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Ensuring the dependability and security of power systems is critical to guaranteeing uninterrupted 

electricity supply and avoiding possibly catastrophic outages. Previous power system monitoring methods 

frequently have restricted incorporation and lack real-time assessment abilities, limiting their ability to 

detect and tackle safety problems promptly. To tackle these drawbacks, this paper presents the SafePower 

Hybrid Classifier (SPHC) algorithm, which is intended to improve real-time surveillance and 

classification of power system security information. The proposed system gathers and sends key security 

metrics like voltage, current, temperature, humidity, power factor, frequency, and phase imbalance from a 

network of sensors spread across power plants and transmission lines. The SPHC algorithm uses an 

ensemble voting method to classify the safety status as Normal, Warning, or Critical, enabling timely 

intervention using the Power System Operation Safety Monitoring Dataset (PSOSMD). Experimental 

findings indicate that the SPHC algorithm surpasses conventional classifiers, with performance metrics 

such as accuracy of 92.4%, precision of 91.3%, recall of 91.8%, F1-score of 91.5%, and MCC of 89.7%, 

substantially decreasing the possibility of power system failure. Integrating thorough data gathering and 

sophisticated classification into the proposed system greatly enhances the dependability and stability of 

power operations. 

Povzetek: Predlagan je algoritem SafePower Hybrid Classifier (SPHC) za izboljšano spremljanje varnosti 

električnega omrežja, ki uporablja senzorjev in metode ansambelskega glasovanja.

1 Introduction 

Power system dependability and safety are essential in 

guaranteeing an uninterrupted and stable supply of 

electricity, which is required by contemporary society [1]. 

The need for sophisticated monitoring systems has 

increased considerably as power grids become more 

intricate, owing to the incorporation of renewable energy 

sources and the growth of interconnected networks [2]. 

These systems should be able to not only identify possible 

security problems but also react quickly enough to avoid 

minor anomalies from becoming serious interruptions [3]. 

As power systems become more dynamic and dispersed, 

conventional monitoring techniques are increasingly 

insufficient, requiring the creation of more complex 

solutions [4]. 

Numerous methods have been used over time to track 

power system security, including manual inspections, 

simple sensor networks, and data logging solutions [5]. 

While these techniques have yielded useful results, they 

frequently have major disadvantages. Conventional 

systems are usually restricted by their incapability to 

process and assess data in real time, which causes delays 

in the detection and resolution of security problems. 

Furthermore, the absence of incorporation among the 

various elements of the power network outcomes in 

fragmented data streams that are hard to interpret 

cohesively. This disjointed strategy impedes the capacity 

to rapidly detect and tackle growing hazards, affecting the 

total dependability of the power system. 

Recognizing these difficulties, this paper presents an 

innovative strategy for improving real-time monitoring 

and safety evaluation of power systems. The proposed 

solution is based on the SafePower Hybrid Classifier 

(SPHC) algorithm, which is integrated into an extensive 

monitoring system. This system is intended to continually 

collect, transmit, and evaluate data from a network of 

sensors spread across different power system components, 

including power plants and transmission lines. The SPHC 

algorithm uses an ensemble voting method to divide the 

system's safety status into different groups, allowing 

operators to react proactively to any identified anomalies. 

The SPHC algorithm tackles numerous major 

shortcomings in previous monitoring systems. By 

combining real-time data analytics and sophisticated 

classification methods, the SPHC algorithm improves the 

accuracy and speed of safety evaluations. Unlike 

conventional approaches, which frequently depend on 

periodic gathering of data and manual interpretation, the 

SPHC generates a steady stream of useful knowledge that 
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can be utilized to keep the system stable. Furthermore, the 

system's capability to integrate data from numerous 

sources into a unified assessment platform guarantees that 

security evaluations are thorough and representative of the 

whole power network. 

This research makes significant contributions to the field 

of power system safety. To begin, the paper describes an 

innovative classification algorithm developed especially 

for real-time monitoring of power systems. Second, it 

shows a detailed experimental assessment to show the 

algorithm's efficiency, showing that it outperforms 

previous monitoring methods in terms of accuracy and 

response. Third, the paper outlines an entire monitoring 

solution that combines sensor networks, transmission of 

data, and real-time evaluation, providing an effective 

framework for guaranteeing power system dependability. 

The main aim of this research is to create a system that 

improves the capability to detect and reduce safety risks in 

power systems quickly. The objective is to surpass the 

restrictions of current monitoring techniques by 

implementing a more incorporated and responsive 

solution. The SPHC algorithm is unique in that it 

combines real-time data analysis with ensemble 

classification methods, resulting in a more precise and 

timely evaluation of power system safety. 

This system is especially helpful in areas where a 

consistent power supply is critical, like large-scale power 

plants, renewable energy installations, and urban power 

grids. The capability to track and react to safety concerns 

in real time makes this method indispensable for 

sustaining the stability and effectiveness of contemporary 

power networks. 

The rest of the paper is structured as follows: Section 2 

examines related works in power system surveillance and 

safety evaluation, highlighting the gaps that the SPHC 

algorithm seeks to fill. Section 3 describes the 

methodology, which includes the planning and execution 

of the SPHC algorithm, as well as the entire surveillance 

framework. Section 4 provides the experimental findings 

and discusses their implications, emphasizing the benefits 

of the proposed method. At last, Section 5 concludes the 

paper and outlines possible fields for future research, such 

as improvements to the SPHC algorithm and its 

application to a wider variety of power systems. 

