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The accurate detection of abnormal users in the grid is conducive to maintaining the stability of the smart 

grid. This paper briefly introduces the smart power grid and the intelligent algorithm used to detect users 

with abnormal power consumption in the power grid. The intelligent algorithm combined the bidirectional 

long short-term memory (LSTM) and a convolutional neural network (CNN) to extract the features from 

the power consumption data of the users and then used the adaptive boosting (AdaBoost) model to classify 

the users. The field operation test was carried out in a small substation. The proposed method was 

compared with the single bidirectional LSTM and CNN methods. The findings showed that the proposed 

method had the best performance in the simulation experiment, with a precision of 98.7%, a recall rate of 

97.9%, and a false drop rate of 3.6%, and its receiver operator characteristic (ROC) curve deviated the 

most from the diagonal line and had the largest area enclosed. In the field operation test, the proposed 

method obtained a lower and more stable false detection rate (approximately 3.6%). 

Povzetek: Raziskava je omogočila izdelavo CNN+Bidirectional LSTM za zaznavanje anomalij v 

pametnem omrežju, kar omogoča stabilno in učinkovito identifikacijo nepravilne porabe električne 

energije. 

 

1 Introduction 
With the rapid advancement of information technology 

and the optimal adjustment of energy structure, the smart 

grid has emerged as a crucial development direction of 

future power systems, gathering increasing attention [1]. 

Characterized by information, automation, and 

intelligence, the smart grid can realize real-time 

monitoring, intelligent scheduling, and efficient 

management of the power network [2]. In the operation 

process of the smart grid, the power transported by the 

power grid will produce technical and non-technical losses. 

The former refers to the inherent loss of all equipment in 

the power grid and is an unavoidable loss, while the latter 

is caused by abnormal power consumption, equipment 

failure, and network system failure [3]. Abnormal power 

consumption is the main cause of non-technical loss of the 

smart grid and will affect the stability and security of the 

smart grid. Therefore, rapid and accurate detection of 

abnormal power consumption in the smart grid is 

conducive to maintaining its stability [4]. Artificial 

intelligence has been making significant breakthroughs in 

various new fields, such as the perception of real-world 

signals. In these areas, artificial intelligence has 

occasionally surpassed human capabilities and will 

continue to do so even more in the future. Artificial 

intelligence can also be applied to the management of 

smart grids. The relevant research, as shown in Table 1, is 

all related to improving the performance of smart grids. 

Some studies focus on demand distribution calculation in 

smart grids, some on the interaction efficiency between  

 

users and intelligent systems in smart grids, and some on 

intelligent controllers in smart grids. This paper focuses 

on identifying abnormal electricity users in smart grids by 

using a convolutional neural network (CNN) to extract 

electricity consumption features from users and then using 

bidirectional long short-term memory (LSTM) for 

identification. By utilizing a deep learning algorithm to 

improve the efficiency and accuracy of identifying 

abnormal users in smart grids, it provides an effective 

reference for enhancing the stable operation of smart grids. 

Table 1: Related research 

Author Research content Research 

results 

Deng et al. 

[5] 

They proposed a 

dual decomposition-

based distributed 

approach to 

improve demand 

response in smart 

grid. 

The test results 

verified the 

effectiveness of 

the proposed 

algorithm. 

Jo et al. [6] They proposed a 

lightweight privacy-

protecting metering 

protocol for 

bidirectional 

communication 

between smart grid 

users and power 

The test results 

showed that the 

protocol can 

further improve 

the speed of 

message 

authentication. 
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systems. 

Grilo et al. 

[7] 

They developed a 

solution for 

extracting relevant 

data from specific 

locations in low-

voltage power grids 

and efficiently 

transmitting the 

data to intelligent 

controllers via 

wireless sensor 

networks. 

The 

experimental 

results showed 

the effectiveness 

of the proposed 

method. 

 

This paper briefly introduces the smart power grid and 

the intelligent algorithm used to detect users with 

abnormal power consumption in the power grid. The 

intelligent algorithm integrated the bidirectional LSTM 

with a CNN to extract the features from the power 

consumption data of users and then used the adaptive 

boosting (AdaBoost) model to classify these users. 

Moreover, simulation experiments were carried out in a 

laboratory. A field operation test was carried out in a small 

substation. 

2 The detection method of abnormal 

operation in the smart power grid 

2.1 Smart grid 

With the expansion of the power grid scale, traditional 

power management approaches have been unable to meet 

the needs of power grid operation. However, with the 

progress of information technology and the Internet, it has 

become easier to collect and analyze operational data of 

power grids [9], giving rise to smart grids. Compared with 

the conventional power grid, the smart grid can use the 

sensors installed on the equipment to automatically collect 

and analyze the operation data produced by the power grid, 

then intelligently schedule the power grid, and detect the 

anomalies in the power grid [10].  

