermore, the task of identifying the most 

suitable number of clusters is a considerable obstacle in 

partitional clustering. Simultaneously choosing 

appropriate traits and finding out the optimal number of 

clusters is a particularly difficult undertaking. This 

requires a method that can automatically and 

simultaneously calculate the appropriate number of 

clusters and relevant attributes during runtime. This study 

introduces a method called SGO_FSC, which combines 

automatic feature selection and clustering using the Social 

Group Optimization algorithm. While there have been 

some efforts in this area, none have completely utilized the 

statistical property of variance in datasets. As a result, we 

were inspired to create an algorithm that can effectively 

find out the number of clusters and their corresponding 

characteristics. 
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We aim to concurrently compute the number of 

clusters and relevant features in this research, even if we 

don't know the exact number of clusters in the dataset. To 

encode characteristics and clusters separately, a composite 

agent representation was devised. Furthermore, to 

precisely and effectively define the ideal number of 

clusters and features, a novel threshold concept has been 

presented. To calculate the thresholds, the statistical 

attribute, or variance, of a particular dataset is utilized. 

“Three clustering metrics—the number of clusters, 

pertinent characteristics, and classification error—are 

used to assess the effectiveness of the suggested method 

on real-world datasets. An analysis is done by contrasting 

the suggested method with eight popular current methods. 

Analysis of microarray data has also been done using the 

SGO_FSC. The experimental findings show how 

SGO_FSC is effective and efficient in finding out the ideal 

number of clusters with” pertinent attributes. 

 

The key contributions and findings “of this work are 

summarized as follows: 

• Simultaneous optimization: The proposed 

SGO_FSC technique effectively determines both 

the optimal number of clusters as well as relevant 

features” accurately and simultaneously. 

• Dynamic threshold setting: A novel dynamic 

threshold setting method was introduced for 

finding out the features as well as the count of 

clusters. This method enhances the algorithm's 

ability to adapt to various datasets. 

• Fitness function: We proposed a new fitness 

function that improves the search efficiency for 

optimal clusters and features, contributing to the 

overall effectiveness of the SGO_FSC algorithm. 

• Experimental evaluation: The SGO_FSC 

algorithm was tested on different 9 real-life 

datasets. The results demonstrated its robustness 

and versatility across different types of data. 

• Statistical validation: Statistical t-tests were 

conducted to validate the significance of the 

results achieved by SGO_FSC, confirming its 

superior performance compared to other 

clustering techniques. 

• Microarray data analysis: The proposed 

algorithm was also applied to microarray 

datasets, where it showed improved performance 

over other competitive clustering techniques. 

 

The remainder of this work is divided into as follows. 

The basics of clustering are explained in Sect. 2. The 

relevant work in the area of simultaneous clustering 

along with feature selection is briefly explained in 

Section 3. Sect. 4 presents the specifics of the 

suggested strategy. Section 5 discusses the 

experimental findings and focuses on using the” 

suggested method to analyze microarray data. Finally, 

Sect. 6 presents conclusions. 

 

2 Scientific background 
2.1 Clustering analysis 

Consider a set 𝑋 of 𝑁 data points, denoted as 𝑋 =
{ 𝑥1, 𝑥2, 𝑥3, … … … , 𝑥𝑁},  where each data point 

𝑥𝑖 =(𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … … … , 𝑥𝑖𝐷) lies in 𝑅𝐷. Here, 𝑥𝑖𝑗  

represents the j-th feature of 𝑥𝑖 data point. Assume that X 

is divided into K clusters, 𝐶 = {𝐶1, 𝐶2, 𝐶3, … … … , 𝐶𝐾}, 

with data points in a given cluster being identical to each 

other and data points in distinct clusters being dissimilar 

[5]. The clusters must meet the following requirements 

[6]: 

• A minimum of one data point must be present in 

each clust 

 𝐶𝐾 ≠ ∅ for k=1, 2, …, K             (1)       

                                              

• Clusters must be mutually exclusive, meaning 

they do not share any data points: 

 

𝐶𝐾 ∩ 𝐶𝑙 = ∅  for k, l=1, 2, ………., K and 

k≠l                                                 (2)  

     

• Every data point must be included in one of the 

clusters: 

 

⋃ 𝐶𝐾 = 𝑋𝐾
𝑘=1                            (3)   

                                       

Clusters are created by allocating data points 

according to how similar or dissimilar they are. The most 

widely used dissimilarity metric is the Euclidean distance, 

which is the separation between a data point 𝑥𝑖 and the 

cluster center 𝑚𝑘 of a cluster 𝐶𝐾 : 

 

𝐷𝑖𝑠𝑡𝑘𝑖 = (∑ (𝑥𝑖𝑗 − 𝑚𝑘𝑗)2𝐷
𝑗=1 )1/2            (4)     

 

2.2 Overview of SGO 
Satapathy et al [7] proposed a population-based 

optimization technique named as social group 

optimization (SGO) algorithm which attempts to model 

human social behavior to solve difficult problems. In 

SGO, the potential answers to a problem are seen as a 

group of people, or social grouping. An individual's 

knowledge contributes to the assessment of an 

individual’s performance. The optimization method has 

two distinct “phases: the Improving Phase and the 

Acquiring Phase. The solution to the problem corresponds 

to the person, and the fitness function determines the 

knowledge level of the person. The procedure for SGO can 

be outlined as follows: 

                                                

Step 1: Person’s initialization:  We initialize the N 

individual at random within the specified search interval 

as  

      𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3, … … , 𝑝𝑖𝐷),   

∀𝑖 = 1,2,3,4, … … . , 𝑁                               (5) 

Where 𝑝𝑖𝑗  represents the position of ith person in jth 

dimension in D dimensional space. 

 

Step 2: Evaluation of fitness and computation of the best 

(gbest) person of the group: Calculate the fitness values 

for each individual at every iteration. The ‘gbest’ 

individual can be calculated as follows (given a 

minimization problem”): 



Simultaneous Clustering and Feature Selection Using Social… Informatica 48 (2024) 199–218 201 

         𝑓𝑖 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑖)                             (6)                                            

 

[minvalue, index] =min{𝑓𝑖; 𝑖 = 1,2,3 … … , 𝑁} 

  gbest=P (index, :)                                    (7)                                                  

 

Step 3: Compute the Improving phase:  Launch the 

improvement phase to bring people's knowledge up to date 

using 'gbest' in the following ways; 

 

 𝑛𝑒𝑤𝑃𝑖 = 𝑐 ∗ 𝑃𝑖 + 𝑟𝑎𝑛𝑑 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑃𝑖)          (8)                                            

 

Where 𝑟𝑎𝑛𝑑~𝑈(0,1), 𝑐 is known as “self- 

introspection parameter lies in between 0 and 1.  

Update  𝑛𝑒𝑤𝑃𝑖 if it gives a better fitness than 𝑃𝑖. 

 

[minvalue, index] =min{𝑓𝑖; 𝑖 = 1,2,3 … … , 𝑁}   (9)                       

       gbest= P (index, :) 

 

Step 4: Compute the” Acquiring phase: Start the 

acquisition phase by selecting a person at random from the 

group and going with the "gbest" in order to learn more 

about them. 

 

Randomly select one person𝑃𝑟 , where 𝑖 ≠ 𝑟,  

       If 𝑓𝑖< 𝑓𝑟 

      𝑛𝑒𝑤𝑃𝑖 = 𝑃𝑖 + 𝑟𝑎𝑛𝑑 ∗ (𝑃𝑖 − 𝑃𝑟) + 𝑟𝑎𝑛𝑑 ∗
(𝑔𝑏𝑒𝑠𝑡 − 𝑃𝑖)   

 

       Else 

           𝑛𝑒𝑤𝑃𝑖 = 𝑃𝑖 + 𝑟𝑎𝑛𝑑 ∗ (𝑃𝑟 − 𝑃𝑖) + 𝑟𝑎𝑛𝑑 ∗
(𝑔𝑏𝑒𝑠𝑡 − 𝑃𝑖)   

 

       End for                (10)                                                                                                     

 

Update  𝑛𝑒𝑤𝑃𝑖 if it gives a better fitness than 𝑃𝑖. 

