
 Informatica 38 (2014) 289–306 289

A Model-Based Framework for Building Self-Adaptive Distributed

Software

Ouanes Aissaoui1, Abdelkrim Amirat2 and Fadila Atil1
1LISCO Laboratory, Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria

E-mail: aissaoui.ouenes@gmail.com, atil_fadila@yahoo.fr
2LiM Laboratory, University of Souk-Ahras, P.O. Box 1553, 41000 Souk-Ahras, Algeria

E-mail: abdelkrim.amirat@yahoo.com

Keywords: self-adaptive system, component-based system, dynamic reconfiguration, distributed reconfiguration,

reliable reconfiguration

Received: August 16, 2013

Reconfiguration is widely used for evolving and adapting systems that cannot be shut down for update.

However, in distributed systems, supporting reconfiguration is a challenging task since a

reconfiguration consists of distributed reconfiguration actions that need to be coordinated and the

application consistency must be preserved. To address this challenge, we propose a framework based on

a reflexive three layer architecture model for the development of distributed dynamic and reliable

component-based applications. The bottom layer of this model is the application layer. It contains the

system's application-level functionality. The change management layer is the middle layer. It reacts to

changes in state reported from the application layer. The uppermost layer is the self-adaptation layer

that introduces the self-adaptation capabilities to the framework itself. It ensures the service continuity

of the change management layer and manages the adaptation of this last to the changes which it carries

out itself on the application layer. The framework is conceived especially for supporting the distributed

reconfigurations. For that, it incorporates a negotiation and coordination mechanism for managing this

type of reconfiguration. Moreover, it incorporates a separate system for ensuring the reliability of the

application. The paper introduces a prototype implementation of the proposed framework and its

empirical evaluation.

Povzetek: Članek predstavlja okolje za gradnjo samo-prilagodljivega porazdeljenega programja.

1 Introduction
Nowadays, more and more of distributed applications run

more often in fluctuating environments such as mobile

environments, clusters of machines and grids of

processors. However, they must continue to run

regardless of the conditions and provide high quality

services. A solution to this problem is to provide

mechanisms allowing the evolution or the change of an

application during its running without stopping it [1, 16].

So, we talk about the dynamic adaptation of distributed

applications which can be defined as the whole of the

changes brought to a distributed application during its

running [26].

Software reconfiguration [10] is strongly related to

the domain of runtime software evolution and adaptation.

In this domain, reconfiguration is used as a means for

evolving and adapting software systems that cannot be

shut down for update. Reconfiguration actions include

component additions and removals; setting the

parameter's value of a component; interfaces connections

and disconnections; changes of the component state

(started or stopped) and additions of new behaviours to

component.

Several conditions must be checked by an adaptation

operation where the most significant is the application

consistency which can be summarized by the following

points [19]:

 Safety: an adaptation operation badly made should

not lead the adapted application to a crash.

 Completeness: At the end of a certain time, the

adaptation must finish, and must at least introduce

the changes necessary to the old version of the

application.

 Well-timedness: it is necessary to launch the

adaptation at the right time. The programmer must

specify in advance the adaptation points.

 Possibility of rollback: even if we show the

correctness of the adaptation, certain errors can

escape from the rule. It is necessary to have some

means that allow to cancel the adaptation and to roll

back the application to its state known before the

execution of the adaptation.

Therefore, the preservation of the application

consistency is a very significant parameter to evaluate an

approach for the dynamic adaptation.

Generally, the existing self-adaptive literature and

research which has studied the dynamic adaptation of the

distributed software systems provide solutions for

adapting such systems, but the adaptation is not

distributed (e.g. [29, 30, 31, 21, 9, 34]). In particular, the

distribution of the adaptation system itself is rarely

mailto:aissaoui.ouenes@gmail.com

290 Informatica 38 (2014) 289–306 O. Aissaoui et al.

considered. Also, parallel to the need of the dynamic

adaptation of applications pose the problem of their

reliabilities, which is an important attribute of the

functioning safety [6]. In spite of the importance of the

application reliability in the adaptation of applications, it

was not taken into account in many works [31, 10, 9]

particularly those treating the distributed

reconfigurations. The works which studied this property

in the dynamic adaptation did not reach the required level

of coherence; it is only simple mechanisms generally

based on the backward recovery technique (e.g. [20, 26])

which consists to roll back the application to a previously

consistent state. Also, these mechanisms are incorporated

in the components managing the adaptation of the

application. So, the code responsible for the adaptation of

the application is weaved with that which makes it

reliable. Notice that this crosscutting of code prevents the

evolution of the two mechanisms managing the reliability

and adaptability.

After having identified this problem, we have

concentrated on the reliable adaptation of the distributed

component-based applications, which is a very topical.

Our first objective is to provide a solution for the

management of the distributed and coordinated dynamic

adaptation. The second objective is to provide a separate

solution for managing the fault tolerance of these

applications in order to ensure their reliability which

helps to lead to reliable reconfigurations, and the third

objective is to facilitate the construction of this type of

application studied by minimizing the time and the cost

of the addition of the self-adaptation capabilities to it.

To achieve the first two objectives, we propose a

reflexive three layer architecture model for the

development of distributed dynamic and reliable

applications. The bottom layer of this architecture model

is the application layer which represents the software

system. The change management layer is the middle

layer. It reacts to changes in state reported from the

application layer. The uppermost layer is the self-

adaptation layer that manages the adaptation of the

change management layer and ensures its service

continuity.

In order to minimize the time and the cost of the

addition of the self-adaptation capabilities to this type of

software studied (distributed and dynamic) we propose a

framework based on the proposed architecture model.

This framework implements the two uppermost layers of

the architecture model. As we deal in this work the

distributed applications, we propose that each site must

contain two parts; the first represents a sub-system of the

application, i.e. components implementing the

application's business logic whereas the second

represents the proposed framework that controls and

manages the adaptation of the first part. Notice that, the

management of the adaptation is distributed. This

decentralization guarantees the desired degree of fault

tolerance required in certain situations.

The remainder of the paper is organized as follows.

Section 2 presents the proposed three layer architecture

model for building the self-adaptive systems. Section 3

details the design of the proposed framework according

to the proposed architecture model. In Section 4, we give

the implementation details for a prototype of our

framework and we illustrate the validation plan. Section

5 analyses the related proposals found in the literature.

Finally, Section 6 concludes the paper.

2 Overview of the proposed

architecture model
In this work we propose firstly a three layer architecture

model that is used to guide the development of the

dynamic and reliable distributed software. Figure 1

summarizes this model.

2.1 Application layer

The bottom layer of the proposed model is the

application layer. It consists of a set of components

implementing the application's business logic. As we

deal the distributed applications these components are

distributed on several sites. We propose that each

functional component must have a component of type

«ComponentController» which controls it. This last plays

two roles: (1) if the controlled component is active, the

«ComponentController» intercepts and redirects the

incoming calls of service (to the controlled component)

to the component «ApplicationController» of the fault-

tolerant system (see section 3.2). In the contrary case

where the controlled component is in a reconfigurable

state, i.e. at the time of adaptation, its controller

intercepts and saves the incoming calls of service to it in

a queue until the end of the launched adaptation

operation.

2.2 Change management layer

The middle layer of the proposed architecture model is

the change management layer. This layer reacts to

changes in state reported from the application layer. For

that, it consists of two separate systems; the first is the

fault-tolerant system which manages the reliability of the

application and the second is the adaptation system

which reconfigures dynamically the application. We will

present these two systems in detail in the next sections.

This separation of the fault-tolerant system from the

functional code of the application and the code charged

to reconfigure it facilitates the evolution of the reliability

mechanism and thus, the development to the developers

or integrators of the application which will concentrate

on the functional code of the application rather on the

non-functional code charged to reconfigure it and make it

reliable.

A Model-Based Framework for Building… Informatica 38 (2014) 289–306 291

Figure 1: A three layer architecture model for self-adaptation.

2.3 Self-adaptation layer

The uppermost layer of the proposed architecture model

is the self-adaptation layer. This layer introduces the self-

adaptation capabilities to the framework itself. It controls

and manages the change management layer for ensuring

its service continuity and adapting its components to the

changes that they carry out on the application in order to

guarantee its correct operation and also its service

continuity because certain changes in the application can

lead to the appearance of faults in the execution of the

system that manages these changes. For example, an

operation of removal of a component in the application

leads to the appearance of errors in the change

management layer if the non-functional components

managing the removed component have not adapted to

this change.

Notice that, the proposed architecture is reflexive;

the middle layer manages the bottom layer and the

uppermost layer manages the middle layer. Also, this

decomposition in three layers imposes a clear separation

of concerns and facilitates the adaptation management as

well as the evolution of the two mechanisms of fault

tolerance and adaptation.

