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Recent advancements in requirements engineering (RE) methods have increasingly leveraged machine 

learning (ML) algorithms to address challenging RE issues such as the identification and classification 

of software requirements in requirement documents. Classifying software requirements accurately and 

efficiently is crucial for the success of the project. Functional and nonfunctional requirements define the 

core attributes and constraints of a system. When requirements are documented in natural language, 

they often introduce uncertainties such as ambiguity, inconsistency, or poor readability making the 

process challenging. Further, manual extraction of requirements is tideous and error prone as it 

requires precise interpretation, thereby mitigating the risks of miscommunication and errors in the 

development process.To address these challenges, it is vital to employ Natural Language Processing 

(NLP)techniques to enhance the clarity of requirements. This paper proposes a method that combines 

deep learning models with NLP techniques, supplemented by Flower Pollination Optimizer (FPO) 

algorithm, to automate the classification of requirements. The methodology leverages NLP to extract 

significant features for training a Convolutional Neural Network (CNN) model. CNN model is enhanced 

using the FPO algorithm to ensure better convergence. The performance of the proposed CNN-FPO 

framework is evaluated using an industry SmartNet dataset, with results indicating that the accuracy of 

the classification can reach up to 98% as compared to other traditional machine learning(ML) 

approaches.The integration of NLP with an optimized CNN model creates a robust framework for 

requirement classification, addressing the challenges posed by natural language documentation in 

requirements engineering.  

Povzetek: Predlagana je metoda za samodejno klasifikacijo programskih zahtev s kombinacijo 

konvolucijske nevronske mreže (CNN), obogatene z algoritmom Flower Pollination Optimizer (FPO), in 

obdelavo naravnega jezika (NLP).

 

1 Introduction 
Requirements Engineering (RE) can be defined as "a set 

of activities for exploring, evaluating, documenting, 

revising and adapting the objective, constraints and 

assumptions that the system should meet” [1]. These 

activities are recorded in a document known as the 

requirement document (RD), which is intended for 

communication, analysis, and experimentation. These 

requirement document are written in natural language 

and can be processed as any text document. It contains 

paragraphs, sentences, and words.There are two types 

of requirement document unconstrained document and 

disciplined or constrained document. Unconstrained 

document is written in natural language without specific 

rules. There are no limitations in expressiveness on 

what can be specified in natural language. Further, it is 

a free text in natural language that can be understood by 

all parties, and no special training is required. On the 

other hand, disciplined documentation is a structured 

natural language, where the requirements engineer 

follow rules on how the statements should be written  

 

 

making the document organized. Requirement 

documentation include various types of statements,  

such as system requirements, software requirements and 

concept definitions.  

In the ever-evolving field of software development, 

accurately interpreting and understanding of the 

software requirements is crucial to the successful 

deployment of software applications. However, 

software requirements often contain ambiguities, which 

can introduce unintended variability that must be 

identified and addressed [2]. Software requirements 

encompass both functional and nonfunctional aspects, 

which are fundamental in defining the system's 

behavior and performance  [3], [4], [5]. These 

requirements provide a clearer understanding of the 

project and are foundational to defining the features of 

the project under development. The features include 

both FR and NFR, and the quality of these requirements 

impacts activities throughout the software development 

life cycle [6]. While the requirements themselves are 

mailto:sonalraut.shelly@gmail.com1
mailto:shubha.puthran@nmims.edu


 

 

118   Informatica 49 (2025) 117–146                                                                                                                         S. Sonawane et al. 

critical for product quality, their impact is often 

indirect, influencing the quality through the activities 

they govern.   

FRs specify the functions or features a system must 

perform or support to meet user needs [7]. They describe 

what the system should do in terms of input, processing, 

and output. FR’s include authentication of user, 

validation of data, generation of report and search 

functionality. On the other hand, NFR are referred to as 

"quality attributes" or "system qualities" which specifies 

the qualities or characteristics that the software system 

must possess [8]. NFR describes how well the system 

performs its functions rather than what those functions 

are. NFRs focus on aspects such as reliability, security, 

performance, usability, scalability and compliance. 

Unlike FRs, NFRs are often not directly observable by 

end-users but are critical for the overall success and 

acceptance of the system.  

Traditionally, the classification of software 

requirements (FR and NFR) has been carried out through 

manual analysis by the engineers [9]. However, this 

process includes various challenges such as subjectivity, 

time consumption, and susceptibility to errors.  It is a 

tedious task, prone to various errors,  requiring a lot of 

effort, where each requirements document is needed to 

be read, analysed and classified manually. In response to 

the growing complexity of modern software projects and 

the ever-expanding volume of textual requirement 

documents, there is an increasing demand for automated 

and accurate techniques for requirement document 

classification [10], [11]. Requirement document 

challenges are very much in common with natural 

language documents challenges, such as semantic and 

syntactic ambiguity, synonymous nature and coherence 

[12]. In the context of interpreting software 

requirements, methodologies like NLP techniques have 

played a crucial role [13]. Additionally, there has been a 

substantial surge in the utilization of techniques such as 

deep learning (DL) and ML models for classifying 

software requirements [14], [15].  For requirement 

classification, we are leveraging the SmartNet dataset, 

sourced from industry, for evaluating the classification of 

FR and NFR. This dataset encapsulates real-world 

complexities such as-  

• Emerging requirements- Customers' needs and 

preferences may change over a period of time, 

resulting in changing requirements. These 

requirements serve as inputs to the next stages in 

the software development life cycle for the 

planning of schedule [16]. To handle the 

evolving requirements, requires flexibility in the 

classification process to ensure that the system 

continues to meet the customer expectations 

[17].  

• Varying stakeholder viewpoints - One of the 

most crucial aspects in the process of 

requirements definition is clarifying and 

establishing clear expectations of the client [18]. 

Different stakeholders, such as business 

analysts, end-users and technical experts, may 

have diverse perspectives on requirements [19]. 

Balancing these and ensuring that all 

stakeholders' needs are adequately addressed is 

important. 

• Compatibility with current systems - Ensuring 

compatibility and coherence between new 

emerging and existing requirements can be 

complex and a careful analysis and classification 

of requirements is required [20]. 

• Insufficient customer requirements - Customers 

may provide incomplete requirements, making it 

difficult to classify them accurately [21]. 

In response to these challenges, we propose an 

innovative approach integrating NLP with an optimized 

CNN. Through this fusion, we aim to enhance the 

accuracy and efficacy of FR and NFR classification, 

thereby facilitating more robust and tailored software 

development processes. This paper presents a CNN 

framework for classifying the requirements 

automatically. The primary contributions of this 

research are summarized as follows: 

1. Proposes an innovative integration of NLP 

techniques with CNN, augmented by the FPO 

algorithm, to automate the classification of 

software requirements into FR and NFR. 

2. To perform supervised machine learning by 

applying precise and systematic labels to 

annotate the industry-standard SmartNet dataset 

3. The effectiveness of the proposed approach is 

assessed using accuracy, precision, recall and 

F1-score, thus demonstrating the effectiveness 

of the CNN-FPO framework in accurately 

classifying requirements. 

The rest of the paper is organized as follows: 

Section 2 reviews the related works on the software 

requirement classification. Section 3 discusses the 

proposed research methodology. Section 4 presents the 

experimental evaluation results and discussion, Section 

5 discusses the internal and external validity threats and 

Section 6 concludes the paper with prominent research 

observations. 

2 Related works 
 

In recent years, there has been significant interest and a 

wide range of studies dedicated to developing 

innovative approaches for automated software 

requirement classification. Researchers have explored 

various techniques, including deep learning methods, 

ML algorithms, rule-based systems, and hybrid 

approaches. This section is organized into two 

subsections: a review of rule-based approaches followed 

by a review of ML approaches. 
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2.1  Rule- Based approaches  

Over the past decade, rule-based approaches have 

attracted significant attention for classifying software 

requirements. These methods involve constructing 

models that use predefined rules and syntactic elements 

to categorize requirements based on their content.  Goal 

and use case modeling is considered as an important 

approach for understanding the requirements. However, 

goals and use cases are often embedded within another 

content in requirements specifications documents. To 

address this, author in [22] has developed a new rule-

based approach to automatically extract goal and use case 

models from natural language documents. The approach 

achieves 82% recall and 85% precision rates for 

extracting goal and usecase models. To reduce the 

manual analysis of natural language requirements for 

large open-source projects, in [23] author has proposed a 

rule based natural language technique. Initial results 

suggest that it reduces the effort required to analyze 

software requirements for open source projects. Author in 

[24], presented a proposal that automated the 

classification of natural language requirement sentences 

into NFR using a rule-based classification technique. It 

makes use of thematic roles to achieve this. Additionally, 

the proposal identifies the priority of extracted NFR 

sentences on the basis of their occurrence in multiple 

classes within the document. Further author in [25], has 

presented a framework for the automatic detection and 

classification of NFRs from natural language 

requirements. The approach involves parsing the natural 

language requirements to extract multiple features. The 

presence of specific combinations and relationships 

among these features is used to uniquely identify and 

classify the requirement as an NFR belonging to a 

particular category. The approach in [26], aimed to 

automate the detection of NFR using a text classifier 

enhanced with a part-of-speech (POS) tagger. The 

researchers identified nine groups of keywords, including 

adverbs, adjectives and model keywords. The frequency 

of each keyword was included as a feature in the main list 

of features and ranked using smoothed and non-smoothed 

probability measures. A threshold was set for each 

keyword to assign it to a specific NFR type. The results 

presented in the paper surpass recent studies in the field, 

achieving a higher accuracy of 98.56% using 10-fold 

cross-validation. Author in [27], has used an approach to 

classify stakeholders’ quality concerns for requirements 

specifications. An iterative approach is used for training 

the classifier to classify NFR using dissimilar datasets. 