 

[“minvalue, index] =min{𝑓𝑖; 𝑖 = 1,2,3 … … , 𝑁} 

gbest=P (index, :)                                               (11)

                                                             

Step 5: Termination condition: Repeat Steps 3 to step 4 

until the iteration process reaches its maximum number of 

iterations. The gbest person will provide desired solution. 

 

3 Related works 
This section presents a concise overview of the 

relevant literature on the simultaneous application of 

feature selection and clustering,  

summarized in a table Table 1 highlights the strengths and 

weaknesses of each method. 

 

 

 

 

Table 1: Strength and weakness of the methods related to feature selection and clustering

Author(s) Method Strengths Weaknesses 

Vaithyanathan & 

Dom [8] 

Bayesian method 

using stochastic 

complexity 

Simultaneously calculates clusters 

and characteristics, efficient feature 

clustering 

Dependent on the quality of 

clustering, vulnerable to noisy 

features 

  

Frigui & Nasraoui 

[9] 

Feature weighing and 

clustering 

Learns a unique set of feature weights 

for each cluster, useful in image 

segmentation 

Does not address potential feature 

redundancy or scalability 

  

Kim et al. [10] ELSA wrapper with 

K-Means & Gaussian 

mixture 

Combines wrapper model with two 

clustering techniques, effective in 

clustering and feature selection 

Limited scalability and potential 

for local optima issues 

 

  

Dy & Brodley 

[11] 

EM wrapper 

framework 

Addresses biases in clustering using 

cross-projection normalization, 

effective feature subset selection 

Sensitive to dimensionality, 

maximum likelihood criteria can 

lead to biased results 

 

  

Roth & Lange 

[12] 

Feature selection with 

automatic 

significance 

Introduces feature saliency to tackle 

feature selection, single EM run for 

features and clusters 

Assumes conditional 

independence, might overlook 

dependencies among features 

  

Law et al. [13] An expectation-

maximization (EM) 

algorithm 

Effectively selects relevant features 

by incorporating feature saliency, 

leading to simultaneous detection of 

significant features and clusters 

within a single EM run. 

May struggle with datasets that 

contain highly correlated or noisy 

features, as the assumption of 

independence might limit the 

method's robustness. 
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Author(s) Method Strengths Weaknesses 

Sheng et al. [14] NMA_CFS (niching 

memetic algorithm) 

Avoids local optima with niching 

strategy, uses local search to refine 

clusters and feature centers  

Higher computational complexity, 

sensitive to initialization 

  

Maugis et al. [15] Backward stepwise 

selection for Gaussian 

models 

Integrated likelihood criterion for 

exploring features and clusters 

simultaneously 

Time-consuming due to stepwise 

selection, may overfit to data 

 

  

Zeng & Cheung 

[16] 

Feature selection with 

iterative clustering 

Markov blanket filter for eliminating 

redundant features, iterative 

clustering integration 

May converge prematurely, 

requires careful tuning of 

parameters  

Sarvari et al. [17] Harmony search 

algorithm for 

clustering and feature 

selection 

Harmony vector representation 

enhances feature and cluster 

selection, efficient local search 

Similar limitations to NMA_CFS, 

potentially higher computational 

cost 

 

  

Cobos et al. [18] IHSK (K-Means + 

Harmony Search) 

Combines global and local search, 

improves cluster positioning accuracy 

HS method may require fine-

tuning for optimal performance, 

risk of overfitting 

Hamla1& 

Ghanem [19] 

Filter-embedded 

hybrid feature 

selection method 

Excels at removing redundant and 

irrelevant features, crucial in high-

dimensional microarray data. 

Performance depends on the 

quality of the initial feature subset 

chosen by the Fisher Score. 

  

Akarsu & 

Karahoca [20] 

FS_ACO (Ant 

Colony Optimization) 

ACO-based clustering followed by 

backward selection, effective in 

feature exclusion 

May suffer from high complexity 

and slow convergence 

  

Javani et al. [21] PSO for clustering 

and feature selection 

Efficient simultaneous clustering and 

feature selection with novel fitness 

function 

Risk of being trapped in local 

optima, complex parameter tuning 

  

Guan et al. [22] Beta-Bernoulli + 

Dirichlet Process 

Mixture Model 

Hierarchical model with Bayesian 

formulation for feature selection and 

clustering 

Requires high computational 

resources, complex to implement 

  

Swetha & Devi 

[23] 

Randomized PSO Improves PSO with random feature 

selection, good for handling high-

dimensional datasets 

Random selection may lead to 

suboptimal feature sets, 

convergence issues 

 

  

Du & Sheng [24] JCFS (Joint 

Clustering & Feature 

Selection) 

Combines spectral clustering and 

supervised feature selection, 

preserves manifold structure 

Complex framework, potential for 

overfitting in small datasets 

 

  

Song et al. [25] FAST (Graph-

theoretic clustering) 

Effective feature clustering with least 

spanning tree method, suitable for 

large datasets 

Limited to specific graph-based 

clustering methods, dependent on 

feature distribution 

  

Naik & Satapathy 

[26][27] 

Weighted principal 

components with 

differential evolution 

Simplifies clustering of high-

dimensional data, fast convergence 

Risk of premature convergence, 

dependent on parameter tuning 

Kumar et al. [28] Enhanced NMA_CFS Automated control parameter 

selection for NMA_CFS, optimizes 

both clustering and feature selection 

Similar to NMA_CFS, potential 

scalability issues in large datasets 
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Author(s) Method Strengths Weaknesses 

Satapathy et al. 

[29][30] 

Automated feature 

selection 

Focuses on feature selection for 

datasets, reduces manual effort 

May miss complex relationships 

between features and clusters 

  

Satapathy &Naik 

[31] 

Hybridization of 

Roughest and DE 

Effective feature selection for 

datasets, reduces manual effort 

Risk of premature convergence, 

dependent on parameter tuning 

         In presented related works, the primary challenge 

that remains is balancing the trade-off between accurate 

feature selection and effective clustering, particularly 

when dealing with high-dimensional datasets. Various 

methods utilize evolutionary algorithms, expectation-

maximization (EM), or specific filter and wrapper models, 

but each approach has some limitations such as getting 

stuck in local optima, difficulty with large datasets, or 

assumptions about feature independence. 

 

The SGO algorithm could be effectively applied to 

address these limitations in several ways: 

 

• Scalability and flexibility: SGO, which models 

optimization processes based on group behaviors, can 

adaptively balance exploration and exploitation. In 

contrast to many other evolutionary and memetic 

algorithms (such as NMA_CFS, PSO, and FS_ACO), 

SGO can adjust group dynamics to avoid convergence 

to local optima. This could enhance clustering 

effectiveness when datasets are high-dimensional, 

noisy, or imbalanced. 

• Handling of feature independence: Methods like 

those presented by Law et al. and Dy and Brodley 

assume conditional independence among features, 

which can be a limiting factor. SGO's stochastic 

nature and adaptive grouping strategies could better 

handle interdependencies among features without 

requiring strict independence assumptions. 

• Simultaneous feature selection and clustering: 

Many algorithms discussed in the literature, such as 

ELSA and IHSK, require separate stages or multiple 

algorithms for feature selection and clustering. SGO 

can unify these processes, ensuring the simultaneous 

selection of optimal features and clusters in a single 

run, which can improve computational efficiency and 

the accuracy of both tasks. 

• Dimensionality reduction: Methods like the 

harmony search-based algorithms or PSO often 

struggle with extremely high-dimensional datasets. 

SGO, by mimicking social behaviors, can more 

effectively reduce the feature space, selecting only the 

most relevant features while maintaining or 

improving classification performance. 

In summary, applying SGO to the domain of simultaneous 

feature selection and clustering offers scope for 

improvement in terms of convergence behavior, flexibility 

in handling feature interdependencies, and enhanced 

scalability for high-dimensional datasets. This could result 

in better performance across a wide range of challenging 

clustering tasks compared to existing state-of-the-art 

methods. 

 

4 Proposed approach 
4.1 Automatic feature selection then 

clustering using SGO 
An automatic feature selection then clustering using 

social group optimization (SGO_FSC) compromises the 

below mentioned pseudocode.  

