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Reconfiguration is widely used for evolving and adapting systems that cannot be shut down for update. 

However, in distributed systems, supporting reconfiguration is a challenging task since a 

reconfiguration consists of distributed reconfiguration actions that need to be coordinated and the 

application consistency must be preserved. To address this challenge, we propose a framework based on 

a reflexive three layer architecture model for the development of distributed dynamic and reliable 

component-based applications. The bottom layer of this model is the application layer. It contains the 

system's application-level functionality. The change management layer is the middle layer. It reacts to 

changes in state reported from the application layer. The uppermost layer is the self-adaptation layer 

that introduces the self-adaptation capabilities to the framework itself. It ensures the service continuity 

of the change management layer and manages the adaptation of this last to the changes which it carries 

out itself on the application layer. The framework is conceived especially for supporting the distributed 

reconfigurations. For that, it incorporates a negotiation and coordination mechanism for managing this 

type of reconfiguration. Moreover, it incorporates a separate system for ensuring the reliability of the 

application. The paper introduces a prototype implementation of the proposed framework and its 

empirical evaluation. 

Povzetek: Članek predstavlja okolje za gradnjo samo-prilagodljivega porazdeljenega programja.  

1 Introduction 
Nowadays, more and more of distributed applications run 

more often in fluctuating environments such as mobile 

environments, clusters of machines and grids of 

processors. However, they must continue to run 

regardless of the conditions and provide high quality 

services. A solution to this problem is to provide 

mechanisms allowing the evolution or the change of an 

application during its running without stopping it [1, 16]. 

So, we talk about the dynamic adaptation of distributed 

applications which can be defined as the whole of the 

changes brought to a distributed application during its 

running [26]. 

Software reconfiguration [10] is strongly related to 

the domain of runtime software evolution and adaptation. 

In this domain, reconfiguration is used as a means for 

evolving and adapting software systems that cannot be 

shut down for update. Reconfiguration actions include 

component additions and removals; setting the 

parameter's value of a component; interfaces connections 

and disconnections; changes of the component state 

(started or stopped) and additions of new behaviours to 

component.  

Several conditions must be checked by an adaptation 

operation where the most significant is the application 

consistency which can be summarized by the following 

points [19]: 

 

 

 Safety: an adaptation operation badly made should 

not lead the adapted application to a crash. 

 Completeness: At the end of a certain time, the 

adaptation must finish, and must at least introduce 

the changes necessary to the old version of the 

application. 

 Well-timedness: it is necessary to launch the 

adaptation at the right time. The programmer must 

specify in advance the adaptation points. 

 Possibility of rollback: even if we show the 

correctness of the adaptation, certain errors can 

escape from the rule. It is necessary to have some 

means that allow to cancel the adaptation and to roll 

back the application to its state known before the 

execution of the adaptation. 

Therefore, the preservation of the application 

consistency is a very significant parameter to evaluate an 

approach for the dynamic adaptation. 

Generally, the existing self-adaptive literature and 

research which has studied the dynamic adaptation of the 

distributed software systems provide solutions for 

adapting such systems, but the adaptation is not 

distributed (e.g. [29, 30, 31, 21, 9, 34]). In particular, the 

distribution of the adaptation system itself is rarely 
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considered. Also, parallel to the need of the dynamic 

adaptation of applications pose the problem of their 

reliabilities, which is an important attribute of the 

functioning safety [6]. In spite of the importance of the 

application reliability in the adaptation of applications, it 

was not taken into account in many works [31, 10, 9] 

particularly those treating the distributed 

reconfigurations. The works which studied this property 

in the dynamic adaptation did not reach the required level 

of coherence; it is only simple mechanisms generally 

based on the backward recovery technique (e.g. [20, 26]) 

which consists to roll back the application to a previously 

consistent state. Also, these mechanisms are incorporated 

in the components managing the adaptation of the 

application. So, the code responsible for the adaptation of 

the application is weaved with that which makes it 

reliable. Notice that this crosscutting of code prevents the 

evolution of the two mechanisms managing the reliability 

and adaptability. 

After having identified this problem, we have 

concentrated on the reliable adaptation of the distributed 

component-based applications, which is a very topical. 

Our first objective is to provide a solution for the 

management of the distributed and coordinated dynamic 

adaptation. The second objective is to provide a separate 

solution for managing the fault tolerance of these 

applications in order to ensure their reliability which 

helps to lead to reliable reconfigurations, and the third 

objective is to facilitate the construction of this type of 

application studied by minimizing the time and the cost 

of the addition of the self-adaptation capabilities to it.  

To achieve the first two objectives, we propose a 

reflexive three layer architecture model for the 

development of distributed dynamic and reliable 

applications. The bottom layer of this architecture model 

is the application layer which represents the software 

system. The change management layer is the middle 

layer. It reacts to changes in state reported from the 

application layer. The uppermost layer is the self-

adaptation layer that manages the adaptation of the 

change management layer and ensures its service 

continuity.  

In order to minimize the time and the cost of the 

addition of the self-adaptation capabilities to this type of 

software studied (distributed and dynamic) we propose a 

framework based on the proposed architecture model. 

This framework implements the two uppermost layers of 

the architecture model. As we deal in this work the 

distributed applications, we propose that each site must 

contain two parts; the first represents a sub-system of the 

application, i.e. components implementing the 

application's business logic whereas the second 

represents the proposed framework that controls and 

manages the adaptation of the first part. Notice that, the 

management of the adaptation is distributed. This 

decentralization guarantees the desired degree of fault 

tolerance required in certain situations. 

The remainder of the paper is organized as follows. 

Section 2 presents the proposed three layer architecture 

model for building the self-adaptive systems. Section 3 

details the design of the proposed framework according 

to the proposed architecture model. In Section 4, we give 

the implementation details for a prototype of our 

framework and we illustrate the validation plan. Section 

5 analyses the related proposals found in the literature. 

Finally, Section 6 concludes the paper. 

2 Overview of the proposed 

architecture model 
In this work we propose firstly a three layer architecture 

model that is used to guide the development of the 

dynamic and reliable distributed software. Figure 1 

summarizes this model.  

2.1 Application layer 

The bottom layer of the proposed model is the 

application layer. It consists of a set of components 

implementing the application's business logic. As we 

deal the distributed applications these components are 

distributed on several sites. We propose that each 

functional component must have a component of type 

«ComponentController» which controls it. This last plays 

two roles: (1) if the controlled component is active, the 

«ComponentController» intercepts and redirects the 

incoming calls of service (to the controlled component) 

to the component «ApplicationController» of the fault-

tolerant system (see section 3.2). In the contrary case 

where the controlled component is in a reconfigurable 

state, i.e. at the time of adaptation, its controller 

intercepts and saves the incoming calls of service to it in 

a queue until the end of the launched adaptation 

operation.  

2.2 Change management layer 

The middle layer of the proposed architecture model is 

the change management layer. This layer reacts to 

changes in state reported from the application layer. For 

that, it consists of two separate systems; the first is the 

fault-tolerant system which manages the reliability of the 

application and the second is the adaptation system 

which reconfigures dynamically the application. We will 

present these two systems in detail in the next sections.  

This separation of the fault-tolerant system from the 

functional code of the application and the code charged 

to reconfigure it facilitates the evolution of the reliability 

mechanism and thus, the development to the developers 

or integrators of the application which will concentrate 

on the functional code of the application rather on the 

non-functional code charged to reconfigure it and make it 

reliable. 
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Figure 1: A three layer architecture model for self-adaptation.

2.3 Self-adaptation layer 

The uppermost layer of the proposed architecture model 

is the self-adaptation layer. This layer introduces the self-

adaptation capabilities to the framework itself. It controls 

and manages the change management layer for ensuring 

its service continuity and adapting its components to the 

changes that they carry out on the application in order to 

guarantee its correct operation and also its service 

continuity because certain changes in the application can 

lead to the appearance of faults in the execution of the 

system that manages these changes. For example, an 

operation of removal of a component in the application 

leads to the appearance of errors in the change 

management layer if the non-functional components 

managing the removed component have not adapted to 

this change.  