This approach is evaluated against natural language 

documents received from Automotive Organization and 

Siemens Logistics. Results show that though it is not able 

to classify all the NFRs, it is useful in any error-prone 

task. Similarly, author in [28] has presented an approach 

for fault classification using a noval systematic fuzzy 

approach. The model used the Decision Tree (DT) and a 

knowledge representation, for initial stage in 

classification, followed by a fuzzy rule based method for 

the final classification. Author in [29] proposed a hybrid 

approach that combines rule-based methods with ML 

techniques. The authors utilized extensive NLP 

techniques to convert unstructured requirement 

specifications into a corresponding goal model. Rule-

based components, such as parts-of-speech tagging and 

dependency parsing, are employed to identify syntactic 

structures based on predefined rules. In contrast, the 

inclusion of contextual and synonymy vector generation, 

along with the FiBER transformer model, introduces ML 

elements into the framework. 

Owing to the increasing complexity of software 

requirements documents and the expanding scope of 

software fields, rule-based approaches, which were 

effective, have become less prevalent. Researchers have 

diverted their focus to other statistical methods and ML  

algorithms, moving away from traditional rule-based 

methodologies. 

2.2 Machine learning based approaches 

In the field of software requirements, a significant 

number of studies have adopted machine learning 

approaches for identifying and classifying requirements. 

Early detection of requirements is crucial in the 

evaluation process that helps in building the initial 

design. Author in [30] propose a semi-supervised 

approach for text classification of NFR. Classification 

leverages a limited set of categorized requirements by 

utilizing the knowledge from uncategorized ones, along 

with specific textual properties. Results show that the 

approach has accuracy rates above 70%, higher than the 

one obtained using  supervised methods. The author in 

[31], has represented a Search-Based Software 

Engineering (SBSE) for selecting a set of software 

requirements. A systematic review is presented that 

analyzed and categorized SBSE approaches to address 

software requirement selection problems and the current 

techniques used to address these problems. Morever in 

[32], author has proposed an approach to improve the 

classification of FR and NFR. Author has contributed an 

approach for preprocessing requirements that normalizes 

requirements before they are given for classification. 

Tera-PROMISE repository is used for the study. It is 

found that the preprocessing technique improved the 

performance of the existing classification methods. The 

automatic classification of software requirements from 

the text documents has gained huge significance among 

the researchers in recent times [33], [34], [35]. The author 

in [36] reviewed the application of different ML 

algorithm for classifying software requirements. Both 

SVM and KNN algorithms were used as classifiers for 

requirement classification. These algorithms were trained 

using a PROMISE_exp dataset which consists of labeled 

requirements. A bag of words (BoW) concept was 

employed for classification and results show that SVM 

performs better than KNN in terms of achieving a 

precision of 73%. Proper classification of security 

requirements present in the Software Requirement 
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Specification document has been problematic for the 

developers. In [37], author has proposed a method for 

classifying security requirements into four types 

(authentication, access control, cryptography-encryption 

and integrity of data) using J48 decision tree. The 

effectiveness of the prediction models is evaluated using 

requirement specifications collected from 15 projects 

developed by students at DePaul University. The author 

in [38], implemented different ML models such as SVM, 

SGD, and Random Forest models along with NLP for 

classifying review statements from an user app into FRs 

and NFR’s. The models are trained on a public dataset 

namely PROMISE Software Engineering Repository 

dataset. Results show that the SVM model with TF-IDF 

exhibits excellent classification results. However, these 

models are time consuming and there is a need to 

investigate the application of models which have a faster 

execution time. Another author in [39] presented an 

approach for reducing misclassification rate and 

retrieving requirements for data-intensive applications.  

Author suggested to use Word Embedding followed by 

random forest classifier, as none of authors have used so 

far. With a precision of 0.89, F1 score of 0.91 and recall 

of 0.93, analysis showed that this approach produced a 

relatively high classification result for data-intensive 

systems. A comprehensive review of various algorithms 

for ML along with their applications in identifying and 

classifying NFR is presented in [40]. It provide insights 

into the effectiveness, strengths, and limitations of 

different machine learning approaches for handling NFR 

in software engineering. A supervised ML approach 

utilizing syntactic and lexical features is developed by 

author in [41]. Author employed over-and under-

sampling strategies to handle imbalance in the data and 

the classifiers are cross-validated using performance 

metric like precision, recall, and F1 score. Experiments 

related to the support vector machine classifier on RE 

data challenge dataset. Author acheived the recall and 

precision for security and performance with ~92% 

precision and ~90% recall. A study to enhance the 

analysis of extracting 14 categories of NFRs from 

unconstrained requirements documents was conducted by 

authors [42]. They used 11 natural language documents 

from the "iTrust and PROMISE" datasets. Five different 

ML classifiers were compared for identifying NFRs. 

Their findings revealed that word vector representation 

combined with the SVM classifier was twice as effective  

as the Naive Bayes (NB) classifier. Additionally, the k-

Nearest Neighbor (KNN) classifier with a distance matrix 

achieved an F1 measure score of 54% (precision and 

recall), while the NB reached upto only 32%. Authors in 

[43], has combine the N-Gram TF–IDF feature selection 

with binary and multiclass classifiers to automate the 

classification of refactorings, which is a process of 

improving the internal structure of the system without 

changing its quality.  The model used about 2,867 

commit messages extracted from open-source Java 

projects. Results indicate the F-1  score of the model 

reaches up to 90%. A systematic mapping study that 

surveys and synthesizes existing research on the 

application of natural  language processing (NLP) 

techniques in requirements engineering is presented in 

[44]. It surveys the methodology of NLP4RE, to 

understand the current techniques and identify the gaps. It 

provides an overview of NLP approaches, methodologies, 

tools, and challenges in the context of requirements 

engineering. 

Vectorization is a crucial process in NLP and 

semantic analysis that transforms text into numerical 

representations, which can be further used for 

classification.  The author in [45], evaluated the impact 

of different vectorization methods. Author examined 

variety of methods: TF-IDF, Word2Vec  and Doc2Vec. 

Four classifiers were used including Logistic Regression 

(LR), Naive Bayes (NB), and Random Forests. 

Experiments were conducted using the Tera-PROMISE 

repository, which contains 635 instances, including 370 

NFR and 255 FR. The evaluation focused on four 

categories: operational, performance, security, and 

usability. The researchers found that both the Doc2Vec 

and SCDV vectorization methods outperformed 

traditional methods. In [46], author used a RE data 

challenge dataset for classifying FR and NFR. A word 

embedding technique was employed for extracting text 

related features and a fastText model was used for 

classifying FR and NFR. The performance of the 

fastText model is evaluated and it was observed that the 

model achieves phenomenal results with an excellent F1-

score of 92.8%. 

Multi-label classification methods for requirements 

documents involve techniques and approaches tailored to 

handle scenarios where a single requirement can belong 

to multiple categories. The study in [47] has explored the 

challenges associated with NFR. The objective is to 

reduce misclassification by aiding stakeholders in 

addressing NFRs during the early stages of development 

by automatically classifying requirements. For that 

author has proposed a multi-label requirement classifier 

based on CNNs that categorizes NFRs into five distinct 

classes: portability, efficiency, reliability, maintainability 

and usability. In another paper author has proposed a 

deep learning architecture for multi label classification in 

legal field [48]. Author has addressed an issue of good 

quality datasets labeled by humans, that restricts 

practitioners and researchers from gaining good 

performances and released a legal multi-label dataset for 

classification. The approach is evaluated on 

POSTURE50K and other multi-label dataset 

EUROLEX57K. It showed that the proposed 

methodology achieves better performances as compared 

to other four recent methods on both the legal datasets. 

Authors in [49], proposed a fuzzy similarity approach 

combined with K-Nearest Neighbors (FSKNN) for 

multi-label sentence classification. It involves identifying 

the k-nearest neighbors from each training pattern. In a 

separate study, in [50], author introduced an automated 
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system for identifying NFR using sentence-based 

classification algorithms of FSKNN. The result stated 

that the Semantic-FSKNN reduced the loss by 21.9%, 

and also raise the value of accuracy by 43.7%, as 

compared to FSKNN method A Bidirectional Gated 

Recurrent Neural Networks (BiGRU) is presented for 

classification of natural language requirements using raw 

text in [51]. It classifies requirements into functional and 

variety of labels of non-functional types with limited 

preprocessing technique to model the classification as a 

multilabel. 

CNN are a type of deep learning models designed 

primarily for processing structured grid data such as 

images. In [52], authors presented a study on the 

automatic classification of requirements using CNNs. 

The research likely explores how CNNs can effectively 

classify software requirements into different categories, 

offering insights into the potential of deep learning 

techniques for requirement engineering  tasks. In [53], 

authors examined the implementation of two ML models 

namely Artificial Neural Network (ANN) and CNN for 

classifying NFRs into different classes of requirements. 