In order to facilitate the use of our architectural

model we propose a framework implementing the two

uppermost layers (self-adaptation and change

management layers). So, the framework contains the two

systems of adaptation and fault tolerance as well as the

manager of these first two systems and which

implements the self-adaptation layer. Therefore, an

application developed according to our architecture

model is made up of a set of functional and non

functional components distributed on several sites. At

each site we must find a sub-system (level of the

application layer) which is a set of functional

components representing the application’s business logic

plus an instance of the proposed framework, which is the

responsible for the management of the application

context (collection of data, analyses…) and the

management of its change. So, the framework represents

the hot subject of this paper. Figure 2 shows an overview

of our solution for managing the distribution of the

adaptation. For reasons of clearness, only two sites are

represented.

Figure 2: Overview of our solution for the management

of distributed reconfigurations.

This organization makes the architecture of the self-

adaptive applications developed according to our

approach decentralized what avoids the problems of the

centralized approaches [11].

In the next sections, we will present in detail the

structure and the functioning of the different components

of the two uppermost layers in the architecture model

through the proposed framework.

3 Design and functioning of the

proposed framework
This section describes in detail the various elements of

the proposed framework thus that their functioning in

order to perform the dynamic adaptation and preserve the

consistency of the application. We present these elements

according to their order of dependence.

292 Informatica 38 (2014) 289–306 O. Aissaoui et al.

3.1 Knowledge base

The knowledge base is a very important element in our

framework since it plays a very significant role to

provide reliable dynamic reconfigurations. For that, it is

used by the different elements of the framework. It

consists of three parts: (1) the description of software

architecture, (2) the description of the adaptation policy

and (3) the coherence rules. We propose the use of the

logic of predicates with the language Prolog [32] for the

description of these parts. This choice is justified by:

 Prolog is a language of knowledge representation.

 Prolog can be easily used for the description of the

software architecture. We can write an XML tag

(<tag>value</tag>) in Prolog as a fact as follows:

tag (value).

 The representation of invariants (for the verification

of the application consistency) by inference rules

eliminates the programming of verification

mechanisms of these invariants because this

verification is performed by the inference engine of

Prolog.

 The existence of Prolog interpreters developed in

several languages, which facilitates the use of the

prolog formalism.

3.1.1 Description of the software architecture

The description of the software architecture must

contain:

 The detailed description of each application

component.

 The specification of the component assembly.

3.1.1.1 Component description

component (‘id’, ‘name’).
component_state(‘comp_id’, ‘state’).

State: may be active or quiescent.
component_location(‘comp_id’, ‘ip_site’).
required_interface (‘comp_id’, ‘interface_id’).
provided_interface (‘comp_id’, ‘interface_id’).
interface (‘interface_id’, ‘name’).
include_operation (‘interface_id’,’operation _id’).
operation (‘id’, ‘name’, ‘list_param’, ’return_type’).
param (‘operation_id’, ‘name’, ‘type’, ‘value’).
component_property (‘comp_id’, ‘name’, ’value’).

3.1.1.2 Interaction between components

interaction (‘comp_id1’, ‘comp_id2’, ‘oper_id1’, ‘oper_id2’).

The interaction predicate specifies that the

component comp_id1 interacts with the component

comp_id2 where the operation oper_id1 is required

by the component comp_id1 and the operation

oper_id2 is provided by the component comp_id2.

3.1.2 Application consistency

Parallel to the need of the dynamic reconfiguration of

applications pose the problem of their reliabilities which

is an important attribute of the functioning safety [6]. In

fact, the modifications in a system can leave it in an

incoherent state and thus challenge its reliable character.

In order to guarantee the reliability of the system

following a dynamic reconfiguration, we define the

application consistency as the satisfaction of a set of

constraints. These constraints are related to the definition

of the architectural elements and their assembly and also

to the state of the components.

We have used Prolog as a constraint language. So,

we use the inference rules to express these constraints:

Example 1: Here is a rule to check if there are two

components that have the same identifier:

haveSameID (Comp_name1, Comp_name2):-
Comp_name1 != Comp_name2,
component (Comp_id1, Comp_name1),
component (Comp_id2, Comp_name2),
Comp_id1=Comp_id2.

Notice that, the constraints vary from a component

model to another and from an architectural style to

another, for example there are models which authorizes

the hierarchical structure and others not. The evaluation

of these rules is made by the Prolog inference engine.

The trigger of the evaluation of these rules is carried out

by the two sub-components «BehaviourChecking» and

«StructureChecking» of the component

«VerificationManager» of the fault tolerant system (see

section 3.2). Notice that, an operation of reconfiguration

is valid only if the reconfigured system is consistent, i.e.

if all the constraints in the knowledge base are satisfied.

3.1.3 Adaptation policy

One fundamental aspect in the software adaptation is the

definition of the adaptation policy, i.e., the set of rules

which guide the trigger of the adaptation according to the

changes of the environment of the application and its

components. These rules are in the form ECA, i.e. If

(<Event> and <Condition>) then <Action>. The event

part specifies the context change that triggers the

invocation of the rules. The condition part tests if the

context change is satisfied which causes the description

of the adaptation (action) to be carried out.

We also propose the use of the inference rules to

express the adaptation policy.

Example 2: Assume we have a software component that

manages a cache memory. For this, it owns a property

“maxCache” representing the maximum permitted

memory space to save data into memory for faster

processing. The following lines show an adaptation

policy (described in Prolog) for a possible adaptation of

this component.

rule1(Z):- free_memory(X), X> 2000,
component_ property(‘cacheHandler, ’maxCache’, Value),
Value<10, Z is "strategy1".

rule2(Z):- free_memory(X), X<1000,
 component _property (‘cacheHandler’, ’maxCache’, Value),
Value>10, Z is "strategy2".

strategy (‘strategy1’, “ [localhost] set_Value(‘cacheHandler’,
‘maxCache’, 20) ”).

A Model-Based Framework for Building… Informatica 38 (2014) 289–306 293

strategy (‘strategy2’, “ [localhost] set_Value(‘cacheHandler’, ‘maxCache’,5) ”).

Figure 3: Overview of the fault-tolerant system.

The first rule is triggered only if the memory

available exceeds 2Go and the maximum value of the

cache is less than 10MB. In this case, the rule returns the

string 'strategy1' which indicates that it is necessary to

apply the adaptation strategy number 1. This strategy

contains in its action plan a single reconfiguration action

which involves increasing the cache value to 20MB.

Note that this operation concerns only the local site

“Localhost”. The second rule is the reverse of the first. It

involves decreasing the cache value to 5MB if the

memory available is less than 1Go and the max cache

value exceed 10MB.

3.2 Fault-tolerant system

For the definition of the fault-tolerant system, we

consider a set of constraints which are: (i) modularity and

adaptability of the system, (ii) extensibility of the system,

(iii) taking into account of the distributed nature of the

application to make it reliable as we deal here the

distributed software systems.

This system ensures the application service

continuity which helps to lead to reliable

reconfigurations. We think that this system is very

important in the self-adaptive applications because an

adaptation operation cannot be executed on a component

if it is crashed or in an inconsistent state. Also, the

preservation of the application consistency is an

important condition in the adaptation of software systems

as mentioned in the introduction. We have separated this

system to the adaptation system and the application’s

business logic in order to integrate more than one fault-

tolerance technique for ensuring the application

consistency and to facilitate the evolution of this system

without influencing either the adaptation system or the

application’s business logic.

In order that this system achieves its goal, it contains

a component for the management of the service quality, a

fault detection component, a recovery component, a

component for the verification of the application

consistency, a component for the management of the

replicas of the functional components, a component for

the execution of the call of service plus a component for

the coordination of distributed checkpointing and

distributed recovery. Figure 3 shows an overview of the

fault-tolerant system.

3.2.1 Techniques used in the fault-tolerant

system

The proposed fault-tolerant system is based on the

following techniques: distributed checkpointing, active

replication, distributed backward recovery and message

store. Our objective is to use these techniques for

providing a fault-tolerant system able to tolerate many

types of the software faults.

3.2.1.1 Distributed checkpointing

A common method for ensuring the progress of a long-

running application is to checkpoint its state periodically

on stable storage [23]. The application can be rolled back

and restarted from its last checkpoint which bounds the

amount of lost work that must be recomputed [23]. As

we deal in this work the distributed applications, the

coordination for the distributed checkpointing is a very

important operation. In a coordinated checkpointing,

processes coordinate their checkpointing activity so that

a globally consistent set of checkpoints is always

294 Informatica 38 (2014) 289–306 O. Aissaoui et al.

maintained in the system. For that, we have used in our

fault-tolerant system the two-phase commit distributed

checkpointing protocol presented in [23].

The algorithm of this protocol is composed of two

phases. The next paragraph describes the mapping of this

algorithm to the fault-tolerant system of the proposed

framework.