Notice that, the proposed architecture is reflexive; 

the middle layer manages the bottom layer and the 

uppermost layer manages the middle layer. Also, this 

decomposition in three layers imposes a clear separation 

of concerns and facilitates the adaptation management as 

well as the evolution of the two mechanisms of fault 

tolerance and adaptation. 

In order to facilitate the use of our architectural 

model we propose a framework implementing the two 

uppermost layers (self-adaptation and change 

management layers). So, the framework contains the two 

systems of adaptation and fault tolerance as well as the 

manager of these first two systems and which 

implements the self-adaptation layer. Therefore, an 

application developed according to our architecture 

model is made up of a set of functional and non 

functional components distributed on several sites. At 

each site we must find a sub-system (level of the 

application layer) which is a set of functional 

components representing the application’s business logic 

plus an instance of the proposed framework, which is the 

responsible for the management of the application 

context (collection of data, analyses…) and the 

management of its change. So, the framework represents 

the hot subject of this paper. Figure 2 shows an overview 

of our solution for managing the distribution of the 

adaptation. For reasons of clearness, only two sites are 

represented. 

 

Figure 2: Overview of our solution for the management 

of distributed reconfigurations. 

This organization makes the architecture of the self-

adaptive applications developed according to our 

approach decentralized what avoids the problems of the 

centralized approaches [11].  

In the next sections, we will present in detail the 

structure and the functioning of the different components 

of the two uppermost layers in the architecture model 

through the proposed framework. 

3 Design and functioning of the 

proposed framework 
This section describes in detail the various elements of 

the proposed framework thus that their functioning in 

order to perform the dynamic adaptation and preserve the 

consistency of the application. We present these elements 

according to their order of dependence. 
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3.1 Knowledge base 

The knowledge base is a very important element in our 

framework since it plays a very significant role to 

provide reliable dynamic reconfigurations. For that, it is 

used by the different elements of the framework. It 

consists of three parts: (1) the description of software 

architecture, (2) the description of the adaptation policy 

and (3) the coherence rules. We propose the use of the 

logic of predicates with the language Prolog [32] for the 

description of these parts. This choice is justified by: 

 Prolog is a language of knowledge representation. 

 Prolog can be easily used for the description of the 

software architecture. We can write an XML tag 

(<tag>value</tag>) in Prolog as a fact as follows: 

tag (value). 

 The representation of invariants (for the verification 

of the application consistency) by inference rules 

eliminates the programming of verification 

mechanisms of these invariants because this 

verification is performed by the inference engine of 

Prolog. 

 The existence of Prolog interpreters developed in 

several languages, which facilitates the use of the 

prolog formalism.  

3.1.1 Description of the software architecture 

The description of the software architecture must 

contain: 

 The detailed description of each application 

component. 

 The specification of the component assembly. 

3.1.1.1 Component description 

component (‘id’, ‘name’). 
component_state(‘comp_id’, ‘state’). 

State: may be active or quiescent. 
component_location(‘comp_id’, ‘ip_site’). 
required_interface (‘comp_id’, ‘interface_id’). 
provided_interface (‘comp_id’, ‘interface_id’). 
interface (‘interface_id’, ‘name’). 
include_operation (‘interface_id’,’operation _id’). 
operation (‘id’, ‘name’,  ‘list_param’, ’return_type’). 
param (‘operation_id’, ‘name’, ‘type’, ‘value’). 
component_property (‘comp_id’, ‘name’, ’value’). 

3.1.1.2 Interaction between components 

interaction (‘comp_id1’, ‘comp_id2’, ‘oper_id1’, ‘oper_id2’). 

The interaction predicate specifies that the 

component comp_id1 interacts with the component 

comp_id2 where the operation oper_id1 is required 

by the component comp_id1 and the operation 

oper_id2 is provided by the component comp_id2. 

3.1.2 Application consistency 

Parallel to the need of the dynamic reconfiguration of 

applications pose the problem of their reliabilities which 

is an important attribute of the functioning safety [6]. In 

fact, the modifications in a system can leave it in an 

incoherent state and thus challenge its reliable character. 

In order to guarantee the reliability of the system 

following a dynamic reconfiguration, we define the 

application consistency as the satisfaction of a set of 

constraints. These constraints are related to the definition 

of the architectural elements and their assembly and also 

to the state of the components.  

We have used Prolog as a constraint language. So, 

we use the inference rules to express these constraints: 

Example 1: Here is a rule to check if there are two 

components that have the same identifier: 

haveSameID (Comp_name1, Comp_name2):- 
Comp_name1 != Comp_name2, 
component (Comp_id1, Comp_name1), 
component (Comp_id2, Comp_name2), 
Comp_id1=Comp_id2. 

Notice that, the constraints vary from a component 

model to another and from an architectural style to 

another, for example there are models which authorizes 

the hierarchical structure and others not. The evaluation 

of these rules is made by the Prolog inference engine. 

The trigger of the evaluation of these rules is carried out 

by the two sub-components «BehaviourChecking» and 

«StructureChecking» of the component 

«VerificationManager» of the fault tolerant system (see 

section 3.2). Notice that, an operation of reconfiguration 

is valid only if the reconfigured system is consistent, i.e. 

if all the constraints in the knowledge base are satisfied. 

3.1.3 Adaptation policy  

One fundamental aspect in the software adaptation is the 

definition of the adaptation policy, i.e., the set of rules 

which guide the trigger of the adaptation according to the 

changes of the environment of the application and its 

components.  These rules are in the form ECA, i.e. If 

(<Event> and <Condition>) then <Action>. The event 

part specifies the context change that triggers the 

invocation of the rules. The condition part tests if the 

context change is satisfied which causes the description 

of the adaptation (action) to be carried out.  

We also propose the use of the inference rules to 

express the adaptation policy. 

Example 2: Assume we have a software component that 

manages a cache memory. For this, it owns a property 

“maxCache” representing the maximum permitted 

memory space to save data into memory for faster 

processing. The following lines show an adaptation 

policy (described in Prolog) for a possible adaptation of 

this component.  

rule1(Z):- free_memory(X),  X> 2000,   
component_ property( ‘cacheHandler, ’maxCache’, Value), 
Value<10, Z is "strategy1". 

rule2(Z):- free_memory(X),  X<1000,  
 component _property (‘cacheHandler’, ’maxCache’, Value), 
Value>10, Z is "strategy2". 

strategy (‘strategy1’, “ [localhost] set_Value(‘cacheHandler’,     
‘maxCache’, 20) ” ). 
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strategy (‘strategy2’, “ [localhost] set_Value(‘cacheHandler’, ‘maxCache’,5) ” ). 

Figure 3: Overview of the fault-tolerant system. 

The first rule is triggered only if the memory 

available exceeds 2Go and the maximum value of the 

cache is less than 10MB. In this case, the rule returns the 

string 'strategy1' which indicates that it is necessary to 

apply the adaptation strategy number 1. This strategy 

contains in its action plan a single reconfiguration action 

which involves increasing the cache value to 20MB.   

Note that this operation concerns only the local site 

“Localhost”. The second rule is the reverse of the first. It 

involves decreasing the cache value to 5MB if the 

memory available is less than 1Go and the max cache 

value exceed 10MB.  

3.2 Fault-tolerant system 

For the definition of the fault-tolerant system, we 

consider a set of constraints which are: (i) modularity and 

adaptability of the system, (ii) extensibility of the system, 

(iii) taking into account of the distributed nature of the 

application to make it reliable as we deal here the 

distributed software systems.  