Both ANN and CNN models were experimentally 

evaluated and it was observed that CNN is more 

effective in classifying NFR’s as compared to ANN by 

achieving a precision of 94 % and recall of 97%. Authors 

in [54], deployed recurrent neural networks (RNN) and 

NLP for classifying NFR. The RNN model was 

developed and trained for processing the sequential 

natural language text and thereby classifying the NFR 

which is in the text form to different classes such as 

maintainability, operability, performance, security, and 

usability. The RNN model with NLP achieved a 

classification accuracy of 88% when tested for a diverse 

dataset consisting of one thousand NFR. An automatic 

requirement classification technique is presented in [55], 

which uses a graph attention network (GAT) known as 

DBGAT and a pre trained BERT model. The BERT 

model enhances the generalization of the model which is 

trained on the PROMISE dataset. The proposed DBGAT 

model achieves a higher classification performance in 

terms of F1 score of 91% (for known data) and 88% (for 

unknown data) with robust generalization capacity. A 

combination of NLP with AI-based techniques is 

presented in [56]. Author has proposed a method for 

classifying NFR in agile user stories. The framework is a 

combination of artificial intelligence and NLP techniques 

to automate the prediction of NFR. One seminal work 

that highlights the effectiveness of CNNs in text 

classification is presented in [57], which is used for 

sentence classification tasks. To understand the context it 

is important for grasping the word sense. However, feed 

forward network architecture of traditional CNN is 

insufficient to reflect this factor. For that, author has 

proposed a contextual CNN (C-CNN) by adding 

recurrent connection to the convolutional layer. In [58], 

authors reviewed the state-of-the-art CNN approaches, 

focusing from traditional models to deep learning 

models. A comparison of different techniques, with the 

pros and cons of different performance evaluation 

metrics are also provided. Similarly, the work in [59], 

proposes a hierarchical text classification approach based 

on CNN, aiming to capture hierarchical relationships 

between classes in text data. In another study, author has 

evaluated BERT’s performance for inter- document and 

intra-document classification tasks. It is executed on a 

corpus of 1,303 requirements sources. BERT model is 

fine-tuned for functional classification where each 

requirement is classified as either functional or 

nonfunctional. When compared with a baseline model, 

Word2Vec, BERT model achieves higher classification 

accuracy [60]. Authors in [61] introduced a system 

named Norbert that fine-tunes BERT, a language mode 

leverages transfer learning techniques for requirements 

classification tasks. The critical task of classifying NFR 

using transfer learning models is presented by the authors 

in [62]. The process is evaluated using different transfer 

learning models, including BERT, Distil BERT, XLNet, 

Electra-base, Distil Roberta and Electra-small, for this 

purpose. In [63], author has proposed a method for early 

detection of NFR using NFR-classifier. The approach is 

used to detect and classify the quality concerns of the 

stakeholder across requirements specifications by using a 

noval iterative approach. This approach is evaluated 

against document obtained from logistics deparment of 

seimens and automotive organization.  

A hybrid DL model is implemented in [64] for 

classifying the requirements. The hybrid model consisted 

of LSTM and bidirectional LSTM (BiLSTM) with ANN 

for classifying NFR. Results validate the effectiveness of 

the hybrid model when compared to the single LSTM 

and BiLSTM models. A hybrid approach known as 

FNReq-Net is presented in [65] for classifying FR and 

NFR. The model is tested and compared with other 

classifiers such as Naive Bayes, Logistic Regression, and 

SVM. As observed from the results, the hybrid FNReq-

Net improves the classification performance by 4% for 

the PROMISE dataset. 

 The availability of datasets plays a crucial role in 

training and evaluating requirement classification 

models. To provide resources for researchers and 

practitioners in the field of requirements engineering 

author in [66] introduced a dataset named PURE, which 

contains public requirements documents. The dataset can 

be used for tasks such as training ML models, evaluating 

algorithms, and conducting empirical studies in 

requirements engineering.  

Beyond recent advancements in deep learning 

architectures, which have improved the ability to capture 

complex patterns, several challenges and gaps remain. A 

key issue identified by the study is the shortage of 

labeled datasets for training. While commonly used 

datasets like PROMISE [67] and PURE offer some 

resources, there is a clear need for additional labeled 

data. Moreover, the performance of identical ML 

algorithms varies significantly across studies performing 
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well in some cases and poorly in others primarily due to 

differences in dataset quality and characteristics. 

Additionally, much of the literature lacks a systematic 

approach to feature identification and selection. 

Building on insights from existing literature, this 

work proposes leveraging a CNN model, enhanced with 

the FPO algorithm and NLP techniques, to classify FR 

and NFR using an industry-standard dataset. The 

integration of FPO facilitates optimized feature subset 

selection, aiming to improve classification accuracy and 

model efficiency. Leveraging a manually annotated 

industry dataset ensures the approach remains grounded 

in real-world software engineering contexts, enhancing 

both its applicability and relevance.  

Following Table 1 summarizes researchers work in 

the domain of requirement classification. Overall, the 

table provides a consolidated view of the research 

landscape in requirement classification. It helps in 

identifying commonly used classification methods, 

performance benchmarks, dataset trends, and existing 

challenges, thereby guiding future work in improving 

classification models, expanding datasets, or exploring 

under-researched areas. 

 

 

 

 

Table 1: Summary of researcher’s work in the field of requirement classification 

 

Autho

rs 

Year of 

publicati

on 

Techniques 

used 

Dataset 

characteristic 

Performance 

metrics 

Key findings/ Gaps 

[22] 2015 Rule-based 

approach 

PROMISE dataset is 

used consisting 625 

requirements from 

15 software projects. 

Accuracy 88% 

Recall 82% 

Precision 85% 

GUEST's artifact classifier 

surpasses Mallet and was 

more effective than 

Casamayor’s classifier. 

[23] 2011 Rule-based 

approach 

SourceForge 

projects is used as 

our dataset. It allows 

access to 230,000 

OSSD projects. 

Precision 94% 

Recall 64% 

F-measure 76% 

 

 

Need for refinement of 

parsing rules. 

Dependence on specific 

datasets and quality 

models. 

[24] 2016 Rule-based 

approach 

PROMISE corpus, 

Concordia RE 

corpus 

F-measure 97% 

 

Presence of 

misclassifications. 

Need for a larger corpus of 

quality requirements 

documents. 

[25] 2014 Pattern-based 

rules for 

detecting and 

classifying  

NFRs 

Promise repository  -- Creating new rules for 

ontology development. 

[26] 2008 Automatic 

classification 

of 

requirements 

using text 

classifier 

Corpus contained 15 

SRS problem 

statements, a total of 

765 sentences:65% 

of them are “NFR”, 

while 35% of them 

are “FR” 

Accuracy 98.56% Builds an information 

retrieval technique by 

incorporating linguistic 

knowledge. 

[27] 2007 Classification 

algorithm 

30 requirements 

specifications 

document designed 

as term projects by 

students at DePaul 

University 

-- The classifier struggles 

with detecting certain 

NFR types, such as "look-

and-feel," indicating a gap 

to handle subjective 

language. Augmenting 

dataset with more 

examples of challenging 

NFR types. 

[28] 2013 Systematic fuz

zy rule based 

approach for 

fault 

classification 

The dataset used 

here consists of fault 

current signal 

samples (in per unit 

values) obtained 

from a simulated 

-- DT induced fuzzy rule-

based approach provides 

improved accuracies 

compared to Heuristic 

fuzzy logic systems 

 

https://www.sciencedirect.com/topics/engineering/fuzzy-rules
https://www.sciencedirect.com/topics/engineering/fuzzy-rules
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power system model  

 

[29] 2024 NLP-driven 

framework 

with FiBER 

transformer 

model 

Promise_exp dataset Accuracy 92%, 

Precision 92%, 

Recall 91% 

F-Score 92% 

The framework has not 

been tested on agile 

requirements formats, 

such as user stories, which 

often contain unique 

linguistic structures. 

[30] 2010 Semi-

supervised 

approach for 

NFR 

identification 

and 

classification. 

Standard collections 

of documents. 

Accuracy rates 

above 70% 

Semi-supervised requires 

less human intervention 

for  requirement labeling 

than fully automated 

methods. 

[31] 2015 Requirements 

selection and 

prioritization 

using search 

based 

approaches. 

-- -- Requirements engineering 

is complex. This 

highlights the need for 

structured approaches to 

manage its multifaceted 

nature effectively. 

[32] 2017 Automated 

classification 

of NFRs using 

ML 

algorithms 

Tera-PROMISE 

repository 

Precision 95% 

Recall 94% 

F-score 94% 

Among the ML algorithms 

tested, Binarized Naïve 

Bayes (BNB) 

outperformed others.  

Challenges in 

differentiating usability 

requirements. 

[33] 2019 Ensemble ML 

algorithms to 

classify FR 

and NFR 

-- -- Experimental results show 

that gradient boosting 

outperforms random forest 

in terms of accuracy when 

classifying NFR. 

To explore other ML 

algorithms. 

[34] 2022 NFRs 

prediction 

combined with 

a layered 

system 

architecture 

with ML and 

data 

visualization 

methods. 

Dataset of NFRs 

was collected from 

312 IT professionals 

and academicians, 

encompassing 17 

attributes across 

5,304 instances. 

Accuracy 98.89%. Proposed model 

outperforms existing 

techniques in data 

completeness, accuracy, 

prediction reliability and 

stability. 

Need for NFR 

Prioritization Mechanism. 

[35] 2010 Review of the 

methods used 

for 

classification 

of document 

and text 

mining 

Zoo dataset  

Forest Cover Type 

dataset 

-- The study does not 

explore specific 

techniques beyond 

GSOM, leaving a gap in 

understanding how other 

methods could contribute 

to OLAP’s analytical 

depth. 

[36] 2021 Software 

requirements 

classification 

using ML 

PROMISE_exp F-measure 74% To improve the accuracy 

and precision of the 

model, by modifying 

logistic regression 

algorithm. 

[37] 2016 Text mining 

and 

Dataset consists of 

documents collected 

-- Does not focuses on other  

NFR such as performance, 
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classification 

modeling of 

security 

requirements 

in SRS 

documents 

from 15 projects 

developed by MS 

students at DePaul 

University. It 

consists of 326 

NFRs specifications 

classified into 9 

NFR types [37] 

usability, and 

maintainability. 

Reliance on J48 Decision 

Tree Alone.  

[38] 2022 ML based data 

modeling to 

identify 

requirements 

from review 

statements of 

user app 

PROMISE dataset 

User app reviews 

dataset 

Accuracy 83%. To create new datasets 

comprising user app 

reviews and software 

requirements. XGBoost, 

CNN and RNN to be 

implemented. 

[39] 2023 Word 

Embedding 

with a 

Random 

Forest 

Classifier to 

classify 

requirements 

Banking dataset 

comprising 2812 

requirement 

instances divided 

into 4 categories. 

Precision 89% 

Recall 93% 

F1 score 91% 

To increase the 

requirement dataset to 

mitigate the unbalance 

nature.  