The running of this algorithm starts if a service

request is launched by a functional component of the

application. In this case, the controller of this component

intercepts this call and delegates the execution to the sub-

component «ApplicationController» of the component

«FaultDetector» in the fault-tolerant system (see figure

3). This last asks the coordinator of distributed

checkpointing (sub-component of the component

coordinator) to launch a coordination so necessary for

saving a checkpoint. Notice that, the checkpointing is

performed periodically around an interval of time

indicated by the component «QoS-Manager». So, if the

time is passed the application controller asks the

coordinator for the checkpointing to start coordination

for checkpointing. In this case, the coordinator according

to his policy decides if the safeguard of a checkpoint

requires coordination or not. If the two components

(client and server) depend on other components installed

on other sites the coordination process starts.

In the first phase, the coordinator identifies initially

the participants (components installed on other sites and

depend on one of the two components client and server)

of this coordination operation by using the predicate

“interaction” presented above. For that, the coordinator

asks the question "? interaction (Cp, ‘C_id’, _, _)." for

the two components server and client such as ‘C_id1’

must indicate the identifier of the component concerned

of this question, i.e. the client or the server identifier.

After, the coordinator broadcasts a checkpoint request

message to all participants. Every participant, upon

receiving this message, stops its execution, flushes its

communication channels, takes a tentative checkpoint

and replies “yes” to the coordinator, and awaits the

coordinator’s decision. If a participant rejects the request

for any reasons, it replies “No”. If all participants reply

positively, the coordinator’s decision is to commit the

checkpoints. Otherwise, its decision is the cancellation of

the checkpoints. The coordinator’s final decision marks

the end of the first phase. Note that, the waiting time of

the reception of the participants’ response by the

coordinator is fixed. If the coordinator does not receive a

response of a participant for this period of waiting it

regards it as “No”.

In phase II, the coordinator sends its decision to all

participants. If its decision is “Save the checkpoints,”

every participant removes its old permanent checkpoint

and makes the tentative checkpoint permanent.

Otherwise, participants reject the tentative checkpoint

previously taken. Finally, each participant resumes its

execution. The table 1 presents an overview of this

algorithm.

Table 1: Overview of the distributed checkpointing

algorithm.

Coordinator Participants

Begin

 If (the coordination for

checkpointing is

necessary)

 Begin

 /* Begin Phase I */

 determine the participants;

 request participants to

take tentative

checkpoints;

 await all replies;

 if (all replies = “Yes”)

 decide“Save the

tentative

checkpoints”;

 else

 decide “Remove the

tentative

checkpoints”;

 /* Begin Phase II */

 send the decision to all

participants;

 end-if

End.

Begin

/* Begin Phase I */

receive the coordinator

request ;

if (accept request)

 begin
 suspend communication;

 take a tentative

checkpoint;

 reply “Yes” ;

 end-if

else reply “No” ;
await the coordinator

decision ;

 /* Begin Phase II */

if (decision = “Save the

tentative

checkpoints”)

 begin
 remove the old

permanent

checkpoint;

 make the tentative

checkpoint

permanent;

 end-if

else discard the tentative

checkpoint ;

 resume communication ;

End.

3.2.1.2 Active replication

The highly available services can be achieved by

replicating the server components and thereby

introducing redundancy [24]. If one server fails, the

service is still available since there are other servers that

are able to process the incoming requests. The active

replication also called the state machine approach is one

of the techniques allowing achieving such software-

based redundancy [24].

In the active replication technique, clients send

request to all the servers and it receives the common

response to all servers. So, all servers execute all requests

and end up in the same final state. Thus, at any given

time it is likely that there is at least one server that can

accept and process the incoming requests. In the active

replication the crash of any server is transparent to the

client [24]. We have used this technique in order to

tolerate the faults in value in the application.

In the replication technique the components

duplicated are generally those that are the more used in

the application and these components are generally

subject of the dynamic adaptation. So, preserving the

continuity of service of these components is a very

important task.

The replication has as a consequence a faster

recovery of the failed components because the replicas

are active and ready to process the incoming requests

[28]. We have implemented this technique in the

A Model-Based Framework for Building… Informatica 38 (2014) 289–306 295

component «ReplicasManager» of the fault-tolerant

system (see section 3.2.2).

When the replication technique does not guarantee

the masking of faults for the reason of the software crash

(for example a problem into a component requires the

search of a coherent state to continue processing) or for

the reason of hardware problems, the recovery will be the

best solution [28].

3.2.1.3 Backward recovery

The backward recovery consists to roll back the

application in the case of failure to a previously saved

state in order that it continues processing normally [22].

For that, a set of checkpoints must be saved each time

that it is necessary. One problem with this technique is

that the recursive execution of the backward-recovery

process on a component can lead to the domino effect,

i.e. that the component could be in its initial state losing

all the work performed before the failure [25]. Among

the techniques which avoid the domino effect is the

coordination of the checkpointing that we have integrated

in the fault-tolerant system.

One of the problems which can be posed in the

management of the adaptation of distributed systems is

the assurance of the message transmission of one process

to another. For example, if a message concerning a

request for coordination of the execution of an adaptation

operation sent by a participant to another is lost, this

leads to the cancellation of the adaptation even if the

answer of the participant at the other site is positive what

prevents the adaptation of the application to the new

situation. To overcome this problem, we have used the

message store technique described in the next section.

3.2.1.4 Message store

The message store [24] is a technique used for ensuring

the message transmission of one process to another. It is

a technique used in the mailing systems. According to

this technique, the sender does not send the message

directly to its destination. It sends it to an intermediate

node representing a message queue handler. This latter

saves the sender's message in the queue and it takes care

of sending it to its destination. The sender is relieved

from any additional concerns of message sending. If the

recipient is down at the time when the sender sends the

message, the message queue handler waits until the

server comes up. Moreover, in the case when the

message queue handler fails, the sender message remains

in the queue and it will be sent to the destination when

the message queue has recovered.

We have implemented this technique in the

adaptation system for ensuring the message transmission

between the negotiators of the adaptation strategy and the

coordinators of the reconfiguration execution which are

deployed at the different sites (see section 3.3). Also, we

have implemented this technique in the fault tolerant

system in order to ensure the transmission of messages

between all the coordinators of distributed checkpointing

and recovery at the different sites.

As the fault-tolerant system is separated from the

adaptation system and the application itself, and as the

implementation of this system is based on the component

paradigm it is easy to add other techniques or to reuse

this system or also to evolve it without touching the

application or its adaptation system.

3.2.2 Presentation of the fault-tolerant system

components

In this section, we present in detail the components of the

fault-tolerance system and their functioning.

The component «VerificationManager». This

component is responsible for the verification of the

application consistency. It performs the verification of

the conformity of the application components to their

component model and architecture style. For that, it has

two sub-components «StructureChecking» and

«BehaviourChecking»: the first allows making a

structural verification of the application whereas the

second allows the verification of the behaviour of the

application components. These two sub-components

trigger the verification of the coherence rules contained

in the knowledge base as explained in the section 3.1.

For the verification of the components behaviour we

considered only the verification of the component

properties.

The component «FTS-Coordinator». As we deal in this

work the distributed applications, the coordination for the

distributed checkpointing and for the backward recovery

in the case of faults or crashes is very important. For that,

the fault-tolerant system has a component «FTS-

Coordinator» for such coordination. In order that this

component reaches its goal, it is composed of two sub

components «CheckpointingCoordinator» and

«RecoveryCoordinator». The first allows the

coordination for the distributed checkpointing whereas

the second allows the coordination for the distributed

recovery. The sub-component

«CheckpointingCoordinator» implements the protocol of

the distributed checkpointing described previously. The

protocol of the component «RecoveryCoordinator» will

be presented in the next sections.

The component «FaultDetector». This component is

responsible for: (1) the monitoring of the application

components for detecting the faults which can appear in

the application, and more precisely, the components’

crashes and also (2) the reification of the calls of

component services (i.e. the service request). For that,

this component is composed of two types of component;

components of type «WatchDog» and only one

component of type «ApplicationController». The firsts

are charge of the monitoring of the application

components. They ping periodically the elements that

they supervise for detecting the failed ones. If a

component «WatchDog» detects that the component

which it supervises is crashed, it calls the recovery

function of the recovery manager for treating this fault.

The «ApplicationController» plays an important role

in the fault-tolerant system. At the interception of a call

296 Informatica 38 (2014) 289–306 O. Aissaoui et al.

Figure 4: An execution without breakdown of a component C1 request by a component C2.

of service of one component by the corresponding

controller, this last extracts the internal state of the two

components client and server as well as the different

parameters, and then it passes this information to the

«ApplicationController». This last, verifies if the

checkpointing is necessary by checking if the time has

passed compared to the last checkpointing such as this

operation is performed periodically around an interval of

time indicated by the component QoS-Manager. If the

time is passed, the application controller asks the

coordinator of distributed checkpointing to launch

coordination so necessary for saving a checkpoint. After,

it delegates the execution to the manager of the call of

service. This last takes care of the processing of the

service request.