This system ensures the application service 

continuity which helps to lead to reliable 

reconfigurations. We think that this system is very 

important in the self-adaptive applications because an 

adaptation operation cannot be executed on a component 

if it is crashed or in an inconsistent state.  Also, the 

preservation of the application consistency is an 

important condition in the adaptation of software systems 

as mentioned in the introduction. We have separated this 

system to the adaptation system and the application’s 

business logic in order to integrate more than one fault-

tolerance technique for ensuring the application 

consistency and to facilitate the evolution of this system 

without influencing either the adaptation system or the 

application’s business logic. 

In order that this system achieves its goal, it contains 

a component for the management of the service quality, a 

fault detection component, a recovery component, a 

component for the verification of the application 

consistency, a component for the management of the 

replicas of the functional components, a component for 

the execution of the call of service plus a component for 

the coordination of distributed checkpointing and 

distributed recovery. Figure 3 shows an overview of the 

fault-tolerant system. 

3.2.1 Techniques used in the fault-tolerant 

system 

The proposed fault-tolerant system is based on the 

following techniques: distributed checkpointing, active 

replication, distributed backward recovery and message 

store. Our objective is to use these techniques for 

providing a fault-tolerant system able to tolerate many 

types of the software faults. 

3.2.1.1 Distributed checkpointing 

A common method for ensuring the progress of a long-

running application is to checkpoint its state periodically 

on stable storage [23]. The application can be rolled back 

and restarted from its last checkpoint which bounds the 

amount of lost work that must be recomputed [23]. As 

we deal in this work the distributed applications, the 

coordination for the distributed checkpointing is a very 

important operation. In a coordinated checkpointing, 

processes coordinate their checkpointing activity so that 

a globally consistent set of checkpoints is always 
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maintained in the system. For that, we have used in our 

fault-tolerant system the two-phase commit distributed 

checkpointing protocol presented in [23]. 

The algorithm of this protocol is composed of two 

phases. The next paragraph describes the mapping of this 

algorithm to the fault-tolerant system of the proposed 

framework. 

The running of this algorithm starts if a service 

request is launched by a functional component of the 

application. In this case, the controller of this component 

intercepts this call and delegates the execution to the sub-

component «ApplicationController» of the component 

«FaultDetector» in the fault-tolerant system (see figure 

3). This last asks the coordinator of distributed 

checkpointing (sub-component of the component 

coordinator) to launch a coordination so necessary for 

saving a checkpoint. Notice that, the checkpointing is 

performed periodically around an interval of time 

indicated by the component «QoS-Manager». So, if the 

time is passed the application controller asks the 

coordinator for the checkpointing to start coordination 

for checkpointing. In this case, the coordinator according 

to his policy decides if the safeguard of a checkpoint 

requires coordination or not. If the two components 

(client and server) depend on other components installed 

on other sites the coordination process starts.  

In the first phase, the coordinator identifies initially 

the participants (components installed on other sites and 

depend on one of the two components client and server) 

of this coordination operation by using the predicate 

“interaction” presented above. For that, the coordinator 

asks the question "? interaction (Cp, ‘C_id’, _, _)."  for 

the two components server and client such as ‘C_id1’ 

must indicate the identifier of the component concerned 

of this question, i.e. the client or the server identifier. 

After, the coordinator broadcasts a checkpoint request 

message to all participants. Every participant, upon 

receiving this message, stops its execution, flushes its 

communication channels, takes a tentative checkpoint 

and replies “yes” to the coordinator, and awaits the 

coordinator’s decision. If a participant rejects the request 

for any reasons, it replies “No”. If all participants reply 

positively, the coordinator’s decision is to commit the 

checkpoints. Otherwise, its decision is the cancellation of 

the checkpoints. The coordinator’s final decision marks 

the end of the first phase. Note that, the waiting time of 

the reception of the participants’ response by the 

coordinator is fixed. If the coordinator does not receive a 

response of a participant for this period of waiting it 

regards it as “No”.  

In phase II, the coordinator sends its decision to all 

participants. If its decision is “Save the checkpoints,” 

every participant removes its old permanent checkpoint 

and makes the tentative checkpoint permanent. 

Otherwise, participants reject the tentative checkpoint 

previously taken. Finally, each participant resumes its 

execution. The table 1 presents an overview of this 

algorithm. 

 

Table 1: Overview of the distributed checkpointing 

algorithm. 

Coordinator Participants 

Begin  

    If (the coordination for 

checkpointing is 

necessary) 

   Begin  

      /* Begin Phase I  */ 

 determine the participants; 

 request participants to 

take tentative 

checkpoints; 

 await all replies; 

 if (all replies = “Yes”) 

       decide“Save the 

tentative 

checkpoints”; 

 else 

       decide “Remove the 

tentative 

checkpoints”; 

 /*  Begin Phase II  */ 

 send the decision to all 

participants; 

   end-if 

End. 

 

Begin  

/*  Begin Phase I  */ 

receive the coordinator 

request ; 

if (accept request) 

  begin 
    suspend communication; 

    take a tentative 

checkpoint; 

    reply “Yes” ; 

  end-if 
 

else  reply “No” ; 
await the coordinator 

decision ; 

 /*  Begin Phase II  */ 

if (decision = “Save the 

tentative 

checkpoints”)  

  begin 
     remove the old   

permanent 

checkpoint; 

     make the tentative 

checkpoint 

permanent; 

  end-if 

else  discard the tentative 

checkpoint ; 

 resume communication ; 

End. 

3.2.1.2 Active replication 

The highly available services can be achieved by 

replicating the server components and thereby 

introducing redundancy [24]. If one server fails, the 

service is still available since there are other servers that 

are able to process the incoming requests. The active 

replication also called the state machine approach is one 

of the techniques allowing achieving such software-

based redundancy [24]. 

In the active replication technique, clients send 

request to all the servers and it receives the common 

response to all servers. So, all servers execute all requests 

and end up in the same final state. Thus, at any given 

time it is likely that there is at least one server that can 

accept and process the incoming requests. In the active 

replication the crash of any server is transparent to the 

client [24]. We have used this technique in order to 

tolerate the faults in value in the application. 

In the replication technique the components 

duplicated are generally those that are the more used in 

the application and these components are generally 

subject of the dynamic adaptation. So, preserving the 

continuity of service of these components is a very 

important task. 

The replication has as a consequence a faster 

recovery of the failed components because the replicas 

are active and ready to process the incoming requests 

[28]. We have implemented this technique in the 
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component «ReplicasManager» of the fault-tolerant 

system (see section 3.2.2). 

When the replication technique does not guarantee 

the masking of faults for the reason of the software crash 

(for example a problem into a component requires the 

search of a coherent state to continue processing) or for 

the reason of hardware problems, the recovery will be the 

best solution [28]. 

3.2.1.3 Backward recovery 

The backward recovery consists to roll back the 

application in the case of failure to a previously saved 

state in order that it continues processing normally [22]. 

For that, a set of checkpoints must be saved each time 

that it is necessary. One problem with this technique is 

that the recursive execution of the backward-recovery 

process on a component can lead to the domino effect, 

i.e. that the component could be in its initial state losing 

all the work performed before the failure [25]. Among 

the techniques which avoid the domino effect is the 

coordination of the checkpointing that we have integrated 

in the fault-tolerant system.  

One of the problems which can be posed in the 

management of the adaptation of distributed systems is 

the assurance of the message transmission of one process 

to another. For example, if a message concerning a 

request for coordination of the execution of an adaptation 

operation sent by a participant to another is lost, this 

leads to the cancellation of the adaptation even if the 

answer of the participant at the other site is positive what 

prevents the adaptation of the application to the new 

situation. To overcome this problem, we have used the 

message store technique described in the next section. 

3.2.1.4 Message store 

The message store [24] is a technique used for ensuring 

the message transmission of one process to another. It is 

a technique used in the mailing systems. According to 

this technique, the sender does not send the message 

directly to its destination. It sends it to an intermediate 

node representing a message queue handler. This latter 

saves the sender's message in the queue and it takes care 

of sending it to its destination. The sender is relieved 

from any additional concerns of message sending. If the 

recipient is down at the time when the sender sends the 

message, the message queue handler waits until the 

server comes up. Moreover, in the case when the 

message queue handler fails, the sender message remains 

in the queue and it will be sent to the destination when 

the message queue has recovered. 