[40] 2019 Review of 24 

ML methods 

for identifying 

and 

classifying 

NFRs 

-- -- Lack of labeled datasets 

and a standard definition 

of NFRs are the open 

challenges. 

[41] 2017 Classification 

of NFR using 

supervised 

ML 

Quality attributes 

(NFR) dataset 

Precision ~92% 

Recall ~90% 

With automatic word 

feature selection, the 

classifier achieved higher 

recall for NFR 

classification but at the 

cost of lower precision. 

[42] 2013 Extraction of 

NFRs in 

natural 

language 

documents 

using NLP. 

NFRs documents 

like agreements, 

manuals, 

requirements 

documenets and user 

manuals containing 

NFRs categorized to 

14 NFR categories 

F1 measure 54% Limited exploration of 

feature types beyond 

words exploring more 

advanced linguistic 

features that will enhance 

accuracy for NFR 

classification. 

[43] 2021 Classification 

of refactored 

code 

Self-affirmed-

refactoring dataset 

containing 2867 

commit messages 

F-1 ~90% To examine how well the 

approach applies to 

projects across various 

domains. 

To develop a tool that 

facilitates the detection of 

self-affirmed refactoring 

commits. 

[44] 2021 Survey of 

NLP4RE  

-- -- Lack focus on newer NLP 

advancements like  

transformer-based models 

like BERT. 

Lack of focus on 

evaluation metrics and 

benchmarking standards. 

[45] 2018 Comparative 

analysis to 

Tera-PROMISE 

Repository. The 

-- Sparse Composite 

Document Vectors 
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assess 

different 

vectorization 

and 

classification 

methods 

repository contains 

255 FRs and 370 

NFRs.  

(SCDV) and Doc2Vec 

achieve higher 

performances than 

traditional ones [45]. 

[46] 2020 Classification 

of FR and 

NFR using 

Word2vec and 

fast Text 

625 requirement text 

from International 

Requirements 

Engineering 

Conference’s 2017 

Data challenge 

dataset. 

 

 Precision 92.8% 

Recall 92.8% 

F1 score 92.8% 

The study mentions future 

work with BERT, and 

other  advanced NLP 

models like GPT or 

RoBERTa, which might 

offer valuable insights. 

[47] 2020 Requirement 

classification 

using CNN 

technique to 

minimize 

misclassificati

on of NFRs 

Manual labeled 

corpus of NFRs 

from SRS 

documents. 

-- The technique to be 

implemented on balanced 

corpus to improve the 

results. 

[48] 2022 Deep learning 

architecture 

for multi-label 

document 

classification. 

POSTURE50K, a 

novel legal multi-

label classification 

dataset containing 

50,000 legal 

opinions. 

EUROLEX57K 

multi-label dataset. 

Precision 87.8% 

Recall 80% 

F1 score 82% 

Limited exploration of 

data augmentation 

techniques. 

Comparison with domain-

specific transformers 

beyond RoBERTa. 

Challenges in handling 

labels with very few 

training samples. 

[49] 2012 Classification 

using fuzzy 

similarity 

measure 

(FSM) 

and KNN.  

Reuters-21578, 

RCV1, and 20 

Newsgroups. 

F1 score 97.27% 

microaveraged 

breakeven point 

(BEP) 97.27% 

Although FSKNN reduces 

computational cost by 

clustering training 

patterns, the KNN-based 

approach still face 

scalability challenges on 

large datasets. 

[50] 2015 Classification 

of NFR Using 

Semantic-

FSKNN 

Dataset contains 

1342 sentences from 

six different datasets 

Precision 73.9% Semantic-FSKNN method 

reduces the error rate by 

21.9%, and also raises the 

accuracy by 43.7%. 

[51] 2022 Bidirectional 

Gated 

Recurrent 

Neural 

Networks 

(BiGRU) to 

classifiy FR 

and NFR 

PROMISE dataset  

EHR dataset 

-- Requirements can be 

effectively classified into 

FR and NFR using the 

presented RNN based 

deep learning system, with 

minimal text 

prepossessing and no 

feature engineering. 

[52] 2016 Classify FR 

and NFR 

using CNN 

DOORS document 

database 

precision 73% 

Recall 89% 

To increase training data 

to improve the accuracy. 

Consider documents from 

other domains as well. To 

provide the user with the 

explanantion as why a 

content element is 

classified incorrect. 

[53] 2019 Classify 

software 

requirements 

International 

Requirements 

Engineering 

Precision 82% and 

94% 

 Recall 76% and 

Investigating the 

feasibility of other ML 

techniques. To design 

file:///C:/Users/user/Downloads/5763-15817-1-PB.pdf
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using ML 

techniques 

Conference’s 2017 

Data challenge 

dataset. 

Promise dataset. 

97% F1-score 

82% and 92% 

fully automated ML based 

system. 

Use of BERT to improve 

the performance. 

[54] 2021 RNN to 

classify NFRs 

International 

Requirements 

Engineering 

Conference’s 2017 

Data challenge 

dataset. 

Promise dataset. 

Accuracy 88%  

Precision  84% 

Recall  85% F1-

score 84% 

In future to include FRs to 

assess the model’s 

performance. 

[55] 2022 Requirement 

classification 

using BERT 

and graph 

attention 

network 

(GAT) 

PROMISE dataset F1-score 91% Work on dynamic graph 

research in the future. 

Expand the data volume 

through data annotation to 

improve model capability. 

[56] 2023 NLP and AI 

technique to 

predict NFR 

in user stories 

-- -- It mitigates the reported 

causes of the problems in 

the literature: limited 

documentation and the 

functionality-focused 

behavior of agile 

requirements. 

[57] 2018 Contextual-

CNN for 

sentence 

classification 

Stanford Sentiment 

Treebank and 

question 

categorization 

dataset TREC 

Sentiment prediction 

dataset 

Accuracy 95.2% Combining recurrent 

connections with 

convolutional layer, the 

network effectively 

integrated feature 

extraction and context 

modulation. 

[58] 2020 Survey on text 

classification 

-- -- Challenges related to the 

quality, structure, and 

availability of the data 

used to train, validate, and 

test ML model. 

[59] 2020 Heirarchical 

text 

classification 

using Deep 

learning 

Dataset consist of 

51,325 sentences 

from 8 online news 

websites belonging 

to technology, sports 

and entertainment 

Accuracy 94.02% 

Precision 92.59% 

Recall 88.12% 

To develop Bi-LSTM 

based approach to improve 

hierarchical structure. To 

optimize the model as it 

takes long training time. 

[60] 2024 Deep NN for 

classifying 

requirements  

Dataset of 1303 

requirements 

sourced from five 

mechanical design 

documents. 

Matthews 

correlation 

coefficient (MCC) 

0.95 

While BERT is used, the 

study does not explore 

embeddings from other 

advanced transformer 

models, such as MPNet 

and RoBERTa. 

[61] 2020 Transfer 

learning for 

requirement 

classification. 

Promise NFR dataset F1 score 92% To analyze the 

performance of language 

models such as XLNet or 

XLM. To investigate how 

a multiclass multilabel FR 

classification would 

perform. 

[62] 2023 NFR 

classification 

using Transfer 

learning 

Dataset consist of 

aproximately 1445 

records with 12 

classes of quality 

Accuracy 91.48% 

Precision 91.48% 

Recall 91.48% 

F1 Score 91.48% 

Small dataset size, which 

affect generalizability. 

Explore ensemble 

methods and other transfer 
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attributes learning strategies to 

enhance NFR 

classification. 

[63] 2006 Early 

detection of 

NFR 

15 Requirements 

specifications 

developed by MS 

students at DePaul 

University. 

Specification 

document obtained 

from Siemens 

Logistics and 

Automotive 

Organization. 

-- Lacks insights into how 

often the model should be 

retrained to maintain 

accuracy across different 

contexts. Testing on larger 

datasets could improve 

robustness and 

generalizability. 

[64] 2023 Hybrid deep 

learning for 

NFR 

classification 

Dataset containing 

1000 NFRs 

-- Hybrid models 

demonstrated superior 

performance in terms of 

precision, recall, and F-1 

score. 

[65] 2016 Hybrid 

predictor 

namely 

FNReq-Net 

for 

classification 

Promise dataset 

Promise-exp dataset 

F1-Score 

improved by 4% 

and 1% 

To explore different word 

embeddings methods. 

Optimize the 

hyperparameters of 

traditional machine 

learning classifiers using a 

genetic algorithm. 

[66] 2017 Creation and 

analysis of a 

natural 

language 

requirements 

dataset. 

PURE (PUblic 

REquirements 

dataset), a dataset of 

79 publicly available 

natural language 

requirements 

documents. Dataset 

includes 34,268 

sentences. 

-- The future work involves 

converting the entire 

dataset to XML format 

and enhancing it by 

incorporating additional 

documents. To expect RE 

researchers annotate the 

requirements for specific 

tasks. 

[67] 2017 Fault 

prediction 

using ML 

approach 

Promise dataset -- SVM and Random Forest 

algorithm can be used as a 

recommendation ML 

algorithm for fault 

prediction. 

3 Proposed research methodology 

This research focuses on classifying FR and NFR for an 

industry SmartNet dataset to facilitate successful 

deployment of the software. Feature selection is 

optimized using the FPO optimizer that selects an optimal 

set of features. A CNN model is then employed for 

classification  

based on the optimal set of features. This process is 

complemented by NLP techniques to manage the 

sequential data. The stages involved in implementing the 

proposed approach are outlined as follows: 

  3.1  SmartNet dataset manual annotation  

For this research work, an industry SmartNet dataset [68] 

is used given by Godrej as shown in Figure 1. SmartNet 

is designed to  handle the services provided to the 

customer upon delivering the product. It is designed to 

improve service functionality & customer satisfaction. 

SmartNet dataset includes unconstrained requirements 

with unlabeled sentences. It contains many real world  

 

complexities as described in Section 1.  A sentence level  

manual annotation is necessary for conducting supervised 

learning experiments.   