Figure 1 presents the basic architecture of smart grid 

operation monitoring. The corresponding sensing 

facilities are installed in power grid equipment such as 

power transmission lines, transformer equipment, 

distribution station equipment, and smart meters. The 

sensing facilities collect real-time operation data from the 

corresponding power grid equipment and then transmit the 

data to the smart grid control center via the Internet. The 

control center analyzes and processes the collected data 

[11]. 
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Figure 1: Basic architecture of smart grid operation 

monitoring. 

2.2 Detection of abnormal power 

consumption 

The smart grid will produce technical loss and non-

technical loss during operation. The former is the 

unavoidable loss of power grid equipment during 

operation, while the latter is the power loss caused by 

other reasons, including abnormal power consumption and 

equipment failure, among which abnormal power 

consumption is the main reason [12]. The causes of 

abnormal power consumption include illegally stealing 

electricity, privately pulling wires, private change of 

electricity meters, and other informal means. The main 

goal of these informal means of electricity consumption is 

to pay for less electricity or for temporary convenience. 

Therefore, during the smart grid operation, it is necessary 

to detect abnormal users from the grid in time [13]. 
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Figure 2: Abnormal power consumption detection process based on bidirectional LSTM+CNN. 

The scale of the smart grid is huge; hence, the amount 

of data collected by sensors is very large. It is difficult to 

carry out statistical analysis of big data by manual alone, 

and it is necessary to use computers to assist in processing 

[14]. This paper employs a deep learning algorithm to 

detect users with abnormal power consumption in the 

smart grid. The power consumption data generated by 

users in the process of using a smart grid has different time 

scales, such as daily data, weekly data, and monthly data. 

The data at different time scales have different hidden 
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characteristics. Although the data at a single time scale can 

also reflect the users with abnormal power consumption, 

it is not comprehensive enough. Therefore, this paper uses 

different deep learning algorithms to extract the features 

from the electricity consumption data at different time 

scales, and then fuses the features for the detection and 

identification of abnormal users. As shown in Figure 2, 

this paper selects the bidirectional LSTM to extract the 

daily data features from power grid users and the CNN to 

extract the monthly data features. After the fusion, the 

AdaBoost model [15] is employed to detect and identify 

abnormal users among power grid users. The specific 

process is described as follows. 

① The daily data of power grid users collected by the 

device sensor is input into the bidirectional LSTM. The 

computational formula of the one-directional LSTM is: 
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where tC
~

 and 
tC  are the temporary state and updated 

state of the current memory unit, 
th  is the hidden data 

state input at the current time, 
tx  is the current input, 

tf , 

ti , and 
to   are the output of three gated units, forget, input, 

and output, at the current time, fW ,
 iW , and

 oW
 
are the 

weight in corresponding gated units, and f ,
 i ,

 
and

 o  
are the bias in corresponding gated units. 

The formula of the bidirectional LSTM is: 
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where ) (LSTM  
is the calculation function of the hidden 

layer of the forward LSTM, i.e., the application of 

equation (1), ) (LSTM  is the calculation function of the 

hidden layer of the backward LSTM, which is the 

application of equation (1) (its only difference is reversely 

inputting 
tx ),  iii hhh ,, −+

 are the current forward LSTM 

hidden layer output, the current backward LSTM hidden 

layer output, and the current final output, 
ix  is the current 

input, 
−−++

2121 ,,, WWWW  are weights of the forward and 

backward LSTM calculations [16]. 

② The weekly data of power grid users collected by 

the device sensor is input into a CNN in the form of two-

dimensional arrangement for convolutional feature 

extraction. The convolutional formula of the CNN is: 
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where l

jx  is the feature map of the convolver output, 
1−l

ix  

is the feature output of the i-th convolutional kernel in the 

last convolutional layer after pooling, l

ijW  is the weight 

parameter between the i-th convolutional kernel and the j-

th convolutional kernel, l
jb  is the  bias of j convolutional 

kernels of l layers, M  is the number of convolutional 

kernels, and )(•f  is an activation function. 

③ In the first two steps, the bidirectional LSTM 

finally outputs hidden state 
ih , and the CNN finally 

outputs the convolution feature. They are processed into 

features of the same dimension, and then the two features 

are fused. 

④ The fused features are input into the AdaBoost 

model for recognition and detection. When training the 

AdaBoost model, the weight of the samples with 

classification errors is increased, and then the new weak 

classifier is trained by random sampling according to the 

weights. The above steps of "sampling according to 

weights - training weak classifiers - increasing the weight 

of samples with classification error" are repeated, and 

multiple weak classifiers are obtained. The weight of weak 

classifiers and the updated formula of the weight of 

training samples are: 
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where m
 
is the weight of the m -th classifier, me  is the 

classification error of the m -th classifier, imw ,  is the 

weight of sample i  when training the m -th classifier, 
iy  

is the result label of sample i , )( im xG  is the computation 

function of the m -th classifier, 
ix  is the input of sample 

i , and 
mZ  is the normalization factor. 

