

https://doi.org/10.31449/inf.v49i6.7073 Informatica 49 (2025) 117–146 117

Requirement Classification using Deep Learning and Nature-

Inspired Optimization Technique

Sonal Sonawane, Shubha Puthran

Department of Computer Engineering, Mukesh Patel School of Technology Management & Engineering, SVKM’s

NMIMS, Mumbai-400056, India,

E-mail: sonalraut.shelly@gmail.com1, shubha.puthran@nmims.edu2

Keywords: requirement engineering, software requirement, natural language processing, convolutional neural

network, flower pollination optimizer, machine learning

Received: September 4, 2024

Recent advancements in requirements engineering (RE) methods have increasingly leveraged machine

learning (ML) algorithms to address challenging RE issues such as the identification and classification

of software requirements in requirement documents. Classifying software requirements accurately and

efficiently is crucial for the success of the project. Functional and nonfunctional requirements define the

core attributes and constraints of a system. When requirements are documented in natural language,

they often introduce uncertainties such as ambiguity, inconsistency, or poor readability making the

process challenging. Further, manual extraction of requirements is tideous and error prone as it

requires precise interpretation, thereby mitigating the risks of miscommunication and errors in the

development process.To address these challenges, it is vital to employ Natural Language Processing

(NLP)techniques to enhance the clarity of requirements. This paper proposes a method that combines

deep learning models with NLP techniques, supplemented by Flower Pollination Optimizer (FPO)

algorithm, to automate the classification of requirements. The methodology leverages NLP to extract

significant features for training a Convolutional Neural Network (CNN) model. CNN model is enhanced

using the FPO algorithm to ensure better convergence. The performance of the proposed CNN-FPO

framework is evaluated using an industry SmartNet dataset, with results indicating that the accuracy of

the classification can reach up to 98% as compared to other traditional machine learning(ML)

approaches.The integration of NLP with an optimized CNN model creates a robust framework for

requirement classification, addressing the challenges posed by natural language documentation in

requirements engineering.

Povzetek: Predlagana je metoda za samodejno klasifikacijo programskih zahtev s kombinacijo

konvolucijske nevronske mreže (CNN), obogatene z algoritmom Flower Pollination Optimizer (FPO), in

obdelavo naravnega jezika (NLP).

1 Introduction
Requirements Engineering (RE) can be defined as "a set

of activities for exploring, evaluating, documenting,

revising and adapting the objective, constraints and

assumptions that the system should meet” [1]. These

activities are recorded in a document known as the

requirement document (RD), which is intended for

communication, analysis, and experimentation. These

requirement document are written in natural language

and can be processed as any text document. It contains

paragraphs, sentences, and words.There are two types

of requirement document unconstrained document and

disciplined or constrained document. Unconstrained

document is written in natural language without specific

rules. There are no limitations in expressiveness on

what can be specified in natural language. Further, it is

a free text in natural language that can be understood by

all parties, and no special training is required. On the

other hand, disciplined documentation is a structured

natural language, where the requirements engineer

follow rules on how the statements should be written

making the document organized. Requirement

documentation include various types of statements,

such as system requirements, software requirements and

concept definitions.

In the ever-evolving field of software development,

accurately interpreting and understanding of the

software requirements is crucial to the successful

deployment of software applications. However,

software requirements often contain ambiguities, which

can introduce unintended variability that must be

identified and addressed [2]. Software requirements

encompass both functional and nonfunctional aspects,

which are fundamental in defining the system's

behavior and performance [3], [4], [5]. These

requirements provide a clearer understanding of the

project and are foundational to defining the features of

the project under development. The features include

both FR and NFR, and the quality of these requirements

impacts activities throughout the software development

life cycle [6]. While the requirements themselves are

mailto:sonalraut.shelly@gmail.com1
mailto:shubha.puthran@nmims.edu

118 Informatica 49 (2025) 117–146 S. Sonawane et al.

critical for product quality, their impact is often

indirect, influencing the quality through the activities

they govern.

FRs specify the functions or features a system must

perform or support to meet user needs [7]. They describe

what the system should do in terms of input, processing,

and output. FR’s include authentication of user,

validation of data, generation of report and search

functionality. On the other hand, NFR are referred to as

"quality attributes" or "system qualities" which specifies

the qualities or characteristics that the software system

must possess [8]. NFR describes how well the system

performs its functions rather than what those functions

are. NFRs focus on aspects such as reliability, security,

performance, usability, scalability and compliance.

Unlike FRs, NFRs are often not directly observable by

end-users but are critical for the overall success and

acceptance of the system.

Traditionally, the classification of software

requirements (FR and NFR) has been carried out through

manual analysis by the engineers [9]. However, this

process includes various challenges such as subjectivity,

time consumption, and susceptibility to errors. It is a

tedious task, prone to various errors, requiring a lot of

effort, where each requirements document is needed to

be read, analysed and classified manually. In response to

the growing complexity of modern software projects and

the ever-expanding volume of textual requirement

documents, there is an increasing demand for automated

and accurate techniques for requirement document

classification [10], [11]. Requirement document

challenges are very much in common with natural

language documents challenges, such as semantic and

syntactic ambiguity, synonymous nature and coherence

[12]. In the context of interpreting software

requirements, methodologies like NLP techniques have

played a crucial role [13]. Additionally, there has been a

substantial surge in the utilization of techniques such as

deep learning (DL) and ML models for classifying

software requirements [14], [15]. For requirement

classification, we are leveraging the SmartNet dataset,

sourced from industry, for evaluating the classification of

FR and NFR. This dataset encapsulates real-world

complexities such as-

• Emerging requirements- Customers' needs and

preferences may change over a period of time,

resulting in changing requirements. These

requirements serve as inputs to the next stages in

the software development life cycle for the

planning of schedule [16]. To handle the

evolving requirements, requires flexibility in the

classification process to ensure that the system

continues to meet the customer expectations

[17].

• Varying stakeholder viewpoints - One of the

most crucial aspects in the process of

requirements definition is clarifying and

establishing clear expectations of the client [18].

Different stakeholders, such as business

analysts, end-users and technical experts, may

have diverse perspectives on requirements [19].

Balancing these and ensuring that all

stakeholders' needs are adequately addressed is

important.

• Compatibility with current systems - Ensuring

compatibility and coherence between new

emerging and existing requirements can be

complex and a careful analysis and classification

of requirements is required [20].

• Insufficient customer requirements - Customers

may provide incomplete requirements, making it

difficult to classify them accurately [21].

In response to these challenges, we propose an

innovative approach integrating NLP with an optimized

CNN. Through this fusion, we aim to enhance the

accuracy and efficacy of FR and NFR classification,

thereby facilitating more robust and tailored software

development processes. This paper presents a CNN

framework for classifying the requirements

automatically. The primary contributions of this

research are summarized as follows:

1. Proposes an innovative integration of NLP

techniques with CNN, augmented by the FPO

algorithm, to automate the classification of

software requirements into FR and NFR.

2. To perform supervised machine learning by

applying precise and systematic labels to

annotate the industry-standard SmartNet dataset

3. The effectiveness of the proposed approach is

assessed using accuracy, precision, recall and

F1-score, thus demonstrating the effectiveness

of the CNN-FPO framework in accurately

classifying requirements.

The rest of the paper is organized as follows:

Section 2 reviews the related works on the software

requirement classification. Section 3 discusses the

proposed research methodology. Section 4 presents the

experimental evaluation results and discussion, Section

5 discusses the internal and external validity threats and

Section 6 concludes the paper with prominent research

observations.

2 Related works

In recent years, there has been significant interest and a

wide range of studies dedicated to developing

innovative approaches for automated software

requirement classification. Researchers have explored

various techniques, including deep learning methods,

ML algorithms, rule-based systems, and hybrid

approaches. This section is organized into two

subsections: a review of rule-based approaches followed

by a review of ML approaches.

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 119

2.1 Rule- Based approaches

Over the past decade, rule-based approaches have

attracted significant attention for classifying software

requirements. These methods involve constructing

models that use predefined rules and syntactic elements

to categorize requirements based on their content. Goal

and use case modeling is considered as an important

approach for understanding the requirements. However,

goals and use cases are often embedded within another

content in requirements specifications documents. To

address this, author in [22] has developed a new rule-

based approach to automatically extract goal and use case

models from natural language documents. The approach

achieves 82% recall and 85% precision rates for

extracting goal and usecase models. To reduce the

manual analysis of natural language requirements for

large open-source projects, in [23] author has proposed a

rule based natural language technique. Initial results

suggest that it reduces the effort required to analyze

software requirements for open source projects. Author in

[24], presented a proposal that automated the

classification of natural language requirement sentences

into NFR using a rule-based classification technique. It

makes use of thematic roles to achieve this. Additionally,

the proposal identifies the priority of extracted NFR

sentences on the basis of their occurrence in multiple

classes within the document. Further author in [25], has

presented a framework for the automatic detection and

classification of NFRs from natural language

requirements. The approach involves parsing the natural

language requirements to extract multiple features. The

presence of specific combinations and relationships

among these features is used to uniquely identify and

classify the requirement as an NFR belonging to a

particular category. The approach in [26], aimed to

automate the detection of NFR using a text classifier

enhanced with a part-of-speech (POS) tagger. The

researchers identified nine groups of keywords, including

adverbs, adjectives and model keywords. The frequency

of each keyword was included as a feature in the main list

of features and ranked using smoothed and non-smoothed

probability measures. A threshold was set for each

keyword to assign it to a specific NFR type. The results

presented in the paper surpass recent studies in the field,

achieving a higher accuracy of 98.56% using 10-fold

cross-validation. Author in [27], has used an approach to

classify stakeholders’ quality concerns for requirements

specifications. An iterative approach is used for training

the classifier to classify NFR using dissimilar datasets.

This approach is evaluated against natural language

documents received from Automotive Organization and

Siemens Logistics. Results show that though it is not able

to classify all the NFRs, it is useful in any error-prone

task. Similarly, author in [28] has presented an approach

for fault classification using a noval systematic fuzzy

approach. The model used the Decision Tree (DT) and a

knowledge representation, for initial stage in

classification, followed by a fuzzy rule based method for

the final classification. Author in [29] proposed a hybrid

approach that combines rule-based methods with ML

techniques. The authors utilized extensive NLP

techniques to convert unstructured requirement

specifications into a corresponding goal model. Rule-

based components, such as parts-of-speech tagging and

dependency parsing, are employed to identify syntactic

structures based on predefined rules. In contrast, the

inclusion of contextual and synonymy vector generation,

along with the FiBER transformer model, introduces ML

elements into the framework.

Owing to the increasing complexity of software

requirements documents and the expanding scope of

software fields, rule-based approaches, which were

effective, have become less prevalent. Researchers have

diverted their focus to other statistical methods and ML

algorithms, moving away from traditional rule-based

methodologies.

2.2 Machine learning based approaches

In the field of software requirements, a significant

number of studies have adopted machine learning

approaches for identifying and classifying requirements.

Early detection of requirements is crucial in the

evaluation process that helps in building the initial

design. Author in [30] propose a semi-supervised

approach for text classification of NFR. Classification

leverages a limited set of categorized requirements by

utilizing the knowledge from uncategorized ones, along

with specific textual properties. Results show that the

approach has accuracy rates above 70%, higher than the

one obtained using supervised methods. The author in

[31], has represented a Search-Based Software

Engineering (SBSE) for selecting a set of software

requirements. A systematic review is presented that

analyzed and categorized SBSE approaches to address

software requirement selection problems and the current

techniques used to address these problems. Morever in

[32], author has proposed an approach to improve the

classification of FR and NFR. Author has contributed an

approach for preprocessing requirements that normalizes

requirements before they are given for classification.