 
Pseudocode: SGO_FSC 

Initialize: 

    max_iterations     # Maximum number of iterations 

    population_size    # Number of individuals (persons) 

    K_max              # Maximum number of clusters, computed using equation (12) 

     

For each individual in the population: 

    Initialize K_max cluster centers randomly 

    Initialize K_max + D activation thresholds randomly (where D is the number of data  

    dimensions) 

 

For iteration = 1 to max_iterations: 

    For each individual: 

        Evaluate activation thresholds for features and clusters (refer to Sect. 4.1.4) 

    For each data point: 

        Assign the data point to the closest active cluster center based on Euclidean distance 

    For each empty cluster: 

        Recalculate cluster center (refer to Sect. 4.1.5) 

    For each individual: 

        Calculate fitness value based on cluster quality and feature selection (refer to Sect. 4.1.6) 
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        Use SGO adaptation method to update individual parameters 

    For each individual: 

        Assign selection thresholds to clusters and features (refer to Sect. 4.1.2) 

        For each individual: 

        Determine cutoff thresholds based on updated selection thresholds (refer to Sect. 4.1.3) 

   Return the best individual: 

    Optimal feature subset 

    Cluster centers 

    Final number of clusters 

 

The flowchart of the SGO_FSC algorithm is given in Fig 1. 

 
                                               Figure 1: Flowchart of the SGO_FSC algorithm 

 

4.1.1 Person representation and initialization 
In SGO_FSC, features as well as “cluster centers with 

varying numbers of clusters are encoded using a variable 

composite person representation approach. According to 

the suggested approach, a person a made up of a vector of 

a real numbers with dimensions of (𝐾𝑚𝑎𝑥  + 𝐷)+( 𝐾𝑚𝑎𝑥  

× 𝐷) for a maximum of  𝐾𝑚𝑎𝑥  clusters and N data points, 

each with D dimensions. In this case, 𝐾𝑚𝑎𝑥, the upper 

bound on the number of clusters, is defined as [32]:  
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𝐾𝑚𝑎𝑥 = 3√𝑁 × 𝐷                                                         (12) 

 

Positive real numbers in the interval [0,1] make up 

the” part (𝐾𝑚𝑎𝑥  + 𝐷) of an individual's entries in this case. 

The 𝐾𝑚𝑎𝑥 entry values govern which cluster during the 

clustering process will activate the relevant cluster and 

whether or not. Whether or not to activate the associated 

features depends on the values of the second D element. 

The 𝐾𝑚𝑎𝑥 cluster centers of size D are indicated by Part II 

(𝐾𝑚𝑎𝑥  × 𝐷) A person i at a specific time t is represented 

by their vector 𝑉𝑖(𝑡)  as shown in Fig 2. 

 

 
           Figure 2: Illustration of vector 𝑉𝑖(𝑡) 

 
Where 𝐶𝐶𝑖,𝑗 represents “the jth cluster center of the 

ith person, and 𝑇𝐻𝐶𝑖,𝑗 represents the associated threshold 

value of the cluster center 𝐶𝐶𝑖,𝑗. The symbol 𝑇𝐻𝐹𝑖,𝑗 

denotes the threshold value of the jth feature in each 

cluster of the ith individual. The 𝑇𝐻𝐶𝑖,𝑗  and 𝑇𝐻𝐹𝑖,𝑗 are the 

selection thresholds used to choose active cluster centers 

and features, respectively. To provide an illustration, 

please consider the following example.” 

 

 

Example 1 

Assume that 𝐾𝑚𝑎𝑥 = 4 and D = 3, meaning that there 

can be a maximum of four computed clusters and that the 

space has three dimensions. The representation can be 

seen in Fig. 3 below: 

 

 
 

             Figure 3: Person representation 
 

For four clusters, the cluster thresholds has been 

represented by “the first four entries (0.6, 0.7, 0.4, and 

0.8).The feature selection thresholds are listed as follows: 

0.7, 0.3, and 0.8. There are three characteristics in each 

cluster. (4.9, 3.2, 1.6), (5.7, 4.4, 1.0), (6.9, 3.0, 4.9), and 

(7.7, 3.1, 2.4) are the remaining entries that correspond to 

the four cluster centers. 

 

4.1.2 Threshold setting computation 
This work proposed a new approach based on intra-

cluster variation for computing the threshold for cluster 

center [33]. Therefore, the suggested criterion for 

selecting the cluster center is defined as:  

 

𝑇𝐻𝐶𝑚 = √
1

𝑛𝑚
∑ (𝑥𝑖

𝑚 − 𝐶𝑚)
𝑛𝑚
𝑖=1 ,                    where 

m=2,……, 𝐾𝑚𝑎𝑥       (13) 

 

In this case, the selection threshold for cluster m is 

shown by  𝑇𝐻𝐶𝑚. The ith data point in the cluster 𝐶𝑚is 

represented by the symbol 𝑥𝑖
𝑚. The number of data points 

that apply to cluster 𝐶𝑚is indicated by the 𝑛𝑚. 
The following suggested formula “is used to calculate 

the relevance/importance of the same feature, averaged 

over all clusters, corresponding to each cluster (the 

number of clusters being determined automatically): 

 

𝑇𝐻𝐹𝑞 =
1

𝐾
∑ (

𝑣𝑟𝑞−𝑣𝑟𝑞,𝑖

𝑣𝑟𝑞

)𝐾
𝑖=1 ,  where q=1,2,,,,,,,D                          

                   (14) 

 

In this case, 𝑇𝐻𝐹𝑞  and 𝑣𝑟𝑞
 stand for the dataset's qth 

feature's threshold values and variance, respectively. The 

variance of the qth feature in the ith cluster is denoted by 

𝑣𝑟𝑞,𝑖
. K is the number of clusters that were chosen to divide 

the dataset. The average significance value of the qth 

feature in the clustering structure is shown by 𝑇𝐻𝐹𝑞. This 

value (𝑇𝐻𝐹𝑞) is close to 1 on a one-point scale, indicating 

that the clusters in the current solution are dispersed 

widely for the feature, which makes it valuable for 

identifying clustering structure. This” equation is essential 

to “our algorithm. 

 

4.1.3 Threshold cutoff computation 
The mean values, which are calculated across all 

dimensions for feature thresholds and all clusters for 

cluster thresholds, are used to define the cutoff feature 

threshold and cluster threshold values” respectively. The 

mathematical formulation of the cluster selection cutoff 

threshold (𝑇𝐻𝑐−𝑐𝑢𝑡𝑜𝑓𝑓) is as below: 

 

𝑇𝐻𝑐−𝑐𝑢𝑡𝑜𝑓𝑓 =
1

𝐾
∑ 𝑇𝐻𝐶𝑚

𝐾
𝑚=1     (15)                                

 

In the similar fashion. 𝑇𝐻𝑓−𝑐𝑢𝑡𝑜𝑓𝑓 (cutoff threshold 

for feature selection) is transformed as: 

𝑇𝐻𝑓−𝑐𝑢𝑡𝑜𝑓𝑓 =
1

𝐷
∑ 𝑇𝐻𝐹𝑞

𝐷
𝑞=1     (16) 

                                                  

The cutoff thresholds i.e., 𝑇𝐻𝑐−𝑐𝑢𝑡𝑜𝑓𝑓  as well as 

𝑇𝐻𝑓−𝑐𝑢𝑡𝑜𝑓𝑓 feature are adjusted to the value 0.5 at the start 

of the algorithm.  

 

Example 2  

 

In the agent under consideration in Example 1, “the 

cluster center and feature selection thresholds are (0.6, 0.7, 
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0.4, 0.3) and (0.7, 0.3, 0.8), respectively. The” values of 

𝑇𝐻𝑐−𝑐𝑢𝑡𝑜𝑓𝑓  is equal to 0.5 and 𝑇𝐻𝑓−𝑐𝑢𝑡𝑜𝑓𝑓 is equal to 0.6, 

according to the previously described proposed notions. 