3 Simulation experiment 

3.1 Experimental environment 

The simulation experiment was carried out in laboratory 

servers, which were configured as Windows 11 operating 

system, Core i7 processor, and 32G memory. 

3.2 Experimental data 

The dataset used was from the open dataset provided by 

the State Grid Corporation of China 

(http://www.sgcc.com.cn/). The dataset selected in this 
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paper covered the period from May 1, 2015, to June 1, 

2018. The dataset contained 35,689 users, of whom 93.5% 

were normal users. Abnormal users accounted for 6.5%. 

The public dataset from the State Grid Corporation of 

China was collected from real grid users, so the proportion 

of normal and abnormal users was realistic, with only a 

small number of abnormal users. The dataset with the 

unbalanced proportion of normal and abnormal users was 

not suitable for training intelligent algorithms, and it was 

easy to cause the intelligent algorithms to be biased. 

Therefore, this paper used SMOTE to balance the sample 

number, and after that, the ratio of normal users to 

abnormal users was 1:1. The basic process of the SMOTE 

algorithm is as follows: ① The Euclidean distance 

between each sample in the default bond set and other 

samples in that set was calculated, and a neighbor sample 

set was obtained for each sample based on the Euclidean 

distance. ② For each sample, several samples were 

randomly selected from the neighbor sample set. ③ New 

samples were generated according to the following 

formula: 

)()1,0( mnew xxrandxx −+= , (5) 

where x  refers to the original sample in the default bond 

set, 
mx   is the random sample in the neighbor sample set 

of x , )1,0(rand
 
is a random number between 0 and 1, 

and 
newx  is the newly generated sample. 

3.3 Experimental setup 

The relevant parameters of the abnormal electricity 

detection and recognition algorithm proposed in this paper 

are shown in Table 2. Moreover, in order to verify the 

effectiveness of the proposed algorithm, it was compared 

with a single bidirectional LSTM and a single CNN. The 

relevant parameters of the two algorithms were consistent 

with those of the corresponding part of the proposed 

algorithm. 

Table 2: Relevant parameters of the proposed algorithm. 

 Struct

ure 

Parameter Structu

re 

Paramet

er 

Bidire

ctiona

l 

LSTM 

Input 

layer 

An input 

with 1,125 

dimensions 

Forwar

d 

hidden 

layer 

One 

layer, 256 

nodes, the 

sigmoid 

activation 

function 

Backw

ard 

hidden 

layer 

One layer, 

256 nodes, 

the sigmoid 

activation 

function 

Output 

layer 

An output 

with 256 

dimensio

ns 

CNN Input 

layer 

An input 

with  7 
161 

dimensions 

Convol

ution 

layer 1 

Eight 3 
1 

convoluti

on 

kernels, a 

step 

length of 

2 

Pooling 

layer 1 

A pooling 

box with a 

specificatio

n of 3 1, a 

step length 

of 2 

Convol

ution 

layer 2 

Sixteen 3

 1 

convoluti

on 

kernels, a 

step 

length of 

1 

Pooling 

layer 2 

A pooling 

box with a 

specificatio

n of 3 1, a 

step length 

of 1 

Output 

layer 

An output 

with 256 

dimensio

ns 

AdaB

oost 

Weak 

classifi

cation 

learner 

Linear 

predictor 

Numbe

r of 

classifi

ers 

50 

Error 

thresho

ld 

0.1   

 

In addition to training and testing the algorithm using 

the open dataset, this study also conducted a one-month 

field test in a local small-scale substation and compared 

the predicted results of the algorithm with the measured 

results of the substation. The above two single algorithms 

for comparison were also tested for a one-month field test. 

3.4 Evaluation indicator 

This paper used the precision, recall rate, false detection 

rate, and receiver operator characteristic (ROC) curve as 

the evaluation indicators of the detection performance of 

the algorithm. The formula of precision, recall rate, and 

false drop rate is: 
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where P  refers to precision, R  refers to the recall rate, 

and W  is the false drop rate. 

 

The formula for calculating the true and false positive case 

rates of the ROC curve is: 
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where TPR  is the true positive rate and FPR  is the false 

positive rate. 

3.5 Test results 

Figure 3 shows the performance of the three abnormal 

power user detection algorithms. It can be seen that there 

was little difference in precision, recall rate, and false 

detection rate between a single bidirectional LSTM and a 

single CNN. The AdaBoost recognition algorithm based 

on bidirectional LSTM+CNN had significantly better 

detection and recognition performance than the other two 

algorithms. 