To perform the process of manual annotation, firstly 

all the requirements sentences from the document are 

extracted. It is done so by using sentence boundary, 

where sentence boundary are identified by capital letter 

and punctuation marks. In most of the cases in the 

requirement document, every sentence talks  about one 

software requirement. But it is not mandatory that all the 

parsed sentences are requirement sentences. So, the 

annotation process is performed at sentence level. Once  

all the requirements are extracted, they are labeled by the 

group of experts who have in-depth knowledge of the 

data. The annotation process was carried out in an offline 

mode by the experts. The interpretation of functional and 

non-functional requirements differ across industries, 

file:///D:/PHD-%20Sonal/Dataset/output1.txt
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influencing how results are perceived and applied. To 

avoid this, domain experts included software engineers 

from Godrej that ensured the labeling process is aligned 

with industry standards. For each sentence three options 

were provided namely- FR, NFR and others. After the 

experts read the sentences, they had to decide if the 

sentence was describing a FR, NFR or something else. If 

the expert finds a sentence which doesn’t fit in any of the 

requirement category, then the others option could be 

selected.  

 

 
Figure 1: SmartNet dataset sample sentences without 

annotation 

After labeling the requirement sentence, the expert 

had to express his confidence for each sentence by 

selecting two levels of confidence: low level or high 

level for each answer as shown in Figure 2. To avoid 

annotation error, each sentence had to be labeled by all 

the experts. To ensure the accuracy of the labeling 

process, we followed a specific set of criteria for 

accepting each review. Firstly, for a review to be 

considered as valid, it must be evaluated and completed 

by all the experts. Secondly, if the experts categorize 

the review differently, the category with the higher 

confidence level is selected. Lastly, if both the 

confidence levels are equal, preference is given to the 

reviewer having more experience.  

 

 
Figure 2: Sample of requirement sentences for manual 

annotation 

The labelling process took over 2-3 days for the 

initial setup which included training to the software 

engineers and guideline creation, 1-2 weeks for 

annotating the document followed by quality control for 

2-4 days to ensure consistency check and accuracy. The 

discrepancies found in the quality control process were 

resolved by discussing with the annotators and domain 

experts. Following Figure 3. shows sample of annotated 

dataset. After the annotation task is completed, we got a 

total of 217 requirement sentences, labeled by 10 

software engineer experts with different levels of 

experience.  

 

 
Figure 3: SmartNet dataset sample sentences with 

annotation 
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Table 2: Classification of sentences 

 Sentences 

FR 198 

NFR 14 

Irrelevant 5 

Total  217 

 

The distribution of these sentences are as shown in 

Table 2. 

  3.2 Text extraction 

Text extraction is the process of retrieving text from a 

file (in this case, a .txt file) and making it accessible 

within a program. Here, the test data stored in the 

‘output1.txt’ file is extracted into the variable ‘text,’ 

allowing it to be read, analyzed, and processed further. 

Following Figure 4 and Figure 5. shows the code 

snippet and output for text extraction process 

respectively. 

 

 
Figure 4: Text Extraction code snippet 

 

 
Figure 5: Text Extraction output 

  3.3 Text preprocessing 

Text preprocessing is performed on the dataset to clean 

the data by removing the uncertainties present and 

thereby making the data suitable for the classification 

purpose. Preprocessing helps in extracting relevant and 

meaningful features from the data.  

Following Figure 6. represents the block diagram 

for text preprocessing which is described in detail in the 

following subsections. 

 

Figure 6: Block diagram of Text Pre-processor 

3.3.1 Text cleaning 

In this stage, after text extraction, the text undergoes 

cleaning to remove empty spaces and special 

characters. This involves converting the text to 

lowercase, replacing special characters with spaces, and 

removing non-word characters (anything other than 

letters, digits, and underscores). Additionally, any links 

or website references, as well as punctuation, are 

removed. This cleaning process produces text that is 

more manageable for further processing tasks. 

Following Figure 7. shows the output after cleaning the 

text.  

 

 
Figure 7: Sample of text cleaning output 
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3.3.2 Tokenization 

In the process of tokenization, text is divided into smaller 

paragraphs and then into individual sentences [69]. Then 

each individual sentence is divided into multiple small 

words or tokens. These tokens can be words, phrases, 

symbols, or other meaningful elements, depending on the 

type of tokenization and the language. A new sentence is 

identified by the capital letter at the start and a full stop 

or a question mark or an exclamation mark at the end of 

the sentence. A tokenization function ‘word_tokenize’ 

from NLTK, a python library is used for tokenization 

which helps in extracting english sentences from the 

document[70]. It is a foundational step in NLP and ML 

tasks, where it's essential for transforming unstructured 

text into structured data for further analysis 

For example, when applying tokenization on “To 

print the service job sheets click on print service job 

sheet”, the result will be a set of tokens: {To, print, the, 

service, job, sheets, click, on, print, service, job, sheet}. 

Following Figure 8. Shows the sample output for 

tokenization.  

Figure 8: Sample output of tokenization 

3.3.3 Stop words initialization and removal 

Stop words are common words that hold minimal value 

or relevance. Removing them does not impact the 

meaning of the sentence. In the context of NLP, stop 

word initialization refers to the process of identifying 

and creating a list of stopwords that are removed while 

analyzing the natural text. Following Figure 9. shows 

the sample output of stopword removal as 

filtered_words.  

 

 
Figure 9: Sample output of stopword removal 

3.3.4 Lemmatization 

Following stemming, the next step is lemmatization, 

where words are reduced to their dictionary form. 

Unlike stemming, which merely removes suffixes or 

prefixes and may produce incorrectly spelled words, 

lemmatization takes into account the word's meaning 

and context to produce accurate root forms, thereby 

resulting in a valid word form. [71]. The 

WordNetLemmatizer function from NLTK library in 

python is used to reduce words to their base form. 

Following Figure 10. shows the sample output for 

lemmatization performed on filtered_words and writes 

the output to a file named example.txt.  

 

 
Figure 10: Sample output of Lemmatization 

 

Choosing lemmatization over stemming for research 

improved the quality of feature extraction. Stemming 

reduced words to base form giving incorrect words like 

"secur", "servic", "handl", "oper" , "condit" etc. which 

hindered the process of feature extraction. On the 

contrary, lemmatization reduced words to their 

dictionary form giving meaningful words like 

“security”, “service”, “handle”, “operation”, “condition” 

therby improving the quality of feature extraction. 

  3.4  Feature extraction and selection 

The important features from the text are extracted using 

two feature extraction techniques namely Bag of words 

(BoW) and Word2vec. Further feature selection is done 

using ChiSquare method which are discussed in the 

following subsections. 

3.4.1 Feature extraction 

This is a crucial step in classifying software 

requirements. Given the large volume of data in 

software requirements, it's vital to extract only the 

relevant features from the dataset. The extracted features 

are then used to identify the requirements using the 

proposed CNN model. In this research, for feature 

extraction two techniques are used namely BoW 

(Categorical word representation) and Word2Vec 

(Continuous word representation). Word2Vec captures 

semantic similarity between the words, making it 

suitable for tasks requiring nuanced understanding of 

relationships [72]. BoW, on the other hand, provides a 

straightforward representation of text documents and is 

computationally efficient and versatile. BoW is easily 

interpretable and applicable to a wide range of NLP 

tasks [73]. In this paper, classification is done using 

BoW and compared with Word2Vec classification as 

discussed in Section 4.2, to provide a comprehensive 

representation of text data. The process involved in the 
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BoW concept is as follows: 

• The process of BoW begins with text 

tokenization in which the text is divided into 

individual words or tokens.  

• After tokenization, a vocabulary is created by 

collecting all the unique tokens from the entire 

corpus where each unique token is assigned a 

unique index. A feature vector is created equal 

to the size of the vocabulary. The values in the 

feature vector are binary values to indicate the 

presence (1) or the absence (0) of the word. For 

every document, the number of occurrences of 

each word in the vocabulary is counted 

representing the frequency of that word. 

For BoW model, the output of the lemmatization is 

given as input text which is transformed into a fixed-

length vector. This is done by counting the number of 

times the word is present in a document. The BoW 

model provides the unique features related to the text 

present in the document. A data frame is created which 

displays the value ‘1’ if the particular word is present. 

Else it displays 0. BoW do not capture syntactic 

information meaning the relationship between the words 

as they do not consider the order of the words [73]. 

Following Figure 11. shows how requirement sentence 

is represented as BoW vector 

Requirement sentence- “The system is designed to 

handle after Sales Service Processes of Security 

Solutions”. After Pre-processing the requirement 

sentence becomes as follows: 

[‘system’,‘designed’,‘handle’,‘sale’,‘service’,‘process’, 

‘security’, ‘solution’] 

 

 
Figure 11: BoW feature representation 

 

Word2Vec is a word embedding model used to 

convert feature words into dense vector representations 

also known as word embeddings. The embeddings 

determine the semantic relationship between the words 

that helps in classifying the natural text [72]. In 

Word2Vec model, words which have similar meanings 

are arranged close to each other and provide the 

contextual information. Word2Vec technique are of two 

types namely Continuous Bag of Words (CBOW) and 

Skip-gram [74]. 

Word2Vec operates based on the sliding window 

framework, which when applied over a sentence, for 

each word, it considers a content window of adjacent 

words. In this paper skip gram model is used where, 

given the target words, the context words are predicted. 

Word2Vec uses a 2-layer neural network to represent 

the word vectors. During training, the weights of the 

network are adjusted to minimize the prediction error. 

Once the model is trained, the hidden layer weights are 

considered as the word embeddings. These embeddings 

represents meaningful representations of words in a 

continuous vector space. These embeddings are then 

given as input to the classifier. Following Figure 12. 

represents Word2Vec embedding for word approve 

from the above requirement sentence. 