Tera-PROMISE repository is used for the study. It is

found that the preprocessing technique improved the

performance of the existing classification methods. The

automatic classification of software requirements from

the text documents has gained huge significance among

the researchers in recent times [33], [34], [35]. The author

in [36] reviewed the application of different ML

algorithm for classifying software requirements. Both

SVM and KNN algorithms were used as classifiers for

requirement classification. These algorithms were trained

using a PROMISE_exp dataset which consists of labeled

requirements. A bag of words (BoW) concept was

employed for classification and results show that SVM

performs better than KNN in terms of achieving a

precision of 73%. Proper classification of security

requirements present in the Software Requirement

120 Informatica 49 (2025) 117–146 S. Sonawane et al.

Specification document has been problematic for the

developers. In [37], author has proposed a method for

classifying security requirements into four types

(authentication, access control, cryptography-encryption

and integrity of data) using J48 decision tree. The

effectiveness of the prediction models is evaluated using

requirement specifications collected from 15 projects

developed by students at DePaul University. The author

in [38], implemented different ML models such as SVM,

SGD, and Random Forest models along with NLP for

classifying review statements from an user app into FRs

and NFR’s. The models are trained on a public dataset

namely PROMISE Software Engineering Repository

dataset. Results show that the SVM model with TF-IDF

exhibits excellent classification results. However, these

models are time consuming and there is a need to

investigate the application of models which have a faster

execution time. Another author in [39] presented an

approach for reducing misclassification rate and

retrieving requirements for data-intensive applications.

Author suggested to use Word Embedding followed by

random forest classifier, as none of authors have used so

far. With a precision of 0.89, F1 score of 0.91 and recall

of 0.93, analysis showed that this approach produced a

relatively high classification result for data-intensive

systems. A comprehensive review of various algorithms

for ML along with their applications in identifying and

classifying NFR is presented in [40]. It provide insights

into the effectiveness, strengths, and limitations of

different machine learning approaches for handling NFR

in software engineering. A supervised ML approach

utilizing syntactic and lexical features is developed by

author in [41]. Author employed over-and under-

sampling strategies to handle imbalance in the data and

the classifiers are cross-validated using performance

metric like precision, recall, and F1 score. Experiments

related to the support vector machine classifier on RE

data challenge dataset. Author acheived the recall and

precision for security and performance with ~92%

precision and ~90% recall. A study to enhance the

analysis of extracting 14 categories of NFRs from

unconstrained requirements documents was conducted by

authors [42]. They used 11 natural language documents

from the "iTrust and PROMISE" datasets. Five different

ML classifiers were compared for identifying NFRs.

Their findings revealed that word vector representation

combined with the SVM classifier was twice as effective

as the Naive Bayes (NB) classifier. Additionally, the k-

Nearest Neighbor (KNN) classifier with a distance matrix

achieved an F1 measure score of 54% (precision and

recall), while the NB reached upto only 32%. Authors in

[43], has combine the N-Gram TF–IDF feature selection

with binary and multiclass classifiers to automate the

classification of refactorings, which is a process of

improving the internal structure of the system without

changing its quality. The model used about 2,867

commit messages extracted from open-source Java

projects. Results indicate the F-1 score of the model

reaches up to 90%. A systematic mapping study that

surveys and synthesizes existing research on the

application of natural language processing (NLP)

techniques in requirements engineering is presented in

[44]. It surveys the methodology of NLP4RE, to

understand the current techniques and identify the gaps. It

provides an overview of NLP approaches, methodologies,

tools, and challenges in the context of requirements

engineering.

Vectorization is a crucial process in NLP and

semantic analysis that transforms text into numerical

representations, which can be further used for

classification. The author in [45], evaluated the impact

of different vectorization methods. Author examined

variety of methods: TF-IDF, Word2Vec and Doc2Vec.

Four classifiers were used including Logistic Regression

(LR), Naive Bayes (NB), and Random Forests.

Experiments were conducted using the Tera-PROMISE

repository, which contains 635 instances, including 370

NFR and 255 FR. The evaluation focused on four

categories: operational, performance, security, and

usability. The researchers found that both the Doc2Vec

and SCDV vectorization methods outperformed

traditional methods. In [46], author used a RE data

challenge dataset for classifying FR and NFR. A word

embedding technique was employed for extracting text

related features and a fastText model was used for

classifying FR and NFR. The performance of the

fastText model is evaluated and it was observed that the

model achieves phenomenal results with an excellent F1-

score of 92.8%.

Multi-label classification methods for requirements

documents involve techniques and approaches tailored to

handle scenarios where a single requirement can belong

to multiple categories. The study in [47] has explored the

challenges associated with NFR. The objective is to

reduce misclassification by aiding stakeholders in

addressing NFRs during the early stages of development

by automatically classifying requirements. For that

author has proposed a multi-label requirement classifier

based on CNNs that categorizes NFRs into five distinct

classes: portability, efficiency, reliability, maintainability

and usability. In another paper author has proposed a

deep learning architecture for multi label classification in

legal field [48]. Author has addressed an issue of good

quality datasets labeled by humans, that restricts

practitioners and researchers from gaining good

performances and released a legal multi-label dataset for

classification. The approach is evaluated on

POSTURE50K and other multi-label dataset

EUROLEX57K. It showed that the proposed

methodology achieves better performances as compared

to other four recent methods on both the legal datasets.

Authors in [49], proposed a fuzzy similarity approach

combined with K-Nearest Neighbors (FSKNN) for

multi-label sentence classification. It involves identifying

the k-nearest neighbors from each training pattern. In a

separate study, in [50], author introduced an automated

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 121

system for identifying NFR using sentence-based

classification algorithms of FSKNN. The result stated

that the Semantic-FSKNN reduced the loss by 21.9%,

and also raise the value of accuracy by 43.7%, as

compared to FSKNN method A Bidirectional Gated

Recurrent Neural Networks (BiGRU) is presented for

classification of natural language requirements using raw

text in [51]. It classifies requirements into functional and

variety of labels of non-functional types with limited

preprocessing technique to model the classification as a

multilabel.

CNN are a type of deep learning models designed

primarily for processing structured grid data such as

images. In [52], authors presented a study on the

automatic classification of requirements using CNNs.

The research likely explores how CNNs can effectively

classify software requirements into different categories,

offering insights into the potential of deep learning

techniques for requirement engineering tasks. In [53],

authors examined the implementation of two ML models

namely Artificial Neural Network (ANN) and CNN for

classifying NFRs into different classes of requirements.

Both ANN and CNN models were experimentally

evaluated and it was observed that CNN is more

effective in classifying NFR’s as compared to ANN by

achieving a precision of 94 % and recall of 97%. Authors

in [54], deployed recurrent neural networks (RNN) and

NLP for classifying NFR. The RNN model was

developed and trained for processing the sequential

natural language text and thereby classifying the NFR

which is in the text form to different classes such as

maintainability, operability, performance, security, and

usability. The RNN model with NLP achieved a

classification accuracy of 88% when tested for a diverse

dataset consisting of one thousand NFR. An automatic

requirement classification technique is presented in [55],

which uses a graph attention network (GAT) known as

DBGAT and a pre trained BERT model. The BERT

model enhances the generalization of the model which is

trained on the PROMISE dataset. The proposed DBGAT

model achieves a higher classification performance in

terms of F1 score of 91% (for known data) and 88% (for

unknown data) with robust generalization capacity. A

combination of NLP with AI-based techniques is

presented in [56]. Author has proposed a method for

classifying NFR in agile user stories. The framework is a

combination of artificial intelligence and NLP techniques

to automate the prediction of NFR. One seminal work

that highlights the effectiveness of CNNs in text

classification is presented in [57], which is used for

sentence classification tasks. To understand the context it

is important for grasping the word sense. However, feed

forward network architecture of traditional CNN is

insufficient to reflect this factor. For that, author has

proposed a contextual CNN (C-CNN) by adding

recurrent connection to the convolutional layer. In [58],

authors reviewed the state-of-the-art CNN approaches,

focusing from traditional models to deep learning

models. A comparison of different techniques, with the

pros and cons of different performance evaluation

metrics are also provided. Similarly, the work in [59],

proposes a hierarchical text classification approach based

on CNN, aiming to capture hierarchical relationships

between classes in text data. In another study, author has

evaluated BERT’s performance for inter- document and

intra-document classification tasks. It is executed on a

corpus of 1,303 requirements sources. BERT model is

fine-tuned for functional classification where each

requirement is classified as either functional or

nonfunctional. When compared with a baseline model,

Word2Vec, BERT model achieves higher classification

accuracy [60]. Authors in [61] introduced a system

named Norbert that fine-tunes BERT, a language mode

leverages transfer learning techniques for requirements

classification tasks. The critical task of classifying NFR

using transfer learning models is presented by the authors

in [62]. The process is evaluated using different transfer

learning models, including BERT, Distil BERT, XLNet,

Electra-base, Distil Roberta and Electra-small, for this

purpose. In [63], author has proposed a method for early

detection of NFR using NFR-classifier. The approach is

used to detect and classify the quality concerns of the

stakeholder across requirements specifications by using a

noval iterative approach. This approach is evaluated

against document obtained from logistics deparment of

seimens and automotive organization.

A hybrid DL model is implemented in [64] for

classifying the requirements. The hybrid model consisted

of LSTM and bidirectional LSTM (BiLSTM) with ANN

for classifying NFR. Results validate the effectiveness of

the hybrid model when compared to the single LSTM

and BiLSTM models. A hybrid approach known as

FNReq-Net is presented in [65] for classifying FR and

NFR. The model is tested and compared with other

classifiers such as Naive Bayes, Logistic Regression, and

SVM. As observed from the results, the hybrid FNReq-

Net improves the classification performance by 4% for

the PROMISE dataset.

 The availability of datasets plays a crucial role in

training and evaluating requirement classification

models. To provide resources for researchers and

practitioners in the field of requirements engineering

author in [66] introduced a dataset named PURE, which

contains public requirements documents. The dataset can

be used for tasks such as training ML models, evaluating

algorithms, and conducting empirical studies in

requirements engineering.

Beyond recent advancements in deep learning

architectures, which have improved the ability to capture

complex patterns, several challenges and gaps remain. A

key issue identified by the study is the shortage of

labeled datasets for training. While commonly used

datasets like PROMISE [67] and PURE offer some

resources, there is a clear need for additional labeled

data. Moreover, the performance of identical ML

algorithms varies significantly across studies performing

122 Informatica 49 (2025) 117–146 S. Sonawane et al.

well in some cases and poorly in others primarily due to

differences in dataset quality and characteristics.

Additionally, much of the literature lacks a systematic

approach to feature identification and selection.

Building on insights from existing literature, this

work proposes leveraging a CNN model, enhanced with

the FPO algorithm and NLP techniques, to classify FR

and NFR using an industry-standard dataset. The

integration of FPO facilitates optimized feature subset

selection, aiming to improve classification accuracy and

model efficiency. Leveraging a manually annotated

industry dataset ensures the approach remains grounded

in real-world software engineering contexts, enhancing

both its applicability and relevance.

Following Table 1 summarizes researchers work in

the domain of requirement classification. Overall, the

table provides a consolidated view of the research

landscape in requirement classification. It helps in

identifying commonly used classification methods,

performance benchmarks, dataset trends, and existing

challenges, thereby guiding future work in improving

classification models, expanding datasets, or exploring

under-researched areas.

Table 1: Summary of researcher’s work in the field of requirement classification

Autho

rs

Year of

publicati

on

Techniques

used

Dataset

characteristic

Performance

metrics

Key findings/ Gaps

[22] 2015 Rule-based

approach

PROMISE dataset is

used consisting 625

requirements from

15 software projects.

Accuracy 88%

Recall 82%

Precision 85%

GUEST's artifact classifier

surpasses Mallet and was

more effective than

Casamayor’s classifier.

[23] 2011 Rule-based

approach

SourceForge

projects is used as

our dataset. It allows

access to 230,000

OSSD projects.

Precision 94%

Recall 64%

F-measure 76%

Need for refinement of

parsing rules.

Dependence on specific

datasets and quality

models.

[24] 2016 Rule-based

approach

PROMISE corpus,

Concordia RE

corpus

F-measure 97%

Presence of

misclassifications.

Need for a larger corpus of

quality requirements

documents.

[25] 2014 Pattern-based

rules for

detecting and

classifying

NFRs

Promise repository -- Creating new rules for

ontology development.

[26] 2008 Automatic

classification

of

requirements

using text

classifier

Corpus contained 15

SRS problem

statements, a total of

765 sentences:65%

of them are “NFR”,

while 35% of them

are “FR”

Accuracy 98.56% Builds an information

retrieval technique by

incorporating linguistic

knowledge.

[27] 2007 Classification

algorithm

30 requirements

specifications

document designed

as term projects by

students at DePaul

University

-- The classifier struggles

with detecting certain

NFR types, such as "look-

and-feel," indicating a gap

to handle subjective

language. Augmenting

dataset with more

examples of challenging

NFR types.