We have implemented this technique in the 

adaptation system for ensuring the message transmission 

between the negotiators of the adaptation strategy and the 

coordinators of the reconfiguration execution which are 

deployed at the different sites (see section 3.3). Also, we 

have implemented this technique in the fault tolerant 

system in order to ensure the transmission of messages 

between all the coordinators of distributed checkpointing 

and recovery at the different sites. 

As the fault-tolerant system is separated from the 

adaptation system and the application itself, and as the 

implementation of this system is based on the component 

paradigm it is easy to add other techniques or to reuse 

this system or also to evolve it without touching the 

application or its adaptation system. 

3.2.2 Presentation of the fault-tolerant system 

components 

In this section, we present in detail the components of the 

fault-tolerance system and their functioning. 

The component «VerificationManager». This 

component is responsible for the verification of the 

application consistency. It performs the verification of 

the conformity of the application components to their 

component model and architecture style. For that, it has 

two sub-components «StructureChecking» and 

«BehaviourChecking»: the first allows making a 

structural verification of the application whereas the 

second allows the verification of the behaviour of the 

application components. These two sub-components 

trigger the verification of the coherence rules contained 

in the knowledge base as explained in the section 3.1. 

For the verification of the components behaviour we 

considered only the verification of the component 

properties. 

The component «FTS-Coordinator». As we deal in this 

work the distributed applications, the coordination for the 

distributed checkpointing and for the backward recovery 

in the case of faults or crashes is very important. For that, 

the fault-tolerant system has a component «FTS-

Coordinator» for such coordination. In order that this 

component reaches its goal, it is composed of two sub 

components «CheckpointingCoordinator» and 

«RecoveryCoordinator». The first allows the 

coordination for the distributed checkpointing whereas 

the second allows the coordination for the distributed 

recovery. The sub-component 

«CheckpointingCoordinator» implements the protocol of 

the distributed checkpointing described previously. The 

protocol of the component «RecoveryCoordinator» will 

be presented in the next sections. 

The component «FaultDetector». This component is 

responsible for: (1) the monitoring of the application 

components for detecting the faults which can appear in 

the application, and more precisely, the components’ 

crashes and also (2) the reification of the calls of 

component services (i.e. the service request). For that, 

this component is composed of two types of component; 

components of type «WatchDog» and only one 

component of type «ApplicationController». The firsts 

are charge of the monitoring of the application 

components. They ping periodically the elements that 

they supervise for detecting the failed ones. If a 

component «WatchDog» detects that the component 

which it supervises is crashed, it calls the recovery 

function of the recovery manager for treating this fault.  

The «ApplicationController» plays an important role 

in the fault-tolerant system. At the interception of a call  
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Figure 4: An execution without breakdown of a component C1 request by a component C2.

of service of one component by the corresponding 

controller, this last extracts the internal state of the two 

components client and server as well as the different 

parameters, and then it passes this information to the 

«ApplicationController». This last, verifies if the 

checkpointing is necessary by checking if the time has 

passed compared to the last checkpointing such as this 

operation is performed periodically around an interval of 

time indicated by the component QoS-Manager. If the 

time is passed, the application controller asks the 

coordinator of distributed checkpointing to launch 

coordination so necessary for saving a checkpoint. After, 

it delegates the execution to the manager of the call of 

service. This last takes care of the processing of the 

service request. 

The component «ServiceCallManager». It is 

responsible for the management of the execution of the 

requests (i.e. calls of component services) submitted by 

the «ApplicationController». For the execution of these 

requests there are two cases: if the component server of 

the required service is duplicated the 

«ServiceCallManager» passes the execution of the 

request to the replica manager, which will manage the 

request processing according to the active replication 

technique. Otherwise, i.e. if the component server is not 

duplicated the manager of the execution of the call of 

service sends directly the request to this server and it 

awaits the reception of the execution result around a 

certain time indicated by the «QoS-Manager». If it does 

not receive a response after this waiting period it detects 

that the component provider of the required service is 

failed. In this case, it must call the recovery function of 

the recovery manager for tolerating the application to this 

fault.  

The figure 4 presents a sequence diagram 

summarizing much more the functioning of the two 

components «ApplicationController» and 

«ServiceCallManager». This diagram explains the 

running of an execution without failure of a service 

request sent by a component C1 to a component C2.  

 

The component «ReplicasManager». It implements the 

active replication technique presented previously. This 

component is responsible for the execution of the service 

requests of the duplicated components. It executes the 

required service according to the active replication 

technique principle. 

The component «RecoveryManager». This component 

plays a very important role in the preservation of the 

application consistency. It treats the faults detected by 

the two components «FaultDetector» and 

«ServiceCallManager». The backward recovery 

technique is implemented in this component. 

When a component «WatchDog» detects that the 

component which it supervises is failed or when the 

«ServiceCallManager» detects that the component 

provider of the required service is failed, it calls the 

recovery function of the recovery manager, which will 

carry out the backward-recovery of the failed component 

and also the components which depend on this last and 

which exist as well at the site of the failed component, or 

at the other sites. This distributed recovery is necessary 
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because we deal in this work the distributed applications, 

so, there is dependence between the distributed 

components which requires a recovery of all these 

components. Therefore, coordination for distributed 

recovery is necessary. For that, the component «FTS-

Coordinator» has a sub-component 

«RecoveryCoordinator» that performs such coordination. 

This component has a specific protocol which we have 

proposed. 

The basic idea behind a protocol for a distributed 

recovery is to ensure that all components depending on 

the failed component roll back to their previous coherent 

states. The set of the realized local recoveries must form 

a coherent global state of the application. 

The algorithm starts with an initiation of a request 

for coordination to the recovery coordinator by the 

recovery manager for recovering all the components 

which are distributed on the other sites and which depend 

on the failed component (if they exist). In this case, the 

coordinator according to his policy decides if the 

recovery requires coordination or not. If the failed 

component depends on other components installed on 

other sites, the coordinator invites the participants (which 

are the recovery managers of the fault-tolerant systems of 

the instances of the proposed framework and which are 

installed on the other sites) to perform the rollback 

towards the last saved checkpoint for the components 

which depend on the failed component. If a participant 

rejects the request for any reasons, it replies “No”. 

Otherwise, the participant performs the recovery and it 

replies “Yes”. If all the participants' reply “Yes”, the 

communication stops and the coordinator announces the 

success of the recovery. 

If there is one or more participant replying by “No”, 

the coordinator will wait a certain time, then, it will send 

again a request for recovery to the participants who 

replied by “No” in order that they perform another time 

the recovery of the components which depend on the 

failed component. The basic idea behind this waiting 

before sending the recovery request again to the 

components replying by “No” is that these components 

can return to operate (reception of the requests) after this 

waiting period because they were for example in the 

process of running a reconfiguration operation or a 

critical operation (e.g. an operation on the database). The 

table 2 presents an overview of the proposed distributed 

recovery algorithm. 

Notice that only one operation of recovery 

coordination can be carried out at the same time and this 

is for guaranteeing the application coherence. 

The component «QoS-Manager». It is a component 

used for managing the service quality level in the 

application. This component allows to the user to change 

a set of parameter through a graphical interface in order 

to increase or decrease the level of the quality of the 

service in the application. These parameters are: the 

waiting time of the execution result of a request by the 

«ServiceCallManager», the interval of time during which 

a checkpointing is performed, the interval of time during 

which a component «WatchDog» ping the component 

which it supervises, the interval of time during which the 

component «CaptureContext» supervises the application 

environment and the max number of replicas of each type 

of application’s component. 

Table 2: An overview of the distributed recovery 

algorithm. 

Recovery coordinator Participants 

begin 

  request participants to 

perform the recovery of 

the components 

depending on the failed 

component ; 

  await all replies ; 

  if (all replies = “Yes”)  stop 

the coordination ; 

  else  

    begin 

      await a certain time ; 

      request the participants 

who replied by “No” to 

perform the recovery ; 

      stop the coordination ; 

    end-else 

 

End. 