The component «ServiceCallManager». It is

responsible for the management of the execution of the

requests (i.e. calls of component services) submitted by

the «ApplicationController». For the execution of these

requests there are two cases: if the component server of

the required service is duplicated the

«ServiceCallManager» passes the execution of the

request to the replica manager, which will manage the

request processing according to the active replication

technique. Otherwise, i.e. if the component server is not

duplicated the manager of the execution of the call of

service sends directly the request to this server and it

awaits the reception of the execution result around a

certain time indicated by the «QoS-Manager». If it does

not receive a response after this waiting period it detects

that the component provider of the required service is

failed. In this case, it must call the recovery function of

the recovery manager for tolerating the application to this

fault.

The figure 4 presents a sequence diagram

summarizing much more the functioning of the two

components «ApplicationController» and

«ServiceCallManager». This diagram explains the

running of an execution without failure of a service

request sent by a component C1 to a component C2.

The component «ReplicasManager». It implements the

active replication technique presented previously. This

component is responsible for the execution of the service

requests of the duplicated components. It executes the

required service according to the active replication

technique principle.

The component «RecoveryManager». This component

plays a very important role in the preservation of the

application consistency. It treats the faults detected by

the two components «FaultDetector» and

«ServiceCallManager». The backward recovery

technique is implemented in this component.

When a component «WatchDog» detects that the

component which it supervises is failed or when the

«ServiceCallManager» detects that the component

provider of the required service is failed, it calls the

recovery function of the recovery manager, which will

carry out the backward-recovery of the failed component

and also the components which depend on this last and

which exist as well at the site of the failed component, or

at the other sites. This distributed recovery is necessary

A Model-Based Framework for Building… Informatica 38 (2014) 289–306 297

because we deal in this work the distributed applications,

so, there is dependence between the distributed

components which requires a recovery of all these

components. Therefore, coordination for distributed

recovery is necessary. For that, the component «FTS-

Coordinator» has a sub-component

«RecoveryCoordinator» that performs such coordination.

This component has a specific protocol which we have

proposed.

The basic idea behind a protocol for a distributed

recovery is to ensure that all components depending on

the failed component roll back to their previous coherent

states. The set of the realized local recoveries must form

a coherent global state of the application.

The algorithm starts with an initiation of a request

for coordination to the recovery coordinator by the

recovery manager for recovering all the components

which are distributed on the other sites and which depend

on the failed component (if they exist). In this case, the

coordinator according to his policy decides if the

recovery requires coordination or not. If the failed

component depends on other components installed on

other sites, the coordinator invites the participants (which

are the recovery managers of the fault-tolerant systems of

the instances of the proposed framework and which are

installed on the other sites) to perform the rollback

towards the last saved checkpoint for the components

which depend on the failed component. If a participant

rejects the request for any reasons, it replies “No”.

Otherwise, the participant performs the recovery and it

replies “Yes”. If all the participants' reply “Yes”, the

communication stops and the coordinator announces the

success of the recovery.

If there is one or more participant replying by “No”,

the coordinator will wait a certain time, then, it will send

again a request for recovery to the participants who

replied by “No” in order that they perform another time

the recovery of the components which depend on the

failed component. The basic idea behind this waiting

before sending the recovery request again to the

components replying by “No” is that these components

can return to operate (reception of the requests) after this

waiting period because they were for example in the

process of running a reconfiguration operation or a

critical operation (e.g. an operation on the database). The

table 2 presents an overview of the proposed distributed

recovery algorithm.

Notice that only one operation of recovery

coordination can be carried out at the same time and this

is for guaranteeing the application coherence.

The component «QoS-Manager». It is a component

used for managing the service quality level in the

application. This component allows to the user to change

a set of parameter through a graphical interface in order

to increase or decrease the level of the quality of the

service in the application. These parameters are: the

waiting time of the execution result of a request by the

«ServiceCallManager», the interval of time during which

a checkpointing is performed, the interval of time during

which a component «WatchDog» ping the component

which it supervises, the interval of time during which the

component «CaptureContext» supervises the application

environment and the max number of replicas of each type

of application’s component.

Table 2: An overview of the distributed recovery

algorithm.

Recovery coordinator Participants

begin

 request participants to

perform the recovery of

the components

depending on the failed

component ;

 await all replies ;

 if (all replies = “Yes”) stop

the coordination ;

 else

 begin

 await a certain time ;

 request the participants

who replied by “No” to

perform the recovery ;

 stop the coordination ;

 end-else

End.

Begin

 if (accept request)

 begin

 perform the

components

recovery;

 reply “Yes”;

 end-if

 else

 reply “No”;

End.

3.2.3 The fault model

The use of the four techniques (active replication,

message store, distributed backward recovery and

distributed checkpointing) allowed us to propose a

powerful fault-tolerant system for the proposed

framework able to tolerate many types of failure. For the

components crash, the proposed fault-tolerant system is

able to detect them via the components «WatchDog».

Each component in the application sends periodically a

heartbeat message to its monitor «WatchDog» and this

last periodically checks the heartbeat. If the heartbeat

message from the supervised component is not received

by a specified time, the component «WatchDog»

assumes that the supervised component is hung. This

problem will be treated by the recovery manager. The

faults of type omission are treated in our approach via the

message store technique which ensures the transfer of

messages from an entity to another. The faults of type

“late timing” are detected by the component

«ServiceCallManager» such as each type of request has

an interval of result waiting indicated by the component

«QoS-Manager». If time passes and the manager of the

calls of service has not received a response, it detects that

there is a problem into the component provider of the

service. This problem will be treated by the recovery

manager as explained in the previous section. The faults

in value require for their treatment the existence of

several replicas. The active replication technique which

we have incorporated in the fault-tolerant system allows

treating this type of faults because a client request is sent

to all the servers. If a response from a server is different

to the majority of servers’ response, this server has a

fault of value. As we deal in this work the distributed

298 Informatica 38 (2014) 289–306 O. Aissaoui et al.

Figure 5: Overview of the adaptation system.

applications which are by nature complexes, the creation

of several replicas of each functional component of the

application for the treatment of the faults in value is

impossible. For that, we propose to duplicate only the

components the more used in the application and which

are generally a subject of adaptation.

3.3 Adaptation system

This section presents in detail the adaptation system and

its functioning for realizing distributed and reliable

reconfigurations.

For the definition of the adaptation system, we

consider a set of constraints which are: (i) taking into

account of the distributed nature of the software to make

it adaptable, (ii) reliability of the distributed

reconfigurations, and (iii) flexibility and adaptability of

the adaptation system.

The proposed adaptation system is designed

according to the classical autonomic control loop MAPE-

K (Monitoring, Analysis, Planning and Execution) [3],

which is the most common approach for self-adaptive

systems [5, 33].

So, in our adaptation system we have implemented

the elements of this loop as separate components. The

monitoring, analysis and adaptations are performed by

the MAPE-K control loop. A significant part of the

negotiation of adaptation strategy and coordination of

reconfiguration execution were externalized from the

control loop. Moreover, we have chosen to merge the

analysis and plan components because a significant part

of these components’ logic is externalized from the

components and stored in the knowledge base (Prolog

script). Therefore, not leaving too much of analysis and

planning to be performed within those two components.

Plus the set of components that implement the

MAPE-K loop, the adaptation system contains a

component «Negotiator» which negotiates an adaptation

strategy with its similar at the other sites, a component

«Coordinator» that coordinates the execution of

reconfiguration actions, and a component «Translator»

which executes the reconfiguration actions of the

adaptation strategy on the architectural representation of

the application. The figure 5 shows an overview of this

system.

We propose the implementation of the whole cycle

of the MAPE-K loop as a chain of responsibility pattern

[13]. We have proposed to use this pattern because the

processing is distributed on several objects (components

of the adaptation system). When a component finishes its

processing, it passes the execution to the next

component. Moreover, it is easy to vary the components

involved in the processing which makes the adaptation

system more flexible.

3.3.1 Monitoring

The «Monitor» is the first component in the chain that

comprises the control loop. It is responsible for

periodically collecting information of the managed

elements (i.e., sub-system of the application managed by

the adaptation system) and of the execution of the

application (CPU consumption, memory usage,

bandwidth, service calls per minute). To achieve this

goal, the monitor has a sub-component

«CaptureContext» that collects information about the

application execution plus a set of sub-components

«Sensor» that collect information about the set of the

application components at its site. These two sub-

components of the monitor pass the collected information

to the next object that is part of the execution chain, next

to the context manager.