  

 
Figure 12: Word2Vec Embedding for the word reject 

3.4.2 Feature selection 

Feature selection is referred as a process of identifying 

and selecting the most relevant features from a dataset 

that contribute significantly to the classification tasks. 

For feature selection Chi Square model is used, where 

the output of feature extraction process is given as an 

input to Chi-square for finding the scores. Based on the 

scores, the words (features) are selected. Chi Square 

method employs a statistical method for selecting 

important and relavent features while managing discrete 

data [75]. Technically, the Chi Square method uses a 

contingency table to determine the independence 

between two categorical variables. In this process, 

features that are correlated with the target variables are 

selected for classification. A null (H0) and alternative 

(H1) hypothesis are used to make assumptions, which 

are represented as follows: 

H0 :- There is no relationship between categorical 

feature and target variable 

H1 :- There is certain relationship between 

categorical feature and target variable 

 

In Chi square feature selection, categorical features 

represent requirements and the target variable is the 

variable you're trying to predict. H0 is the null 

hypothesis and H1 represents the alternate hypothesis. If 

the p-value is ≥ 0.05, we reject the alternative 

hypothesis (H1), indicating that the target variable and 

categorical features are not significantly related. 

Conversely, if the p-value < 0.05, we reject the null 

hypothesis, suggesting a significant relationship 

between the target variable and categorical features. 

Features with a p-value greater than 0.05 are excluded 

from the feature set, and the remaining features are 

retained for the classification process. 

A contingency table is created based on the selected 

features, representing the frequency distribution of two 

categorical variables. This table displays the counts of 

observations within the different categories of the two 

variables. Chi-square selects 27 features for BoW 

vectorizer and selects 401 features for Word2Vec as 

shown in Table 3.  
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Table 3: Feature selection using Chi-square for 

BoW and Word2vec vectorizer 

      BoW             Word2Vec 

Chi-

square 
       27               401 

 

  3.5 Classification using ML classifiers 

Classification is a core task in ML aimed at assigning 

input data to predefined categories. Machine learning 

classifiers achieve this by identifying patterns from a 

dataset during training and applying these learned 

patterns to predict labels for new data. Three supervised 

ML algorithms are utilized: SVM, KNN, and CNN. 

SVM and KNN are selected based on their strong 

performance in similar studies in the literature [9]. 

CNN, a deep learning model and considered state-of-

the-art in classification, is also employed. Details of 

these classifiers are discussed in the following 

subsection. 

3.5.1 SVM classifier 

SVM is a discriminative method used for classification 

in the literature [76]. the SVM classifier addresses the 

nonlinear classification problem by utilizing a 

"hyperplane." Feature vectors of requirement sentences 

are mapped to a high-dimensional space where each 

dimension can be linearly separated by a decision 

boundary, known as the hyperplane. Given the two 

classes, FR and NFR, a binary SVM classifier is 

employed. For enhanced classification performance, the 

SVM classifier parameters are configured to use a 

polynomial kernel (kernel=poly) with a degree of 10 and 

a maximum of 100 iterations (max_iter=100). 

3.5.2 KNN classifier 

KNN classifier [77] is a simple, intuitive, and widely 

used ML algorithm for classification. To classify an 

unknown data point, KNN calculates the distance 

between the unknown point and all the points in the 

training set by using an appropriate distance metric.  

After calculating the distances, the new data point is 

assigned to the class that is very much common among 

its nearest neighbors through majority voting. After fine 

tuning, the parameters used were : [n_neighbors=3, p: 

2]. p=2 corresponds to the Euclidean distance. 

3.5.3  CNN classifier 

Convolutional Neural Networks [52] have been widely 

used for the task of requirement classification.  Initially, 

for requirement classification, the sentences are 

segmented into tokens (word). Then for each word a 

vector is generated using feature extraction techniques- 

BoW and Word2Vec. After feature extraction, feature 

selection is done using chi-square after which the 

vectors are passed through different layers in the CNN 

that are discussed in the following section:   

• Convolutional Layers: The convolutional 

layers are the fundamental building blocks of 

the CNN architecture. A dot product is 

calculated between each filter and patches of 

the input data, allowing the model to extract 

relevant text features. The input to the 

convolutional layer has two dimensions: 

(Xtrain.shape[1], 1), where Xtrain.shape[1] 

represents the length of the sequence or the 

number of features per sample, and 1 

represents the number of channels.  Following 

Figure 13. shows Xtrain data input to CNN 

where each row represents the vector of each 

word and column represents the features. Then 

Xtrain.shape[1] would be n, representing the 

number of features dimensions for each word. 

               

 
Figure 13: Sample represention of Xtrain data 

 

• Activation functions: These functions are 

applied to the output layers of the CNN model.  

In this research a ReLU (Rectified Linear Unit) 

activation function is applied for improving the 

non-linearity of the model. 

• Pooling layers: These layers are used to down-

sample the size of the text.  

• Dense layers: The dense layers are the fully 

connected layers of the network. The output of 

the final pooling layer is concatenated into one 

vector and feed to a dense layer. It takes in the 

features and transform them to classify the input 

requirements. In this research for binary 

classification, sigmoid activation function is 

used. The output layer represents neurons where 

each neuron represents a label belonging to one 

of the target categories i.e FR or NFR. 

  3.6 CNN model optimization using flower 

pollination optimizer algorithm  

CNN is a fundamental classifier which has gained huge 

success in the requirement classification tasks. 

Optimizing CNN models enhance their performance, 

efficiency and scalability in requirement classification 

tasks [78]. In this research, a FPO algorithm is used for 

optimizing the CNN model for obtaining an optimal 

output.  

FPO algorithm is a nature-inspired optimization 

algorithm used to solve optimization and search problems 

[79].  In optimizing CNN, the challenge lies in finding 

the most effective feature set to minimize loss and 

improve classification performance. FPO algorithm is 

instrumental in this process, as it searches for an optimal 

set of features that enhances the CNN model's overall 
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effectiveness. FPO algorithm is inspired by the 

pollination process of flowers carried out by bees to find 

optimal solutions in multidimensional search spaces [80]. 

The process involved in the FPO algorithm is discussed 

below: 

• Initialization: FPO algorithm starts by 

initializing a population of potential solutions 

for the problem, with each solution represented 

as a point within a multidimensional search 

space. 

• Objective Function: The optimization problem is 

guided by an objective function that assigns a 

fitness or cost value to each solution within the 

population. Each solution is assessed based on 

this fitness function, which indicates how 

effectively it addresses the optimization 

challenge. The aim is to locate the optimal 

solution, or the "fittest flower," in the 

population. The objective function is defined as 

follows:  

 

min(cost) = alpha * error + beta * (num_feat / 

max_feat) where, 

 

➢ alpha * error: Error represents the loss 

function multiplied by a coefficient 

alpha, which represent the weight 

assigned to the error term. alpha    = 

0.99 

➢ beta * (num_feat / max_feat): It is a  

regularization component. num_feat is 

the number of features, while max_feat 

is the maximum allowable number of 

features. beta = (1-alpha) 

• Flower Population: In FPO algorithm, each 

potential solution is represented as a ‘flower’. 

They are categorized into three types: ‘source 

flowers,’ ‘donor flowers’ and ‘receptor flowers’. 

• Source Flowers: They represent the current best 

solutions in the population.  

• Donor Flowers: They are the solutions with 

lower fitness values. They act as pollinators that  

carry information to receptor flowers. 

• Receptor Flowers: They carry the information 

that they receive from the donor flowers. These 

flowers update their positions based on the 

information received from the donors. The 

pollination process entails an exchange of 

information between donor and receptor flowers 

to update the position of the receptor flower. 

• Pollination Process: The core of the FPO is its 

pollination process, which presents the way 

pollination process is carried out by the bees. 

The positions of the flowers is updated 

iteratively based on the positions of the donor 

flowers and source flowers. The algorithm uses 

a switch probability ‘p’ to decide when to 

perform global or local pollination. For each 

solution a random number is generated, and if it 

is less than ‘p’, global pollination is performed; 

otherwise, local pollination takes place. The 

pollination process is  affected by parameters 

like the step size, rate of pollination, population 

size and number of generations. 

• Termination: The algorithm repeats the 

pollination process for a specified number of 

cycles or until a convergence criterion is met. 

The best solution found during this optimization 

is regarded as the algorithm's final output. 

 

After initializing the global iteration, there are two 

possible pollinations that can happen, that is global or 

local pollination. Global pollination is carried out by 

insects such as bees that can travel long distances. Pollen 

grains of the flowers are carried over longer distances 

because insects can fly and cover a larger range. This 

process ensures the pollination of the fittest features. 

Local pollination occurs within limited range when 

natural elements like rain or wind carry pollen grains to 

nearby areas. Local pollination occurs within a limited 

range. Among all the global and local features, the best 

features are selected based on the threshold value and the 

fitness value. Following are some of the best features 

selected using FPO algorithm for the functional and non-

functional requirements classification : 

‘claim', 'available', 'authorized', 'consistently', 'status', 

'generated', 'maintained', 'security', 'replenishment', 

'responsibility', 'royalty', 'satisfaction', 'replacement', 

'service',  'solution', 'damage', etc.  

Through iterations, the FPO algorithm converges on 

a feature subset that optimally balances the trade-off 

between classification performance and feature 

dimensionality. The size, number of selected features 

and the error rate, are calculated to determine the best 

FPO scores. Based on these scores, the most relevant 

features are chosen. 

 

 
Figure 14: Performance of the FPO algorithm using 

Word2Vec for 50 runs 
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The above Figure 14. illustrates the average fitness 

scores for the FPO algorithm across 50 runs. It provides 

insights into the optimization behavior and performance 

of the algorithm across multiple iterations. The detailed 

analysis is as follows: 

 

• Exploratory Phase: At the beginning of the 

curve for the first 10-15 iterations, there is a 

noticeable and rapid decrease in the average 

fitness value. This indicates that the algorithm 

is effectively exploring the search space and 

finding better solutions quickly. The global 

pollination phase, driven by Lévy flights, is 

likely helping the algorithm make significant 

strides in fitness improvement during these 

early stages. 