 

Begin 

  if (accept request)  

    begin 

      perform the 

components 

recovery; 

      reply “Yes”; 

    end-if 

 

  else 

      reply “No”; 

 

End. 

3.2.3 The fault model 

The use of the four techniques (active replication, 

message store, distributed backward recovery and 

distributed checkpointing) allowed us to propose a 

powerful fault-tolerant system for the proposed 

framework able to tolerate many types of failure. For the 

components crash, the proposed fault-tolerant system is 

able to detect them via the components «WatchDog». 

Each component in the application sends periodically a 

heartbeat message to its monitor «WatchDog» and this 

last periodically checks the heartbeat. If the heartbeat 

message from the supervised component is not received 

by a specified time, the component «WatchDog» 

assumes that the supervised component is hung. This 

problem will be treated by the recovery manager. The 

faults of type omission are treated in our approach via the 

message store technique which ensures the transfer of 

messages from an entity to another. The faults of type 

“late timing” are detected by the component 

«ServiceCallManager» such as each type of request has 

an interval of result waiting indicated by the component 

«QoS-Manager». If time passes and the manager of the 

calls of service has not received a response, it detects that 

there is a problem into the component provider of the 

service. This problem will be treated by the recovery 

manager as explained in the previous section. The faults 

in value require for their treatment the existence of 

several replicas. The active replication technique which 

we have incorporated in the fault-tolerant system allows 

treating this type of faults because a client request is sent 

to all the servers.  If a response from a server is different 

to the majority of servers’ response, this server has a 

fault of value. As we deal in this work the distributed  
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Figure 5: Overview of the adaptation system. 

applications which are by nature complexes, the creation 

of several replicas of each functional component of the 

application for the treatment of the faults in value is 

impossible. For that, we propose to duplicate only the 

components the more used in the application and which 

are generally a subject of adaptation. 

3.3 Adaptation system 

This section presents in detail the adaptation system and 

its functioning for realizing distributed and reliable 

reconfigurations. 

For the definition of the adaptation system, we 

consider a set of constraints which are: (i) taking into 

account of the distributed nature of the software to make 

it adaptable, (ii) reliability of the distributed 

reconfigurations, and (iii) flexibility and adaptability of 

the adaptation system. 

The proposed adaptation system is designed 

according to the classical autonomic control loop MAPE-

K (Monitoring, Analysis, Planning and Execution) [3], 

which is the most common approach for self-adaptive 

systems [5, 33]. 

So, in our adaptation system we have implemented 

the elements of this loop as separate components. The 

monitoring, analysis and adaptations are performed by 

the MAPE-K control loop. A significant part of the 

negotiation of adaptation strategy and coordination of 

reconfiguration execution were externalized from the 

control loop. Moreover, we have chosen to merge the 

analysis and plan components because a significant part 

of these components’ logic is externalized from the 

components and stored in the knowledge base (Prolog 

script). Therefore, not leaving too much of analysis and 

planning to be performed within those two components.  

Plus the set of components that implement the 

MAPE-K loop, the adaptation system contains a 

component «Negotiator» which negotiates an adaptation 

strategy with its similar at the other sites, a component 

«Coordinator» that coordinates the execution of 

reconfiguration actions, and a component «Translator» 

which executes the reconfiguration actions of the 

adaptation strategy on the architectural representation of 

the application. The figure 5 shows an overview of this 

system. 

We propose the implementation of the whole cycle 

of the MAPE-K loop as a chain of responsibility pattern 

[13]. We have proposed to use this pattern because the 

processing is distributed on several objects (components 

of the adaptation system). When a component finishes its 

processing, it passes the execution to the next 

component. Moreover, it is easy to vary the components 

involved in the processing which makes the adaptation 

system more flexible. 

3.3.1  Monitoring 

The «Monitor» is the first component in the chain that 

comprises the control loop. It is responsible for 

periodically collecting information of the managed 

elements (i.e., sub-system of the application managed by 

the adaptation system) and of the execution of the 

application (CPU consumption, memory usage, 

bandwidth, service calls per minute). To achieve this 

goal, the monitor has a sub-component 

«CaptureContext» that collects information about the 

application execution plus a set of sub-components 

«Sensor» that collect information about the set of the 

application components at its site. These two sub-

components of the monitor pass the collected information 

to the next object that is part of the execution chain, next 

to the context manager. 

The «ContextManager» is the second component in 

the sequence of the responsibility chain. It interacts with 

the sensors associated with the execution environment 

and the application for collecting the information needed 

to characterize the execution context. For that, it has two 

sub-components «ContextAcquisitionManager» and 

«Interpreter». The context acquisition manager gathers 

the information collected by the sensors of the «Monitor» 
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and saves them in the knowledge base. After, it delegates 

the execution to the «Interpreter». This last, interprets 

data provided by the «ContextAcquisitionManager» in 

order to provide a significant contextual data. Notice 

that, the received data are separately interpreted for each 

type of measurement in order to provide a significant 

contextual data. If a suitable context change is detected 

the «Interpreter» notify the decision maker (see next 

section) of this change as this last subscribes to events 

near the context manager. 

3.3.2 Analysis 

The aim of the analysis phase is to see whether a 

reconfiguration action is required or not. For that, the 

decision maker component «DecisionMaker» is the third 

component in the sequence of the responsibility chain. It 

plays the role of the analysis and plan phases in the 

MAPE-K control loop. This component is responsible for 

taking decisions on adaptation. It provides in output an 

adaptation strategy that will be executed in the execution 

phase of the control loop.  

3.3.2.1 Negotiation process 

As we deal in this work the distributed 

reconfigurations, the negotiation is a significant step in 

the decision-making on adaptation. It is a cooperative 

process in which a group of adaptation systems reach an 

agreement on a comprehensive adaptation strategy. We 

define a global strategy as a set of strategies that the 

decision makers of the different adaptation systems 

choose during the negotiation process. Noting that, the 

negotiation must guarantee the independence in the 

decision-making of each «DecisionMaker» and ensure 

the global validity of a local decision.  

The negotiation is started by the initiating decision 

maker. This last chooses an adaptation strategy. Then, it 

asks its negotiator to negotiate this chosen strategy. This 

negotiator proposes simultaneously to each participant 

the strategy that the initial decision maker has chosen. 

The negotiator of each participant receives the strategy 

and interprets its policy to reason on its applicability. It 

can then accept, refuse or propose a modification of the 

strategy; and then, it answers the initiating negotiator. 

When this last receives all answers, it thinks on the 

acceptances and/or the applicability of the modifications 

asked. When all the participants accept the strategy, the 

negotiation succeeds. Otherwise, it detects and solves the 

conflicts and can then, in its turn, propose a modification 

of the strategy. The negotiation process is stopped if one 

negotiator refuses a strategy or if a stop condition is 

checked. This condition is in connection to the 

authorized maximum time of negotiation or with the 

maximum number of negotiation cycles. If the 

negotiation succeeds, the initiating negotiator returns to 

the initiating decision maker the strategy resulting from 

the negotiation and sends to the negotiator of each 

participant the final strategy. If the strategy resulting 

from the negotiation is a new strategy, i.e. not exists in 

the adaptation policy, the decision maker adds it to the 

knowledge base and precisely to the adaptation policy 

part. This operation allows enriching the knowledge base 

with new adaptation rules in order to better adapt to the 

new changing situations. At the reception of this strategy, 

each participant (i.e. negotiator) asks to its decision 

maker to adopt the strategy resulting from the negotiation 

and delegates the execution to the next object in 

execution chain that is the reconfiguration execution 

engine. In the opposite case (i.e. negotiation failure), the 

initiating decision maker and participants are informed of 

the negotiation failure. Otherwise, the adaptation is 

cancelled and the loop cycle is stopped.  