[28] 2013 Systematic fuz

zy rule based

approach for

fault

classification

The dataset used

here consists of fault

current signal

samples (in per unit

values) obtained

from a simulated

-- DT induced fuzzy rule-

based approach provides

improved accuracies

compared to Heuristic

fuzzy logic systems

https://www.sciencedirect.com/topics/engineering/fuzzy-rules
https://www.sciencedirect.com/topics/engineering/fuzzy-rules

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 123

power system model

[29] 2024 NLP-driven

framework

with FiBER

transformer

model

Promise_exp dataset Accuracy 92%,

Precision 92%,

Recall 91%

F-Score 92%

The framework has not

been tested on agile

requirements formats,

such as user stories, which

often contain unique

linguistic structures.

[30] 2010 Semi-

supervised

approach for

NFR

identification

and

classification.

Standard collections

of documents.

Accuracy rates

above 70%

Semi-supervised requires

less human intervention

for requirement labeling

than fully automated

methods.

[31] 2015 Requirements

selection and

prioritization

using search

based

approaches.

-- -- Requirements engineering

is complex. This

highlights the need for

structured approaches to

manage its multifaceted

nature effectively.

[32] 2017 Automated

classification

of NFRs using

ML

algorithms

Tera-PROMISE

repository

Precision 95%

Recall 94%

F-score 94%

Among the ML algorithms

tested, Binarized Naïve

Bayes (BNB)

outperformed others.

Challenges in

differentiating usability

requirements.

[33] 2019 Ensemble ML

algorithms to

classify FR

and NFR

-- -- Experimental results show

that gradient boosting

outperforms random forest

in terms of accuracy when

classifying NFR.

To explore other ML

algorithms.

[34] 2022 NFRs

prediction

combined with

a layered

system

architecture

with ML and

data

visualization

methods.

Dataset of NFRs

was collected from

312 IT professionals

and academicians,

encompassing 17

attributes across

5,304 instances.

Accuracy 98.89%. Proposed model

outperforms existing

techniques in data

completeness, accuracy,

prediction reliability and

stability.

Need for NFR

Prioritization Mechanism.

[35] 2010 Review of the

methods used

for

classification

of document

and text

mining

Zoo dataset

Forest Cover Type

dataset

-- The study does not

explore specific

techniques beyond

GSOM, leaving a gap in

understanding how other

methods could contribute

to OLAP’s analytical

depth.

[36] 2021 Software

requirements

classification

using ML

PROMISE_exp F-measure 74% To improve the accuracy

and precision of the

model, by modifying

logistic regression

algorithm.

[37] 2016 Text mining

and

Dataset consists of

documents collected

-- Does not focuses on other

NFR such as performance,

124 Informatica 49 (2025) 117–146 S. Sonawane et al.

classification

modeling of

security

requirements

in SRS

documents

from 15 projects

developed by MS

students at DePaul

University. It

consists of 326

NFRs specifications

classified into 9

NFR types [37]

usability, and

maintainability.

Reliance on J48 Decision

Tree Alone.

[38] 2022 ML based data

modeling to

identify

requirements

from review

statements of

user app

PROMISE dataset

User app reviews

dataset

Accuracy 83%. To create new datasets

comprising user app

reviews and software

requirements. XGBoost,

CNN and RNN to be

implemented.

[39] 2023 Word

Embedding

with a

Random

Forest

Classifier to

classify

requirements

Banking dataset

comprising 2812

requirement

instances divided

into 4 categories.

Precision 89%

Recall 93%

F1 score 91%

To increase the

requirement dataset to

mitigate the unbalance

nature.

[40] 2019 Review of 24

ML methods

for identifying

and

classifying

NFRs

-- -- Lack of labeled datasets

and a standard definition

of NFRs are the open

challenges.

[41] 2017 Classification

of NFR using

supervised

ML

Quality attributes

(NFR) dataset

Precision ~92%

Recall ~90%

With automatic word

feature selection, the

classifier achieved higher

recall for NFR

classification but at the

cost of lower precision.

[42] 2013 Extraction of

NFRs in

natural

language

documents

using NLP.

NFRs documents

like agreements,

manuals,

requirements

documenets and user

manuals containing

NFRs categorized to

14 NFR categories

F1 measure 54% Limited exploration of

feature types beyond

words exploring more

advanced linguistic

features that will enhance

accuracy for NFR

classification.

[43] 2021 Classification

of refactored

code

Self-affirmed-

refactoring dataset

containing 2867

commit messages

F-1 ~90% To examine how well the

approach applies to

projects across various

domains.

To develop a tool that

facilitates the detection of

self-affirmed refactoring

commits.

[44] 2021 Survey of

NLP4RE

-- -- Lack focus on newer NLP

advancements like

transformer-based models

like BERT.

Lack of focus on

evaluation metrics and

benchmarking standards.

[45] 2018 Comparative

analysis to

Tera-PROMISE

Repository. The

-- Sparse Composite

Document Vectors

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 125

assess

different

vectorization

and

classification

methods

repository contains

255 FRs and 370

NFRs.

(SCDV) and Doc2Vec

achieve higher

performances than

traditional ones [45].

[46] 2020 Classification

of FR and

NFR using

Word2vec and

fast Text

625 requirement text

from International

Requirements

Engineering

Conference’s 2017

Data challenge

dataset.

 Precision 92.8%

Recall 92.8%

F1 score 92.8%

The study mentions future

work with BERT, and

other advanced NLP

models like GPT or

RoBERTa, which might

offer valuable insights.

[47] 2020 Requirement

classification

using CNN

technique to

minimize

misclassificati

on of NFRs

Manual labeled

corpus of NFRs

from SRS

documents.

-- The technique to be

implemented on balanced

corpus to improve the

results.

[48] 2022 Deep learning

architecture

for multi-label

document

classification.

POSTURE50K, a

novel legal multi-

label classification

dataset containing

50,000 legal

opinions.

EUROLEX57K

multi-label dataset.

Precision 87.8%

Recall 80%

F1 score 82%

Limited exploration of

data augmentation

techniques.

Comparison with domain-

specific transformers

beyond RoBERTa.

Challenges in handling

labels with very few

training samples.

[49] 2012 Classification

using fuzzy

similarity

measure

(FSM)

and KNN.

Reuters-21578,

RCV1, and 20

Newsgroups.

F1 score 97.27%

microaveraged

breakeven point

(BEP) 97.27%

Although FSKNN reduces

computational cost by

clustering training

patterns, the KNN-based

approach still face

scalability challenges on

large datasets.

[50] 2015 Classification

of NFR Using

Semantic-

FSKNN

Dataset contains

1342 sentences from

six different datasets

Precision 73.9% Semantic-FSKNN method

reduces the error rate by

21.9%, and also raises the

accuracy by 43.7%.

[51] 2022 Bidirectional

Gated

Recurrent

Neural

Networks

(BiGRU) to

classifiy FR

and NFR

PROMISE dataset

EHR dataset

-- Requirements can be

effectively classified into

FR and NFR using the

presented RNN based

deep learning system, with

minimal text

prepossessing and no

feature engineering.

[52] 2016 Classify FR

and NFR

using CNN

DOORS document

database

precision 73%

Recall 89%

To increase training data

to improve the accuracy.

Consider documents from

other domains as well. To

provide the user with the

explanantion as why a

content element is

classified incorrect.

[53] 2019 Classify

software

requirements

International

Requirements

Engineering

Precision 82% and

94%

 Recall 76% and

Investigating the

feasibility of other ML

techniques. To design

file:///C:/Users/user/Downloads/5763-15817-1-PB.pdf

126 Informatica 49 (2025) 117–146 S. Sonawane et al.

using ML

techniques

Conference’s 2017

Data challenge

dataset.

Promise dataset.

97% F1-score

82% and 92%

fully automated ML based

system.

Use of BERT to improve

the performance.

[54] 2021 RNN to

classify NFRs

International

Requirements

Engineering

Conference’s 2017

Data challenge

dataset.

Promise dataset.

Accuracy 88%

Precision 84%

Recall 85% F1-

score 84%

In future to include FRs to

assess the model’s

performance.

[55] 2022 Requirement

classification

using BERT

and graph

attention

network

(GAT)

PROMISE dataset F1-score 91% Work on dynamic graph

research in the future.

Expand the data volume

through data annotation to

improve model capability.

[56] 2023 NLP and AI

technique to

predict NFR

in user stories

-- -- It mitigates the reported

causes of the problems in

the literature: limited

documentation and the

functionality-focused

behavior of agile

requirements.

[57] 2018 Contextual-

CNN for

sentence

classification

Stanford Sentiment

Treebank and

question

categorization

dataset TREC

Sentiment prediction

dataset

Accuracy 95.2% Combining recurrent

connections with

convolutional layer, the

network effectively

integrated feature

extraction and context

modulation.

[58] 2020 Survey on text

classification

-- -- Challenges related to the

quality, structure, and

availability of the data

used to train, validate, and

test ML model.

[59] 2020 Heirarchical

text

classification

using Deep

learning

Dataset consist of

51,325 sentences

from 8 online news

websites belonging

to technology, sports

and entertainment

Accuracy 94.02%

Precision 92.59%

Recall 88.12%

To develop Bi-LSTM

based approach to improve

hierarchical structure. To

optimize the model as it

takes long training time.

[60] 2024 Deep NN for

classifying

requirements

Dataset of 1303

requirements

sourced from five

mechanical design

documents.

Matthews

correlation

coefficient (MCC)

0.95

While BERT is used, the

study does not explore

embeddings from other

advanced transformer

models, such as MPNet

and RoBERTa.

[61] 2020 Transfer

learning for

requirement

classification.

Promise NFR dataset F1 score 92% To analyze the

performance of language

models such as XLNet or

XLM. To investigate how

a multiclass multilabel FR

classification would

perform.

[62] 2023 NFR

classification

using Transfer

learning

Dataset consist of

aproximately 1445

records with 12

classes of quality

Accuracy 91.48%

Precision 91.48%

Recall 91.48%

F1 Score 91.48%

Small dataset size, which

affect generalizability.

Explore ensemble

methods and other transfer

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 127

attributes learning strategies to

enhance NFR

classification.

[63] 2006 Early

detection of

NFR

15 Requirements

specifications

developed by MS

students at DePaul

University.

Specification

document obtained

from Siemens

Logistics and

Automotive

Organization.

-- Lacks insights into how

often the model should be

retrained to maintain

accuracy across different

contexts. Testing on larger

datasets could improve

robustness and

generalizability.

[64] 2023 Hybrid deep

learning for

NFR

classification

Dataset containing

1000 NFRs

-- Hybrid models

demonstrated superior

performance in terms of

precision, recall, and F-1

score.

[65] 2016 Hybrid

predictor

namely

FNReq-Net

for

classification

Promise dataset

Promise-exp dataset

F1-Score

improved by 4%

and 1%

To explore different word

embeddings methods.

Optimize the

hyperparameters of

traditional machine

learning classifiers using a

genetic algorithm.

[66] 2017 Creation and

analysis of a

natural

language

requirements

dataset.

PURE (PUblic

REquirements

dataset), a dataset of

79 publicly available

natural language

requirements

documents. Dataset

includes 34,268

sentences.

-- The future work involves

converting the entire

dataset to XML format

and enhancing it by

incorporating additional

documents. To expect RE

researchers annotate the

requirements for specific

tasks.

[67] 2017 Fault

prediction

using ML

approach

Promise dataset -- SVM and Random Forest

algorithm can be used as a

recommendation ML

algorithm for fault

prediction.

3 Proposed research methodology

This research focuses on classifying FR and NFR for an

industry SmartNet dataset to facilitate successful

deployment of the software. Feature selection is

optimized using the FPO optimizer that selects an optimal

set of features. A CNN model is then employed for

classification

based on the optimal set of features. This process is

complemented by NLP techniques to manage the

sequential data. The stages involved in implementing the

proposed approach are outlined as follows:

 3.1 SmartNet dataset manual annotation

For this research work, an industry SmartNet dataset [68]

is used given by Godrej as shown in Figure 1. SmartNet

is designed to handle the services provided to the

customer upon delivering the product. It is designed to

improve service functionality & customer satisfaction.

SmartNet dataset includes unconstrained requirements

with unlabeled sentences. It contains many real world

complexities as described in Section 1. A sentence level

manual annotation is necessary for conducting supervised

learning experiments.