2 Related works 

This section analyses recent advances in power system 

tracking, concentrating on the different methods and 

technologies used to guarantee grid dependability and 

safety. It investigates the efficacy and constraints of 

current techniques, such as IoT-based systems, data 

processing techniques, and safety surveillance 

enhancements. This section analysis these studies to 

emphasize the difficulties faced in real-time evaluation 

and incorporation of safety data, setting the stage for the 

introduction of the SPHC algorithm as a solution to these 

problems. 

The incorporation of the Internet of Things (IoT) in smart 

grids has substantially enhanced the capacity to track and 

regulate grid parameters, resulting in more dependable 

and effective power delivery. Khan et al. [6] investigated 

an IoT-based power monitoring system designed 

specifically for smart grid applications, emphasizing its 

capability to track and evaluate electrical parameters like 

voltage, current, and energy usage in real time. The study 

shows how IoT applications, particularly platforms such 

as Thing Speak, can help customers and power companies 

handle the consumption of energy more efficiently, 

lowering expenses for operations. However, integrating 

IoT in smart grids poses difficulties, especially in 

guaranteeing uninterrupted service and data accuracy 

across different phases of the grid. 

The implementation of resilient subspace clustering 

techniques has tackled advances in processing data and the 

detection of anomalies for power grid monitoring. Lee et 

al. [7] proposed a subspace clustering technique for 

handling large-scale data streams, like synchronized 

phasor evaluations, which are critical for power grid 

monitoring. The technique uses a low-rank representation 

model to reconstruct missing measures and discover 

anomalies, which addresses the computational and 

memory difficulties related to uninterrupted data streams 

in power grids. This method has been proven to surpass 

previous algorithms, which makes it a useful tool for 

improving grid dependability. 

Wireless sensor networks (WSNs) have also been 

presented to address data collection problems in power 

grids, especially those caused by phasor measurement 

units (PMUs). Manoharan et al. [8] implemented a 

technique for more efficiently monitoring power grid 

parameters by combining WSNs and binary logistic 

regression (BLR). This technique addresses the common 

issue of data not attaining the main server from PMUs, 

guaranteeing that vital data is always obtainable for 

making choices. The suggested technique showed 

enhanced accuracy and effectiveness in surveillance, 

highlighting the possibility of WSNs linked with BLR to 

enhance the stability of the grid. 

Fernandez et al. [9] investigated topology change 

identification in power grids via power line 

communications (PLC). Their research presented a 

channel impulse response (CIR)--based method that does 

not need any changes to the current smart grid 

architecture. The suggested technique provides a 

software-only solution for effectively detecting topology 

changes with low memory and computational demands. 

The system's resilience in high-noise settings emphasizes 

its applicability in real-world situations where 

communication channels are frequently compromised. 
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The examination of power grid blackouts and the 

development of countermeasures have also been 

important areas of research. Zhang et al. [10] examined 

numerous massive blackout events to determine common 

causes and risk factors. Their research presented 

knowledge of power grid vulnerabilities and suggested 

tactics to improve risk management and functional 

controls. These recommendations are critical to avoiding 

future blackouts and guaranteeing the uninterrupted and 

secure function of power grids. 

In line with risk management, Li and Liu [11] proposed a 

real-time simulation system for assessing power grid 

vulnerability. Their platform simulates actual grid 

activities and performs fault scans to assess possible 

hazards and discover weak points in the grid. This 

simulation-based method presents technical assistance for 

the identification and handling of hidden risks, 

contributing to the total stability and security of power 

grid functions. 

Another area of research has been the safety of power grid 

personnel during grid activities, with attempts underway 

to enhance security monitoring systems. Rao et al. [12] 

created an enhanced YOLOv3-based system for tracking 

the utilization of safety helmets by power grid workers. By 

improving detection accuracy for small targets and 

improving boundary frame regression, their system offers 

real-time tracking with higher speed and precision, 

thereby decreasing the risk of accidents during grid 

maintenance operations. 

AI has also been used to tackle security issues in power 

grids, specifically in the detection of high impedance 

faults (HIFs). Wang and Dehghanian [13] presented an AI-

powered online surveillance system that precisely 

recognizes HIFs, which are frequently overlooked by 

traditional monitoring devices. The system's capability to 

present timely alerts before serious harm happens renders 

it an indispensable tool for sustaining the security and 

reliability of power grids, particularly under severe 

weather conditions. 

Hossain et al. [14] highlighted the significance of planning 

and improving substation grounding grids to protect 

employees as well as machinery. Their research 

emphasizes the importance of careful planning in 

grounding grid design, which is critical for reducing risks 

and safeguarding infrastructure in power systems. This 

method is especially important for improving the safety 

standards of power grid functions. 

Finally, Alimi et al. [15] provided an in-depth examination 

of the most recent machine learning techniques (MLTs) 

used to improve power system protection and stability. 

They investigated the use of artificial neural networks 

(ANN), decision trees (DT), and support vector machines 

(SVM) in applications such as cyberattack detection, 

power quality (PQ) disturbances, and dynamic protection 

evaluations. They also talked about the constraints of 

previous studies' classifier designs, datasets, and test 

systems, as well as how to use reinforcement learning 

(RL) and deep reinforcement learning (DRL) for transient 

stability assessments. They concluded by outlining 

important issues and future research directions in this area. 

Table 1 shows the summary table. 

 

Table 1: Summary table 

Study/Method Key 

Features/Approach 

Accuracy Recall Real-Time 

Capabilities 

Integration/Challenges Limitations 

Khan et al. [6] - 

IoT-based Power 

Tracking 

Real-time tracking 

of electrical 

parameters utilizing 

IoT (ThingSpeak 

platform). 