3.3.3 Execution 

In order to increase the reliability of the reconfigurations 

executed by our framework we have used the transaction 

technique. This technique was originally used in the 

system managing databases [14]. Their use is widespread 

in all computer systems where there is a need to maintain 

the consistency of the information in spite of 

concurrency and the occurrence of failures. The 

transactions are thus a means to make systems fault-

tolerant. A transaction consists to carry out a coherent 

computing operation consisting of several actions. The 

operation will be valid only if all its unit actions are 

carried out correctly. So, we speak about the commit. 

Otherwise, all data processed during the running of the 

operation must be returned to their initial state to cancel 

the transaction. So, we speak about the rollback. 

We have used the transaction technique to define 

transactional reconfigurations.  

According to the transactions principle each 

transaction is made up of a set of primitive operations. 

So, in our context an adaptation operation Adop is a 

transaction when its primitive operations are the 

primitive reconfiguration actions Prac. For example, the 

replacement operation of a component C1 by another 

component C2 is made up by the following primitive 

actions:  stopping the component C1, creation of a new 

instance of the component C2, transfer of the C1 state to 

the new instance of C2 for preserving the application 

consistency and finally the start of the new instance of 

C2. The component replacement in our framework is 

carried out similarly with the work in [35]. 

We define the evolution of a component-based 

system by the transition system < C, Adop, → >: 

 C= {C0 ,C1 ,C2,…} a set of configurations, 

 Prac  {Instantiation/Destruction of component, 

Addition/Removing of component, modification of 

the component attribute value, modification of the 

life cycle of a component and adding of new 

behaviours} 

 Adop is a set of  Prac, 

 → ⊆ 𝐶 × 𝐴𝑑𝑜𝑝 × 𝐶  is the reconfiguration relation. 
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Figure 6: Abandon model of an adaptation operation.

3.3.3.1 Reconfiguration actions of the proposed 

framework 

In our framework the dynamic reconfigurations are based 

on the following primitive actions: 

 instantiation/destruction of components 

 addition/removal of components 

 starting/stopping of components 

 setting name of components 

 setting the operating parameters of components or 

combinations of them. 

Thus, an adaptation strategy consists of a set of 

adaptation operations, where each operation is composed 

of at least only one primitive reconfiguration action. 

The behaviour of each application component is 

generally statically encoded. However, changes in the 

application context, changes in use, changes in resource 

availability or the appearance of faults in the system, 

may require further abilities [10]. For this, it is very 

important to introduce dynamically the ability to add new 

behaviours to the application's components. The AOP 

(Aspect-Oriented Programming) and scripting languages 

are two techniques used for this end. In the AOP and 

with the runtime weaving, the binding between the logic 

code and aspect is done during the execution. The 

advantage of runtime weaving is that the relationship 

between the functional code and the aspects can be 

dynamically managed. Nevertheless, the use of the AOP 

for adding new capabilities to the system has one 

disadvantage is that the software system could be in an 

inconsistent and/or unstable state [10]. 

For the scripting languages, they allow the 

incremental programming, i.e. the possibility of running 

and developing simultaneously the scripts [8].  With 

these languages we can modify the code of a component 

without stopping it. Therefore, with this technique the 

addition of a new behaviour is much easier than the use 

of the AOP technique, but these languages are not 

powerful as the compiled ones. For that, the developer 

must find a compromise between the use of scripting 

languages and the AOP technique in order to improve the 

performance of the application. The implementation of 

the mechanism carrying out the addition of new 

behaviours to the application's components is left to the 

developer. 

3.3.3.2 Quiescence management 

Obtaining a reconfigurable state also called quiescent 

state [17, 18] is a very significant step in the 

reconfiguration process since it helps to ensure the 

application consistency in the case of reconfiguration. A 

reconfigurable state is a state from which a 

reconfiguration action can be performed without 

affecting the consistency of the application. For that, in 

our approach a reconfiguration action is carried out on a 

component if this last is in a reconfigurable state. 

To search for a reconfigurable state, we have 

integrated in the proposed framework Wermelinger 

algorithm [18] which extend Kramer/Magee’s algorithm 

proposed in [17]. Wermelinger proposes to block only 

connections between the components implied in the 

reconfiguration. An advantage of this algorithm is that 

interruption time is minimized while only affected 

connections must be blocked in contrast to whole 

components. 

3.3.3.3 Algorithm of the reconfiguration execution 

engine 

The reconfiguration execution engine is the fourth 

component in the execution chain. It undertakes the 

execution of the adaptation strategy proposed by the 

component «DecisionMaker».  Firstly it (1) launches a 

search for a reconfigurable state before running the 

reconfiguration actions. Then, it (2) triggers the 

execution of the reconfiguration actions of the strategy. 

Notice that, we simulate firstly the execution of the 

reconfiguration on the architectural representation of the 

application. If no fault is detected, we execute the 

reconfiguration on the running application. Therefore, 

the effects of reconfigurations are not directly applied on 

the system which facilitates the cancellation of the 

reconfiguration in the case of its execution failure. This 

operation will be simply the removing of the work copy 

which has been used for the simulation of the 

reconfiguration. Figure 6 shows our abandon model of an 

adaptation operation. 

As the reconfiguration of distributed application is a 

global reconfiguration process composed of distributed 

local reconfiguration processes, the proposed adaptation 

system incorporates a component for the coordination of 

the reconfigurations execution. 
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Following the running of each primitive 

reconfiguration action on the architectural representation 

the reconfiguration execution engine (3) carries out the 

verification of the consistency of the application structure 

and the verification of the validity of the behaviour of its 

components via the component «VerificationManager» 

of the fault-tolerant system. If a constraint is violated, the 

adaptation operation must be stopped for preserving the 

consistency of the application. In this case, the 

reconfiguration execution engine removes the copy of 

work used for the simulation of the reconfiguration. 

Moreover, this initiating reconfiguration execution 

engine notifies its coordinator of the execution failure of 

the primitive reconfiguration action in question. This last, 

notifies the other participants (coordinators of the 

reconfigurations execution deployed at the other sites) of 

this failure so that they can cancel the adaptation 

operation at their level in order to preserve the global 

consistency of the application. 

In the opposite case, i.e. where the 

«VerificationManager» does not detect any error 

following the running of a primitive action of 

reconfiguration, the reconfiguration execution engine 

sends a message “ApplyNextAction” to the coordinator 

of the execution of reconfiguration actions. This last 

awaits the reception of all the participants’ responses. 

Notice that, this waiting time of the participants' 

responses by the coordinator of the initiating 

reconfiguration execution engine is fixed. If this 

coordinator does not receive a message of a participant 

during this waiting period, it regards it as 

“reconfiguration failure”. If one participant replies by 

“reconfiguration failure” the coordinator announces the 

failure of the execution of the reconfiguration. 

Otherwise, it asks for the participants to perform the next 

primitive reconfiguration action and the process is still 

repeated. If all the adaptation operations of the strategy 

are executed on the architectural representation of the 

application (copy of the work) without faults, the 

reconfiguration execution engine (4) runs these actions 

on the running system. Also, the copy of work used for 

simulating the execution of the reconfiguration is saved 

as the new architectural representation of the application.  

Notice that, this operation ensures the conformity of the 

architectural representation of the application to its 

system in running and it has many advantages. For 

example, it facilitates the comprehension of the software 

through its architecture, and thus its evolution because 

the architectural representation always conforms to the 

system. Finally, the reconfiguration execution engine (5) 

unblocks the connections blocked during the phase of 

searching for a reconfigurable state. The end of the 

execution of this operation determines the end of the 

control loop cycle. The running of the reconfiguration 

execution engine is summarized by algorithm 1. 