The «ContextManager» is the second component in

the sequence of the responsibility chain. It interacts with

the sensors associated with the execution environment

and the application for collecting the information needed

to characterize the execution context. For that, it has two

sub-components «ContextAcquisitionManager» and

«Interpreter». The context acquisition manager gathers

the information collected by the sensors of the «Monitor»

A Model-Based Framework for Building… Informatica 38 (2014) 289–306 299

and saves them in the knowledge base. After, it delegates

the execution to the «Interpreter». This last, interprets

data provided by the «ContextAcquisitionManager» in

order to provide a significant contextual data. Notice

that, the received data are separately interpreted for each

type of measurement in order to provide a significant

contextual data. If a suitable context change is detected

the «Interpreter» notify the decision maker (see next

section) of this change as this last subscribes to events

near the context manager.

3.3.2 Analysis

The aim of the analysis phase is to see whether a

reconfiguration action is required or not. For that, the

decision maker component «DecisionMaker» is the third

component in the sequence of the responsibility chain. It

plays the role of the analysis and plan phases in the

MAPE-K control loop. This component is responsible for

taking decisions on adaptation. It provides in output an

adaptation strategy that will be executed in the execution

phase of the control loop.

3.3.2.1 Negotiation process

As we deal in this work the distributed

reconfigurations, the negotiation is a significant step in

the decision-making on adaptation. It is a cooperative

process in which a group of adaptation systems reach an

agreement on a comprehensive adaptation strategy. We

define a global strategy as a set of strategies that the

decision makers of the different adaptation systems

choose during the negotiation process. Noting that, the

negotiation must guarantee the independence in the

decision-making of each «DecisionMaker» and ensure

the global validity of a local decision.

The negotiation is started by the initiating decision

maker. This last chooses an adaptation strategy. Then, it

asks its negotiator to negotiate this chosen strategy. This

negotiator proposes simultaneously to each participant

the strategy that the initial decision maker has chosen.

The negotiator of each participant receives the strategy

and interprets its policy to reason on its applicability. It

can then accept, refuse or propose a modification of the

strategy; and then, it answers the initiating negotiator.

When this last receives all answers, it thinks on the

acceptances and/or the applicability of the modifications

asked. When all the participants accept the strategy, the

negotiation succeeds. Otherwise, it detects and solves the

conflicts and can then, in its turn, propose a modification

of the strategy. The negotiation process is stopped if one

negotiator refuses a strategy or if a stop condition is

checked. This condition is in connection to the

authorized maximum time of negotiation or with the

maximum number of negotiation cycles. If the

negotiation succeeds, the initiating negotiator returns to

the initiating decision maker the strategy resulting from

the negotiation and sends to the negotiator of each

participant the final strategy. If the strategy resulting

from the negotiation is a new strategy, i.e. not exists in

the adaptation policy, the decision maker adds it to the

knowledge base and precisely to the adaptation policy

part. This operation allows enriching the knowledge base

with new adaptation rules in order to better adapt to the

new changing situations. At the reception of this strategy,

each participant (i.e. negotiator) asks to its decision

maker to adopt the strategy resulting from the negotiation

and delegates the execution to the next object in

execution chain that is the reconfiguration execution

engine. In the opposite case (i.e. negotiation failure), the

initiating decision maker and participants are informed of

the negotiation failure. Otherwise, the adaptation is

cancelled and the loop cycle is stopped.

3.3.3 Execution

In order to increase the reliability of the reconfigurations

executed by our framework we have used the transaction

technique. This technique was originally used in the

system managing databases [14]. Their use is widespread

in all computer systems where there is a need to maintain

the consistency of the information in spite of

concurrency and the occurrence of failures. The

transactions are thus a means to make systems fault-

tolerant. A transaction consists to carry out a coherent

computing operation consisting of several actions. The

operation will be valid only if all its unit actions are

carried out correctly. So, we speak about the commit.

Otherwise, all data processed during the running of the

operation must be returned to their initial state to cancel

the transaction. So, we speak about the rollback.

We have used the transaction technique to define

transactional reconfigurations.

According to the transactions principle each

transaction is made up of a set of primitive operations.

So, in our context an adaptation operation Adop is a

transaction when its primitive operations are the

primitive reconfiguration actions Prac. For example, the

replacement operation of a component C1 by another

component C2 is made up by the following primitive

actions: stopping the component C1, creation of a new

instance of the component C2, transfer of the C1 state to

the new instance of C2 for preserving the application

consistency and finally the start of the new instance of

C2. The component replacement in our framework is

carried out similarly with the work in [35].

We define the evolution of a component-based

system by the transition system < C, Adop, → >:

 C= {C0 ,C1 ,C2,…} a set of configurations,

 Prac {Instantiation/Destruction of component,

Addition/Removing of component, modification of

the component attribute value, modification of the

life cycle of a component and adding of new

behaviours}

 Adop is a set of Prac,

 → ⊆ 𝐶 × 𝐴𝑑𝑜𝑝 × 𝐶 is the reconfiguration relation.

300 Informatica 38 (2014) 289–306 O. Aissaoui et al.

Figure 6: Abandon model of an adaptation operation.

3.3.3.1 Reconfiguration actions of the proposed

framework

In our framework the dynamic reconfigurations are based

on the following primitive actions:

 instantiation/destruction of components

 addition/removal of components

 starting/stopping of components

 setting name of components

 setting the operating parameters of components or

combinations of them.

Thus, an adaptation strategy consists of a set of

adaptation operations, where each operation is composed

of at least only one primitive reconfiguration action.

The behaviour of each application component is

generally statically encoded. However, changes in the

application context, changes in use, changes in resource

availability or the appearance of faults in the system,

may require further abilities [10]. For this, it is very

important to introduce dynamically the ability to add new

behaviours to the application's components. The AOP

(Aspect-Oriented Programming) and scripting languages

are two techniques used for this end. In the AOP and

with the runtime weaving, the binding between the logic

code and aspect is done during the execution. The

advantage of runtime weaving is that the relationship

between the functional code and the aspects can be

dynamically managed. Nevertheless, the use of the AOP

for adding new capabilities to the system has one

disadvantage is that the software system could be in an

inconsistent and/or unstable state [10].

For the scripting languages, they allow the

incremental programming, i.e. the possibility of running

and developing simultaneously the scripts [8]. With

these languages we can modify the code of a component

without stopping it. Therefore, with this technique the

addition of a new behaviour is much easier than the use

of the AOP technique, but these languages are not

powerful as the compiled ones. For that, the developer

must find a compromise between the use of scripting

languages and the AOP technique in order to improve the

performance of the application. The implementation of

the mechanism carrying out the addition of new

behaviours to the application's components is left to the

developer.

3.3.3.2 Quiescence management

Obtaining a reconfigurable state also called quiescent

state [17, 18] is a very significant step in the

reconfiguration process since it helps to ensure the

application consistency in the case of reconfiguration. A

reconfigurable state is a state from which a

reconfiguration action can be performed without

affecting the consistency of the application. For that, in

our approach a reconfiguration action is carried out on a

component if this last is in a reconfigurable state.

To search for a reconfigurable state, we have

integrated in the proposed framework Wermelinger

algorithm [18] which extend Kramer/Magee’s algorithm

proposed in [17]. Wermelinger proposes to block only

connections between the components implied in the

reconfiguration. An advantage of this algorithm is that

interruption time is minimized while only affected

connections must be blocked in contrast to whole

components.

3.3.3.3 Algorithm of the reconfiguration execution

engine

The reconfiguration execution engine is the fourth

component in the execution chain. It undertakes the

execution of the adaptation strategy proposed by the

component «DecisionMaker». Firstly it (1) launches a

search for a reconfigurable state before running the

reconfiguration actions. Then, it (2) triggers the

execution of the reconfiguration actions of the strategy.

Notice that, we simulate firstly the execution of the

reconfiguration on the architectural representation of the

application. If no fault is detected, we execute the

reconfiguration on the running application. Therefore,

the effects of reconfigurations are not directly applied on

the system which facilitates the cancellation of the

reconfiguration in the case of its execution failure. This

operation will be simply the removing of the work copy

which has been used for the simulation of the

reconfiguration. Figure 6 shows our abandon model of an

adaptation operation.

As the reconfiguration of distributed application is a

global reconfiguration process composed of distributed

local reconfiguration processes, the proposed adaptation

system incorporates a component for the coordination of

the reconfigurations execution.

A Model-Based Framework for Building… Informatica 38 (2014) 289–306 301

Following the running of each primitive

reconfiguration action on the architectural representation

the reconfiguration execution engine (3) carries out the

verification of the consistency of the application structure

and the verification of the validity of the behaviour of its

components via the component «VerificationManager»

of the fault-tolerant system. If a constraint is violated, the

adaptation operation must be stopped for preserving the

consistency of the application. In this case, the

reconfiguration execution engine removes the copy of

work used for the simulation of the reconfiguration.

Moreover, this initiating reconfiguration execution

engine notifies its coordinator of the execution failure of

the primitive reconfiguration action in question. This last,

notifies the other participants (coordinators of the

reconfigurations execution deployed at the other sites) of

this failure so that they can cancel the adaptation

operation at their level in order to preserve the global

consistency of the application.