High Moderate Yes Difficulties in sustaining 

continuous service and 

data accuracy 

Constrained 

data accuracy 

and possible 

service 

interruptions 

Lee et al. [7] - 

Subspace 

Clustering for 

Data Streams 

Low-rank 

representation 

model for anomaly 

discovery in phasor 

measurements. 

High High Yes High computational and 

memory effectiveness 

Memory and 

computational 

overhead for 

continuous 

data streams 

Manoharan et al. 

[8] - WSN and 

BLR for Power 

Grid Tracking 

Utilizes WSNs and 

BLR to resolve data 

gaps from PMUs for 

real-time grid 

parameter 

monitoring. 

High High Yes Enhanced data accuracy 

and effectiveness 

Reliant on 

wireless 

sensor 

network 

stability 

Fernandez et al. 

[9] - Power Line 

Software-only 

solution for 

discovering grid 

topology 

Moderate Moderate Limited Minimum 

computational and 

memory necessities 

Constrained 

real-time 

abilities; 

concentrates 
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Communications 

(PLC) 

fluctuations using 

CIR. 

on topology 

fluctuations 

only 

Zhang et al. [10] 

- Power Grid 

Outage 

Evaluation 

Blackout incident 

examination to 

detect reasons and 

risk factors; risk 

management tactics. 

High High No Efficient in blackout 

prevention 

No real-time 

tracking, 

concentrates 

on post-

incident 

examination 

Li and Liu [11] - 

Real-Time Grid 

Vulnerability 

Simulation 

Real-time 

simulation system 

for vulnerability and 

fault examination. 

High High Yes Presents technical 

support for concealed 

risk discovery 

Constrained 

scalability for 

massive grids 

Rao et al. [12] - 

YOLOv3-based 

Helmet 

Discovery 

Enhanced YOLOv3 

for real-time 

monitoring of 

security helmet use 

by grid personnel. 

High High Yes Precise small-target 

detection and quicker 

monitoring 

Concentrates 

on personnel 

security, not 

on wider grid 

tracking 

Wang & 

Dehghanian [13] 

- AI-Driven HIF 

Monitoring 

AI-based system for 

detecting high 

impedance faults 

(HIFs) in real-time. 

High High Yes Timely alerts and high 

fault detection accuracy 

Mainly 

tackles HIFs, 

not wider grid 

problems 

Hossain et al. 

[14] - Substation 

Grounding Grid 

Design 

Improves substation 

grounding for 

personnel and 

infrastructure safety. 

High High No Enhanced safety for 

substation functions 

Concentrates 

only on 

grounding 

grid design, 

not overall 

grid security 

You et al. [15] - 

Deep Learning 

Smart Grid 

Management 

Deep learning for 

real-time flaw 

prediction and grid 

optimization. 

High High Yes Enhances effectiveness 

and security via flaw 

detection 

Constrained 

incorporation 

with other 

grid security 

systems 

SafePower 

Hybrid 

Classifier 

(SPHC) 

Ensemble voting 

method for 

comprehensive 

security data 

incorporation and 

hazard discovery. 

Very 

High 

Very 

High 

Yes Seamless incorporation 

of diverse security data 

from numerous sensors 

Surpasses 

limitations in 

real-time 

diagnostics 

and data 

incorporation 

These previous power systems monitoring techniques are 

frequently hampered by an absence of incorporation and 

real-time diagnostic abilities, limiting their capacity to 

detect and tackle safety problems quickly. Numerous 

methods struggle with fragmented data sources and fail to 

efficiently aggregate or evaluate multiple safety metrics, 

resulting in delays in discovering possible risks and 

inadequate proactive measures. The SPHC algorithm is 

proposed to fill these gaps by combining a broad range of 

safety data gathered by different sensors and using an 

ensemble voting method for classification. This method 

guarantees thorough tracking, timely hazard identification, 

and enhanced intervention tactics, tackling the drawbacks 

of conventional approaches while improving total system 

dependability and safety. 

3 Methodology 

This section describes the methodology used to create and 

assess the SPHC algorithm. It describes the dataset utilized 

to train and test the approach, the planning and execution 

of the SPHC algorithm, and an overview of the entire 

strategy. The goal is to present a thorough discussion of 

how the SPHC algorithm improves real-time surveillance 

and classification of power system safety information. By 

incorporating sophisticated classification techniques, the 

methodology intends to enhance the dependability and 

efficacy of power system safety management. 
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3.1 Dataset 

The dataset namely Power System Operation Safety 

Monitoring Dataset (PSOSMD) used by the SPHC 

algorithm includes key measurements gathered from a 

network of sensors spread across power plants, 

substations, and transmission lines. This dataset is critical 

for improving the real-time monitoring and categorization 

of power system safety data. Each entry in the dataset 

incorporates multiple features that present a thorough 

summary of the system's functional status and 

environmental circumstances. 

This PSOSMD dataset contains 10,000 instances, which 

includes a wide range of functional measurements from 

sensors distributed across power plants, substations, and 

transmission lines. Preprocessing steps were performed 

prior to model training, comprising min-max 

normalization to guarantee consistent scaling of features 

between 0 and 1, and IQR (Interquartile Range) outlier 

removal to boost data quality and model effectiveness. The 

dataset was then divided into training and testing sets, with 

80% (8,000 instances) used to train the SPHC algorithm 

and 20% (2,000 instances) used to test its efficacy. This 

division enables a comprehensive assessment of the 

model's accuracy and generalizability to new data. The 

SPHC algorithm uses a dataset that includes key 

measurements collected from a network of sensors spread 

across power plants, substations, and transmission lines. 