Algorithm 1 
 

pactj  is a primitive reconfiguration action 

1:   Begin 

2:     SearchForReconfigurableState(); 

3:          For all pactj  startegy do 
4:              RunPactOnArchRep(pactj);  /* execute the primitive reconfiguration action pactj on the architectural representation via the component 
5:                «Translator» */ 

6:               if not IsConsistentApplication () then 

7:               SendMessageToCoordinator (reconfiguration failure);  
8:               RemoveWorkCopy();  //  Removes the working copy used for the reconfiguration simulation  

9:               BREAK; // to exit the loop “for” 

10: end_if  

11:  else //case where the application is consistent 

12:                 SendMessageToCoordinator (ApplyNextAction); 

13:                            responsecoordinator.CoordinationDecision(); 

14:                if response != ApplyNextAction  then 

15:                        SendMessageToCoordinator(reconfiguration failure); 
16:                                    RemoveWorkCopy(); // Removes the copy of work used for the simulation of the reconfiguration 

17:                                    BREAK; // to exit the loop “for” 

18:                            end_if 

19: end_else 

20:        end_for 
21:   if all actions pactj in strategy are executed // If the reconfiguration is succeeds 
22: RunAllpactOnSystem(); // execute the primitive reconfiguration actions on the Running  system 
23: SaveChanges(); // Save the performed changes on the architectural description 

24:   end_if 

25:   ReactivateConnections(); // unblock the blocked connections 

26: End. 
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3.4  The adaptation manager of the fault-

tolerant and adaptation systems 

This manager implements the self-adaptation layer of the 

proposed architecture model. It manages the two systems 

of adaptation and fault-tolerance and looks after the 

adaptation of these two systems to the changes that they 

carry out themselves on the application components in 

order to ensure the correct operation of the global 

application. This manager allows (1) to replace the 

negotiator of adaptation strategy or the reconfiguration 

execution coordinator or also the recovery and 

checkpointing coordinator of the fault-tolerant system by 

other components if they crash in order to ensure a good 

management of the application changes. For that, this 

manager has a set of monitors of the type «WatchDog» 

which monitor these components. Also, it allows (2) in 

the case where an operation of removing of an 

application component is carried out, to stop and remove 

the two components: «Sensor» of the adaptation system 

and «WatchDog» of the fault-tolerant system that 

monitor this component to avoid the introduction of 

errors into the running of the application. This manager 

also carries out (3) the update of the two Prolog scripts 

representing the adaptation policy and the coherence 

rules by removing the facts representing the adaptation 

strategies and the coherence rules which are in relation 

with the removed components.  

4 Implementation and validation 

plan 
In this section, we give details and technical choices 

made to implement a prototype of the proposed 

framework. We also present the validation plan of this 

framework. 

4.1 Background 

For the implementation of the elements of the proposed 

framework, we have used the two component models 

EJB (Enterprise Java Beans) and ScriptCOM. So, the 

implementation of this framework is divided into two 

parts; one part implemented with EJB and the other with 

ScriptCOM. EJB [4] is an industrial model; we have used 

it because it is based on Java that is a powerful 

programming language that meets our implementation 

needs (support for AOP, support for native codes via JNI 

API, Java COM Bridge, support for the remote method 

invocation via RMI API, an API to access system 

information like SIGAR1 and a support for multi-

threading). 

ScriptCOM [8] is a component model extension of 

COM (Component Object Model) [2] allowing the 

dynamic adaptation of the COM components. It allows 

the development of adaptable scripting components. 

Notice that, with the scripting languages we have the 

possibility of developing and running simultaneously the 

scripts which represents the component’s implementation 

                                                           
1 https://support.hyperic.com/display/SIGAR/Home 

[8]. In this model, the component adaptation is carried 

out through three controllers which are: the interface 

controller, property controller and script controller. 

Moreover, as it is an extension of the COM model it 

benefited from the advantages of this latter (support of 

the distributed applications, independence of the 

programming languages, versioning...). We have used 

this model in order to facilitate the adaptation of the 

proposed framework. We think that dynamic inclusion 

and removal of adaptation management concerns allows 

the improvement of adaptation to the evolving needs 

without stopping the entire framework. 

4.2 Framework implementation 

We have designed a set of software components that 

implement the different elements of the proposed 

framework. The implementation of the components of 

type «ComponentController» and the different sensors as 

well the effectors (part performing the execution of the 

reconfiguration and backward recovery) are realized with 

EJB model. The coordination for reconfiguration 

execution and backward recovery and also negotiation 

parts are implemented with the two models EJB and 

ScriptCOM. The rest part of the framework is developed 

as a set of ScriptCOM components that we can add, 

remove or update at runtime. This is just one of possible 

implementations and particularly, this has been designed 

to provide self-adaptable capabilities to the framework. 

For the implementation of the controllers 

«ComponentController» of the functional components of 

the application we choose the use of the aspect oriented 

programming. So, the implementation of each controller 

is based on an aspect. This aspect has a generic pointcut 

that intercepts all the incoming service calls to the 

controlled component and treats them as explained in the 

section 2.1.  

For the knowledge base, i.e. the architectural 

representation of the application, adaptation policy and 

coherence rules description we have used the language 

Prolog as explained in the section 3.1. We have used the 

JPL2 library which uses the SWI-Prolog foreign interface 

and the Java JNI interface providing a bidirectional 

interface between Java and Prolog that can be used to 

embed Prolog in Java as well as for embedding Java in 

Prolog. Also, we have used another interpreter Prolog3 

developed with the JavaScript language in order that it 

will be used with the part of the framework developed 

with ScriptCOM. The three elements of the knowledge 

base are contained in separate scripts which facilitate 

their modifications at runtime. We can then add, remove 

or change rules or facts in the knowledge base without 

stopping the framework.  

Our framework is independent from particular 

component models. Therefore, elements of the 

application layer, i.e. components implementing the 

business logic of the application can be developed using 

any component models. The implementation for a 

                                                           
2 http://www.swi-prolog.org/packages/jpl/ 
3 http://ioctl.org/logic/prolog-latest 
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specific component model is made with the least effort in 

the part developed using the model EJB and without 

changing the main adaptation concepts. 

4.3 Validation plan 

The objective of the validation in this paper is to test the 

influence of the proposed framework on the application 

response time and the adaptation time. These criteria are 

measured with randomly generated configurations which 

we have developed using the model EJB. The 

components of this application execute a few arithmetic 

operations and they are distributed on two sites. The 

evaluation test is made by comparing two versions of the 

same application; one incorporates the proposed 

framework, the other one without this framework. All the 

experiments were run on Intel Core 2 Duo CPU T5670 

workstations with 1.0 GB DDR2 memory and Windows 

XP SP3 as the operating system. 

The first evaluation consists to test the influence of 

the proposed framework on the application response 

time. This test is made by comparing the running of a 

certain number of requests on the two versions of the 

application (without and with the proposed framework). 

The Table 3 shows the response times before and after 

the incorporation of the framework.  

We have calculated the response time increase in the 

version which implements the proposed framework and 

we found that the overhead for functional method calls is 

about 34% of the overall execution time. 

Table 3: Increase rate of the response time. 

Request 
Numbers 

Response 

time 

average : 

without the 

Framework 

Response 

time 

average : 

with the 

Framework 

Increase 

rates of the 

response time 

100 16.91 ms 22.87 ms 35.21 % 

200 33.39 ms 44.48 ms 33.20 % 

300 50.04 ms 67.31 ms 34.51 % 

500 83.38 ms 111.18 ms 33.33 % 

700 115.39 ms 156.1 ms 35.25 % 

900 150.16 ms 205.67 ms 36.96 % 

1000 169.83 ms 222.14 ms 30.80 % 

Average 34.18 % 

The second evaluation consists to measure the 

adaptation time, which is calculated as follows: 

Tadaptation = TrspWAdap – TrspNAdap 

 

Where: Tadaptation is the adaptation time. 

TrspWAdap: is the response time with adaptation. 

TrspNAdap: is the response time with the proposed 

framework but without adaptation. 

Table 4 shows the obtained results. The adaptation 

time average is approximately 430,95ms. Certainly, this 

figure is very large compared to the response time of one 

request, which is approximately 0,22ms (response time 

of an execution of one request with the framework). 