 

4.1.4 Active cluster center and feature 

extraction 
On the basis of 𝑇𝐻𝑐−𝑐𝑢𝑡𝑜𝑓𝑓  as well as 

𝑇𝐻𝑓−𝑐𝑢𝑡𝑜𝑓𝑓which are corresponding cutoff threshold 

values, the selection of features as well as cluster centers 

is done. Cluster center 𝐶𝐶𝑖𝑗 is chosen for related dataset 

splitting if and only if the threshold value of 𝑇𝐻𝐶𝑖𝑗  is 

greater than𝑇𝐻𝑐−𝑐𝑢𝑡𝑜𝑓𝑓 . To extract the center of an active 

cluster, follow these steps: 

If 𝑇𝐻𝐶𝑖𝑗 > 𝑇𝐻𝑐−𝑐𝑢𝑡𝑜𝑓𝑓  “then the jth cluster center in 

ith person ( 𝐶𝐶𝑖𝑗  is active Else jth cluster center is 

inactive) 

Here, 𝑇𝐻𝐶𝑖𝑗  denotes the jth cluster center in ith 

person. 𝑇𝐻𝑐−𝑐𝑢𝑡𝑜𝑓𝑓  is cutoff threshold for cluster center. 

Similarly, the rule for active feature extraction is 

given below: 

If” 𝑇𝐹𝐶𝑖𝑗 > 𝑇𝐻𝑓−𝑐𝑢𝑡𝑜𝑓𝑓  “then the jth feature in each 

cluster centers for ith person is active Else jth feature is 

inactive 

Here, 𝑇𝐹𝐶𝑖𝑗denotes the jth feature in the ith person. 

𝑇𝐻𝑓−𝑐𝑢𝑡𝑜𝑓𝑓 is cutoff threshold for feature. The 

computation of 𝑇𝐻𝑐−𝑐𝑢𝑡𝑜𝑓𝑓 and 𝑇𝐻𝑓−𝑐𝑢𝑡𝑜𝑓𝑓is mentioned 

in Sect. 4.1.3. 

While SGO is being updated, it is possible that none 

of the thresholds will be higher than the cutoff threshold 

value” (𝑇𝐻𝑐−𝑐𝑢𝑡𝑜𝑓𝑓  and 𝑇𝐻𝑓−𝑐𝑢𝑡𝑜𝑓𝑓. Two thresholds, 

chosen at random, should be reset to values higher than 

the cutoff level in this case. 

 

Example 3  

Similar to Example 1, this example uses the agent's 

cluster center and feature selection criteria, which are (0.6, 

0.7, 0.4, 0.3) and (0.7, 0.3, 0.8) resp. In Example 2, 0.5 and 

0.6 are the cutoff thresholds utilized for cluster centers 

(𝑇𝐻𝑐−𝑐𝑢𝑡𝑜𝑓𝑓) and features (𝑇𝐻𝑓−𝑐𝑢𝑡𝑜𝑓𝑓)), respectively. 

The number of clusters in the dataset is first 

ascertained using the cluster center thresholds. Only two 

cluster center thresholds (0.6 and 0.7) are allowed to be 

higher than 0.5, according the guidelines. The cluster 

centers that are now active are (4.9, 3.2, 1.6) and (5.7, 4.4, 

1.0). The centers of these active clusters are shown below 

(in circles). 

The significant features from the respective active 

clusters are then determined using the feature selection 

thresholds. In this case, the cutoff threshold value (0.6) is 

less than the two feature selection thresholds (0.7 and 0.8). 

As a result, each active cluster center chooses the first and 

third attributes (highlighted in bold). 

 

 
  

Figure 4: Person representation 

 

4.1.5 Cluster center validation 
An empty cluster could arise from a situation where 

no data points are included in a specific cluster. “When a 

cluster's center is outside the distribution points' 

boundaries, this circumstance arises. The cluster center for 

that specific cluster can be reinitialized in order to resolve 

this problem. Next, assign (n = K) data points to every 

cluster center, making sure that every data point is 

assigned to the cluster center that is closest to it.” 

 

Example 4 

Three active clusters are present in a dataset 

consisting of 150 data points in a three-dimensional 

feature space. For a given instance, the cluster centers are 

(1.9, 0.52, -0.02), (5.0, 4.1, 0.9), and (7.1, 2.2, 1.8).  

In this situation, the cluster center (1.9, 0.52, -0.02) 

does not have any data points attributed to it since it lies 

outside the border of the distribution of data points. By 

employing the average computation formula, 30 data 

points (n = K) are allocated to the closest cluster centers.  

Consequently, the recently created cluster centers are 

recalculated as follows: 

•  (4.128, 3.269, 1.601) 

•  (3.900, 2.832, 1.266) 

•  (5.789, 3.456, 0.976) 

 

4.1.6 Fitness function computation 
The clustering criteria have a crucial role in the 

clustering algorithm's performance. Poor outcomes could 

result from selecting clustering criteria arbitrarily. We 

have selected the I-index following a comprehensive 

review of the criteria. This is how it is calculated 

mathematically: 

 

𝐼(𝐾) =  (
1

𝐾
×

𝐸1

𝐸𝐾
× 𝐷𝑆𝐾)𝑃     (17) 

                 

Here, 𝐸𝐾 = ∑ ∑ 𝐷𝑖𝑠𝑡𝑒(𝑥𝑗
𝐾 , 𝐶𝐶𝑖)

𝑛𝐾
𝑗=1

𝐾
𝑖=1  and 𝐷𝑆𝐾 =

𝑚𝑎𝑥𝑖,𝑗=1
𝐾 𝐷𝑖𝑠𝑡𝑒(𝐶𝐶𝑖, 𝐶𝐶𝑗). The value K is the number of 

clusters chosen to divide the dataset. As can be seen from 

the literature, we have chosen to use 2 as the value of P in 

this paper. It is crucial to note that higher the I-index value, 

the higher the caliber of clustering solutions. 

The following concerns regarding the quantity of 

clusters and features have been looked at and included to 

the I-index. 
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Issue 1: Determining the ideal number of clusters for 

the run time is the first problem. In order to account for 

the impact of K_max, we have introduced the penalty 

function, which has the following mathematical 

definition: 

 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑛𝑑𝑒𝑥 =
𝐾𝑚𝑎𝑥−𝐾

𝐾−1
       (18)      

 

The few clusters are favored by this penalty function. 

 

Issue 2: Choosing the ideal feature count is the second 

problem. The right number of characteristics is not taken 

into consideration by the majority of clustering criteria. 

The process of choosing d features (out of a total of D 

features) is known as feature selection. Important aspects 

that support maintaining a suitable degree of performance 

are what we wish to keep. 

We have created the penalty function to account for 

the influence of the number of features. It may be recast 

mathematically as follows: 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑛𝑑𝑒𝑥 =
𝐷−𝑑

𝐷−1
        (19)                              

After combining the aforementioned details, the 

unified clustering criterion is as follows: 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐼(𝐾) × 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑛𝑑𝑒𝑥 ×
𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑛𝑑𝑒𝑥                             (20) 

 

4.2 Complexity of algorithm 

4.2.1 Time complexity 
1. “Initialization of SGO_FSC needs 

𝑂(personsize×stringlength) time where person size 

and string length designate the number of persons and 

the length of each encoded person in the SGO_FSC, 

respectively. The string length is 𝑂((𝐾𝑚𝑎𝑥 + 𝐷) +
(𝐾𝑚𝑎𝑥 × 𝐷)) where D is the dimension of the dataset 

and 𝐾𝑚𝑎𝑥 is the maximum number of clusters specified 

by user. 

 

2. Active cluster and feature extraction step of SGO_FSC 

requires 𝑂(personsize× 𝐾𝑚𝑎𝑥 × 𝐷) time. 

 

3. Fitness function computation consists of three basic 

steps. 

(a) The assignment of data points to different 

clusters requires 𝑂(𝑛2 × 𝐾𝑚𝑎𝑥) for each 

person. 

(b)  The cluster center updating requires 𝑂(𝐾𝑚𝑎𝑥). 

(c)  Time complexity of fitness function is 𝑂(𝑛 ×
𝐾𝑚𝑎𝑥). 