This dataset is essential for real-time tracking and 

classification of power system security data. Each entry in 

the dataset contains numerous features that provide a 

comprehensive overview of the system's operational status 

and environmental conditions. 

Sensor ID is a distinctive identifier allocated to each 

sensor, enabling data from different sensors installed 

throughout the power system to be differentiated and 

tracked more effectively. This feature is essential for 

handling sensor efficiency and data honesty, as it ensures 

that data can be precisely attributed to its source. 

The Location feature specifies the exact location where the 

sensor is installed, like a substation, power plant, or 

transmission line. Comprehending the location assists in 

contextualizing the data, as various components of the 

power system might encounter different functioning 

circumstances and problems. 

The Data Type defines the type of measure being logged 

by the sensor, which may contain voltage, current, or 

temperature. This feature is required for evaluating 

multiple facets of power system health, as each kind of 

data presents information about particular operational 

parameters. Voltage and current are essential for assessing 

electrical efficiency, while temperature and humidity 

provide data about ambient circumstances that can affect 

devices. 

Voltage (V) and current (A) are basic measures that 

represent the electrical potential variance and the flow of 

electric charge, correspondingly. Tracking these 

parameters is critical for guaranteeing they remain within 

acceptable functioning limitations to avoid concerns like 

power surges, overheating, or equipment damage. 

Temperature (°C) monitors the heat at the sensor's 

position, which can identify possible issues such as 

equipment overheating or external conditions interfering 

with efficiency. High temperatures may indicate 

equipment faults or future breakdowns. 

Humidity (%) indicates the amount of moisture in the air 

at the sensor's position. High humidity can impact the 

efficiency and lifespan of electrical equipment, perhaps 

resulting in insulation breakdowns or corrosion. 

Power Factor is a measurement of how effectively 

electrical power is used. A power factor near one denotes 

effective energy consumption, whereas a lower value 

implies inadequacies that could contribute to increased 

functional expenses and system failures. 

Frequency (Hz) measures the stability of an alternating 

current. Deviations from the normal frequency can impair 

the operation of electrical equipment and the entire system 

stability, thus it is critical for ensuring correct operation. 

Phase Imbalance (%) is the voltage variation between 

stages in a three-stage system. A low percentage suggests 

a well-balanced system, but a high percentage might 

produce ineffectiveness or harm to equipment. 

Timestamps capture the date and time of each measure, 

which is critical for monitoring shifts over time, 

recognizing patterns, and associating data with particular 

events or situations. 

At last, the Status feature evaluates the entire state of the 

power system using sensor readings. It divides the system 

into Normal, Warning, and Critical states, which is crucial 

for prioritizing actions and tackling possible difficulties in 

a timely fashion. Table 2 displays a sample of the dataset 

with ten rows. 
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Table 2: Sample dataset 
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001 Substation A Voltage 240 600 60 55 0.88 60 2 2024-

08-28 

10:00:00 

Normal 

002 Power Plant 

B 

Temperature 230 490 85 60 0.85 48.5 3 2024-

08-28 

10:05:00 

Warning 

003 Transmission 

Line 1 

Current 235 485 82 57 0.87 51.2 2.5 2024-

08-28 

10:10:00 

Normal 

004 Substation C Voltage 220 520 78 50 0.89 60 2 2024-

08-28 

10:15:00 

Normal 

005 Power Plant 

A 

Temperature 300 570 80 70 0.82 59 3 2024-

08-28 

10:20:00 

Critical 

006 Transmission 

Line 2 

Current 315 580 83 62 0.84 59.8 2.7 2024-

08-28 

10:25:00 

Normal 

007 Substation B Voltage 335 605 75 53 0.88 60 2 2024-

08-28 

10:30:00 

Normal 

008 Power Plant 

C 

Temperature 310 575 95 68 0.83 59.2 3.5 2024-

08-28 

10:35:00 

Warning 

009 Transmission 

Line 3 

Current 320 590 81 56 0.86 60.1 2.2 2024-

08-28 

10:40:00 

Normal 

010 Substation D Voltage 320 600 80 54 0.87 60 2 2024-

08-28 

10:45:00 

Normal 

3.2 SPHC algorithm 

The SPHC algorithm combines numerous sophisticated 

machine-learning classifiers to enhance power system 

safety monitoring. The algorithm follows a set of well-

defined stages to guarantee an efficient and precise 

forecast of system status. 

The algorithm starts by initializing five improved 

classifiers, each with its own set of hyperparameters to 

improve efficiency. These classifiers include Improved 

RandomForest (RF), Improved J48, Improved Support 

Vector Machine (SVM), Improved naive Bayes (NB), and 

Improved k-Nearest Neighbors (KNN).  

The hyperparameters were chosen to improve efficiency 

while minimizing overfitting. The Improved 

RandomForest employs 100 trees to guarantee diversity 

and resilience, with a maximum depth of 10 to avoid 

excessive intricacy and overfitting. To enhance feature 

selection and decrease the risk of overfitting, each split 

was assigned a square root of total attributes. The 

Improved J48 classifier uses a 0.15 confidence factor for 

aggressive pruning to simplify the model and enhance 

interpretability, as well as a minimum of 5 instances per 

leaf to guarantee prediction stability. The Improved SVM 

utilizes a regularization parameter 'C' of 1.0 to efficiently 

balance margin maximization and error reduction, whereas 

the RBF kernel captures the data's non-linear relationships. 
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The Improved NaiveBayes uses kernel density estimation 

to represent continuous features more accurately, as well 

as supervised discretization to better manage numeric data. 