In the opposite case, i.e. where the

«VerificationManager» does not detect any error

following the running of a primitive action of

reconfiguration, the reconfiguration execution engine

sends a message “ApplyNextAction” to the coordinator

of the execution of reconfiguration actions. This last

awaits the reception of all the participants’ responses.

Notice that, this waiting time of the participants'

responses by the coordinator of the initiating

reconfiguration execution engine is fixed. If this

coordinator does not receive a message of a participant

during this waiting period, it regards it as

“reconfiguration failure”. If one participant replies by

“reconfiguration failure” the coordinator announces the

failure of the execution of the reconfiguration.

Otherwise, it asks for the participants to perform the next

primitive reconfiguration action and the process is still

repeated. If all the adaptation operations of the strategy

are executed on the architectural representation of the

application (copy of the work) without faults, the

reconfiguration execution engine (4) runs these actions

on the running system. Also, the copy of work used for

simulating the execution of the reconfiguration is saved

as the new architectural representation of the application.

Notice that, this operation ensures the conformity of the

architectural representation of the application to its

system in running and it has many advantages. For

example, it facilitates the comprehension of the software

through its architecture, and thus its evolution because

the architectural representation always conforms to the

system. Finally, the reconfiguration execution engine (5)

unblocks the connections blocked during the phase of

searching for a reconfigurable state. The end of the

execution of this operation determines the end of the

control loop cycle. The running of the reconfiguration

execution engine is summarized by algorithm 1.

Algorithm 1

pactj is a primitive reconfiguration action

1: Begin

2: SearchForReconfigurableState();

3: For all pactj startegy do
4: RunPactOnArchRep(pactj); /* execute the primitive reconfiguration action pactj on the architectural representation via the component
5: «Translator» */

6: if not IsConsistentApplication () then

7: SendMessageToCoordinator (reconfiguration failure);
8: RemoveWorkCopy(); // Removes the working copy used for the reconfiguration simulation

9: BREAK; // to exit the loop “for”

10: end_if

11: else //case where the application is consistent

12: SendMessageToCoordinator (ApplyNextAction);

13: responsecoordinator.CoordinationDecision();

14: if response != ApplyNextAction then

15: SendMessageToCoordinator(reconfiguration failure);
16: RemoveWorkCopy(); // Removes the copy of work used for the simulation of the reconfiguration

17: BREAK; // to exit the loop “for”

18: end_if

19: end_else

20: end_for
21: if all actions pactj in strategy are executed // If the reconfiguration is succeeds
22: RunAllpactOnSystem(); // execute the primitive reconfiguration actions on the Running system
23: SaveChanges(); // Save the performed changes on the architectural description

24: end_if

25: ReactivateConnections(); // unblock the blocked connections

26: End.

302 Informatica 38 (2014) 289–306 O. Aissaoui et al.

3.4 The adaptation manager of the fault-

tolerant and adaptation systems

This manager implements the self-adaptation layer of the

proposed architecture model. It manages the two systems

of adaptation and fault-tolerance and looks after the

adaptation of these two systems to the changes that they

carry out themselves on the application components in

order to ensure the correct operation of the global

application. This manager allows (1) to replace the

negotiator of adaptation strategy or the reconfiguration

execution coordinator or also the recovery and

checkpointing coordinator of the fault-tolerant system by

other components if they crash in order to ensure a good

management of the application changes. For that, this

manager has a set of monitors of the type «WatchDog»

which monitor these components. Also, it allows (2) in

the case where an operation of removing of an

application component is carried out, to stop and remove

the two components: «Sensor» of the adaptation system

and «WatchDog» of the fault-tolerant system that

monitor this component to avoid the introduction of

errors into the running of the application. This manager

also carries out (3) the update of the two Prolog scripts

representing the adaptation policy and the coherence

rules by removing the facts representing the adaptation

strategies and the coherence rules which are in relation

with the removed components.

4 Implementation and validation

plan
In this section, we give details and technical choices

made to implement a prototype of the proposed

framework. We also present the validation plan of this

framework.

4.1 Background

For the implementation of the elements of the proposed

framework, we have used the two component models

EJB (Enterprise Java Beans) and ScriptCOM. So, the

implementation of this framework is divided into two

parts; one part implemented with EJB and the other with

ScriptCOM. EJB [4] is an industrial model; we have used

it because it is based on Java that is a powerful

programming language that meets our implementation

needs (support for AOP, support for native codes via JNI

API, Java COM Bridge, support for the remote method

invocation via RMI API, an API to access system

information like SIGAR1 and a support for multi-

threading).

ScriptCOM [8] is a component model extension of

COM (Component Object Model) [2] allowing the

dynamic adaptation of the COM components. It allows

the development of adaptable scripting components.

Notice that, with the scripting languages we have the

possibility of developing and running simultaneously the

scripts which represents the component’s implementation

1 https://support.hyperic.com/display/SIGAR/Home

[8]. In this model, the component adaptation is carried

out through three controllers which are: the interface

controller, property controller and script controller.

Moreover, as it is an extension of the COM model it

benefited from the advantages of this latter (support of

the distributed applications, independence of the

programming languages, versioning...). We have used

this model in order to facilitate the adaptation of the

proposed framework. We think that dynamic inclusion

and removal of adaptation management concerns allows

the improvement of adaptation to the evolving needs

without stopping the entire framework.

4.2 Framework implementation

We have designed a set of software components that

implement the different elements of the proposed

framework. The implementation of the components of

type «ComponentController» and the different sensors as

well the effectors (part performing the execution of the

reconfiguration and backward recovery) are realized with

EJB model. The coordination for reconfiguration

execution and backward recovery and also negotiation

parts are implemented with the two models EJB and

ScriptCOM. The rest part of the framework is developed

as a set of ScriptCOM components that we can add,

remove or update at runtime. This is just one of possible

implementations and particularly, this has been designed

to provide self-adaptable capabilities to the framework.

For the implementation of the controllers

«ComponentController» of the functional components of

the application we choose the use of the aspect oriented

programming. So, the implementation of each controller

is based on an aspect. This aspect has a generic pointcut

that intercepts all the incoming service calls to the

controlled component and treats them as explained in the

section 2.1.

For the knowledge base, i.e. the architectural

representation of the application, adaptation policy and

coherence rules description we have used the language

Prolog as explained in the section 3.1. We have used the

JPL2 library which uses the SWI-Prolog foreign interface

and the Java JNI interface providing a bidirectional

interface between Java and Prolog that can be used to

embed Prolog in Java as well as for embedding Java in

Prolog. Also, we have used another interpreter Prolog3

developed with the JavaScript language in order that it

will be used with the part of the framework developed

with ScriptCOM. The three elements of the knowledge

base are contained in separate scripts which facilitate

their modifications at runtime. We can then add, remove

or change rules or facts in the knowledge base without

stopping the framework.

Our framework is independent from particular

component models. Therefore, elements of the

application layer, i.e. components implementing the

business logic of the application can be developed using

any component models. The implementation for a

2 http://www.swi-prolog.org/packages/jpl/
3 http://ioctl.org/logic/prolog-latest

A Model-Based Framework for Building… Informatica 38 (2014) 289–306 303

specific component model is made with the least effort in

the part developed using the model EJB and without

changing the main adaptation concepts.

4.3 Validation plan

The objective of the validation in this paper is to test the

influence of the proposed framework on the application

response time and the adaptation time. These criteria are

measured with randomly generated configurations which

we have developed using the model EJB. The

components of this application execute a few arithmetic

operations and they are distributed on two sites. The

evaluation test is made by comparing two versions of the

same application; one incorporates the proposed

framework, the other one without this framework. All the

experiments were run on Intel Core 2 Duo CPU T5670

workstations with 1.0 GB DDR2 memory and Windows

XP SP3 as the operating system.

The first evaluation consists to test the influence of

the proposed framework on the application response

time. This test is made by comparing the running of a

certain number of requests on the two versions of the

application (without and with the proposed framework).

The Table 3 shows the response times before and after

the incorporation of the framework.

We have calculated the response time increase in the

version which implements the proposed framework and

we found that the overhead for functional method calls is

about 34% of the overall execution time.

Table 3: Increase rate of the response time.

Request
Numbers

Response

time

average :

without the

Framework

Response

time

average :

with the

Framework

Increase

rates of the

response time

100 16.91 ms 22.87 ms 35.21 %

200 33.39 ms 44.48 ms 33.20 %

300 50.04 ms 67.31 ms 34.51 %

500 83.38 ms 111.18 ms 33.33 %

700 115.39 ms 156.1 ms 35.25 %

900 150.16 ms 205.67 ms 36.96 %

1000 169.83 ms 222.14 ms 30.80 %

Average 34.18 %

The second evaluation consists to measure the

adaptation time, which is calculated as follows:

Tadaptation = TrspWAdap – TrspNAdap

Where: Tadaptation is the adaptation time.