 

The third step is repeated for each person, or 

personsize times, and the three previously described 

substeps are computed” sequentially. As a result, 

personsize × (𝑛2 × 𝐾𝑚𝑎𝑥 + 𝐾𝑚𝑎𝑥 + 𝑛 × 𝐾𝑚𝑎𝑥) =
𝑂(personsize × 𝑛2 × 𝐾𝑚𝑎𝑥) will be the overall 

complexity of Step 3, or the fitness evaluation. 

 

4. position update step requires 2 ×
𝑂(personsize×stringlength) 

 

The time complexity is therefore 𝑂(𝑛2 × 𝐾𝑚𝑎𝑥 ×
personsize)  per generation when the intricacies of all the 

previously listed processes are added together and the fact 

that string length ≥ n is taken into consideration. For a 

maximum number of generations, the total time 

complexity of SGO_FSC is 𝑂(𝑛2 × 𝐾𝑚𝑎𝑥 ×
personsize × 𝑀𝑎𝑥𝑔𝑒𝑛). Here, Maxgen denotes the 

highest number of generations possible. 

 

4.2.2 Space complexity 
The number of people (personsize) has a major effect 

on the primary space requirement of the SGO_FSC 

clustering approach. Consequently, O 

(personsize×stringlength) is the space complexity of the 

SGO_FSC clustering approach. 

 

5 Experimentation and results 
 

5.1 Real-life dataset analysis 
This section validates the SGO_FSC method on eight 

real-world datasets by comparing its performance with 

eight other competitive algorithms. Furthermore, twenty 

datasets are used for an independent evaluation of the 

SGO_FSC algorithm. 

 

5.1.1 Datasets used 

We conducted experiments using nine benchmark 

datasets from the UCI data repository to assess the 

performance of the proposed SGO_FSC algorithm in 

comparison to eight other methods. Table 2 details these 

selected datasets, including the number of features, 

instances, and classes in each dataset. Table 3 [34] 

presents the datasets on which only the SGO_FSC 

algorithm was evaluated. Both small and high-

dimensional datasets were included in our experiments to 

ensure a comprehensive assessment. 
 

Table 2: Description of datasets used 
“Dataset Data points Features Classes 

Iris 150 4 3 

Wine 178 13 3 

Glass 214 9 6 

Haberman 306 3 2 

Bupa 345 6 2 

WDBC 576 30 2 

Cancer 683 9 2 

Vowel 871 3 6 

CMC 1473 9 3” 
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Table 3: List of datasets used in the experiments 

Name No. of features No. of instances No. of classes 

Breastcancer 9 699 2 

BreastEW 30 569 2 

CongressEW 16 435 2 

Exactly1 13 1000 2 

Exactly2 13 1000 2 

HeartEW 13 270 2 

IonosphereEW 34 351 2 

KrvskpEW 36 3196 2 

Lymphography 18 148 2 

M of n 13 1000 2 

PenglungEW 325 73 2 

Semeion 256 1593 2 

Sonar 60 208 2 

Spect 22 267 2 

Tic-tac-toe 9 958 2 

Votes 16 300 2 

WaveformEW 40 5000 3 

Zoo 16 101 6 

Vechile 18 846 4 

Dermatology 34 366 6 

5.1.2 Experimental setup 
The SGO_FSC algorithm is executed with varying 

values for control parameters, specifically the number of 

persons (P) and the maximum number of iterations 

(Maxgen). For this evaluation, P = 30 and Maxgen = 100 

are set, and these parameters are fixed throughout the 

experiment. The algorithms are executed 40 times in a 

sequential fashion to evaluate the performance. MATLAB 

2016a running on a Windows 10 operating system is 

utilized to implement SGO_FSC algorithm. These 

simulations are conducted on a laptop equipped with an 

Intel Core i5 processor and 8 GB of memory. 

 
5.1.3 Comparison with other existing 

techniques 

In order to test how well SGO FSC works, nine real-life 

data sets that were stated in Section 5.1.1 were utilized. 

We evaluate SGO_FSC against eight popular, the most 

advanced automatic clustering and feature selection 

algorithms. Classification accuracy, cluster count, and 

feature count are some of the most common cluster quality 

metrics used to assess and compare the results. The 

effectiveness of SGO_FSC is compared to eight popular 

clustering methods. These include K-Means, the MHSC 

(Modified harmony search algorithm-based clustering) 

[35], the simultaneous CFS_PSO (Clustering and “feature 

selection using particle swarm optimization) [23], the 

FS_ACO (Feature selection and clustering using ant 

colony optimization) [20], the NMA_CFS [14], the 

automated HS_CFS (Harmony search-based clustering 

technique) [17], INMA_CFS (The improved memetic 

algorithm-based clustering technique) [28], and 

GSA_CFS [36]. The parameter settings for the 

aforementioned methods are shown below, in accordance 

with the paper from which they were extracted. The 

selection and replacement group sizes for NMA_CFS and 

INMA_CFS are determined in accordance with Kumar et 

al. [28]. 

 

MHSC: 

• Distance bandwidth: [0.001, 0.1] 

• Harmony memory consideration rate: [0.5, 0.95] 

• Pitch adjustment rate: 0.5 

 

FS_ACO: 

• Pheromone priori: 0.1 

• Pheromone evaporation rate: 0.01 

• Number of local searches: 6 

• Local search threshold: 0.01 

 

CFS_PSO: 

• Velocity range: [-6, 6] 

• Constant parameters (c1, c2): 1.49, 1.49 

• Inertia weight: 0.71 

 

NMA_CFS: 

• Mutation (probability): Flip and Gaussian (0.01) 

 

HS_CFS: 

• Percentage of dimension: 0.30 

• Harmony memory consideration rate: 0.95 

• Distance bandwidth: 0.0005 

• Pitch adjustment rate: 0.35 

 

INMA_CFS: 

• Mutation (probability): Flip and Gaussian (0.01) 

 

GSA_CFS: 

• Gravitational constant (G0): 100” 
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SGO_FSC 

• Self-introspection parameter(C) : 0.2 

 

Except for the SGO_FSC algorithms, all other 

algorithms have population size of 30 and maximum 

iterations 500. There are 100 iterations and 30 

population size for SGO_FSC algorithm. Every 

dataset goes through the aforementioned algorithms 

40 times in a sequential fashion. We use the metrics 

of "mean" and "standard deviation" to assess the 

quality of each cluster. The robustness is measured 

by looking at the standard deviation, which is shown 

in parentheses. 

 

Table 4: “Mean and standard deviation of the cluster quality measures obtained from algorithms for different datasets 
 K-Means MHSC FS_ACO CFS_PSO NMA_CFS HS_CFS INMA_CFS GSA_CFS SGO_FSC” 

Iris 
No.of 

clusters 

3 3 3.0 (0.0) 3.0 (0.0) 3.0 (0.0) 3.0(0.0) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0) 

No.of 
features 

4 4 2.7 (0.9) 2.2 (0.3) 1.9 (0.2) 2.0(0.3) 1.7 (0.7) 2.0 (0.0) 2.0 (0.0) 

CA(%) 84.4(6.3) 86.7 (5.7) 94.8 (2.4) 95.4 (1.9) 95.9 (1.5) 96.0(1.6) 95.0 (2.0) 96.5 (0.4) 97.1(0.2) 

Wine 
No.of 

clusters 

3  3 3.8 (2.3) 3.2 (2.0) 3.5 (1.1) 3.4(2.5) 2.9 (0.3) 3.05 (0.6) 3.00(0.00) 

No.of 

features 

13 13 6.2 (2.6) 5.7 (2.9) 5.8 (1.5) 6.0(3.1) 6.6 (1.7) 3.8 (1.1) 3.8(1.2) 

CA(%) 65.9(5.9) 64.1(5.4) 64.7(9.1) 65.0(8.7) 65.6 (8.9) 65.2(9.8) 66.2 ( 9.5) 66.4 (4.1) 68.5(3.1) 

Glass 
No.of 

clusters 

6 6 6.2 (1.9) 6.0 (1.2) 5.9 (1.5) 5.7(2.0) 5.6 (0.9) 5.9 (0.8) 5.8(0.3) 

No.of 

features 

9 9 4.3 (1.6) 4.0 (0.6) 3.5 (1.1) 3.0(1.9) 3.6 (1.2) 3.8 (0.8) 3.6(0.4) 