Finally, the Improved k-Nearest Neighbors is configured 

with 5 neighbors to balance local influence and 

generalization. Inverse distance weighting is used to 

prioritize closer data points, and cross-validation improves 

the model's resilience and aids prevent overfitting.  

During the training phase, each improved classifier is 

trained on the training dataset ('X_train' and 'Y_train'). 

This step includes fitting each model to the data, allowing 

it to learn patterns and relationships that are necessary for 

creating precise forecasts. After training, each classifier 

predicts on the test dataset ('X_test'). These forecasts are 

gathered and saved independently, preparing them for the 

next ensemble approach. The ensemble approach uses 

majority voting to make its final forecast. For each 

instance in the test dataset, forecasts from all five 

improved classifiers are combined. The majority vote 

among these forecasts determines the result, guaranteeing 

that the most common prediction is selected. This method 

uses the advantages of each classifier to improve overall 

prediction accuracy. The mathematical expression for the 

majority voting procedure is as follows: 

𝑦𝑝𝑟𝑒𝑑(𝑖) =

𝑚𝑜𝑑𝑒{𝑦𝑅𝐹(𝑖), 𝑦𝐽48(𝑖), 𝑦𝑆𝑉𝑀(𝑖), 𝑦𝑁𝐵(𝑖), 𝑦𝐾𝑁𝑁(𝑖)}       

                                                                          (1) 

Where: 

• 𝑦𝑝𝑟𝑒𝑑(𝑖) is the end predicted label for instance  

• 𝑦𝑅𝐹(𝑖), 𝑦𝐽48(𝑖), 𝑦𝑆𝑉𝑀(𝑖), 𝑦𝑁𝐵(𝑖), 𝑦𝐾𝑁𝑁(𝑖) are the 

forecasts from the RandomForest, J48, SVM, NaiveBayes, 

and k-Nearest Neighbors classifiers, correspondingly. 

• mode refers to the statistical mode function, 

which chooses the most commonly recurring prediction 

among the classifiers. 

The algorithm finishes by returning the forecasted labels 

for the test dataset as 'Y_predictions', resulting in an in-

depth evaluation of the power system's safety status 

using the integrated knowledge from all classes. Algorithm 

1 demonstrates the SPHC algorithm. 

Algorithm 1: SafePower Hybrid Classifier (SPHC) Algorithm 

Input : X_train, Y_train: Training attributes and labels 

X_test: Testing attributes 

Output : Y_predictions: Final forecast labels for X_test 

Step 1 : Initialize classifiers with hyperparameters tuning: 

• I_RF (numTrees=100, maxDepth=10, numFeatures=sqrt(total_features)) 

• I_J48 (confidenceFactor=0.15, minNumObj=5, useUnpruned=False) 

• I_SVM (C=1.0, kernel=RBFKernel, gamma=auto) 

• I_NB (useKernelEstimator=True, useSupervisedDiscretization=True) 

• I_KNN (k=5, distanceWeighting=Inverse, crossValidate=True) 

Step 2 : Training Phase: 

• Train I_RF on X_train, Y_train 

• Train I_J48 on X_train, Y_train 

• Train I_SVM on X_train, Y_train 

• Train I_NB on X_train, Y_train 

• Train I_KNN on X_train, Y_train 

Step 3 : Ensemble Tactic: 

• Predict with each classifier on X_test 

• Store predictions: RF_predictions, J48_predictions, SVM_predictions, 

NB_predictions, KNN_predictions 

Step 4 : Majority Voting: 

• For each instance i in X_test: 
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o Gather votes from RF_predictions, J48_predictions, SVM_predictions, 

NB_predictions, KNN_predictions 

o Calculate the majority vote for i 

o Add majority vote to Y_predictions 

Step 5 : Return Y_predictions 

Improved random forest: 

Random Forest is an ensemble learning technique that 

generates a large number of decision trees during training 

and returns the mode of the classes for classification issues 

or the mean prediction for regression tasks. It is well-

known for its durability and efficacy in managing 

complicated datasets, owing to its capacity to decrease 

overfitting and increase forecast accuracy by averaging 

numerous decision trees. The Improved RandomForest 

classifier was created on this basis by making many 

significant improvements to enhance its efficiency even 

more. Raising the number of trees ('numTrees') to 100 

improves the classifier's stability and minimizes variance, 

as combined predictions from a larger number of trees 

result in a more dependable and consistent model.  

𝑦𝑅𝐹(𝑖) = 𝑚𝑜𝑑𝑒{𝑇1(𝑥𝑖), 𝑇2(𝑥𝑖), … , 𝑇100(𝑥𝑖)}    (2) 

where: 

• 𝑦𝑅𝐹(𝑖) is the final prediction for instance i. 

• 𝑇𝑗(𝑥𝑖) denotes the prediction created by the j-th 

decision tree for instance i. 

• mode represents the statistical mode function, 

which chooses the most common prediction among the 

trees. 

Furthermore, restricting each tree's maximum depth 

('maxDepth') to 10 keeps the model from becoming overly 

complicated lowering the risk of overfitting and 

guaranteeing greater adaptability to new data. To increase 

variety among the trees and enhance total predictive 

efficiency, the number of attributes considered at each split 

('numFeatures') is set to the square root of the total number 

of attributes. These improvements contribute to a more 

precise and reliable RandomForest model. 

Improved J48: 

J48 is an execution of the C4.5 algorithm, which generates 

decision trees for classification tasks. This classifier is 

well-known for its comprehension and ability to manage 

both numerical and categorical data sets. J48 creates a 

decision tree by iteratively splitting the data using the 

feature with the greatest information gain, resulting in a 

useful tool for recognizing trends and creating decisions 

depending on complicated data sets. 