Table 4: Adaptation time. 

Request 

Numbers 

Response 

time 

average : with 

the 

Framework 

but 

without 

Adaptation 

Response 

time 

average : 

with the 

Framework  

and with 

Adaptation 

Adaptation 

time 

500 111.18 ms 531.39 ms 420.21 ms 

700 156.1 ms 592.56 ms 436.46 ms 

800 179.71 ms 639.13 ms 459.42 ms 

900 205.67 ms 631.78 ms 426.11 ms 

1000 222.14 ms 634.68 ms 412.54 ms 

Average 430.95 ms 

The obtained adaptation time is great, but it is 

acceptable because the adaptation is distributed (at two 

sites in this test application) which requires a negotiation 

of the adaptation strategy and a coordination for the 

execution of the reconfiguration actions and this 

influence the adaptation time. Moreover, as we have used 

the component model ScriptCOM for the development of 

one part of the proposed framework, this, influence the 

application response time and also the adaptation time 

because the implementation of the components of this 

model is based on the language Jscript4, which is an 

interpreted language. So, the execution will be slower 

than the compiled versions. Notice that, we have used 

this model in order to facilitate the adaptation of the 

proposed framework. 

Finally, we can say that the obtained results confirm 

that our framework is very suitable for developing 

distributed applications where we prefer the reliable 

dynamic adaptability more than performance. 

5 Related work 
The problem treated in this paper accosts the domain of 

research around the dynamic adaptation of the computing 

systems and in particular the distributed component-

based systems. 

In terms of model-based approaches Kramer and 

Magee [15] have proposed layered reference architecture 

for self-adaptive software. The bottom layer of this 

architecture is the component control layer which 

contains the system's application-level functionality. The 

change management layer is the middle layer. It manages 

the changes of components state or environment. For 

that, it contains a set of pre-compiled plans to deal with 

the different situations encountered by the system. The 

uppermost layer is the goal management layer which 

                                                           
4 http://msdn.microsoft.com/fr-

fr/library/hbxc2t98%28vs.85%29.aspx 
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generates new plans if none of the existing plans can 

address the current situation, or a new system goal is 

introduced. Also, we have proposed a three layer 

architecture model where the bottom layer is the 

application layer similar to the component control layer 

in the Kramer and Magee model's. Unlike this model, the 

change management layer of our model contains two 

systems managing separately the adaptation and the fault 

tolerance of the application layer. Moreover, to the 

difference of the uppermost layer of the Kramer and 

Magee model's, the uppermost layer of our model 

introduces the self-adaptation capabilities to the 

framework itself. It ensures the service continuity of the 

change management layer and manages the adaptation of 

this layer to the changes which it carries out itself on the 

application layer. Moreover, our architectural model is 

reflexive. In the Kramer and Magee model’s, the 

distributed reconfigurations are possible through the 

decentralized architecture of the change management 

layer implementation proposed by the authors. From a 

reliability point of view, Kramer and Magee have 

expressed that a server failure is a predicted state change 

and the change management layer must include a 

procedure for dealing with the change. For that, they 

propose the use of the repairing strategy of the faults 

described by Garlan and Schmerl in [27] as a plan 

executed by the change management layer. 

Several research activities [7, 9, 12] implement the 

autonomic control loop to dynamically reconfigure 

systems. For example, in [7] the authors use a 

component-based approach for modelling a framework 

that provides flexible monitoring and management tasks 

and allow introducing adaptation to component-based 

SOA applications. The framework implements the 

different phase of the autonomic control loop. The main 

purpose of the authors is to build a framework supporting 

heterogeneous components implementing the MAPE-k 

phases as SCA components. This framework supports the 

development of distributed applications, but it doesn't 

support to perform distributed reconfigurations while our 

framework is conceived especially for doing such type of 

reconfigurations. 

A3 [10] is a framework for developing distributed 

systems that need adaptive features. A3 provides robust 

mechanisms of coordination that the components can use 

to share their own knowledge and knowledge of the 

system to which they belong. The framework itself is 

self-adaptable. A3 exploits the idea of group to organize 

a system in a set of independent partitions, and reduces 

the communication problem. From an adaptation point of 

view, A3 supports the distributed adaptations and it 

allows indeed interesting adaptations. This framework 

does not have any mechanism to preserve the 

reconfiguration reliability. It treats only the fault of type 

messages omission. Moreover, a reconfiguration action is 

executed at the system directly, i.e. without reaching a 

reconfigurable state before the execution of such action. 

Huynh et al. [20] propose a platform supporting 

distributed reconfiguration of the component-based 

applications. This platform integrates a solution for the 

management of system states at reconfiguration time. 

The authors define different system states regarding 

reconfiguration and ways that the system will act 

accordingly. This platform allows to correct 

reconfiguration plans if a disconnection is detected 

during the reconfiguration in order to continue the 

reconfiguration if possible, or recover if the 

reconfiguration fails. It also allows the coordination of 

the distributed reconfiguration actions. In contrast, to this 

platform, our framework integrates a negotiation 

mechanism which allows the negotiation of the 

adaptation strategy before the coordination of its 

execution that is a very important point in the distributed 

reconfiguration process. 

In [21], a transactional approach is proposed to 

ensure reliable reconfigurations in the context of 

component based systems and particularly in the Fractal 

component model. To ensure atomicity of 

reconfiguration transactions, operations performed in 

transactions must be cancelled if a fault occurs before the 

end of the reconfiguration. This operation of cancelation 

of the reconfiguration operations effect is carried out by 

the execution of the reverse action of each 

reconfiguration operation performed because the 

reconfiguration operations are carried out directly on the 

system. In contrast to this approach, we have proposed to 

carry out firstly the reconfiguration on the architectural 

representation of the application which facilitates the 

cancelation of this operation if there is a problem. From a 

reliability point of view, the authors propose the use of 

the integrity constraints to define the system consistency 

for guaranteeing the respect of these constraints at 

runtime. 

6 Conclusion 
In this paper, we have presented a framework for 

building distributed and dynamic component-based 

systems. The proposed framework is based on a reflexive 

three layer architecture model which we have proposed. 

The bottom layer of this model is the application layer. It 

contains the system's application-level functionality. The 

change management layer is the middle layer. It manages 

the changes of the bottom layer. The uppermost layer is 

the self-adaptation layer that introduces the self-

adaptation capabilities to the framework itself. It ensures 

the service continuity of the change management layer 

and manages the adaptation of this last to the changes 

which it carries out itself on the application layer. The 

proposed framework implements the two uppermost 

layers of the proposed architecture model and it is based 

on a decentralised architecture. It incorporates two 

separate systems that manage the dynamic adaptation and 

fault tolerance of the application components and also, an 

adaptation manager implementing the self-adaptation 

layer in the architecture model. The proposed framework 

is designed especially to support the distributed 

reconfigurations. For that, it incorporates a robust 

coordination and negotiation mechanisms for managing 

this type of reconfiguration. The adaptation system of 

this framework is designed according to the classical 

autonomic control loop MAPE-K which allows a better 
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management of the adaptation. As the preservation of the 

application consistency is an important point in the 

dynamic reconfiguration, the framework incorporates a 

separate fault-tolerant system implements four fault 

tolerance techniques (distributed checkpointing, active 

replication, message store and distributed backward 

recovery) which makes it able to tolerate most of faults 

type. Also, as the adaptation operations in this 

framework are executed as transactions, this increases 

the reliability of these operations.  A prototype of this 

framework has been implemented using two component 

models; EJB an industrial model and ScriptCOM a 

component model for developing adaptable components, 

which facilitates the adaptation of the proposed 

framework.  

However, the evaluation of the proposed framework 

has revealed that the adaptation time is long, for that we 

plan to improve the adaptation system of the proposed 

framework in terms of performances. 

In the long term, we want to study the possibilities to 

extend our solution to support dynamic adaptation of 

other kinds of applications like web services. 
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