To perform the process of manual annotation, firstly

all the requirements sentences from the document are

extracted. It is done so by using sentence boundary,

where sentence boundary are identified by capital letter

and punctuation marks. In most of the cases in the

requirement document, every sentence talks about one

software requirement. But it is not mandatory that all the

parsed sentences are requirement sentences. So, the

annotation process is performed at sentence level. Once

all the requirements are extracted, they are labeled by the

group of experts who have in-depth knowledge of the

data. The annotation process was carried out in an offline

mode by the experts. The interpretation of functional and

non-functional requirements differ across industries,

file:///D:/PHD-%20Sonal/Dataset/output1.txt

128 Informatica 49 (2025) 117–146 S. Sonawane et al.

influencing how results are perceived and applied. To

avoid this, domain experts included software engineers

from Godrej that ensured the labeling process is aligned

with industry standards. For each sentence three options

were provided namely- FR, NFR and others. After the

experts read the sentences, they had to decide if the

sentence was describing a FR, NFR or something else. If

the expert finds a sentence which doesn’t fit in any of the

requirement category, then the others option could be

selected.

Figure 1: SmartNet dataset sample sentences without

annotation

After labeling the requirement sentence, the expert

had to express his confidence for each sentence by

selecting two levels of confidence: low level or high

level for each answer as shown in Figure 2. To avoid

annotation error, each sentence had to be labeled by all

the experts. To ensure the accuracy of the labeling

process, we followed a specific set of criteria for

accepting each review. Firstly, for a review to be

considered as valid, it must be evaluated and completed

by all the experts. Secondly, if the experts categorize

the review differently, the category with the higher

confidence level is selected. Lastly, if both the

confidence levels are equal, preference is given to the

reviewer having more experience.

Figure 2: Sample of requirement sentences for manual

annotation

The labelling process took over 2-3 days for the

initial setup which included training to the software

engineers and guideline creation, 1-2 weeks for

annotating the document followed by quality control for

2-4 days to ensure consistency check and accuracy. The

discrepancies found in the quality control process were

resolved by discussing with the annotators and domain

experts. Following Figure 3. shows sample of annotated

dataset. After the annotation task is completed, we got a

total of 217 requirement sentences, labeled by 10

software engineer experts with different levels of

experience.

Figure 3: SmartNet dataset sample sentences with

annotation

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 129

Table 2: Classification of sentences

 Sentences

FR 198

NFR 14

Irrelevant 5

Total 217

The distribution of these sentences are as shown in

Table 2.

 3.2 Text extraction

Text extraction is the process of retrieving text from a

file (in this case, a .txt file) and making it accessible

within a program. Here, the test data stored in the

‘output1.txt’ file is extracted into the variable ‘text,’

allowing it to be read, analyzed, and processed further.

Following Figure 4 and Figure 5. shows the code

snippet and output for text extraction process

respectively.

Figure 4: Text Extraction code snippet

Figure 5: Text Extraction output

 3.3 Text preprocessing

Text preprocessing is performed on the dataset to clean

the data by removing the uncertainties present and

thereby making the data suitable for the classification

purpose. Preprocessing helps in extracting relevant and

meaningful features from the data.

Following Figure 6. represents the block diagram

for text preprocessing which is described in detail in the

following subsections.

Figure 6: Block diagram of Text Pre-processor

3.3.1 Text cleaning

In this stage, after text extraction, the text undergoes

cleaning to remove empty spaces and special

characters. This involves converting the text to

lowercase, replacing special characters with spaces, and

removing non-word characters (anything other than

letters, digits, and underscores). Additionally, any links

or website references, as well as punctuation, are

removed. This cleaning process produces text that is

more manageable for further processing tasks.

Following Figure 7. shows the output after cleaning the

text.

Figure 7: Sample of text cleaning output

130 Informatica 49 (2025) 117–146 S. Sonawane et al.

3.3.2 Tokenization

In the process of tokenization, text is divided into smaller

paragraphs and then into individual sentences [69]. Then

each individual sentence is divided into multiple small

words or tokens. These tokens can be words, phrases,

symbols, or other meaningful elements, depending on the

type of tokenization and the language. A new sentence is

identified by the capital letter at the start and a full stop

or a question mark or an exclamation mark at the end of

the sentence. A tokenization function ‘word_tokenize’

from NLTK, a python library is used for tokenization

which helps in extracting english sentences from the

document[70]. It is a foundational step in NLP and ML

tasks, where it's essential for transforming unstructured

text into structured data for further analysis

For example, when applying tokenization on “To

print the service job sheets click on print service job

sheet”, the result will be a set of tokens: {To, print, the,

service, job, sheets, click, on, print, service, job, sheet}.

Following Figure 8. Shows the sample output for

tokenization.

Figure 8: Sample output of tokenization

3.3.3 Stop words initialization and removal

Stop words are common words that hold minimal value

or relevance. Removing them does not impact the

meaning of the sentence. In the context of NLP, stop

word initialization refers to the process of identifying

and creating a list of stopwords that are removed while

analyzing the natural text. Following Figure 9. shows

the sample output of stopword removal as

filtered_words.

Figure 9: Sample output of stopword removal

3.3.4 Lemmatization

Following stemming, the next step is lemmatization,

where words are reduced to their dictionary form.

Unlike stemming, which merely removes suffixes or

prefixes and may produce incorrectly spelled words,

lemmatization takes into account the word's meaning

and context to produce accurate root forms, thereby

resulting in a valid word form. [71]. The

WordNetLemmatizer function from NLTK library in

python is used to reduce words to their base form.

Following Figure 10. shows the sample output for

lemmatization performed on filtered_words and writes

the output to a file named example.txt.

Figure 10: Sample output of Lemmatization

Choosing lemmatization over stemming for research

improved the quality of feature extraction. Stemming

reduced words to base form giving incorrect words like

"secur", "servic", "handl", "oper" , "condit" etc. which

hindered the process of feature extraction. On the

contrary, lemmatization reduced words to their

dictionary form giving meaningful words like

“security”, “service”, “handle”, “operation”, “condition”

therby improving the quality of feature extraction.

 3.4 Feature extraction and selection

The important features from the text are extracted using

two feature extraction techniques namely Bag of words

(BoW) and Word2vec. Further feature selection is done

using ChiSquare method which are discussed in the

following subsections.

3.4.1 Feature extraction

This is a crucial step in classifying software

requirements. Given the large volume of data in

software requirements, it's vital to extract only the

relevant features from the dataset. The extracted features

are then used to identify the requirements using the

proposed CNN model. In this research, for feature

extraction two techniques are used namely BoW

(Categorical word representation) and Word2Vec

(Continuous word representation). Word2Vec captures

semantic similarity between the words, making it

suitable for tasks requiring nuanced understanding of

relationships [72]. BoW, on the other hand, provides a

straightforward representation of text documents and is

computationally efficient and versatile. BoW is easily

interpretable and applicable to a wide range of NLP

tasks [73]. In this paper, classification is done using

BoW and compared with Word2Vec classification as

discussed in Section 4.2, to provide a comprehensive

representation of text data. The process involved in the

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 131

BoW concept is as follows:

• The process of BoW begins with text

tokenization in which the text is divided into

individual words or tokens.

• After tokenization, a vocabulary is created by

collecting all the unique tokens from the entire

corpus where each unique token is assigned a

unique index. A feature vector is created equal

to the size of the vocabulary. The values in the

feature vector are binary values to indicate the

presence (1) or the absence (0) of the word. For

every document, the number of occurrences of

each word in the vocabulary is counted

representing the frequency of that word.

For BoW model, the output of the lemmatization is

given as input text which is transformed into a fixed-

length vector. This is done by counting the number of

times the word is present in a document. The BoW

model provides the unique features related to the text

present in the document. A data frame is created which

displays the value ‘1’ if the particular word is present.

Else it displays 0. BoW do not capture syntactic

information meaning the relationship between the words

as they do not consider the order of the words [73].

Following Figure 11. shows how requirement sentence

is represented as BoW vector

Requirement sentence- “The system is designed to

handle after Sales Service Processes of Security

Solutions”. After Pre-processing the requirement

sentence becomes as follows:

[‘system’,‘designed’,‘handle’,‘sale’,‘service’,‘process’,

‘security’, ‘solution’]

Figure 11: BoW feature representation

Word2Vec is a word embedding model used to

convert feature words into dense vector representations

also known as word embeddings. The embeddings

determine the semantic relationship between the words

that helps in classifying the natural text [72]. In

Word2Vec model, words which have similar meanings

are arranged close to each other and provide the

contextual information. Word2Vec technique are of two

types namely Continuous Bag of Words (CBOW) and

Skip-gram [74].

Word2Vec operates based on the sliding window

framework, which when applied over a sentence, for

each word, it considers a content window of adjacent

words. In this paper skip gram model is used where,

given the target words, the context words are predicted.

Word2Vec uses a 2-layer neural network to represent

the word vectors. During training, the weights of the

network are adjusted to minimize the prediction error.

Once the model is trained, the hidden layer weights are

considered as the word embeddings. These embeddings

represents meaningful representations of words in a

continuous vector space. These embeddings are then

given as input to the classifier. Following Figure 12.

represents Word2Vec embedding for word approve

from the above requirement sentence.

Figure 12: Word2Vec Embedding for the word reject

3.4.2 Feature selection

Feature selection is referred as a process of identifying

and selecting the most relevant features from a dataset

that contribute significantly to the classification tasks.

For feature selection Chi Square model is used, where

the output of feature extraction process is given as an

input to Chi-square for finding the scores. Based on the

scores, the words (features) are selected. Chi Square

method employs a statistical method for selecting

important and relavent features while managing discrete

data [75]. Technically, the Chi Square method uses a

contingency table to determine the independence

between two categorical variables. In this process,

features that are correlated with the target variables are

selected for classification. A null (H0) and alternative

(H1) hypothesis are used to make assumptions, which

are represented as follows:

H0 :- There is no relationship between categorical

feature and target variable

H1 :- There is certain relationship between

categorical feature and target variable

In Chi square feature selection, categorical features

represent requirements and the target variable is the

variable you're trying to predict. H0 is the null

hypothesis and H1 represents the alternate hypothesis. If

the p-value is ≥ 0.05, we reject the alternative

hypothesis (H1), indicating that the target variable and

categorical features are not significantly related.

Conversely, if the p-value < 0.05, we reject the null

hypothesis, suggesting a significant relationship

between the target variable and categorical features.

Features with a p-value greater than 0.05 are excluded

from the feature set, and the remaining features are

retained for the classification process.

A contingency table is created based on the selected

features, representing the frequency distribution of two

categorical variables. This table displays the counts of

observations within the different categories of the two

variables. Chi-square selects 27 features for BoW

vectorizer and selects 401 features for Word2Vec as

shown in Table 3.

file:///C:/Users/user/Downloads/4390-12493-1-PB.pdf

132 Informatica 49 (2025) 117–146 S. Sonawane et al.

Table 3: Feature selection using Chi-square for

BoW and Word2vec vectorizer

 BoW Word2Vec

Chi-

square
 27 401

 3.5 Classification using ML classifiers

Classification is a core task in ML aimed at assigning

input data to predefined categories. Machine learning

classifiers achieve this by identifying patterns from a

dataset during training and applying these learned

patterns to predict labels for new data. Three supervised

ML algorithms are utilized: SVM, KNN, and CNN.

SVM and KNN are selected based on their strong

performance in similar studies in the literature [9].

CNN, a deep learning model and considered state-of-

the-art in classification, is also employed. Details of

these classifiers are discussed in the following

subsection.

3.5.1 SVM classifier

SVM is a discriminative method used for classification

in the literature [76]. the SVM classifier addresses the

nonlinear classification problem by utilizing a

"hyperplane." Feature vectors of requirement sentences

are mapped to a high-dimensional space where each

dimension can be linearly separated by a decision

boundary, known as the hyperplane. Given the two

classes, FR and NFR, a binary SVM classifier is

employed. For enhanced classification performance, the

SVM classifier parameters are configured to use a

polynomial kernel (kernel=poly) with a degree of 10 and

a maximum of 100 iterations (max_iter=100).

3.5.2 KNN classifier

KNN classifier [77] is a simple, intuitive, and widely

used ML algorithm for classification. To classify an

unknown data point, KNN calculates the distance

between the unknown point and all the points in the

training set by using an appropriate distance metric.

After calculating the distances, the new data point is

assigned to the class that is very much common among

its nearest neighbors through majority voting. After fine

tuning, the parameters used were : [n_neighbors=3, p:

2]. p=2 corresponds to the Euclidean distance.