The Improved J48 decision tree classifier improves its 

efficacy by adjusting particular parameter values to 

enhance generalization. By lowering the confidence factor 

to 0.15, the algorithm engages in more aggressive pruning, 

which simplifies and decreases the tree's intricacy, thus 

avoiding overfitting. Raising the minimum number of 

instances per leaf ('minNumObj') to 5 prevents the tree 

from forming excessively particular branches, resulting in 

a more generalizable model. Furthermore, setting the 

pruning choice to false ('useUnpruned=False') guarantees 

that the tree undergoes pruning, simplifying the model and 

improving its capability to generalize to novel, unseen 

data.  

In terms of prediction, for a given instance i, the Improved 

J48 classifier creates a prediction 𝑦𝐽48(𝑖) using the built 

decision tree. The prediction is denoted by: 

𝑦𝐽48(𝑖) = 𝐶𝑙𝑎𝑠𝑠(𝐿𝑒𝑎𝑓𝑁𝑜𝑑𝑒(𝑇𝑟𝑒𝑒(𝑥𝑖)))         

(3) 

where: 

• 𝑥𝑖  is the feature vector of the instance i. 

• 𝑇𝑟𝑒𝑒(𝑥𝑖) denotes the decision tree performed to 

an instance 𝑥𝑖. 

• LeafNode represents the terminal node of the tree 

where 𝑥𝑖 ends up. 

• The class represents the class label allocated to 

the leaf node, which is the end prediction 𝑦𝐽48(𝑖). 

These improvements finding in a more efficient J48 

classifier with enhanced efficiency across various datasets. 

Improved SMO (SVM): 

The Support Vector Machine (SVM) is a potent 

classification method known for its ability to identify the 

best hyperplane that divides data into different classes. The 

SMO (Sequential Minimal Optimization) algorithm is 

widely utilized to effectively address the SVM 

optimization issue, which makes it ideal for massive data 

sets and complicated classification tasks. To enhance 

classification accuracy, the Improved SMO (SVM) 

classifier is carefully tuned in terms of hyperparameters. 

The regularization parameter 'C' is set to 1.0, balancing the 

trade-off between increasing the margin between classes 

and reducing classification failures. This setting allows the 

model to generalize well to novel data by regulating the 

intricacy of the decision limit. The Radial Basis Function 
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(RBF) kernel was chosen because of its capability to map 

data into higher dimensions, enabling the SVM to better 

manage non-linear relationships. The gamma parameter is 

set to auto, which allows the model to adapt to changing 

data distributions and improve the division between 

classes.  

In terms of prediction, for a given instance x, the Improved 

SMO (SVM) classifier creates a prediction 𝑦𝑆𝑉𝑀(𝑥) using 

the decision function: 

𝑦𝑆𝑉𝑀(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖)

𝑛

𝑖=1

+ 𝑏) 
(4) 

where: 

• 𝛼𝑖  are the Lagrange multipliers attained from the 

SMO algorithm. 

• 𝑦𝑖  are the class labels of the support vectors. 

• 𝐾(𝑥, 𝑥𝑖) is the kernel function (Radial Basis 

Function in this case). 

• b is the bias term. 

• sign function computes the class label by 

assessing the sign of the decision function. 

Improved Naive Bayes: 

Naive Bayes is a probabilistic classifier that relies on 

Bayes' theorem and presumes feature independence. It is 

well-known for its ease and effectiveness, especially in 

situations involving massive data sets and categorical 

variables. Despite its simplicity, Naive Bayes can be 

extremely successful when properly tuned for a particular 

task. The Improved Naive Bayes classifier uses 

sophisticated methods to enhance its handling of 

numerical data. By using kernel density estimation 

('useKernelEstimator=True'), the classifier abandons the 

assumption of a normal distribution for numerical 

attributes in Favor of a more flexible estimation technique. 

This enhancement enables more precise modelling of 

feature distributions, particularly when the actual data 

deviates from normal. Furthermore, supervised 

discretization ('useSupervisedDiscretization=True') is 

used to convert continuous attributes into categorical bins, 

taking advantage of their relationship with the target 

variable.  

For the Improved Naive Bayes classifier, the predicted 

class label 𝑦𝑁𝐵(𝑖) for a given instance i is computed by 

discovering the class with the highest posterior probability. 

Given a feature vector 𝑥𝑖  for instance i, the predicted class 

𝑦𝑁𝐵(𝑖) is calculated as: 

𝑦𝑁𝐵(𝑖) = arg 𝑚𝑎𝑥𝑦 (𝑃(𝑦). 𝑃(𝑥𝑖|𝑦)) (5) 

where: 

• 𝑃(𝑦) is the prior probability of class y. 

• 𝑃(𝑥𝑖|𝑦) is the possibility of the feature vector 𝑥𝑖 

given class y, assessed utilizing kernel density 

estimation or supervised discretization. 

Improved k-Nearest Neighbours (IBk): 

The k-nearest Neighbours (KNN) algorithm is an easy but 

effective classification technique based on similarity. It 

categorizes data points using the majority class of their k-

nearest neighbours, making it simple and understandable. 

KNN is extremely adaptable and effective in a variety of 

applications, especially when the decision boundary 

between classes is complicated. To enhance the 

performance of the Improved k-Nearest Neighbours (IBk) 

classifier, various strategic parameter adjustments are 

made. Setting the number of neighbours ('k') to 5 strikes a 

balance between bias and variance, making the classifier 

more resistant to noise while maintaining accuracy. The 

employing of distance weighting with an inverse technique 

gives closer neighbours more impact, which enhances 

classification accuracy, particularly in areas with changing 

data density. Additionally, using cross-validation 

('crossValidate=True') during training assists in 

autonomously choosing the optimum value of 'k', 

guaranteeing that the classifier operates optimally. These 

refinements result in a more precise and dependable k-

Nearest Neighbours classifier, which makes it suitable for 

complicated and varied datasets. 