 

 

Figure 3: Performance of three abnormal user detection 

algorithms. 

In addition to the above three evaluation indicators, 

the ROC curve was also used to evaluate the detection 

algorithm, and the final result is shown in Figure 4. The 

ROC curve reflects the positive and false detection rates 

of a prediction model under different recognition 

thresholds. When the prediction model cannot make 

predictions and can only give random results, its ROC 

curve is a diagonal line. When the prediction model is 

ideal, its ROC curve is a broken line coincident with axes 

0=x  and 1=y . In other words, for a prediction model, 

the closer its ROC curve is to the diagonal line, the worse 

its prediction performance will be; the closer it is to the 

broken line, the better its prediction performance will be. 

It can be seen that the performance of a single bidirectional 

LSTM was close to that of a single CNN, while the 

bidirectional LSTM+CNN+AdaBoost detection algorithm 

had better prediction performance. 

 

 

Figure 4: The ROC curves of three detection algorithms. 

Finally, the three detection algorithms were deployed 

in a small substation for one month, and the changes in the 

false detection rates of the three detection algorithms 

during the field operation period are shown in Figure 5. 

With the passage of field operation time, the false 

detection rates of a single bidirectional LSTM and a single 

CNN gradually increased, and the CNN increased more. 

The proposed method had a stable false detection rate, 

which was lower than that of the other two detection 

algorithms. 

 

 

Figure 5: False detection rates of three detection 

algorithms in the one-month substation field operation. 

4 Discussion 
With the rapid development of technology, the smart grid, 

as an important component of modern power systems, is 

increasingly being emphasized for its stability and security. 

By integrating computation, communication, and physical 

environment, smart grids enable efficient management 

and monitoring of power networks. However, the 

complexity of smart grids also brings many challenges, 

especially in anomaly detection. Traditional detection 

methods often suffer from low accuracy and slow 

response, making it difficult to meet the requirements of 

modern power systems. The emergence of deep learning 

algorithms with data mining capabilities provides a new 

approach for processing and analyzing operational data in 

smart grids. As a deep learning model, the CNN has shown 

excellent performance in areas such as image processing 

and video analysis. In smart grids, the CNN can be applied 

to feature extraction and classification of power data. Key 

features can be extracted from massive amounts of power 

data through training the CNN model. The convolutional 

layer structure of the CNN possesses the ability to extract 

local features, enabling it to capture subtle variations in 

power data and improve the recognition capability for 

abnormal power data. The LSTM is a special type of 

recurrent neural network that can handle long sequence 

data, while the bidirectional LSTM further considers 

reverse sequences based on the LSTM. In the smart grid, 

a bidirectional LSTM can be used for processing and 

analyzing time series data. By capturing the temporal 

dependencies in power data, the bidirectional LSTM 

enables the detection of abnormal user behavior in the grid. 
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This paper combined a CNN and a bidirectional LSTM to 

analyze electricity consumption data from users in the 

smart grid and detect users with abnormal electricity usage. 

Afterward, simulation experiments were conducted in 

the laboratory using power grid data collected from the 

State Grid Corporation of China. Subsequently, a one-

month actual test was carried out in a local small-scale 

substation. This paper demonstrated that combining a 

CNN and a bidirectional LSTM yielded higher 

performance in identifying abnormal power grid users 

than using only a bidirectional LSTM or a CNN alone. 

During the actual operation process of the small-scale 

substation, our algorithm maintains lower and more stable 

false detection rates. The reason is that the CNN can 

extract local features of power data, while bidirectional 

LSTM can extract time series features of power data. 

Compared with a single bidirectional LSTM or a single 

CNN, it can obtain more comprehensive power data 

features. In addition, the AdaBoost model combines 

multiple weak classifiers into a strong classifier to further 

improve the recognition performance of the algorithm. 

5 Conclusions 
This paper briefly introduces the smart grid and the 

intelligent algorithm used to detect users with abnormal 

power consumption. This algorithm combined the 

bidirectional LSTM with the CNN to extract the features 

from the power consumption data of the users. Then, the 

AdaBoost model was employed to classify the users. A 

field operation test was carried out in a small substation. 

The proposed method was compared with a single 

bidirectional LSTM and a CNN. The precision, recall rate, 

and false detection rate were not much different between 

the single bidirectional LSTM and single CNN, and the 

performance of the proposed was obviously better than the 

other two algorithms. The ROC curves showed that the 

performance of the single bidirectional LSTM was close 

to that of the single CNN, while the predictive 

performance of the proposed detection algorithm was 

better. In the field operation, the false detection rate of the 

single bidirectional LSTM and single CNN gradually 

increased, and the CNN increased more; the proposed 

method had a more stable and smaller detection rate than 

the other two algorithms. 
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