CA(%) 50.8(3.6) 49.4(3.6) 44.3 (4.7) 44.7(5.1) 43.1 (5.4) 46.4(4.9) 42.8 ( 6.0) 52.2 (3.2) 56.14(0.4) 

Haberman 
No.of 
clusters 

2 2 2.9 (1.7) 2.2 (0.6) 2.5 (0.5) 2.7 (1.2) 2.0 ( 0.0) 2.3 (0.4) 2.00(0.00) 

No.of 

features 

3 3 2.0 (0.0) 1.9 (0.6) 1.3 (0.5) 1.7 (0.9) 1.0 ( 0.0) 1.0 (0.0) 1.0 (0.0) 

CA(%) 50.9( 1.1) 55.4( 4.0) 56.7(6.4) 56.3(5.8) 55.8 (8.1) 56.9(7.5) 54.3 (4.9) 62.5 (9.7) 68.60(6.23) 

Bupa 
No.of 

clusters 

2 2 2.9 ( 1.2) 2.6 ( 1.1) 3.0 ( 0.7) 2.6 ( 1.9) 2.2 ( 0.5) 2.2 ( 0.3) 2. ( 0 ) 

No.of 

features 

6 6 2.5 ( 0.4) 3.0 ( 0.5) 2.4 ( 0.8) 1.9(1.2) 2.2 ( 0.8) 2.2 ( 0.4) 2.( 0 ) 

CA(%) 53.1( 0.0) 53.8( 1.9) 52.4 ( 2.4) 51.7( 3.1) 51.5 ( 3.9) 52.1( 2.5) 52.1 ( 4.7) 54.7 ( 2.2) 58.7 (1.2) 

WDBC 
No.of 
clusters 

2 2 2.0 (0.0) 1.9 (0.9) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 

No.of 

features 

30 30 15.0 (0.4) 13.9 (1.0) 14.8 (0.9) 14.5 (0.5) 13.4 (2.6) 10.0 (0.0) 10.0 (0.0) 

CA(%) 85.4 (0.4) 85.7 (1.9) 90.5 (0.9) 89.6 (1.3) 90.8 (0.4) 90.0 (0.8) 90.4 (0.8) 91.0 (0.0) 92.0 (1.0) 

Cancer 
No.of 

clusters 

2 2 2.4 (1.6) 2.4 (1.3) 2.2 (0.4) 2.0 (1.1) 2.1 (0.3) 2.0 (0.0) 2.0 (0.0) 

No.of 

features 

9 9 4.3 (1.5) 3.9 (2.0) 4.1 (1.4) 4.0 (1.8) 3.4 (1.6) 3.8 (0.9) 3.8 (0.9) 

CA(%) 94.0 (0.0) 94.4 (0.9) 94.3 (2.1) 93.9 (2.6) 94.6 (2.9) 94.8 (1.2) 94.3 (1.0) 95.2 (0.3) 96.5 (1.3) 

Vowel 
No.of 

clusters 

6 6 6.2 (0.9) 6.3 (1.6) 6.0 (1.4) 6.0 (2.0) 6.3 (0.8) 6.0 (0.6) 6.0 (0.6) 

No.of 

features 

3 3 2.0 (0.0) 2.9 (0.7) 1.1 (0.3) 1.8 (0.6) 1.1 (0.3) 1.1 (0.3) 2.0 (0.4) 

CA(%) 53.0 (5.0) 53.6 (5.8) 53.9 (4.5) 52.8 (3.9) 53.4 (3.6) 54.1 (4.1) 53.8 (4.1) 55.5 (2.2) 58.5 (1.8) 

CMC 
No.of 

clusters 

3 3 3.5 (1.1) 3.2 (1.9) 2.9 (0.8) 3.2 (1.4) 3.6 (0.8) 3.0 ( 0.5) 3.0 ( 0.5) 

No.of 

features 

9 9 3.9 (1.2) 3.8 (1.5) 3.6 (1.4) 3.0 (1.0) 2.4 (1.2) 2.2 (0.4) 2.3 (0.2) 

CA(%) 39.9 (0.2) 40.1 (1.4) 41.8 (3.8) 41.5 (4.3) 40.4 (3.1) 41.9 (4.2) 40.2 (2.5) 43.0 (3.1) 45.0 (4.1) 

 

Table 5: Mean and standard deviation of the cluster quality measures obtained by SGO_FSC for different datasets 

independently 

Sl. No. Name  No. of features No. of classes CA 
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       1 Breastcancer 4.20(0.09) 2(0.00) 96.39(0.02) 

2 BreastEW  15.25(2.00) 2(0.00) 95.95(1.90) 

3 CongressEW  2.20(1.01) 2(0.00) 95.89(1.67) 

4 Exactly1 3.40(1.02) 2(0.00) 71.68(5.90) 

5 Exactly2 1(0.008) 2(0.00) 77.60(7.89) 

6 HeartEW   8.70(1.04) 2(0.00) 83.52(2.39) 

7 IonosphereEW 3.65(1.1) 2(0.00) 87.95(4.54) 

8 KrvskpEW 23.50(2.64) 2(0.00) 94.53(2.83) 

9 Lymphography 7.75(2.01) 2(0.00) 85.41(4.45) 

10 M of n 10.20(1.00) 2(0.19) 87.73(4.60) 

11 PenglungEW  75.40(2.90) 2(0.00) 84.97(6.28) 

12 Semeion  136.4(2.23) 2(0.00) 97.44(1.67) 

13 Sonar  21(1.19) 2(0.00) 83.75(5.34) 

14 Spect  10.10(2.22) 2(0.00) 86.57(2.89) 

15 Tic-tac-toe 8.80(2.02) 2(0.00) 82.20(0.00) 

16 Votes  3(1.00) 2(0.00) 94.80(3.89) 

17 WaveformEW 25(0.22) 3(0.34) 77.33(8.7) 

18 Zoo  3.60(0.02) 6(0.21) 97.47(3.61) 

19 Vechile  4.75(2.89) 4(0.11) 68.40(4.71) 

20 Dermatology  19.50(1.00) 6(0.01) 97.32(1.90) 

 

 

 
Fig 5. Comparison on number of clusters derived by different algorithms in different datasets 
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Figure 6: Comparison on number of selected features derived by different algorithms in different datasets 

 

 

 
Figure 7: Comparison on classification accuracy achieved by different algorithms in different datasets 

 

5.1.4 Performance evaluation  
Cluster quality measures derived from several clustering 

techniques applied to real-world datasets are summarized 

in Tables 4 and 5, together with their respective standard 

deviations. Table 3 provides results for the eight 

competitive algorithms, while Table 5 presents results for 

the SGO_FSC algorithm across 20 real-life datasets. 

Figure 5 shows a comparison of the number of clusters 

derived by various algorithms, Figure 6 compares the 

number of features selected by different algorithms, and 

Figure 7 presents a comparison of classification accuracy 

achieved by these algorithms. 

 

Iris dataset: 

• • SGO_FSC outperformed INMA_CFS, 

GSA_CFS, MHSC, HS_CFS, “NMA_CFS, 

FS_ACO, CFS_PSO, and K-Means in terms of 

classification accuracy. 

• The right number of clusters as well as features 

were found by SGO_FSC, HS_CFS, GSA_CFS, 

FS_ACO, INMA_CFS, CFS_PSO, and 

NMA_CFS.”  

 

Wine dataset: 

• SGO_FSC achieved the best classification 

accuracy. Both SGO_FSC and GSA_CFS 

identified 3 clusters. 

• “NMA_CFS, HS_CFS, CFS_PSO, and FS_ACO 

selected six features, while SGO_FSC and 

GSA_CFS identified 4 features. 

 

Glass dataset: 

• All algorithms identified 6 clusters. 

• SGO_FSC, CFS_PSO, GSA_CFS, NMA_CFS, 

INMA_CFS, and FS_ACO”, selected four 

features, while HS_CFS selected 3 features. 

• In comparison to other algorithms, SGO_FSC 

showed much better classification accuracy. 
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Haberman dataset: 

• SGO_FSC achieved a classification accuracy of 

65.6%, outperforming GSA_CFS (62.5%), 

HS_CFS (56.9%), and NMA_CFS (55.8%). 