For the Improved k-Nearest Neighbours (IBk) classifier, 

the predicted class label 𝑦𝐾𝑁𝑁(𝑖) for a given instance i is 

computed by considering the class labels of its k-nearest 

neighbours, with a distance-weighted voting method. 

Given an instance 𝑥𝑖, the predicted class 𝑦𝐾𝑁𝑁(𝑖) is 

calculated as follows: 

𝑦𝐾𝑁𝑁(𝑖) = arg 𝑚𝑎𝑥𝑦 (∑ 𝑤𝑗 . ⟦(𝑦𝑗 = 𝑦)

𝑘

𝑗=1

) (6) 

where: 

• 𝑤𝑗  is the weight allocated to the j-th nearest 

neighbor, typically calculated as 𝑤𝑗 =  
1

𝑑𝑗
 with 𝑑𝑗 

being the distance from the j-th neighbor to the 

instance i.  

• ⟦(𝑦𝑗 = 𝑦) is an indicator function that is 1 if the 

class label of the j-th neighbor 𝑦𝑗 is equal to y, and 

0 otherwise. 

• k is the number of neighbors considered. 

 This section describes the procedure of using an 

extensive data set and a sophisticated classification 

algorithm to improve power system safety monitoring. 

This method tackles the shortcomings of previous 

monitoring systems by using the SPHC algorithm, which 

uses ensemble voting to incorporate numerous 
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classification models. The capability of the SPHC 

algorithm to manage real-time data, precisely classify 

safety statuses and present timely alerts greatly enhances 

power operations' dependability and stability. The 

proposed system's strong classification guarantees that it 

can handle safety problems and reduce possible risks in 

power systems. Figure 1 displays the system architecture 

of the SPHC algorithm. 

 

Figure 1: System architecture of SPHC algorithm 

4 Experimental results and 

discussions 

This section provides an in-depth evaluation of the 

experimental findings attained by comparing the SPHC 

algorithm to numerous well-known classifiers: 

RandomForest, J48, SMO (SVM), NaiveBayes, and k-

Nearest Neighbors (IBk). The experiments were 

executed in Java utilizing the Weka tool, with a software 

configuration that included Windows 11 64-bit OS, 

Apache NetBeans IDE 15, and JDK 8. The experiments' 

hardware specifications include an Intel Core i7 processor, 

16 GB of RAM, and a 512 GB SSD, which enabled 

effective data processing and model training. Each 

classifier's effectiveness was evaluated using important 

metrics such as accuracy, precision, recall, F1-score, and 

MCC. These metrics present an overall assessment of each 

classifier's ability to handle the dataset and make precise 

forecasts. 

 

4.1 Performance metrics 

To examine the efficiency of the classifiers, the following 

metrics were utilized: 

Accuracy: This metric calculates the percentage of 

accurate outcomes among all cases assessed. It is a basic 

indicator of a classifier's overall efficacy, including both 

true positives and true negatives. The equation for 

accuracy is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(7) 

  where TP stands for True Positives, TN for True 

Negatives, FP for False Positives, and FN for False 

Negatives. A higher accuracy denotes a greater overall 

accuracy of the classifier. 
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Precision: Precision measures the proportion of true 

positives among those predicted as positive. It is especially 

essential in cases where the expense of false positives is 

high. Precision is calculated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(8) 

High precision means that when the classifier forecasts a 

positive class, it is likely to be correct. 

Recall: Recall, also referred to as sensitivity or true 

positive rate, is an indicator of how many actual positives 

the classifier accurately identifies. It is critical in 

circumstances where missing a positive case is expensive. 

The recall is given by: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(9) 

High recall indicates that the classifier accurately 

recognizes the majority of the actual positive cases. 

F1-score: The F1-score strikes a balance between 

precision and recall, which is especially helpful when the 

dataset is imbalanced. It is the harmonic mean of precision 

and recall and is computed as: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(10) 

A higher F1 score denotes that the classifier executes well 

in terms of both precision and recall. 

Matthews Correlation Coefficient (MCC): MCC is a more 

thorough metric that considers all four categories (TP, TN, 

FP, and FN) and is particularly helpful when dealing with 

imbalanced datasets. It's computed utilizing the formula: 

𝑀𝐶𝐶 =  
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

                                                                            (11) 

   An MCC value near 1 implies a high positive 

correlation between the predicted and actual 

classifications. 

4.2 Experimental setup 

The classifiers were evaluated on a standard dataset with 

the Weka tool, which offers a reliable setting for executing 

and comparing machine learning techniques. The SPHC 

algorithm was tested against RandomForest, J48, SMO 

(SVM), NaiveBayes, and k-Nearest Neighbors (IBk). The 

dataset was divided into two sets: training and testing. 

Each classifier was trained on the training set and assessed 

on the testing set. The performance metrics for each 

classifier were computed and tabulated. Table 3, compares 

the efficiency of each classifier across the different 

metrics. The SPHC algorithm consistently surpassed the 

others, with the greatest values across all metrics. 