3.5.3 CNN classifier

Convolutional Neural Networks [52] have been widely

used for the task of requirement classification. Initially,

for requirement classification, the sentences are

segmented into tokens (word). Then for each word a

vector is generated using feature extraction techniques-

BoW and Word2Vec. After feature extraction, feature

selection is done using chi-square after which the

vectors are passed through different layers in the CNN

that are discussed in the following section:

• Convolutional Layers: The convolutional

layers are the fundamental building blocks of

the CNN architecture. A dot product is

calculated between each filter and patches of

the input data, allowing the model to extract

relevant text features. The input to the

convolutional layer has two dimensions:

(Xtrain.shape[1], 1), where Xtrain.shape[1]

represents the length of the sequence or the

number of features per sample, and 1

represents the number of channels. Following

Figure 13. shows Xtrain data input to CNN

where each row represents the vector of each

word and column represents the features. Then

Xtrain.shape[1] would be n, representing the

number of features dimensions for each word.

Figure 13: Sample represention of Xtrain data

• Activation functions: These functions are

applied to the output layers of the CNN model.

In this research a ReLU (Rectified Linear Unit)

activation function is applied for improving the

non-linearity of the model.

• Pooling layers: These layers are used to down-

sample the size of the text.

• Dense layers: The dense layers are the fully

connected layers of the network. The output of

the final pooling layer is concatenated into one

vector and feed to a dense layer. It takes in the

features and transform them to classify the input

requirements. In this research for binary

classification, sigmoid activation function is

used. The output layer represents neurons where

each neuron represents a label belonging to one

of the target categories i.e FR or NFR.

 3.6 CNN model optimization using flower

pollination optimizer algorithm

CNN is a fundamental classifier which has gained huge

success in the requirement classification tasks.

Optimizing CNN models enhance their performance,

efficiency and scalability in requirement classification

tasks [78]. In this research, a FPO algorithm is used for

optimizing the CNN model for obtaining an optimal

output.

FPO algorithm is a nature-inspired optimization

algorithm used to solve optimization and search problems

[79]. In optimizing CNN, the challenge lies in finding

the most effective feature set to minimize loss and

improve classification performance. FPO algorithm is

instrumental in this process, as it searches for an optimal

set of features that enhances the CNN model's overall

S
ys
te
m

s
h
al
l

a
c
hi
e
v
e

s
u
cc
es
s

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 133

effectiveness. FPO algorithm is inspired by the

pollination process of flowers carried out by bees to find

optimal solutions in multidimensional search spaces [80].

The process involved in the FPO algorithm is discussed

below:

• Initialization: FPO algorithm starts by

initializing a population of potential solutions

for the problem, with each solution represented

as a point within a multidimensional search

space.

• Objective Function: The optimization problem is

guided by an objective function that assigns a

fitness or cost value to each solution within the

population. Each solution is assessed based on

this fitness function, which indicates how

effectively it addresses the optimization

challenge. The aim is to locate the optimal

solution, or the "fittest flower," in the

population. The objective function is defined as

follows:

min(cost) = alpha * error + beta * (num_feat /

max_feat) where,

➢ alpha * error: Error represents the loss

function multiplied by a coefficient

alpha, which represent the weight

assigned to the error term. alpha =

0.99

➢ beta * (num_feat / max_feat): It is a

regularization component. num_feat is

the number of features, while max_feat

is the maximum allowable number of

features. beta = (1-alpha)

• Flower Population: In FPO algorithm, each

potential solution is represented as a ‘flower’.

They are categorized into three types: ‘source

flowers,’ ‘donor flowers’ and ‘receptor flowers’.

• Source Flowers: They represent the current best

solutions in the population.

• Donor Flowers: They are the solutions with

lower fitness values. They act as pollinators that

carry information to receptor flowers.

• Receptor Flowers: They carry the information

that they receive from the donor flowers. These

flowers update their positions based on the

information received from the donors. The

pollination process entails an exchange of

information between donor and receptor flowers

to update the position of the receptor flower.

• Pollination Process: The core of the FPO is its

pollination process, which presents the way

pollination process is carried out by the bees.

The positions of the flowers is updated

iteratively based on the positions of the donor

flowers and source flowers. The algorithm uses

a switch probability ‘p’ to decide when to

perform global or local pollination. For each

solution a random number is generated, and if it

is less than ‘p’, global pollination is performed;

otherwise, local pollination takes place. The

pollination process is affected by parameters

like the step size, rate of pollination, population

size and number of generations.

• Termination: The algorithm repeats the

pollination process for a specified number of

cycles or until a convergence criterion is met.

The best solution found during this optimization

is regarded as the algorithm's final output.

After initializing the global iteration, there are two

possible pollinations that can happen, that is global or

local pollination. Global pollination is carried out by

insects such as bees that can travel long distances. Pollen

grains of the flowers are carried over longer distances

because insects can fly and cover a larger range. This

process ensures the pollination of the fittest features.

Local pollination occurs within limited range when

natural elements like rain or wind carry pollen grains to

nearby areas. Local pollination occurs within a limited

range. Among all the global and local features, the best

features are selected based on the threshold value and the

fitness value. Following are some of the best features

selected using FPO algorithm for the functional and non-

functional requirements classification :

‘claim', 'available', 'authorized', 'consistently', 'status',

'generated', 'maintained', 'security', 'replenishment',

'responsibility', 'royalty', 'satisfaction', 'replacement',

'service', 'solution', 'damage', etc.

Through iterations, the FPO algorithm converges on

a feature subset that optimally balances the trade-off

between classification performance and feature

dimensionality. The size, number of selected features

and the error rate, are calculated to determine the best

FPO scores. Based on these scores, the most relevant

features are chosen.

Figure 14: Performance of the FPO algorithm using

Word2Vec for 50 runs

134 Informatica 49 (2025) 117–146 S. Sonawane et al.

The above Figure 14. illustrates the average fitness

scores for the FPO algorithm across 50 runs. It provides

insights into the optimization behavior and performance

of the algorithm across multiple iterations. The detailed

analysis is as follows:

• Exploratory Phase: At the beginning of the

curve for the first 10-15 iterations, there is a

noticeable and rapid decrease in the average

fitness value. This indicates that the algorithm

is effectively exploring the search space and

finding better solutions quickly. The global

pollination phase, driven by Lévy flights, is

likely helping the algorithm make significant

strides in fitness improvement during these

early stages.

• Transition Phase: Between iterations 15 to 35,

the average fitness continues to decrease, but

the fitness curve is less steep than in the initial

phase. This phase indicates that the algorithm

is moving gradually into a more refined search,

balancing global exploration with local

exploitation.

• Final Convergence phase: After around

iteration 35, the curve begins to flatten, and

fitness values stabilize with only minimal

decreases in each subsequent iteration. This

flattening of the curve suggests that the

solutions are nearing optimality, and additional

iterations bring only slight improvements, if

any.

• Overall Convergence Behavior: The graph

shows a typical convergence pattern with a

rapid decrease in fitness initially, followed by a

gradual tapering off. The algorithm

demonstrates effective convergence behavior,

indicating robustness in handling the

optimization problem.

The overall trend of the graph demonstrates how

FPO is effective in global optimization tasks,

progressively minimizing the fitness value to find better

solutions until it converges on near-optimal feature set

for the classification task. The following Figure 15.

represents the flowchart of the propsed approach.

Figure 15: CNN-FPO approach

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 135

The pseudocode of the FPO algorithm is given as

follows:

FPO ALGORITHM: Pseudocode

 Objective: Minimize or maximize f(y), where x = (y1,

y2, ..., yd)

1. Initialize a population of m pollen gametes/ flowers

with random solutions

2. Find the current best solution q* in the initial

population

3. Define a switch probability p ∈ [0, 1]

4. while (Z < max_no_generation)

5. for i = 1 to m (for all m flowers in the population)

6. if rand < p,

7. Draw a step vector L of dimensional d which

obeys a Lévy distribution

8. Global pollination via yi
(z+1) = yi

z + L(q* - yi
z)

9. else

10. Draw ǫ from a uniform distribution in [0,1]

11. Randomly choose a and b among all the

solutions

12. Do local pollination via yi
(z+1) = yi

z + ε(ya
z –

yb
z)

13. end if

14. Evaluate new solutions

15. If new solutions are better, update them in the

 population

16. end for

17. Find the current best solution q*

18. end while

The pseudocode above describes the FPO

algorithm, which balances global exploration using

Lévy flight steps with local exploitation. Key

parameters of the FPO algorithm include switch

probability (p), population size (m) and maximum

number of generations (t), all of which influence the

algorithm’s efficiency and convergence. FPO algorithm

optimizes parameters based on the data that trains the

model to prevent data leakage from the test set, helping

the model generalize better to new data. Table 4 lists the

control parameters for FPO. To validate the results,

accuracy is measured using the KNN classifier.

Table 4: Performance of FPO using BoW and Word2vec

vectorizer

 Using BoW Using Word2Vec

No. of features

selected
20 205

Maximum number

of generations
50 50

Switch probability 0.3 0.8

Population size 10 5

K-value in KNN 10 2

Accuracy of FPO

using KNN
96.47% 81.83%

The computational requirements of the FPO

algorithm combined with KNN for feature selection can

be analyzed by examining the operations performed

during each iteration. The complexity analysis indicates

that FPO algorithm scales linearly with the number of

generations (max_no_generation), population size (m),

and dimensionality of the solution space (d). However,

as the number of generations increase, the algorithm’s

runtime can increase considerably, necessitating careful

parameter tuning. The computational demand also

impact processing power, memory usage and the

execution time. Large values of n, Max_Generation,

and d increase memory, CPU, and time demands.

By integrating chi-square feature selection with the

FPO algorithm, the strengths of both the methods are

exploited to achieve a more refined and optimized

subset of features for classification tasks.

4 Experimental evaluation results

and discussion

 4.1 Performance measuring parameters

The performance of the CNN-FPO framework is

evaluated using various metrics, including accuracy,

precision, recall, and F1 score. In this research, accuracy

is assessed using classification elements like: True

Positives (TP), which are correctly identified positive

instances; True Negatives (TN), which are correctly

identified negative instances; False Negatives (FN),

which are positive instances incorrectly classified as

negative; and False Positives (FP), which are negative

instances incorrectly classified as positive. These

elements are used to generate a confusion matrix, which

aids in solving classification problems where the output

can belong to multiple classes. Mathematically, these

metrics are determined as follows:

136 Informatica 49 (2025) Error! Unknown document property name.–Error! Unknown document property name.

S. Sonawane et al.

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁

(2)

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

(3)

 F1 score =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

(4)

Following Figure 16. represents the confusion

matrix of the proposed CNN-FPO classifier using BoW

technique. Confusion matrix shows data in the form of

requirement words.

Confusion matrix reveals a strong performance by

the classifier. As observed, the number of (TP) is 235,

(TN) is 17, (FP) is 3 and (FN) is 0. With 235 (TP), the

model correctly identified 235 instances of the positive

class. The 17 (TN) indicate that the model correctly

identified 17 instances of the negative class. The 3 (FP)

suggest that only a small number of negative instances

were incorrectly classified as positive, while the 0 (FN)

highlight that the model did not miss any positive

instances, indicating excellent recall. Overall, this

indicates that the classifier is performing well, with

minimal errors in predicting the positive class and a

perfect record in identifying all positive instances.

Figure 16: Confusion matrix of the proposed CNN-FPO

framework using BoW model

Figure 17: Confusion matrix of the proposed CNN-FPO

framework using Word2Vec model

The outcome of the CNN-FPO framework using

Word2Vec technique is as shown in Figure 17. The

confusion matrix presents a mixed performance by the

classifier. With 223 (TP), the model correctly identified

a significant number of positive instances. However, the

0 (TN) and 32 (FP) suggest that the model incorrectly

classified all negative instances as positive. The 0 (FN)

show that the model successfully identified all positive

instances, which is a positive aspect in terms of recall.

While the model is effective at identifying positive

instances, its inability to correctly classify any negative

instances highlights a substantial weakness.

 4.2 Results and discussion

In this section, we present the experimental results and

discuss their implications. SVM, KNN, and CNN

models were implemented using two feature

representation model: Bag-of-Words (BoW) and

Word2Vec. Additionally, the proposed CNN-FPO

framework was applied to both BoW and Word2Vec to

enhance accuracy. To assess the impact of NLP

techniques on classification outcomes, the classifier

parameters were held constant as follows:

• K-Nearest Neighbour

For KNN classifier, we used scikit-learn with

KNeighborsClassifier class. The parameters for

this classifier were set as : [n_neighbors=3, p:

2]. p=2 corresponds to the Euclidean distance.