TrspWAdap: is the response time with adaptation.

TrspNAdap: is the response time with the proposed

framework but without adaptation.

Table 4 shows the obtained results. The adaptation

time average is approximately 430,95ms. Certainly, this

figure is very large compared to the response time of one

request, which is approximately 0,22ms (response time

of an execution of one request with the framework).

Table 4: Adaptation time.

Request

Numbers

Response

time

average : with

the

Framework

but

without

Adaptation

Response

time

average :

with the

Framework

and with

Adaptation

Adaptation

time

500 111.18 ms 531.39 ms 420.21 ms

700 156.1 ms 592.56 ms 436.46 ms

800 179.71 ms 639.13 ms 459.42 ms

900 205.67 ms 631.78 ms 426.11 ms

1000 222.14 ms 634.68 ms 412.54 ms

Average 430.95 ms

The obtained adaptation time is great, but it is

acceptable because the adaptation is distributed (at two

sites in this test application) which requires a negotiation

of the adaptation strategy and a coordination for the

execution of the reconfiguration actions and this

influence the adaptation time. Moreover, as we have used

the component model ScriptCOM for the development of

one part of the proposed framework, this, influence the

application response time and also the adaptation time

because the implementation of the components of this

model is based on the language Jscript4, which is an

interpreted language. So, the execution will be slower

than the compiled versions. Notice that, we have used

this model in order to facilitate the adaptation of the

proposed framework.

Finally, we can say that the obtained results confirm

that our framework is very suitable for developing

distributed applications where we prefer the reliable

dynamic adaptability more than performance.

5 Related work
The problem treated in this paper accosts the domain of

research around the dynamic adaptation of the computing

systems and in particular the distributed component-

based systems.

In terms of model-based approaches Kramer and

Magee [15] have proposed layered reference architecture

for self-adaptive software. The bottom layer of this

architecture is the component control layer which

contains the system's application-level functionality. The

change management layer is the middle layer. It manages

the changes of components state or environment. For

that, it contains a set of pre-compiled plans to deal with

the different situations encountered by the system. The

uppermost layer is the goal management layer which

4 http://msdn.microsoft.com/fr-

fr/library/hbxc2t98%28vs.85%29.aspx

304 Informatica 38 (2014) 289–306 O. Aissaoui et al.

generates new plans if none of the existing plans can

address the current situation, or a new system goal is

introduced. Also, we have proposed a three layer

architecture model where the bottom layer is the

application layer similar to the component control layer

in the Kramer and Magee model's. Unlike this model, the

change management layer of our model contains two

systems managing separately the adaptation and the fault

tolerance of the application layer. Moreover, to the

difference of the uppermost layer of the Kramer and

Magee model's, the uppermost layer of our model

introduces the self-adaptation capabilities to the

framework itself. It ensures the service continuity of the

change management layer and manages the adaptation of

this layer to the changes which it carries out itself on the

application layer. Moreover, our architectural model is

reflexive. In the Kramer and Magee model’s, the

distributed reconfigurations are possible through the

decentralized architecture of the change management

layer implementation proposed by the authors. From a

reliability point of view, Kramer and Magee have

expressed that a server failure is a predicted state change

and the change management layer must include a

procedure for dealing with the change. For that, they

propose the use of the repairing strategy of the faults

described by Garlan and Schmerl in [27] as a plan

executed by the change management layer.

Several research activities [7, 9, 12] implement the

autonomic control loop to dynamically reconfigure

systems. For example, in [7] the authors use a

component-based approach for modelling a framework

that provides flexible monitoring and management tasks

and allow introducing adaptation to component-based

SOA applications. The framework implements the

different phase of the autonomic control loop. The main

purpose of the authors is to build a framework supporting

heterogeneous components implementing the MAPE-k

phases as SCA components. This framework supports the

development of distributed applications, but it doesn't

support to perform distributed reconfigurations while our

framework is conceived especially for doing such type of

reconfigurations.

A3 [10] is a framework for developing distributed

systems that need adaptive features. A3 provides robust

mechanisms of coordination that the components can use

to share their own knowledge and knowledge of the

system to which they belong. The framework itself is

self-adaptable. A3 exploits the idea of group to organize

a system in a set of independent partitions, and reduces

the communication problem. From an adaptation point of

view, A3 supports the distributed adaptations and it

allows indeed interesting adaptations. This framework

does not have any mechanism to preserve the

reconfiguration reliability. It treats only the fault of type

messages omission. Moreover, a reconfiguration action is

executed at the system directly, i.e. without reaching a

reconfigurable state before the execution of such action.

Huynh et al. [20] propose a platform supporting

distributed reconfiguration of the component-based

applications. This platform integrates a solution for the

management of system states at reconfiguration time.

The authors define different system states regarding

reconfiguration and ways that the system will act

accordingly. This platform allows to correct

reconfiguration plans if a disconnection is detected

during the reconfiguration in order to continue the

reconfiguration if possible, or recover if the

reconfiguration fails. It also allows the coordination of

the distributed reconfiguration actions. In contrast, to this

platform, our framework integrates a negotiation

mechanism which allows the negotiation of the

adaptation strategy before the coordination of its

execution that is a very important point in the distributed

reconfiguration process.

In [21], a transactional approach is proposed to

ensure reliable reconfigurations in the context of

component based systems and particularly in the Fractal

component model. To ensure atomicity of

reconfiguration transactions, operations performed in

transactions must be cancelled if a fault occurs before the

end of the reconfiguration. This operation of cancelation

of the reconfiguration operations effect is carried out by

the execution of the reverse action of each

reconfiguration operation performed because the

reconfiguration operations are carried out directly on the

system. In contrast to this approach, we have proposed to

carry out firstly the reconfiguration on the architectural

representation of the application which facilitates the

cancelation of this operation if there is a problem. From a

reliability point of view, the authors propose the use of

the integrity constraints to define the system consistency

for guaranteeing the respect of these constraints at

runtime.

6 Conclusion
In this paper, we have presented a framework for

building distributed and dynamic component-based

systems. The proposed framework is based on a reflexive

three layer architecture model which we have proposed.

The bottom layer of this model is the application layer. It

contains the system's application-level functionality. The

change management layer is the middle layer. It manages

the changes of the bottom layer. The uppermost layer is

the self-adaptation layer that introduces the self-

adaptation capabilities to the framework itself. It ensures

the service continuity of the change management layer

and manages the adaptation of this last to the changes

which it carries out itself on the application layer. The

proposed framework implements the two uppermost

layers of the proposed architecture model and it is based

on a decentralised architecture. It incorporates two

separate systems that manage the dynamic adaptation and

fault tolerance of the application components and also, an

adaptation manager implementing the self-adaptation

layer in the architecture model. The proposed framework

is designed especially to support the distributed

reconfigurations. For that, it incorporates a robust

coordination and negotiation mechanisms for managing

this type of reconfiguration. The adaptation system of

this framework is designed according to the classical

autonomic control loop MAPE-K which allows a better

A Model-Based Framework for Building… Informatica 38 (2014) 289–306 305

management of the adaptation. As the preservation of the

application consistency is an important point in the

dynamic reconfiguration, the framework incorporates a

separate fault-tolerant system implements four fault

tolerance techniques (distributed checkpointing, active

replication, message store and distributed backward

recovery) which makes it able to tolerate most of faults

type. Also, as the adaptation operations in this

framework are executed as transactions, this increases

the reliability of these operations. A prototype of this

framework has been implemented using two component

models; EJB an industrial model and ScriptCOM a

component model for developing adaptable components,

which facilitates the adaptation of the proposed

framework.

However, the evaluation of the proposed framework

has revealed that the adaptation time is long, for that we

plan to improve the adaptation system of the proposed

framework in terms of performances.

In the long term, we want to study the possibilities to

extend our solution to support dynamic adaptation of

other kinds of applications like web services.

References

[1] R. N. Taylor, N. Medvidovic and P. Oreizy (2009).

Architectural styles for runtime software adaptation.

In 3rd European Conference on Software

Architecture (ECSA), pp. 171-180.

[2] Microsoft Corp, “Component Object Model”

accessed on July 30, 2013. [Online]. Available :

http://www.microsoft.com/COM

[3] IBM. An architectural blueprint for autonomic

computing. Autonomic computing whitepaper, 4th

edition. 2006.

[4] V. Matena and M. Hapner (1999). Enterprise Java

Beans Specification v1.1- Final Release. Sun

Microsystems.

[5] B. H. Cheng et al. (2009). Software Engineering for

Self-Adaptive Systems: A Research Roadmap. In B.