• Transition Phase: Between iterations 15 to 35, 

the average fitness continues to decrease, but 

the fitness curve is less steep than in the initial 

phase. This phase indicates that the algorithm 

is moving gradually into a more refined search, 

balancing global exploration with local 

exploitation.  

• Final Convergence phase: After around 

iteration 35, the curve begins to flatten, and 

fitness values stabilize with only minimal 

decreases in each subsequent iteration. This 

flattening of the curve suggests that the 

solutions are nearing optimality, and additional 

iterations bring only slight improvements, if 

any. 

• Overall Convergence Behavior: The graph 

shows a typical convergence pattern with a 

rapid decrease in fitness initially, followed by a 

gradual tapering off. The algorithm 

demonstrates effective convergence behavior, 

indicating robustness in handling the 

optimization problem. 

The overall trend of the graph demonstrates how 

FPO is effective in global optimization tasks, 

progressively minimizing the fitness value to find better 

solutions until it converges on near-optimal feature set 

for the classification task. The following Figure 15. 

represents the flowchart of the propsed approach. 

 

 

 
 

Figure 15:  CNN-FPO approach 
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The pseudocode of the FPO algorithm is given as 

follows:  

FPO ALGORITHM: Pseudocode 

 Objective: Minimize or maximize f(y), where x = (y1, 

y2, ..., yd) 

1. Initialize a population of m pollen gametes/ flowers 

with random solutions 

2. Find the current best solution q* in the initial 

population 

3. Define a switch probability p ∈ [0, 1] 

4. while (Z < max_no_generation) 

5.     for i = 1 to m (for all m flowers in the population) 

6.         if rand < p, 

7.             Draw a step vector L of dimensional d which  

obeys a Lévy distribution 

8.             Global pollination via yi
(z+1) = yi

z + L(q* - yi
z) 

9.         else 

10.            Draw ǫ from a uniform distribution in [0,1] 

11.            Randomly choose a and b among all the 

solutions 

12.            Do local pollination via yi
(z+1) = yi

z + ε(ya
z – 

yb
z) 

13.        end if 

14.        Evaluate new solutions 

15.        If new solutions are better, update them in the    

 population 

16.    end for 

17.    Find the current best solution q* 

18. end while 

 

The pseudocode above describes the FPO 

algorithm, which balances global exploration using 

Lévy flight steps with local exploitation. Key 

parameters of the FPO algorithm include switch 

probability (p), population size (m) and maximum 

number of generations (t), all of which influence the 

algorithm’s efficiency and convergence. FPO algorithm 

optimizes parameters based on the data that trains the 

model to prevent data leakage from the test set, helping 

the model generalize better to new data. Table 4 lists the 

control parameters for FPO. To validate the results, 

accuracy is measured using the KNN classifier. 

 

 

 

 

 

 

 

 

 

Table 4: Performance of FPO using BoW and Word2vec 

vectorizer 

 Using BoW Using Word2Vec 

No. of features 

selected 
20 205 

Maximum number 

of generations 
50 50 

Switch probability 0.3 0.8 

Population size 10 5 

K-value in KNN 10 2 

Accuracy of FPO 

using KNN 
96.47% 81.83% 

 

The computational requirements of the FPO 

algorithm combined with KNN for feature selection can 

be analyzed by examining the operations performed 

during each iteration. The complexity analysis indicates 

that FPO algorithm scales linearly with the number of 

generations (max_no_generation), population size (m), 

and dimensionality of the solution space (d). However, 

as the number of generations increase, the algorithm’s 

runtime can increase considerably, necessitating careful 

parameter tuning. The computational demand also 

impact processing power, memory usage and the 

execution time.  Large values of n, Max_Generation, 

and d increase memory, CPU, and time demands.  

By integrating chi-square feature selection with the 

FPO algorithm, the strengths of both the methods are 

exploited to achieve a more refined and optimized 

subset of features for classification tasks. 

4  Experimental evaluation results 

and discussion 

  4.1 Performance measuring parameters  

The performance of the CNN-FPO framework is 

evaluated using various metrics, including accuracy, 

precision, recall, and F1 score. In this research, accuracy 

is assessed using classification elements like: True 

Positives (TP), which are correctly identified positive 

instances; True Negatives (TN), which are correctly 

identified negative instances; False Negatives (FN), 

which are positive instances incorrectly classified as 

negative; and False Positives (FP), which are negative 

instances incorrectly classified as positive. These 

elements are used to generate a confusion matrix, which 

aids in solving classification problems where the output 

can belong to multiple classes. Mathematically, these 

metrics are determined as follows: 
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   Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (1) 

 

     Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
       

(2) 

 

    Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
       

(3) 

  

    F1 score = 
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                          

(4) 

 

Following Figure 16. represents the confusion 

matrix of the proposed CNN-FPO classifier using BoW 

technique. Confusion matrix shows data in the form of 

requirement words. 

Confusion matrix reveals a strong performance by 

the classifier. As observed, the number of  (TP) is 235, 

(TN)  is 17, (FP) is 3 and (FN) is 0. With 235 (TP), the 

model correctly identified 235 instances of the positive 

class. The 17 (TN) indicate that the model correctly 

identified 17 instances of the negative class. The 3 (FP) 

suggest that only a small number of negative instances 

were incorrectly classified as positive, while the 0 (FN) 

highlight that the model did not miss any positive 

instances, indicating excellent recall. Overall, this 

indicates that the classifier is performing well, with 

minimal errors in predicting the positive class and a 

perfect record in identifying all positive instances.  

 
Figure 16: Confusion matrix of the proposed CNN-FPO 

framework using BoW model 

 

 
Figure 17: Confusion matrix of the proposed CNN-FPO 

framework using Word2Vec model 

 

The outcome of the CNN-FPO framework using 

Word2Vec technique is as shown in Figure 17. The 

confusion matrix presents a mixed performance by the 

classifier. With 223 (TP), the model correctly identified 

a significant number of positive instances. However, the 

0 (TN) and 32 (FP) suggest that the model incorrectly 

classified all negative instances as positive. The 0 (FN) 

show that the model successfully identified all positive 

instances, which is a positive aspect in terms of recall. 

While the model is effective at identifying positive 

instances, its inability to correctly classify any negative 

instances highlights a substantial weakness. 

 4.2   Results and discussion 

In this section, we present the experimental results and 

discuss their implications. SVM, KNN, and CNN 

models were implemented using two feature 

representation model: Bag-of-Words (BoW) and 

Word2Vec. Additionally, the proposed CNN-FPO 

framework was applied to both BoW and Word2Vec to 

enhance accuracy. To assess the impact of NLP 

techniques on classification outcomes, the classifier 

parameters were held constant as follows: 

• K-Nearest Neighbour 

For KNN classifier, we used scikit-learn with 

KNeighborsClassifier class. The parameters for 

this classifier were set as : [n_neighbors=3, p: 

2]. p=2 corresponds to the Euclidean distance. 

• SVM 

For SVM classifier, scikit-learn with SVM 

package was used. The parameters used in the 

experiments were: [kernel=’poly’ , degree=10, 

max_iter=100] 

• CNN 

For all CNN based experiments, keras 

tensorflow library is used. It is an open-source 

library written in python. For the proposed 
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CNN-FPO framework, the input dimension to 

CNN was fixed to 205 using Word2Vec model 

and 20 using BoW model which is equal to 

vector dimension. The number of output neurons 

is equal to 2, that is same as the number of 

requirement categories. The rest of the 

parameters were fixed as: [ Conv layer = 2, 

pooling layer = 2, No. of Kernals = 

[512,128,64], kernel_size = [3,1], Target classes 

= 2, batch size = [64,2], epochs = [3,5], 

optimizer = 'adam', activation output= sigmoid, 

loss = ‘binary_crossentropy’].  

 

Following Table 5 and Table 6 shows the 

comparative analysis of the classifiers using Word2Vec 

and BoW model for SmartNet dataset respectively. The 

experiments are implemented using a (70%-30%) 

dataset split, with 70% allocated for training and 

remaining 30% reserved for testing. 

 

 

 

Table 5:Comparative analysis of the classifiers with the 

proposed CNN-FPO using Word2Vec model 

 
Accuracy 

 

Precision 

 

Recall 

 

F1-

score 

 

 

CNN 

 

93.16% 

 

93.25% 

 

100% 

 

96.91% 

 

SVM 

 

80.56% 

 

90.36% 

 

96.59% 

 

92.14% 

 

KNN 

 

91.92% 

 

87.48% 

 

100% 

 

91.75% 

 

CNN-

FPO 

 

88.45% 

 

88.51% 

 

100% 

 

93.81% 

 

Table  6: Comparative analysis of the classifiers with the 

proposed CNN-FPO using BoW model 

 
Accuracy Precision Recall F1-score 

 

CNN 

 

97.19% 

 

97.54% 

 

100% 

 

98.73% 

 

SVM 

 

100% 

 

99.21% 

 

100% 

 

100% 

 

KNN 

 

97.21% 

 

97.11% 

 

100% 

 

98.48% 

 

CNN-

FPO 

 

97.89% 

 

97.9% 

 

100% 

 

98.69% 

 

The performance of various classifiers with the 

proposed CNN-FPO was evaluated using both 

Word2Vec and BoW representations focusing on 

accuracy, precision, recall, and F1-score. The detailed 

evaluation of the result is presented as follows- 

 

 

1. For the Word2Vec model as shown in Table 5, 

the proposed CNN-FPO framework achieved a 

lower accuracy of 88.45%, precision of 88.51%, 

recall of 100%, and F1-score of 93.81%. While 

the CNN model achieved an accuracy of 

93.16%, precision of 93.25%, recall of 100%, 

and F1-score of 96.91%. KNN showed similar 

performance to CNN with an accuracy of 

91.92% and a perfect recall score. The SVM 

model has the lowest accuracy of 80.56%, 

precision of 90.36%, recall of 96.59%, and F1-

score of 92.14%. With Word2Vec model,  CNN-

FPO, CNN and KNN achieved perfect recall 

scores, meaning they correctly identified all 

positive instances in the dataset. However, 

CNN-FPO and KNN has the lowest precision 

scores of 88.51% and 87.48% respectively. This 

indicates its inability to correctly classify 

negative instances, as discussed in Section 4.1 

for CNN–FPO using Word2Vec. 