• SVM

For SVM classifier, scikit-learn with SVM

package was used. The parameters used in the

experiments were: [kernel=’poly’ , degree=10,

max_iter=100]

• CNN

For all CNN based experiments, keras

tensorflow library is used. It is an open-source

library written in python. For the proposed

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 137

CNN-FPO framework, the input dimension to

CNN was fixed to 205 using Word2Vec model

and 20 using BoW model which is equal to

vector dimension. The number of output neurons

is equal to 2, that is same as the number of

requirement categories. The rest of the

parameters were fixed as: [Conv layer = 2,

pooling layer = 2, No. of Kernals =

[512,128,64], kernel_size = [3,1], Target classes

= 2, batch size = [64,2], epochs = [3,5],

optimizer = 'adam', activation output= sigmoid,

loss = ‘binary_crossentropy’].

Following Table 5 and Table 6 shows the

comparative analysis of the classifiers using Word2Vec

and BoW model for SmartNet dataset respectively. The

experiments are implemented using a (70%-30%)

dataset split, with 70% allocated for training and

remaining 30% reserved for testing.

Table 5:Comparative analysis of the classifiers with the

proposed CNN-FPO using Word2Vec model

Accuracy

Precision

Recall

F1-

score

CNN

93.16%

93.25%

100%

96.91%

SVM

80.56%

90.36%

96.59%

92.14%

KNN

91.92%

87.48%

100%

91.75%

CNN-

FPO

88.45%

88.51%

100%

93.81%

Table 6: Comparative analysis of the classifiers with the

proposed CNN-FPO using BoW model

Accuracy Precision Recall F1-score

CNN

97.19%

97.54%

100%

98.73%

SVM

100%

99.21%

100%

100%

KNN

97.21%

97.11%

100%

98.48%

CNN-

FPO

97.89%

97.9%

100%

98.69%

The performance of various classifiers with the

proposed CNN-FPO was evaluated using both

Word2Vec and BoW representations focusing on

accuracy, precision, recall, and F1-score. The detailed

evaluation of the result is presented as follows-

1. For the Word2Vec model as shown in Table 5,

the proposed CNN-FPO framework achieved a

lower accuracy of 88.45%, precision of 88.51%,

recall of 100%, and F1-score of 93.81%. While

the CNN model achieved an accuracy of

93.16%, precision of 93.25%, recall of 100%,

and F1-score of 96.91%. KNN showed similar

performance to CNN with an accuracy of

91.92% and a perfect recall score. The SVM

model has the lowest accuracy of 80.56%,

precision of 90.36%, recall of 96.59%, and F1-

score of 92.14%. With Word2Vec model, CNN-

FPO, CNN and KNN achieved perfect recall

scores, meaning they correctly identified all

positive instances in the dataset. However,

CNN-FPO and KNN has the lowest precision

scores of 88.51% and 87.48% respectively. This

indicates its inability to correctly classify

negative instances, as discussed in Section 4.1

for CNN–FPO using Word2Vec.

2. For the BoW model, as shown in Table 6, the

proposed CNN-FPO framework demonstrated

excellant performance, surpassing the original

CNN and other ML models with an accuracy of

97.89%, a precision of 97.9%, a recall of 100%,

and an F1-score of 98.69%. Both CNN and

KNN models achieved an accuracy of around

97%, with the CNN recording a precision of

97.54%, a recall of 100%, and an F1-score of

98.73%, while KNN had a precision of 97.11%,

a recall of 100%, and an F1-score of 98.48%.

The SVM model attained perfect scores,

achieving 100% accuracy, recall, and F1-score,

with a precision of 99.21%. This overfitting,

however, is likely due to the small dataset,

affecting the validation results. The

straightforward nature of the BoW model, which

simply counts word frequencies, does not

mitigate the impact of the dataset's imbalanced

nature

To summarize, the higher accuracy with BoW

model could be due to its simplicity and focus on the

most frequent features, especially when the model's task

is heavily influenced by word frequency rather than

context. Meanwhile, Word2Vec's nuanced

representation might not be as effective on the data,

particularly when the classes are not fairly distributed

making the model difficult to generalize.

In this research, the CNN model is trained using

training samples with a specified batch size and number

of iterations. The batch size indicates the number of

samples the model processes at every iteration, while

epochs denote the number of times the model runs

through the entire training dataset. After training, the

accuracy and loss metrics are evaluated and plotted

against the number of epochs, as illustrated in the

figures below. For experimentation, the number of

138 Informatica 49 (2025) Error! Unknown document property name.–Error! Unknown document property name.

S. Sonawane et al.

epochs is set to 4. Blue line represents training data,

while the orange line represents validation data.

Figure 18: CNN model training and validation accuracy

Figure 19: CNN model training and validation loss

Figure 20: CNN-FPO model for training and validation

accuracy

Figure 21: CNN-FPO model for training and validation

loss

Figure 18. and Figure 19. illustrate the accuracy and

loss of the CNN model, while Figure 20. and Figure 21.

show the accuracy and loss of the proposed CNN-FPO

framework. For CNN, validation accuracy stabilizes

with the training accuracy early at around 0.92,

indicating strong and consistent generalization

throughout training. In contrast, CNN-FPO initially

achieves a higher accuracy, reaching upto 0.98.

However around epoch 2, the validation accuracy

declines to around 0.95, suggesting a possible reduction

in generalization. While Furthermore, Figure 19. and

Figure 21. reveal a decrease in validation loss for the

proposed CNN-FPO as compared to CNN alone. CNN

maintains a stable validation loss which decreases over

the epochs, indicating that the model is learning

effectively and improving its performance on the

validation dataset. The gradual decline in validation

loss, along with its convergence towards the training

loss, suggests that the model is not overfitting and is

generalizing well to unseen data. Likewise, validation

loss for CNN-FPO decreases, reaching approximately

0.18 by epoch 4.0. However, unlike CNN, CNN-FPO

experiences a slight increase in validation loss after 3

epoch, indicating a bend towards overfitting. The CNN-

FPO framework performs exceptionally well, making it

ideal for tasks that require prolonged training. However,

after a certain point, the validation accuracy begins to

decrease, and the validation loss starts to increase,

indicating the onset of overfitting.

While the model has achieved success, the thorough

examination of the results are discussed below-

1. The Bag of Words (BoW) feature extraction

technique identified 372 unique words, while the

Word2Vec technique extracted 401 unique

words. For example, BoW omitted words like

'first', 'one', 'six', 'third', and 'two' due to its

default tokenization rules, which often exclude

words containing numbers. Additionally, BoW

discards words such as 'hence', 'get', 'give', and

'go', treating them similarly to stopwords.

2. The proposed CNN-FPO framework

demonstrates robust performances for both BoW

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 139

and Word2Vec model, especially excelling with

BoW due to its simpler representation.

Word2Vec fell short because its strength lies in

generating meaningful word embeddings that

excel when all classes are fairly represented.

3. ML algorithms like SVM and KNN performed

well with the BoW feature extraction technique,

whereas CNN performed better when used with

Word2Vec. This is due to BoW's compatibility

with SVM and KNN, which benefit from its

straightforward and sparse representation,

whereas Word2Vec offers denser

representations to capture semantic relationships

in data more effectively, which the complex

architecture of CNNs can better leverage.

4. The findings obtained might be limited to the

specific dataset used in this study. Any changes

made in the requirements could impact the

performance of the CNN-FPO model. Likewise,

as discussed in Section 4.2, model is likely to

overfit due to small dataset. Also use of data

balancing technique can improve the

performance of Word2Vec model.

The graphical representation of the performances of

the classifiers, for BoW and Word2Vec feature

extraction techniques, in terms of evaluation metrics is

depicted in Figure 22. and Figure 23. respectively.

Figure 22: Comparison of the proposed and existing

classification models using BoW model

Figure 23: Comparison of the proposed and existing

classification models using Word2Vec

Upon comparing the performance metrics of the

state-of-the-art classifiers with the proposed CNN-FPO

for both Bow and Word2Vec model, it is evident that

the classifiers exhibit different levels of effectiveness

under varying data conditions.

1. The BoW model shows higher accuracy across

all classifiers as compared to the Word2Vec

model. The proposed CNN-FPO framework

shows higher accuracy with the BoW model

(97.89%) than with Word2Vec (88.45%).

2. Precision is generally higher with the BoW

model compared to the Word2Vec model. The

difference is particularly stark for KNN and

CNN-FPO, where precision drops more

noticeably with Word2Vec.

3. Recall is consistently perfect across most of the

classifiers for both the models.

4. F1-score is again higher across all classifiers

when using the BoW model compared to the

Word2Vec model. CNN-FPO particularly

shows a drop in F1-score when using

Word2Vec.

5. Overall, BoW model appears to be better suited

for the SmartNet dataset, leading to superior

performance for all the classifiers as compared

to the Word2Vec model. Word2Vec model

shows lower performance across the board,

which may be attributed to its sensitivity to

dataset balance.

5 Threats to validity

When classifying requirements using the industry

SmartNet dataset, it is crucial to consider potential

threats to both external and internal validity.

 5.1 Internal threats to validity

• Measurement Error: Inaccurate requirement

labeling in the dataset could result in flawed

model training and validation. To minimize this

risk, a team of experts performs data labeling

according to industry standards and procedures,

ensuring both accuracy and consistency.

 5.2 External threats to validity

• Temporal Validity: An outdated dataset can lead

to poor model performance on current data due

to evolving technology and standards. To

counter this, the dataset used in this research is

sourced from real-world operations and projects

within the SmartNet system, ensuring it reflects

up-to-date conditions. This data captures real-

time requirements encountered during the

system’s operation and customer service

delivery, making it highly relevant and valuable

for training and validating models in real-world

contexts.

140 Informatica 49 (2025) Error! Unknown document property name.–Error! Unknown document property name.

S. Sonawane et al.

• Construct validity- The concepts of FR and NFR

can vary in interpretation across industries,

impacting how results are understood and

utilized. To address this, FR and NFR are clearly

defined in this research, following definitions

provided by experts at Godrej.

Mitigating these internal and external validity

threats is essential to ensure that the findings from the

classification study are robust and reliable.

6 Conclusion and future scope

This paper examined the performance of the CNN

model for classifying requirement specification into

functional and non-functional requirements using data

preprocessing tools, such as NLP. The essential features

are extracted using two feature extraction techniques

namely Word2Vec and BoW and the significant features

are selected using a Chi-square method. Further the

performance of the model is improved by optimizing

CNN using FPO. The proposed CNN-FPO framework

selects the most relevant features to enhance the

performance of the classifier. By selecting the subset of

relevant features, the computational performance of the

CNN model is raised. The effectiveness of the proposed

approach is validated from simulation results where it is

observed that, the training loss is lesser than the

validation loss and the validation accuracy is lower than

the training accuracy. The performance of the proposed

CNN-FPO framework is assessed using an industry

SmartNet dataset. In addition, the performance of the

proposed CNN-FPO approach is compared with other

benchmark models such as SVM, KNN and CNN. It is

seen that the accuracy of the proposed CNN-FPO

framework reaches upto 98% as compared to other

classifiers. Further, the proposed CNN-FPO framework

works best with BoW model as compared to Word2Vec.

Even with this performance, the obtained findings might

be restricted only to the specific dataset used in this

work. In addition, the CNN-FPO model might not

consider the interdependencies between the

requirements, which could affect the accuracy.

Future work involves enhancing the generalizability

of the findings, by validating the model on datasets from

various domains like finance, telecommunications

healthcare etc. Additionally future work also intends to

mitigate the effect of data imbalance by using data

balancing techniques and examine the impact of data

representation methods.

 Acknowledgement
We would like to express our deepest gratitude to

Dr.Dhirendra Mishra, HoD of Computer Engineering

department, SVKM's NMIMS Mukesh Patel School of

Technology Management & Engineering (MPSTME),

for his incredible support and encouragement

throughout the course of this research. We also

acknowledge that this research did not receive any

specific grant from funding agencies in the public,

commercial, or not-for-profit sectors.

References

[1] Van Lamsweerde (2009). Requirements

engineering: From system goals to UML models to

software, Chichester, UK: John Wiley , Sons. vol.

10.

[2] Fantechi A, Gnesi S, Semini L. (2023). VIBE:

looking for variability in ambiguous requirements.