Table 3: Performance metrics comparison 

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC (%) 

RandomForest 88.8 85.4 86.2 85.8 82.3 

J48 85.3 83.2 84.1 83.6 79.6 

SMO 89.2 87.0 87.6 87.3 84.8 

NaiveBayes 81.6 80.0 80.4 80.2 75.2 

k-Nearest 

Neighbors 

86.1 84.6 85.1 84.8 81.0 

SPHC 92.4 91.3 91.8 91.5 89.7 
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Figure 2: Accuracy comparison 

Figure 2 compares the accuracy of each classifier, 

revealing that the SPHC algorithm outperforms all others 

with an accuracy of 92.4%. This higher accuracy is most 

likely owing to the SPHC algorithm's hyperparameter-

tuned ensemble methods, which enable it to better model 

the data and decrease error rates. The integration of various 

base classifiers within SPHC algorithm improves its 

capacity to capture different trends in the data, resulting in 

more precise predictions. 

 

Figure 3: Precision comparison 

 

Figure 3 depicts the precision comparison, with the SPHC 

algorithm also leading at 91.3%. The high precision 

suggests that SPHC algorithm efficiently reduces false 

positives, which makes it especially useful in situations 

where erroneous positive predictions could have serious 

effects. The SPHC algorithm's strong management of 

various attribute types and its ensemble method most 

likely assist in its high precision, guaranteeing that it 

correctly recognizes true positives while preventing 

incorrect classifications. 

 

Figure 4: Recall comparison 

Figure 4 compares the classifiers' recall rates, with the 

SPHC algorithm attaining the highest recall in this 

assessment at 91.8%. High recall indicates that SPHC 

algorithm is efficient at detecting true positives, which is 

critical in applications where missing a positive instance 

could be costly. SPHC algorithm's high recall could be 

attributed to its thorough learning strategy, which 

incorporates numerous models and improves their 

parameters to guarantee that the most positive instances 

are identified. 
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Figure 5: F1-score comparison 

The F1-score comparison in Figure 5 indicates that the 

SPHC algorithm achieves a balanced efficiency with an 

F1-score of 91.5 percent. This high F1 score shows that 

SPHC algorithm strikes a good balance between precision 

and recall, which makes it an excellent selection for 

purposes that require both metrics. SPHC algorithm's 

capability to retain high precision and recall concurrently 

demonstrates its advanced design, which efficiently 

manages various levels of data intricacy. 

 

Figure 6: MCC comparison 

Figure 6 compares the MCC values of the classifiers and 

shows that the SPHC algorithm has the highest MCC of 

89.7%. This suggests a strong correlation between 

predicted and actual classifications, even in the existence 

of class imbalances. The high MCC value demonstrates 

SPHC algorithm's efficiency in making accurate 

predictions across a broad spectrum of data situations. The 

algorithm's usage of ensemble learning is critical to 

attaining this high MCC, guaranteeing that it works well 

even when the dataset provides difficulties like imbalanced 

classes. 

The experimental findings explicitly show the SPHC 

algorithm's advantage in all performance metrics. SPHC 

algorithm regularly surpasses conventional classifiers such 

as RandomForest, J48, SMO, NaiveBayes, and k-Nearest 

Neighbors by incorporating sophisticated methods 

like ensemble learning and model improvement. The 

SPHC algorithm's capability to attain high accuracy, 

precision, recall, F1-score, and MCC demonstrates its 

resilience and dependability when dealing with 

complicated and varied datasets. These findings indicate 

that SPHC algorithm is an effective tool for classification 

tasks, providing substantial advantages over traditional 

approaches which renders it appropriate for practical uses 

where high predictive efficiency is critical. 

4.3 Discussion 

The experimental findings show that the SPHC algorithm 

surpassed conventional classifiers like RandomForest, 

J48, SMO, NaiveBayes, and k-Nearest Neighbors in 

important performance metrics like accuracy, precision, 

recall, F1-score, and MCC. Particularly, SPHC algorithm 

outperformed all other classifiers in terms of accuracy 

(92.4%), precision (91.3%), recall (91.8%), F1-score 

(91.5%), and MCC (89.7%). SPHC algorithm's 

outstanding results can be attributed to its ensemble 

learning strategy, which combines numerous 

classifications models and uses a voting method to 

improve decision-making. Furthermore, fine-tuning of 

model parameters increased the classifier's capacity to 

precisely identify intricate trends in power system security 

information, resulting in better efficiency than standalone 

classifiers such as RandomForest and SMO. However, 

while SPHC algorithm performed admirably in this 

setting, its scalability and generalizability across different 

power grid circumstances and configurations remain 

possible drawbacks. Further study is required to evaluate 

its adaptability to larger, more intricate networks and 

differing functional situations, which may have an 

influence on its efficacy in real-world applications. 

5 Conclusion  

This study tackled the vital problem of guaranteeing power 

system safety and dependability by implementing the 

SPHC algorithm, which was developed to improve real-

time monitoring and classification of power system safety 

data. The study aimed to improve the identification and 

avoidance of power system breakdowns with a more 

comprehensive and real-time assessment technique. The 

results show that the SPHC algorithm, which utilizes an 
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ensemble voting method, surpasses conventional 

approaches in correctly identifying safety statuses as 

Normal, Warning, or Critical. This innovation benefits the 

area by providing a resilient solution that improves the 

dependability and stability of power activities, lowering 

the risk of possible catastrophic breakdowns. However, the 

study recognizes the constraints of sensor data coverage 

and the requirement for additional testing in a variety of 

functional settings. Future research could fill these gaps by 

investigating more safety metrics, adapting the SPHC 

algorithm to other kinds of vital infrastructure, and 

integrating sophisticated methods of machine learning to 

improve classification accuracy. Extending the use of 

SPHC algorithm beyond power systems and combining it 

with other multidisciplinary safety monitoring systems 

could greatly expand its influence and usefulness across 

different industries. 
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