• FS_ACO attained an accuracy of 56.7%, whereas 

CFS_PSO reached 56.3%. 

• Three clusters were obtained for FS_ACO and 

HS_CFS, while CFS_PSO, HS_CFS and 

FS_ACO each picked two characteristics. 

Results for clusters and characteristics were 

similar for INMA_CFS, NMA_CFS, and 

SGO_FSC. 

 

Bupa dataset: 

• Both SGO_FSC and GSA_CFS identified 2 

clusters and 2 features. 

• FS_ACO, HS_CFS, CFS_PSO, and NMA_CFS 

all supplied erroneous cluster numbers. HS_CFS 

selected 2 features, while FS_ACO as well as 

CFS_PSO selected three features. 

• SGO_FSC achieved better classification 

accuracy than the other algorithms. 

 

WDBC dataset: 

• The best classification accuracy was attained by 

SGO_FSC, which was followed by GSA_CFS, 

NMA_CFS, FS_ACO, INMA_CFS, HS_CFS, 

CFS_PSO, MHSC, and K-Means. 

• FS_ACO, CFS_PSO, HS_CFS, INMA_CFS, 

NMA_CFS, and GSA_CFS all accurately 

detected two clusters. 

• Both SGO_FSC and GSA_CFS selected 10 

important features, whereas HS_CFS, 

NMA_CFS, and FS_ACO selected fifteen 

features. 

 

Cancer dataset: 

• All algorithms determined the number of 

features and clusters with accuracy. 

• SGO_FSC achieved superior classification 

accuracy compared to the other algorithms. 

 

Vowel and CMC datasets: 

• The highest classification accuracy was shown 

by SGO_FSC, which was followed by K-Means, 

MHSC, FS_ACO, HS_CFS, NMA_CFS, 

INMA_CFS, and FS_ACO. 

• All algorithms accurately determined the number 

of clusters for both datasets. 

• SGO_FSC offered two features for the Vowel 

dataset, but NMA_CFS, INMA_CFS GSA_CFS 

revealed only one feature. SGO_FSC, 

INMA_CFS, NMA_CFS, and GSA_CFS 

accurately determined the number of features in 

the CMC dataset. 

This comprehensive comparison highlights the 

effectiveness of SGO_FSC in both feature selection as 

well as clustering selection across a diverse range of real-

life datasets. 

 

5.1.5 Statistical significance 
To evaluate the efficacy of the SGO_FSC algorithm, 

we performed an unpaired t-test for the purpose of 

comparing its classification accuracy against the best-

performing as well as the second-best-performing 

algorithms from the experiments. The size of the sample 

for the t-test was 40, with a significance level set at 5%. 

For the purpose of comparing the classification accuracy 

of SGO_FSC with the other algorithms that are leading, 

the t-test was performed. The findings of the unpaired t-

tests conducted using the categorization accuracy 

information from Table 3 are displayed in Table 5.  

 

SGO_FSC vs. Best Algorithm: The t-test [37] results 

indicate that in terms of classification accuracy, 

SGO_FSC performs noticeably better than the best 

algorithm.  

SGO_FSC vs. Second-Best Algorithm: Similarly, 

SGO_FSC shows a statistically significant improvement 

over the second-best algorithm. 

These statistical results confirm that SGO_FSC 

provides a substantial improvement in classification 

accuracy compared to the other evaluated algorithms. This 

robustness is supported by the rigorous statistical testing, 

validating the superior performance of the SGO_FSC 

algorithm. 

 

 

Table 5: Unpaired t-test between SGO_FSC and second-best algorithm over classification accuracy 
Dataset  Standard error of 

difference 

t 95% Confidence interval Two-tailed P Significance 

Iris  0.071 8.4853 From 0.459 to 0.741  less than 

0.0001 

extremely statistically 

significant 
 

Wine 0.813 2.5839 From 0.482 to 3.718 0.0116 statistically significant 

 
Glass  7.7270 0.510 From 2.9249 to 4.9551 less than 

0.0001 

 extremely statistically 

significant. 
 

Haberman  1.823 3.3465 From 2.4711 to 9.7289 0.0013 very statistically significant 

 
Bupa  0.396 10.0951 From 3.211 to 4.789 less than 

0.0001 

extremely statistically 

significant. 
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WDBC 0.158 6.3246  From 0.685 to 1.315 less than 
0.0001 

 extremely statistically 
significant. 

 

Cancer 0.211 6.1626 From 0.880 to 1.720 less than 
0.0001 

extremely statistically 
significant. 

 

Vowel  0.449  6.6749  From 2.105 to 3.895 less than 
0.0001 

extremely statistically 
significant 

 
CMC 0.813 2.4609 From 0.382 to 3.618 0.0161 statistically significant. 

5.1.6 Overall discussion on SGO_FSC 

algorithm 
 

Performance comparison 

SGO_FSC demonstrated superior performance in 

several instances compared to other competitive 

algorithms like K-Means, Genetic Algorithms (GA), 

Particle Swarm Optimization (PSO), Differential 

Evolution (DE), and more complex hybrid methods such 

as Ant Colony Optimization (ACO) and Artificial Bee 

Colony (ABC) for clustering tasks. The key differences 

that influenced these results are outlined below: 

• Adaptation to varying datasets: SGO_FSC 

exhibited better adaptability to varying dataset 

characteristics such as high-dimensionality, class 

overlap, and noise. The reason for this advantage 

lies in the SGO_FSC’s dynamic feature selection 

mechanism, which adjusts based on the dataset’s 

structure. While methods like K-Means tend to 

underperform on high-dimensional data due to 

their reliance on distance metrics that become less 

meaningful in higher dimensions, SGO_FSC’s 

automatic feature selection reduces the 

dimensionality, thereby enhancing clustering 

accuracy. 

 

• Improved feature selection: The newly designed 

fitness function in SGO_FSC plays a pivotal role 

in its superior performance. Unlike traditional 

algorithms where the fitness function focuses 

primarily on cluster compactness (e.g., the Sum of 

Squared Errors in K-Means), SGO_FSC 

incorporates both intra-cluster variation and 

feature selection criteria. This dual-objective 

optimization enables the algorithm to avoid 

irrelevant features that could distort clustering 

results. In comparison, algorithms like PSO or GA 

often struggle with feature selection in large 

feature spaces because their exploration is limited 

by their update mechanisms, which do not directly 

incorporate feature relevance metrics. 

• Handling of class overlap and noise: In datasets 

characterized by overlapping classes and high 

noise, SGO_FSC outperformed algorithms such 

as GA and PSO. This is largely attributed to 

SGO_FSC's threshold-based approach, which 

filters out clusters and features with high 

variance, allowing it to concentrate on clusters 

with meaningful data points. Algorithms like 

PSO or DE tend to be more sensitive to noise and 

can form clusters around noisy data points, 

leading to degraded performance. SGO_FSC, on 

the other hand, dynamically adjusts cluster 

centers and excludes noisy data through its 

fitness-based cutoff mechanism. 

• Scalability and computational efficiency: 

While SGO_FSC achieved notable 

improvements in clustering quality, it 

occasionally required more computational 

resources than simpler methods like K-Means 

due to its more complex encoding of individuals 

and its iterative optimization process. However, 

in comparison to algorithms such as DE or ABC, 

SGO_FSC maintained better computational 

efficiency for large-scale datasets, owing to its 

streamlined fitness evaluation that balances 

feature selection and clustering in a single pass. 

 

Explanation of performance variability across datasets 

The performance of SGO_FSC varied across different 

datasets, and this variability can be explained by several 

factors: 

• Dimensionality: On low-dimensional datasets, 

simpler algorithms like K-Means often perform 

well because the distance metric is more reliable. 

However, as dimensionality increases, the curse 

of dimensionality affects most algorithms, 

leading to performance degradation. SGO_FSC 

mitigates this issue by automatically selecting 

relevant features, reducing the number of 

dimensions while preserving the important 

information for clustering. In contrast, methods 

like GA and PSO are not as effective in filtering 

out redundant features, which can lead to 

suboptimal clustering results. 