Journal of Systems and Software,

1;vol.195:111540.

https://doi.org/10.1016/j.jss.2022.111540.

[3] Dabbagh, M., & Lee, S. P. (2014). An approach

for integrating the prioritization of functional and

nonfunctional requirements. The Scientific World

Journal, 2014(1), 737626.

https://doi.org/10.1155/2014/737626

[4] Dabbagh, M., Lee, S. P., & Parizi, R. M.(2016).

Functional and non-functional requirements

prioritization: empirical evaluation of IPA, AHP-

based, and HAM-based approaches. Soft

Computing, 20, 4497-4520.

https://doi.org/10.1007/s00500-015-1760-z

[5] Gruber, K., Huemer, J., Zimmermann, A., &

Maschotta, R. (2017). Integrated description of

functional and non-functional requirements for

automotive systems design using SysML. In: 7th

IEEE International Conference on System

Engineering and Technology (ICSET), Shah Alam,

Malaysia, pp. 27-31.

DOI: 10.1109/ICSEngT.2017.8123415

[6] Frattini, J., Montgomery, L., Fischbach, J.,

Mendez, D., Fucci, D., & Unterkalmsteiner, M.

(2023). Requirements quality research: a

harmonized theory, evaluation, and roadmap.

Requirements Engineering, 28(4), 507-520.

https://doi.org/10.48550/arXiv.2309.10355.

[7] Supakkul S, Chung L. (2005). Integrating FRs and

NFRs: A use case and goal driven approach.

Framework,6,p.7.

https://www.researchgate.net/publication/2869405

_Integrating_FRs_and_NFRs_A_Use_Case_and_

Goal_Driven_Approach.

[8] Werner C, Li ZS, Lowlind D, Elazhary O, Ernst N,

Damian D. (2021). Continuously managing nfrs:

Opportunities and challenges in practice. IEEE

Transactions on Software Engineering.

17;48(7):2629-42. DOI:

10.1109/TSE.2021.3066330.

https://doi.org/10.1155/2014/737626
https://doi.org/10.1007/s00500-015-1760-z
https://doi.org/10.48550/arXiv.2309.10355

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 141

[9] Mahmoud A, Williams G. (2016). Detecting,

classifying, and tracing non-functional software

requirements. Requirements Engineering. 21:357-

81. https://doi.org/10.1007/s00766-016-0252-8.

[10] Rahimi, N., Eassa, F., & Elrefaei, L. (2020). An

ensemble machine learning technique for

functional requirement classification. Symmetry,

12(10), 1601.

https://doi.org/10.3390/sym12101601.

[11] Shreda, Q. A., & Hanani, A. A.(2021). Identifying

non-functional requirements from unconstrained

documents using natural language processing and

machine learning approaches. IEEE Access, pp.1-1

https://doi.org/10.1109/ACCESS.2021.3052921

[12] Yang H, De Roeck A, Gervasi V, Willis A,

Nuseibeh B.(2011). Analysing anaphoric

ambiguity in natural language requirements.

Requirements engineering. 16:163-89.

DOI:10.1007/s00766-011-0119-y.

[13] Diamantopoulos T, Roth M, Symeonidis A, Klein

E. (2017). Software requirements as an application

domain for natural language processing. Language

Resources and Evaluation. 51:495-524.

DOI:10.1007/s10579-017-9381-z.

[14] Dunnmon JA, Yi D, Langlotz CP, Ré C, Rubin

DL, Lungren MP. (2019). Assessment of

convolutional neural networks for automated

classification of chest radiographs. Radiology.

290(2):537-44.

https://doi.org/10.1148/radiol.2018181422.

[15] Watson C, Cooper N, Palacio DN, Moran K,

Poshyvanyk D. (2022). A systematic literature

review on the use of deep learning in software

engineering research. ACM Transactions on

Software Engineering and Methodology (TOSEM).

4;31(2):1-58. https://doi.org/10.1145/3485275

[16] Sagar VB, Abirami S. (2014). Conceptual

modeling of natural language functional

requirements. Journal of Systems and Software.

1;88:25-41.

https://doi.org/10.1016/j.jss.2013.08.036

[17] McGraw, K. L., & Harbison, K. (2020). User-

centered requirements: The scenario-based

engineering process. CRC Press.

[18] Jeffrey HJ, Putman AO. (1994). Relationship

definition and management: tools for requirements

analysis. Journal of Systems and Software.

1;24(3):277-94.

https://doi.org/10.1016/0164-1212(94)90069-8.

[19] Surma-aho, A., Björklund, T., & Hölttä-Otto, K.

(2022). User and stakeholder perspective taking in

novice design teams. Design Science, 8, e24.

https://doi.org/10.1017/dsj.2022.19

[20] Fernández, D. M., Wagner, S., Kalinowski, M.,

Felderer, M., Mafra, P., Vetrò, A., ... & Wieringa,

R. (2017). Naming the pain in requirements

engineering: Contemporary problems, causes, and

effects in practice. Empirical Software

Engineering, 22, 2298-2338.

https://doi.org/10.1007/s10664-016-9451-7

[21] Blake R, Mangiameli P. (2011). The effects and

interactions of data quality and problem

complexity on classification. Journal of Data and

Information Quality (JDIQ). 1;2(2):1-28.

https://doi.org/10.1145/1891879.1891881

[22] Nguyen TH, Grundy J, Almorsy M. (2015). Rule-

based extraction of goal-use case models from

text. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering.

pp. 591-601.

https://doi.org/10.1145/2786805.2786876

[23] Vlas R, Robinson WN. (2011). A rule-based

natural language technique for requirements

discovery and classification in open-source

software development projects. In 2011 44th

Hawaii International Conference on System

Sciences. pp. 1-10. IEEE.

DOI:10.1109/HICSS.2011.28

[24] Singh, P., Singh, D., & Sharma, A. (2016). Rule-

based system for automated classification of non-

functional requirements from requirement

specifications. In: 2016 International Conference

on Advances in Computing, Communications and

Informatics (ICACCI), pp. 620-626.

https://doi.org/10.1109/ICACCI.2016.7732115

[25] Sharma, V. S., Ramnani, R. R., & Sengupta, S.

(2014). A framework for identifying and analyzing

non-functional requirements from text. In:

Proceedings of the 4th International Workshop on

Twin Peaks of Requirements and Architecture, pp.

1-8. https://doi.org/10.1145/2593861.2593862

[26] Hussain, I., Kosseim, L., & Ormandjieva, O.

(2008). Using linguistic knowledge to classify

non-functional requirements in SRS documents.

In: Natural Language and Information Systems:

13th International Conference on Applications of

Natural Language to Information Systems, NLDB

2008 London, UK, June 24-27, Springer Berlin

Heidelberg, pp. 287-298.

https://doi.org/10.1007/978-3-540-69858-6_28

[27] Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P.

(2007). Automated classification of non-functional

requirements. Requirements Engineering, 12, 103-

120.

https://doi.org/10.1145/3084226.3084241.

https://doi.org/10.3390/sym12101601
https://doi.org/10.1109/ACCESS.2021.3052921
http://dx.doi.org/10.1007/s00766-011-0119-y
https://doi.org/10.1148/radiol.2018181422
https://doi.org/10.1145/3485275
https://doi.org/10.1017/dsj.2022.19
https://doi.org/10.1007/s10664-016-9451-7
https://doi.org/10.1145/1891879.1891881
https://doi.org/10.1145/2786805.2786876
https://doi.org/10.1109/ICACCI.2016.7732115
https://doi.org/10.1145/2593861.2593862
https://doi.org/10.1007/978-3-540-69858-6_28
https://doi.org/10.1145/3084226.3084241

142 Informatica 49 (2025) Error! Unknown document property name.–Error! Unknown document property name.

S. Sonawane et al.

[28] Samantaray SR. (2013). A systematic fuzzy rule

based approach for fault classification in

transmission lines. Applied soft computing, Feb

1;13(2):928-38.

https://doi.org/10.1016/j.asoc.2012.09.010

[29] Das S, Deb N, Cortesi A, Chaki N. (2024).

Extracting goal models from natural language

requirement specifications. Journal of Systems and

Software, 211:111981.

https://doi.org/10.1016/j.jss.2024.111981

[30] Casamayor A, Godoy D, Campo M. (2010).

Identification of non-functional requirements in

textual specifications: A semi-supervised learning

approach. Information and Software Technology,

52(4):436-45.

https://doi.org/10.1016/j.infsof.2009.10.010

[31] Pitangueira AM, Maciel RS, Barros M. (2015).

Software requirements selection and prioritization

using SBSE approaches: A systematic review and

mapping of the literature. Journal of Systems and

Software, 1;103:267-80.

https://doi.org/10.1016/j.jss.2014.09.038

[32] Abad ZS, Karras O, Ghazi P, Glinz M, Ruhe G,

Schneider K. (2017). What works better? a study

of classifying requirements. In 2017 IEEE 25th

International Requirements Engineering

Conference (RE), pp. 496-501. IEEE.

DOI: 10.1109/RE.2017.36

[33] Li, L. F., Jin-An, N. C., Kasirun, Z. M., & Chua,

Y. P. (2019). An empirical comparison of machine

learning algorithms for classification of software

requirements. International Journal of Advanced

Computer Science and Applications, 10(11), 258-

263.

https://doi.org/10.14569/IJACSA.2019.0101135

[34] Handa, N., Sharma, A., & Gupta, A. (2022)

Framework for prediction and classification of

non-functional requirements: A novel vision.

Cluster Computing, 25(2), 1155-1173.

https://doi.org/10.1007/s10586-021-03484-0

[35] Khan A, Baharudin B, Lee LH, Khan K. (2010). A

review of machine learning algorithms for text-

documents classification. Journal of advances in

information technology, 1(1):4-20.

DOI:10.4304/jait.1.1.4-20

[36] Quba, G. Y., Al Qaisi, H., Althunibat, A., &

AlZu’bi, S. (2021). Software requirements

classification using machine learning algorithms.

In: 2021 International Conference on Information

Technology (ICIT), Amman, Jordan, pp. 685-690.

DOI:10.1109/ICIT52682.2021.9491688

[37] Jindal R, Malhotra R, Jain A. (2016). Automated

classification of security requirements. In 2016

International Conference on Advances in

Computing, Communications and Informatics

(ICACCI), pp. 2027-2033. IEEE.

DOI: 10.1109/ICACCI.2016.7732349

[38] Dave, Dev Jayant. (2022). Identifying Functional

and Non-functional Software Requirements from

User App Reviews and Requirements Artifacts.

Thesis, Montclair State University.

https://digitalcommons.montclair.edu/cgi/viewcont

ent.cgi?article=2014&context=etd.

[39] Raymond, R., & Savarimuthu, M. A. (2023).

Retrieval of Interactive requirements for Data

Intensive Applications using Random Forest

Classifier. Informatica, 47(9).

https://doi.org/10.31449/inf.47i9.3772

[40] Binkhonain, M., & Zhao, L. (2019). A review of

machine learning algorithms for identification and

classification of non-functional requirements.

Expert Systems with Applications, 150, 1139-1152.

https://doi.org/10.1016/j.eswa.2020.113990

[41] Kurtanović, Z., & Maalej, W. (2017).

Automatically classifying functional and non-

functional requirements using supervised machine

learning. In: 2017 IEEE 25th International

Requirements Engineering Conference (RE), pp.

490-495. https://doi.org/10.1109/RE.2017.82

[42] Slankas, J., & Williams, L. (2013) Automated

extraction of non-functional requirements in

available documentation. In: 2013 1st

International Workshop on Natural Language

Analysis in Software Engineering (NaturaLiSE),

San Francisco, CA, USA, pp. 9-16.

DOI:10.1109/NAturaLiSE.2013.6611715

[43] AlOmar EA, Mkaouer MW, Ouni A. (2021).

Toward the automatic classification of self-

affirmed refactoring. Journal of Systems and

Software. 171:110821.

https://doi.org/10.1016/j.jss.2020.110821.

[44] Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K.

J., Ajagbe, M. A., Chioasca, E. V., & Batista-

Navarro, R. T. (2021). Natural language

processing for requirements engineering: A

systematic mapping study. ACM Computing

Surveys (CSUR), 54(3), 1-41.

https://doi.org/10.1145/3444689

[45] Amasaki, S., & Leelaprute, P. (2018). The effects

of vectorization methods on non-functional

requirements classification. In: 2018 44th

Euromicro Conference on Software Engineering

and Advanced Applications (SEAA), pp. 175-182.

https://doi.org/10.1109/SEAA.2018.00036

[46] Tiun, S., Mokhtar, U. A., Bakar, S. H., & Saad, S.