H. Cheng, R. Lemos, H. Giese, P. Inverardi, and J.

Magee, editors, Software Engineering for Self-

Adaptive Systems, volume 5525 of Lecture Notes in

Computer Science, pp. 1-26. Springer.

[6] M. Léger, T. Ledoux and T. Coupaye (2010).

Reliable dynamic reconfigurations in a reflective

component model. In Proceedings of the 13th

international conference on Component-Based

Software Engineering, pp. 74-92.

[7] F. B. Cristian Ruz and B. Sauvan (2011). Flexible

adaptation loop for component-based SOA

applications. In Proceeding of the Seventh

International Conference on Autonomic and

Autonomous Systems, pp. 29–36.

[8] O. Aissaoui and F. Atil (2012). ScriptCOM an

Extension of COM for the Dynamic Adaptation. In

Proceedings of IEEE International Conference on

Information Technology and e-Services

(ICITeS’12), pp. 646-651.

[9] Y. Maurel, A. Diaconescu, and P. Lalanda (2010).

Ceylon: A service-oriented framework for building

autonomic managers. In Proceedings of the Seventh

IEEE International Conference and Workshops on

Engineering of Autonomic and Autonomous

Systems, pp. 3 –11.

[10] L. Baresi and S. Guinea (2011). A3: self-adaptation

capabilities through groups and coordination. In

Proceedings of the 4th India Software Engineering

Conference, ISEC'11, pp. 11-20.

[11] C. Tan and K. Mills (2005). Performance

characterization of decentralized algorithms for

replica selection in distributed object systems.

International Workshop on Software and

Performance, pp. 257-262.

[12] M. Zouari, M.T. Segarra, F. André (2010). A

framework for distributed management of dynamic

self-adaptation in heterogeneous environments. In

the 10th IEEE International Conference on

Computer and Information Technology, CIT 2010,

pp. 265–272.

[13] E. Gamma , R. Helm, R. Johnson and J. Vlissides

(1995). Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley

Longman Publishing Co., Inc.

[14] J. Gray and A. Reuter (1992). Transaction

Processing: Concepts and Techniques. Morgan

Kaufmann Publishers Inc., San Francisco, CA,

USA.

[15] J. Kramer and J. Magee (2007). Self-Managed

Systems: an Architectural Challenge. Future of

Software Engineering, pp. 259-268.

[16] P. Oreizy, N. Medvidovic and R. N. Taylor (2008).

Runtime software adaptation: framework,

approaches, and styles. In Companion of the 30th

international conference on Software engineering

(ICSE Companion '08). ACM, New York, NY,

USA, pp. 899-910.

[17] J. Kramer and J. Magee (1990). The evolving

philosophers problem: Dynamic change

management. IEEE Transactions on Software

Engineering, vol. 16, no. 11, pp. 1293–1306.

[18] M. Wermelinger (1997). A Hierarchic Architecture

Model for Dynamic Reconfiguration. In

Proceedings of the Second International Workshop

on Software Engineering for Parallel and

Distributed Systems, pp. 243–254.

[19] A. Ketfi, N. Belkhatir, P.Y. Cunin (2002).

Adaptation Dynamique, concepts et

experimentation. In proceedings of the 15th

International Conference on Software & Systems

Engineering and their Applications ICSSEA02,

Paris, France.

[20] Ngoc-Tho Huynh, An Phung-Khac and Maria-

Teresa Segarra (2011). Towards reliable distributed

reconfiguration. In Proceedings of the International

Workshop on Adaptive and Reflective Middleware,

ARM 2011, pp. 36–41.

[21] M. Léger, T. Ledoux, and T. Coupaye (2007).

Reliable dynamic reconfigurations in the fractal

component model. In Proceedings of the 6th

http://www.microsoft.com/COM

306 Informatica 38 (2014) 289–306 O. Aissaoui et al.

international workshop on Adaptive and reflective

middleware, ARM ’07.

[22] E. J. Chikofsky and J. H. Cross II (1990). Reverse

Engineering and Design Recovery: A Taxonomy.

IEEE Software, vol. 7, no. 1, pp. 13-17.

[23] Anh Nyguyen-Tuong, Steve Chapin, Andrew

Grimshaw, Charlie Viles (1998). Using Reflection

for Flexibility and Extensibility in a

Metacomputing Environment. University of

Virginia, Technical Report CS-98-33.

[24] J. Koistinen (1997). Dimensions for Reliability

Contracts in Distributed Object Systems. Hewlett

Packard Technical Report, HPL-97-119.

[25] M. R. Lyu (2007). Software Reliability

Engineering: A Roadmap. In Future of Software

Engineering, IEEE Computer Society, pp. 153-170.

[26] O. Aissaoui, F. Atil and A. Amirat (2013). Towards

a Generic Reconfigurable Framework for Self-

adaptation of Distributed Component-Based

Application. In the book Modeling Approaches and

Algorithms for Advanced Computer Applications,

A. Amine et Al. (Eds), series SCI (Studies in

Computational Intelligence), Vol. 488, Springer

Ed., pp. 399-408.

[27] D. Garlan and B. Schmerl (2002). Model-based

adaptation for self-healing systems. In Proceedings

of the first workshop on Self-healing systems, ACM

Press, Charleston, South Carolina, pp. 27-32.

[28] O. Aissaoui, A. Amirat, F. Atil (2012). An

Adaptable and Generic Fault-Tolerant System for

Distributed Applications. In Proceedings of the

International Conference on Advanced Computer

Science Applications and Technologies (ACSAT),

pp. 161-166.

[29] S.W. Cheng, A.C. Huang, D. Garlan, B. Schmerl

and P. Steenkiste (2004). Rainbow: Architecture-

based self-adaptation with reusable infrastructure.

IEEE Computer, vol. 37, no. 10, pp. 46–54.

[30] T. Batista, A. Joolia, and G. Coulson (2005).

Managing Dynamic Reconfiguration in

Component-Based Systems. In EWSA’05: 2nd

European Workshop on Software Architecture,

Pisa, Italy, pp. 1-17.

[31] H. Tajalli, J. Garcia, G. Edwards, and N.

Medvidovic (2010). PLASMA: a Plan-based

Layered Architecture for Software Model-driven

Adaptation. In Proceedings of the 25th IEEE/ACM

Int'l Conf. Automated Software Eng, (ASE 10),

IEEE CS Press, pp. 467-476.

[32] A. Colmerauer and P. Roussel (1992). The birth of

Prolog. In the second ACM SIGPLAN conference

on History of programming languages, pp. 37-52.

[33] Y. Brun, G.M. Serugendo, C. Gacek, H. Giese, H.

Kienle, M. Litoiu, H. Müller, M. Pezzè, M. Shaw

(2009). Engineering Self-Adaptive Systems through

Feedback Loops. Software Engineering for Self-

Adaptive Systems, Springer-Verlag, Berlin,

Heidelberg, pp. 48-70.

[34] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K.

Lund, and E. Gjorven (2006). Using architecture

models for runtime adaptability. Software IEEE vol.

23, no. 2, pp. 62-70.

[35] J. Cano Romero and M. García-Valls (2013).

Scheduling component replacement for timely

execution in dynamic systems. Software practice

and experince, doi: 10.1002/spe.2181

http://scholar.google.com/citations?view_op=view_citation&hl=en&user=iZ9-hoAAAAAJ&citation_for_view=iZ9-hoAAAAAJ:u5HHmVD_uO8C
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=iZ9-hoAAAAAJ&citation_for_view=iZ9-hoAAAAAJ:u5HHmVD_uO8C
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=iZ9-hoAAAAAJ&citation_for_view=iZ9-hoAAAAAJ:u5HHmVD_uO8C
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=iZ9-hoAAAAAJ&citation_for_view=iZ9-hoAAAAAJ:u5HHmVD_uO8C
http://link.springer.com/book/10.1007/978-3-319-00560-7
http://link.springer.com/book/10.1007/978-3-319-00560-7
http://link.springer.com/bookseries/7092
http://link.springer.com/bookseries/7092
http://www.odysci.com/author/1010113019493563/ouanes-aissaoui
http://www.odysci.com/author/1010112982905251/abdelkrim-amirat
http://www.odysci.com/author/1010113019493566/fadila-atil
http://www.odysci.com/article/1010113019493562/an-adaptable-and-generic-fault-tolerant-system-for-distributed-applications
http://www.odysci.com/article/1010113019493562/an-adaptable-and-generic-fault-tolerant-system-for-distributed-applications
http://www.odysci.com/article/1010113019493562/an-adaptable-and-generic-fault-tolerant-system-for-distributed-applications
http://www.odysci.com/venue/1010113019493487/2012-international-conference-on-advanced-computer-science-applications-and-technologies
http://www.odysci.com/venue/1010113019493487/2012-international-conference-on-advanced-computer-science-applications-and-technologies
http://www.odysci.com/serie/1010113019493485/international-conference-on-advanced-computer-science-applications-and-technologies