• Class overlap: Datasets with significant class 

overlap can be challenging for many clustering 

algorithms. SGO_FSC outperformed the other 

methods in this area by using an I-index-based 

fitness function that rewards well-separated 

clusters. This allows SGO_FSC to identify 

clearer boundaries between overlapping classes 

compared to methods like DE, which may 

struggle to maintain cluster cohesion under these 

conditions. 
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• Noise levels: In noisy datasets, SGO_FSC 

showed resilience by filtering out noise during 

feature selection and cluster center updating. 

Other algorithms like ACO and ABC, which rely 

on more rigid updating mechanisms, tend to 

incorporate noisy data points into their clustering 

process, thus deteriorating performance. 

SGO_FSC’s dynamic adjustment to thresholds 

based on data variability provided it with an edge 

in noise handling. 

SGO_FSC's performance advantages stem from its 

novel combination of feature selection and clustering 

optimization, driven by a robust fitness function that 

adapts to the dataset's characteristics. The algorithm’s 

ability to handle high-dimensional data, class overlap, and 

noise contributed to its outperformance in most 

benchmark datasets. However, its performance comes 

with a trade-off in computational complexity, especially 

when applied to large-scale datasets. Nevertheless, its 

overall performance justifies the increased complexity, 

especially in scenarios where clustering accuracy is 

critical. 

5.2 Microarray data analysis 
Microarray technology has progressed, enabling the 

observation of gene expression at different time intervals 

[2]. Clustering is essential in the analysis of microarray 

data since it allows for the grouping of genes that have 

resembling expression. The proposed clustering 

technique, SGO_FSC, has been utilized to evaluate its 

usefulness in analyzing a microarray dataset 

comprehensively. 

 
5.2.1   Gene expression datasets  

The SGO_FSC algorithm was evaluated using three 

prominent gene expression datasets for experimentation. 

The details of these datasets are provided in Table 6. 

 

 

 

 

Table 6: Description of datasets used 

Dataset Number of 

Genes 

Dimensions Subset of Genes 

for 

experimentation 

Normalization 

Yeast Sporulation 6118 7 474 Each row has zero 

mean and unit variance 

 

Fibroblasts Serum 8613 13 (12 time points + 

1 unsynchronized) 

 

517 Each row has zero 

mean and unit variance 

Rat CNS 112 9 112 Each row has zero 

mean and unit variance 

 

5.2.2 Algorithms for comparison 
“A comparison was conducted between the 

performance of the SGO_FSC method and eight widely 

recognized clustering algorithms: 

• IFCM (Iterated Fuzzy C-Means) 

• INMA_CFS [28] 

• CRC (Chinese Restaurant Clustering) [42] 

• VSGA (Variable String Length GA-based 

Clustering Technique) [39] 

• HS_CFS [17] 

• Self-Organizing Map (SOM) [41] 

• Average Linkage (AL) [40] 

• SiMM-TS (Significant Multi-Class 

Membership-based Clustering Technique) [38] 

The parameter settings for these algorithms were 

configured according to the specifications provided in 

their original papers. For SGO_FSC, the parameter 

settings were consistent with those described in Section 

5.1. 

The Silhouette Index (SI) [43] measures the level of 

similarity between an object and its own cluster compared 

to other clusters. The values span from -1 to 1. A value 

close to 1 indicates a high degree of similarity between the 

object and its assigned cluster, but a low degree of 

similarity with nearby clusters. For an object i, the SI(i) is 

defined as follows: 

 

𝑆𝐼(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max (𝑏(𝑖),𝑎(𝑖))
         (21)                                 

where: 

• a(i) represents the mean distance between object 

i and all other objects inside the same cluster. 

• The variable b(i) represents the smallest average 

distance between object i and all objects in any 

other cluster, excluding the cluster” that i 

belongs to. 

 

The SI [43] is employed to find out the effectiveness 

of the clustering techniques outlined above. The clustering 

methods have been executed separately 10 times.  

 
5.2.3 Results and discussions 

The number of clusters and SI index value are 

calculated and put in the Table 7. For all algorithms except 

SGO_FSC are taken from their respective papers. The 

outcomes show that six clusters were created for the Yeast 

Sporulation dataset by SiMM-TS, VSGA, AL, and SOM. 

On the other hand, seven clusters were created using 



Simultaneous Clustering and Feature Selection Using Social… Informatica 48 (2024) 199–218 215 

IFCM and HS_CFS. Eight clusters were retrieved from 

CRC and INMA_CFS. There were five clusters produced 

by the suggested algorithm. The suggested SGO_FSC 

generated the greatest SI value (0.7119) for this dataset out 

of all the clustering methods that were examined. As a 

result, we can conclude that the suggested strategy 

outperforms the alternative algorithms in terms of both SI 

and cluster count. 

The Human Fibroblasts Serum dataset yielded 10 

clusters according to the CRC and 8 clusters according to 

the IFCM. The number of clusters as reported by HS_CFS 

was 7. Six clusters were created via VSGA, INMA_CFS, 

SiMM-TS, and SOM, AL approaches. The SGO_FSC 

algorithm produced five clusters for this dataset. The 

IFCM method yields the lowest SI value of all the 

algorithms, 0.2995. AL's SI index is 0.3092. The clusters 

produced by SGO_FSC have a high SI value of 0.4394.  

The VSGA, SiMM-TS, AL, and SOM algorithms 

determined that there were six clusters in the Rat CNS 

dataset. The number of clusters generated by the 

INMA_CFS and IFCM algorithms is 5. The number of 

clusters generated for the CRC is seven, according to 

HS_CFS. SGO_FSC as proposed produces only 3 clusters. 

IFCM and AL yielded values of 0.4050 and 0.3684 for SI, 

respectively. The suggested algorithm SGO_FSC yields a 

superior SI value of 0.6023 for this dataset as well.  
 

 

 

 

 

 

 

 

 

 

Table 7: Number of clusters and SI Value obtained from algorithms for different datasets 
 

VSGA SOM AL 

SiMM-

TS IFCM HS_CFS CRC 

INMA_

CFS 

SGO_FS

C 

Yeast Sporulation 

Number of 

Clusters 
6 6 6 6 7 7 8 8 5 

Silhouette Index 

(SI) 0.58 0.5842 0.5007 0.6353 0.4717 0.5442 0.5675 0.5294 

 

0.7119 

 

Fibroblasts Serum 

Number of 

Clusters 
10 8 7 6 6 6 6 6 5 

Silhouette Index 

(SI) 
0.298 0.298 0.3124 0.3184 0.3241 0.3112 0.3092 0.32 0.4394 

Rat CNS 

Number of 

Clusters 
6 6 6 6 5 5 4 7 3 

Silhouette Index 

(SI) 
0.5147 0.4134 0.3684 0.5147 0.4032 0.382 0.4455 0.4278 

0.6023 

 

 

The average Silhouette index values and the number of 

clusters produced by applying the aforementioned 

clustering techniques are displayed in Figures 4 and 5. The 

SGO_FSC method outperforms the other competitive 

algorithms in terms of SI value and number of clusters, as 

demonstrated by the findings shown in Fig. 8 and 9. 
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Figure 8: Comparison of proposed approach over existing clustering techniques in terms of SI value 

 

 
        Figure 9: Comparison of proposed approach over existing clustering techniques in terms of a number of clusters 

 

 

 

6 Conclusion  
In this paper, an automatic clustering and feature 

selection technique using the Social Group Optimization 

algorithm has been proposed. The results revealed that 

through the proposed technique, we were able to get the 

optimal number of clusters and features simultaneously 

and accurately. The proposed approach used a novel 

concept of dynamic threshold setting for determining the 

number of clusters and features. Efficient searching of 

optimal clusters and features was made possible by 

proposing a novel fitness function. The proposed 

technique was investigated on nine real-life datasets with 

varying characteristics. Statistical t-tests have been carried 

out to establish the statistical significance of results 

produced by SGO_FSC. The proposed algorithm was 

further applied to Microarray data datasets for analysis. 

From experimental results, it has also been observed that 

SGO_FSC outperforms the other competitive clustering 

techniques. 
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