2. For the BoW model, as shown in Table 6, the 

proposed CNN-FPO framework demonstrated 

excellant performance, surpassing the original 

CNN and other ML models with an accuracy of 

97.89%, a precision of 97.9%, a recall of 100%, 

and an F1-score of 98.69%. Both CNN and 

KNN models achieved an accuracy of around 

97%, with the CNN recording a precision of 

97.54%, a recall of 100%, and an F1-score of 

98.73%, while KNN had a precision of 97.11%, 

a recall of 100%, and an F1-score of 98.48%. 

The SVM model attained perfect scores, 

achieving 100% accuracy, recall, and F1-score, 

with a precision of 99.21%. This overfitting, 

however, is likely due to the small dataset, 

affecting the validation results. The 

straightforward nature of the BoW model, which 

simply counts word frequencies, does not 

mitigate the impact of the dataset's imbalanced 

nature 

 

To summarize, the higher accuracy with BoW 

model could be due to its simplicity and focus on the 

most frequent features, especially when the model's task 

is heavily influenced by word frequency rather than 

context. Meanwhile, Word2Vec's nuanced 

representation might not be as effective on the data, 

particularly when the classes are not fairly distributed 

making the model difficult to generalize. 

In this research, the CNN model is trained using 

training samples with a specified batch size and number 

of iterations. The batch size indicates the number of 

samples the model processes at every iteration, while 

epochs denote the number of times the model runs 

through the entire training dataset. After training, the 

accuracy and loss metrics are evaluated and plotted 

against the number of epochs, as illustrated in the 

figures below. For experimentation, the number of 
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epochs is set to 4. Blue line represents training data, 

while the orange line represents validation data. 

 

 
Figure 18: CNN model training and validation accuracy 

 

 
Figure 19: CNN model training and validation loss 

 

 
Figure 20: CNN-FPO model for training and validation 

accuracy   

 

Figure 21: CNN-FPO model for training and validation 

loss 

Figure 18. and Figure 19. illustrate the accuracy and 

loss of the CNN model, while Figure 20. and Figure 21. 

show the accuracy and loss of the proposed CNN-FPO 

framework. For CNN, validation accuracy stabilizes 

with the training accuracy early at around 0.92, 

indicating strong and consistent generalization 

throughout training. In contrast, CNN-FPO initially 

achieves a higher accuracy, reaching upto 0.98. 

However around epoch 2, the validation accuracy 

declines to around 0.95, suggesting a possible reduction 

in generalization. While Furthermore, Figure 19. and 

Figure 21. reveal a decrease in validation loss for the 

proposed CNN-FPO as compared to CNN alone. CNN 

maintains a stable validation loss which decreases over 

the epochs, indicating that the model is learning 

effectively and improving its performance on the 

validation dataset. The gradual decline in validation 

loss, along with its convergence towards the training 

loss, suggests that the model is not overfitting and is 

generalizing well to unseen data. Likewise, validation 

loss for CNN-FPO decreases, reaching approximately 

0.18 by epoch 4.0. However, unlike CNN, CNN-FPO 

experiences a slight increase in validation loss after 3 

epoch, indicating a bend towards overfitting. The CNN-

FPO framework performs exceptionally well, making it 

ideal for tasks that require prolonged training. However, 

after a certain point, the validation accuracy begins to 

decrease, and the validation loss starts to increase, 

indicating the onset of overfitting. 

While the model has achieved success, the thorough 

examination of the results are discussed below-  

1. The Bag of Words (BoW) feature extraction 

technique identified 372 unique words, while the 

Word2Vec technique extracted 401 unique 

words. For example, BoW omitted words like 

'first', 'one', 'six', 'third', and 'two' due to its 

default tokenization rules, which often exclude 

words containing numbers. Additionally, BoW 

discards words such as 'hence', 'get', 'give', and 

'go', treating them similarly to stopwords. 

2. The proposed CNN-FPO framework 

demonstrates robust performances for both BoW 
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and Word2Vec model, especially excelling with 

BoW due to its simpler representation. 

Word2Vec fell short because its strength lies in 

generating meaningful word embeddings that 

excel when all classes are fairly represented. 

3. ML algorithms like SVM and KNN performed 

well with the BoW feature extraction technique, 

whereas CNN performed better when used with 

Word2Vec. This is due to BoW's compatibility 

with SVM and KNN, which benefit from its 

straightforward and sparse representation, 

whereas Word2Vec offers denser 

representations to capture semantic relationships 

in data more effectively, which the complex 

architecture of CNNs can better leverage. 

4. The findings obtained might be limited to the 

specific dataset used in this study.  Any changes 

made in the requirements could impact the 

performance of the CNN-FPO model. Likewise, 

as discussed in Section 4.2, model is likely to 

overfit due to small dataset. Also use of data 

balancing technique can improve the 

performance of Word2Vec model.  

The graphical representation of the performances of 

the classifiers, for BoW and Word2Vec feature 

extraction techniques, in terms of evaluation metrics is 

depicted in Figure 22. and Figure 23. respectively. 

 

 

Figure 22:  Comparison of the proposed and existing 

classification models using BoW model 

 

 

Figure 23: Comparison of the proposed and existing 

classification models using Word2Vec 

 

Upon comparing the performance metrics of the 

state-of-the-art classifiers with the proposed CNN-FPO 

for both Bow and Word2Vec model, it is evident that 

the classifiers exhibit different levels of effectiveness 

under varying data conditions.  

1. The BoW model shows higher accuracy across 

all classifiers as compared to the Word2Vec 

model. The proposed CNN-FPO framework 

shows higher accuracy with the BoW model 

(97.89%) than with Word2Vec (88.45%).  

2. Precision is generally higher with the BoW 

model compared to the Word2Vec model. The 

difference is particularly stark for KNN and 

CNN-FPO, where precision drops more 

noticeably with Word2Vec. 

3. Recall is consistently perfect across most of the 

classifiers for both the models. 

4. F1-score is again higher across all classifiers 

when using the BoW model compared to the 

Word2Vec model. CNN-FPO particularly 

shows a drop in F1-score when using 

Word2Vec. 

5. Overall, BoW model appears to be better suited 

for the SmartNet dataset, leading to superior 

performance for all the classifiers as compared 

to the Word2Vec model. Word2Vec model 

shows lower performance across the board, 

which may be attributed to its sensitivity to 

dataset balance. 

 

5  Threats to validity 

When classifying requirements using the industry 

SmartNet dataset, it is crucial to consider potential 

threats to both external and internal validity. 

 5.1 Internal threats to validity  

• Measurement Error: Inaccurate requirement 

labeling in the dataset could result in flawed 

model training and validation. To minimize this 

risk, a team of experts performs data labeling 

according to industry standards and procedures, 

ensuring both accuracy and consistency. 

 5.2 External threats to validity  

• Temporal Validity: An outdated dataset can lead 

to poor model performance on current data due 

to evolving technology and standards. To 

counter this, the dataset used in this research is 

sourced from real-world operations and projects 

within the SmartNet system, ensuring it reflects 

up-to-date conditions. This data captures real-

time requirements encountered during the 

system’s operation and customer service 

delivery, making it highly relevant and valuable 

for training and validating models in real-world 

contexts. 



 

 

140   Informatica 49 (2025) Error! Unknown document property name.–Error! Unknown document property name.                                                                                                                         

S. Sonawane et al. 
 

 

• Construct validity- The concepts of FR and NFR 

can vary in interpretation across industries, 

impacting how results are understood and 

utilized. To address this, FR and NFR are clearly 

defined in this research, following definitions 

provided by experts at Godrej. 

Mitigating these internal and external validity 

threats is essential to ensure that the findings from the 

classification study are robust and reliable.  

6  Conclusion and future scope 

This paper examined the performance of the CNN 

model for classifying requirement specification into 

functional and non-functional requirements using data 

preprocessing tools, such as NLP. The essential features 

are extracted using two feature extraction techniques 

namely Word2Vec and BoW and the significant features 

are selected using a Chi-square method. Further the 

performance of the model is improved by optimizing 

CNN using FPO. The proposed CNN-FPO framework 

selects the most relevant features to enhance the  

performance of the classifier. By selecting the subset of 

relevant features, the computational performance of the 

CNN model is raised. The effectiveness of the proposed 

approach is validated from simulation results where it is 

observed that, the training loss is lesser than the 

validation loss and the validation accuracy is lower than 

the training accuracy. The performance of the proposed 

CNN-FPO framework is assessed using an industry 

SmartNet dataset. In addition, the performance of the 

proposed CNN-FPO approach is compared with other 

benchmark models such as SVM, KNN and CNN. It is 

seen that the accuracy of the proposed CNN-FPO 

framework reaches upto 98% as compared to other 

classifiers. Further, the proposed CNN-FPO framework 

works best with BoW model as compared to Word2Vec. 

Even with this performance, the obtained findings might 

be restricted only to the specific dataset used in this 

work. In addition, the CNN-FPO model might not 

consider the interdependencies between the 

requirements, which could affect the accuracy.  

Future work involves enhancing the generalizability 

of the findings, by validating the model on datasets from 

various domains like finance, telecommunications 

healthcare etc. Additionally future work also intends to 

mitigate the effect of data imbalance by using data 

balancing techniques and examine the impact of data 

representation methods. 
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