(2020). Classification of functional and non-

https://doi.org/10.1016/j.asoc.2012.09.010
https://doi.org/10.1016/j.jss.2024.111981
https://doi.org/10.1016/j.jss.2014.09.038
https://doi.org/10.14569/IJACSA.2019.0101135
https://doi.org/10.1007/s10586-021-03484-0
https://doi.org/10.1016/j.eswa.2020.113990
https://doi.org/10.1109/RE.2017.82
https://doi.org/10.1109/SEAA.2018.00036

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 143

functional requirement in software requirement

using Word2Vec and FastText. Journal of Physics:

Conference Series, 1529(4), 042077.

https://doi.org/10.1088/1742 6596/1529/4/042077

[47] Sabir, M., Chrysoulas, C., & Banissi, E. (2020).

Multi-label classifier to deal with misclassification

in non-functional requirements. In: Trends and

Innovations in Information Systems and

Technologies, Springer International Publishing,

Volume 1, pp. 486-493.

https://doi.org/10.1007/978-3-030-45688-7_49

[48] Song, D., Vold, A., Madan, K., & Schilder, F.

(2022). Multi-label legal document classification:

A deep learning-based approach with label-

attention and domain-specific pre-training.

Information Systems, 106, 101718.

https://doi.org/10.1016/j.is.2021.101718

[49] Jiang, J. Y., Tsai, S. C., & Lee, S. J. (2012).

FSKNN: multi-label text categorization based on

fuzzy similarity and k nearest neighbors. Expert

Systems with Applications, 39(3), 2813-2821.

https://doi.org/10.1016/j.eswa.2011.08.141

[50] Ramadhani, D. A., Rochimah, S., & Yuhana, U. L.

(2015). Classification of non-functional

requirements using semantic-FSKNN based

ISO/IEC 9126. TELKOMNIKA

(Telecommunication Computing Electronics and

Control), 13(4), 1456-1465.

https://doi.org/10.12928/telkomnika.v13i4.2300

[51] AlDhafer, O., Ahmad, I., & Mahmood, S. (2022).

An end-to-end deep learning system for

requirements classification using recurrent neural

networks. Information and Software Technology,

147, 106877.

https://doi.org/10.1016/j.infsof.2022.106877

[52] Winkler, J., & Vogelsang, A. (2016). Automatic

classification of requirements based on

convolutional neural networks. In: 2016 IEEE 24th

International Requirements Engineering

Conference Workshops (REW), pp. 39-45.

DOI: 10.1109/REW.2016.021

[53] Baker, C., Deng, L., Chakraborty, S., & Dehlinger,

J. (2019). Automatic multi-class non-functional

software requirements classification using neural

networks. In: 2019 IEEE 43rd Annual Computer

Software and Applications Conference

(COMPSAC), vol. 2, pp. 610-615.

https://doi.org/10.1109/ICIT52682.2021.9491688

[54] Gnanasekaran, R. K., Chakraborty, S., Dehlinger,

J., & Deng, L. (2021). Using recurrent neural

networks for classification of natural language-

based non-functional requirements. In: REFSQ

Workshops, Essen, Germany. Corpus ID:

235076554

[55] Li, G., Zheng, C., Li, M., & Wang, H. (2022).

Automatic requirements classification based on

graph attention network. IEEE Access, 10, 30080-

30090. DOI: 10.1109/ACCESS.2022.3159238

https://doi.org/10.1109/ACCESS.2022.3159238

[56] Alhaizaey, A., & Al-Mashari, M. (2023). A

framework for reviewing and improving non-

functional requirements in agile-based

requirements. In: 2023 18th Iberian Conference on

Information Systems and Technologies (CISTI),

Aveiro, Portugal, pp. 1-7.

https://doi.org/10.23919/CISTI58278.2023.102119

56.

[57] Shin J, Kim Y, Yoon S, Jung K. (2018).

Contextual-CNN A novel architecture capturing

unified meaning for sentence classification. In

2018 IEEE international conference on big data

and smart computing (BigComp), IEEE, pp. 491-

494.

DOI: 10.1109/BigComp.2018.00079.

[58] Li Q, Peng H, Li J, Xia C, Yang R, Sun L, Yu PS,

He L. (2020). A survey on text classification:

From shallow to deep learning. arXiv preprint

arXiv:2008.00364.

[59] Javed, T. A., Shahzad, W., & Arshad, U. (2021).

Hierarchical text classification of urdu news using

deep neural network. arXiv preprint

arXiv:2107.03141.

https://doi.org/10.48550/arXiv.2107.03141

[60] Mullis J, Chen C, Morkos B, Ferguson S. (2024).

Deep Neural Networks in Natural Language

Processing for Classifying Requirements by Origin

and Functionality: An Application of BERT in

System Requirements. Journal of Mechanical

Design. 146(4):041401.

https://doi.org/10.1145/3444689.

[61] Hey T, Keim J, Koziolek A, Tichy WF. (2020).

Norbert: Transfer learning for requirements

classification. In 2020 IEEE 28th international

requirements engineering conference (RE). pp.

169-179, IEEE.

DOI: 10.1109/RE48521.2020.00028.

[62] Khan, M. A., Khan, M. S., Khan, I., Ahmad, S., &

Huda, S. (2023). Non Functional Requirements

Identification and Classification Using Transfer

Learning Model. IEEE Access. pp(99):1-1.

https://doi.org/10.1109/ACCESS.2023.3295238.

[63] Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P.

(2006). The detection and classification of non-

functional requirements with application to early

aspects. In: 14th IEEE International Requirements

https://doi.org/10.1088/1742%206596/1529/4/042077
https://doi.org/10.1007/978-3-030-45688-7_49
https://doi.org/10.1016/j.is.2021.101718
https://doi.org/10.1016/j.eswa.2011.08.141
https://doi.org/10.12928/telkomnika.v13i4.2300
https://doi.org/10.1016/j.infsof.2022.106877
https://doi.org/10.1109/ICIT52682.2021.9491688
https://doi.org/10.1109/ACCESS.2022.3159238
https://doi.org/10.23919/CISTI58278.2023.10211956
https://doi.org/10.23919/CISTI58278.2023.10211956
https://doi.org/10.1109/ACCESS.2023.3295238

144 Informatica 49 (2025) Error! Unknown document property name.–Error! Unknown document property name.

S. Sonawane et al.

Engineering Conference (RE'06), pp. 39-48.

https://doi.org/10.1109/RE.2006.65.

[64] Rahman, K., Ghani, A., Ahmad, R., & Sajjad, S.

H. (2023). Hybrid deep learning approach for

nonfunctional software requirements

classifications. In: 2023 International Conference

on Communication, Computing and Digital

Systems (C-CODE), Islamabad, Pakistan, pp. 1-5.

DOI: 10.1109/C-CODE58145.2023.10139907

[65] Saleem, S., Asim, M. N., Van Elst, L., & Dengel,

A.(2016). FNReq-Net: A hybrid computational

framework for functional and non-functional

requirements classification. Journal of King Saud

University-Computer and Information Sciences,

35(8), 101665.

https://doi.org/10.1016/j.jksuci.2023.101665

[66] Ferrari, Alessio, Giorgio Oronzo Spagnolo, and

Stefania Gnesi. (2017). Pure: A dataset of public

requirements documents. In 2017 IEEE 25th

international requirements engineering conference

(RE), pp. 502-505.

DOI: 10.1109/RE.2017.29.

[67] Karim, S., Warnars, H.L.H.S., Gaol, F.L.

Abdurachman, E. and Soewito, B. (2017).

Software metrics for fault prediction using

machine learning approaches: A literature review

with PROMISE repository dataset. In 2017 IEEE

international conference on cybernetics and

computational intelligence (CyberneticsCom), pp.

19-23. IEEE. DOI:

10.1109/CYBERNETICSCOM.2017.8311708

[68] Sonawane, S. N., & Puthran, S. M. (2024).

Classification of functional and nonfunctional

requirements based on convolutional neural

network with flower pollination optimizer.

Innovations in Systems and Software Engineering,

1-25. https://doi.org/10.1007/s11334-024-00592-z

[69] Mullen, L. A., Benoit, K., Keyes, O., Selivanov,

D., & Arnold, J. (2018). Fast, consistent

tokenization of natural language text. Journal of

Open Source Software, 3(23), 655.

https://doi.org/10.21105/joss.00655.

[70] Yogish D, Manjunath TN, Hegadi RS. (2019).

Review on natural language processing trends and

techniques using NLTK. In Recent Trends in

Image Processing and Pattern Recognition:

Second International Conference, RTIP2R 2018,

Solapur, India, December 21–22, Revised Selected

Papers, Part III (pp. 589-606). Springer Singapore.

DOI:10.1007/978-981-13-9187-3_53.

[71] Mladenic D. (2002). Automatic word

lemmatization. In Proceedings of the 5th

international multi-conference information society,

IS-2002 B 2002, pp. 153-159. Corpus ID: 5486846

[72] Goodman, E. L., Zimmerman, C., & Hudson, C.

(2020). Packet2vec: Utilizing word2vec for feature

extraction in packet data. In: IAPR International

Conference on Machine Learning and Data

Mining in Pattern Recognition.

https://doi.org/10.48550/arXiv.2004.14477.

[73] Zhang Y, Jin R, Zhou ZH. (2010). Understanding

bag-of-words model: a statistical framework.

International journal of machine learning and

cybernetics, 1:43-52.

DOI:10.1007/s13042-010-0001-0.

[74] Choudhary, K., & Beniwal, R. (2021). Xplore

Word Embedding Using CBOW Model and Skip-

Gram Model. In: 2021 7th International

Conference on Signal Processing and

Communication (ICSC), pp. 267-270.

DOI: 10.1109/ICSC53193.2021.9673321.

[75] Bahassine, S., Madani, A., Al-Sarem, M., & Kissi,

M. (2020). Feature selection using an improved

Chi-square for Arabic text classification. Journal

of King Saud University-Computer and

Information Sciences, 32(2), 225-231.

https://doi.org/10.1016/j.jksuci.2018.05.010.

[76] Cervantes J, Garcia-Lamont F, Rodríguez-

Mazahua L, Lopez A. (2020). A comprehensive

survey on support vector machine classification:

Applications, challenges and trends.

Neurocomputing, 30;408:189-215.

https://doi.org/10.1016/j.neucom.2019.10.118.

[77] Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K.

(2003). KNN model-based approach in

classification. In: On The Move to Meaningful

Internet Systems 2003: CoopIS, DOA, and

ODBASE: OTM Confederated International

Conferences, CoopIS, DOA, and ODBASE 2003,

Catania, Sicily, Italy, Springer Berlin Heidelberg,

pp. 986-996. https://doi.org/10.1007/978-3-540-

39964-3_62.

[78] Habib G, Qureshi S. (2022). Optimization and

acceleration of convolutional neural networks: A

survey. Journal of King Saud University-Computer

and Information Sciences. 1;34(7):4244-68.

DOI:10.1016/j.jksuci.2020.10.004

https://doi.org/10.1016/j.jksuci.2020.10.004

[79] Abdel-Basset, M., & Shawky, L. A. (2019).

Flower pollination algorithm: a comprehensive

review. Artificial Intelligence Review, 52, 2533-

2557. https://doi.org/10.1007/s10462-018-9624-4.

[80] Esa, M. F. M., Mustaffa, N. H., Radzi, N. H. M., &

Sallehuddin, R. (2022). Flower Pollination

Algorithm for Convolutional Neural Network

https://doi.org/10.1109/RE.2006.65
https://doi.org/10.21105/joss.00655
https://doi.org/10.48550/arXiv.2004.14477
https://doi.org/10.1016/j.jksuci.2018.05.010
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/s10462-018-9624-4

Application of Improved Binary K-means Algorithm in Time and… Informatica 49 (2025) 117–146 145

Training in Vibration Classification. In:

Computational Intelligence in Machine Learning:

Select Proceedings of ICCIML, pp. 339-346.

https://doi.org/10.1007/978-981-16-8484-5_32.

https://doi.org/10.1007/978-981-16-8484-5_32

146 Informatica 49 (2025) Error! Unknown document property name.–Error! Unknown document property name.

S. Sonawane et al.

