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Shop floor scheduling is a key optimization problem in contemporary manufacturing, seeking to 

enhance production tasks and resources while increasing productivity and lowering costs. This paper 

solves the shop floor scheduling problem using an extensive mathematical model and an enhanced 

simulated annealing (SA) algorithm. The mathematical model captures intricate aspects such as 

machine allocation, job sequencing, batch transportation, and assembly procedures. To effectively 

solve the issue, the enhanced SA algorithm employs significant enhancement tactics like knowledge-

driven initialization, a problem-specific neighborhood structure, and a restart mechanism to improve 

solution quality. The methodology is validated using an extensive experimental setup that investigates 

different situations with varying machine counts and job intricacies. Key findings show a 25% average 

decrease in makespan, a 20% rise in scheduling effectiveness, and a 15% reduction in computation 

time, demonstrating the algorithm's efficiency. These results highlight the theoretical and practical 

importance of this method in tackling real-world shop floor scheduling issues. 

Povzetek: Predstavljen je izboljšan algoritem simuliranega ohlajanja za načrtovanje proizvodnje z 

upoštevanjem serijskega transporta. Zmanjša trajanje izdelave in poveča učinkovitost. 

 

1 Introduction 
In recent years, mixed-model assembly job shop 

scheduling problems (MAJSP) have garnered significant 

attention from both academia and industry due to their 

wide applications in manufacturing systems [1]. The 

MAJSP aims to optimize the scheduling of various product 

models in a job shop environment, where each model 

requires a specific set of operations on different machines 

[2]. Efficient scheduling of MAJSP is crucial for 

enhancing productivity, reducing lead times, and meeting 

customer demands in today’s highly competitive market 

[3]. 

One critical aspect of MAJSP that has been overlooked in 

the literature is the consideration of batch transportation 

[4]. In real-world manufacturing systems, jobs are often 

transported in batches between machines to reduce 

material handling costs and improve efficiency [5]. 

Neglecting the impact of batch transportation can lead to 

suboptimal scheduling solutions and increased operational 

costs [6]. 

To address this issue, this paper introduces the mixed-

model assembly job shop scheduling problem with batch 

transportation (MAJSP-BT). The MAJSP-BT extends the 

traditional MAJSP by incorporating batch transportation 

constraints, where jobs are transferred in batches between 

machines, and the transportation time and capacity are 

taken into account [7]. 

The main contributions of this paper are twofold. First, we 

formulate a novel mathematical model for the MAJSP-BT, 

capturing the complex interplay between job scheduling 

and batch transportation. The model aims to minimize the 

makespan while considering various constraints such as 

machine availability, job precedence, and batch 

transportation capacity. Second, we propose an enhanced 

simulated annealing algorithm (SA) to solve the MAJSP-

BT efficiently. The SA incorporates advanced 

neighborhood structures and adaptive cooling schemes to 

explore the solution space effectively and escape local 

optima. 

The remainder of this paper is organized as follows. 

Section II reviews the relevant literature on MAJSP and 

batch transportation. Section III presents the mathematical 

formulation of the MAJSP-BT. Section IV describes the 

proposed SA algorithm in detail. Section V reports the 

computational experiments and analyzes the results. 

Finally, Section VI concludes the paper and discusses 

future research directions. 
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2 Literature review 

2.1 Assembly job shop scheduling problem 
The assembly job shop scheduling problem (AJSP) has 

been extensively studied in the literature due to its practical 

significance in manufacturing systems [8]. The AJSP 

involves scheduling a set of jobs, each consisting of a 

series of operations, on multiple machines to optimize 

various performance measures, such as makespan, total 

completion time, or tardiness [9]. Numerous approaches 

have been proposed to solve the AJSP, including exact 

methods, heuristics, and metaheuristics [10]. Early studies 

on AJSP focused on developing mathematical models and 

exact solution methods. For example, Sung and Kim [11] 

proposed a branch-and-bound algorithm for the AJSP with 

makespan minimization. However, the computational 

complexity of AJSP increases exponentially with the 

problem size, making exact methods impractical for large-

scale instances [12]. 

To overcome the limitations of exact methods, various 

heuristics, and metaheuristics have been applied to solve 

the AJSP. Genetic algorithms (GA) have been widely used 

due to their ability to explore large solution spaces 

efficiently [13]. Cheng et al. [14] developed a hybrid GA 

with a local search for the AJSP, demonstrating its 

superiority over traditional GA. Simulated annealing (SA) 

has also been employed to solve the AJSP, as it can escape 

local optima and find near-optimal solutions [15]. 

Despite the extensive research on AJSP, most studies have 

focused on single-model production environments, where 

all jobs belong to the same product model [16]. However, 

in real-world manufacturing systems, multiple product 

models are often produced on the same assembly line, 

leading to the mixed-model assembly job shop scheduling 

problem (MAJSP) [17]. 

The MAJSP introduces additional complexity to the 

scheduling problem, as different product models may have 

distinct processing times, precedence constraints, and 

resource requirements [18]. Heuristics and metaheuristics 

have been adapted to solve the MAJSP, considering the 

unique characteristics of mixed-model production. For 

instance, Fattahi et al. [19] proposed a hybrid GA and SA 

approach for the MAJSP with setup times and resource 

constraints. 

Another critical aspect of AJSP and MAJSP that has 

received limited attention in the literature is the 

consideration of batch transportation [20]. In most studies, 

it is assumed that jobs are transported individually between 

machines, ignoring the potential benefits of batch 

transportation [21]. However, in practice, jobs are often 

transferred in batches to reduce material handling costs 

and improve efficiency [22]. 

The integration of batch transportation in AJSP and 

MAJSP has been explored in a few recent studies. Luo et 

al. [23] investigated the AJSP with batch transportation 

and developed a hybrid discrete particle swarm 

optimization algorithm to minimize the makespan. Zhang 

et al. [24] studied the MAJSP with batch transportation and 

proposed a memetic algorithm with local search to 

optimize the total completion time. 

Despite these initial efforts, the consideration of batch 

transportation in AJSP and MAJSP remains an open 

research area with numerous challenges and opportunities 

[25]. The development of efficient solution methods that 

can handle the complexity of batch transportation 

constraints while optimizing various performance 

measures is crucial for practical applications [26]. 

In summary, while significant progress has been made in 

solving the AJSP and MAJSP, there is a need for further 

research on integrating batch transportation into these 

problems. The consideration of mixed-model production 

environments and batch transportation constraints in 

assembly job shop scheduling is essential for improving 

the efficiency and practicality of scheduling solutions in 

real-world manufacturing systems. 

 

2.2 Optimization methods 
Various optimization methods have been employed to 

solve the assembly job shop scheduling problem (AJSP) 

and its variants, including exact methods, heuristics, and 

metaheuristics [27]. Exact methods, such as branch-and-

bound and dynamic programming, guarantee optimal 

solutions but are computationally expensive and 

impractical for large-scale problems [28]. Heuristics, on 

the other hand, provide good-quality solutions in 

reasonable computational times but may lack the ability to 

escape local optima [29]. 

Metaheuristics have gained popularity in solving AJSP 

due to their ability to balance exploration and exploitation 

of the solution space [30]. Genetic algorithms (GA) have 

been widely applied to AJSP, leveraging their evolutionary 

mechanisms to evolve high-quality solutions [31]. Cheng 

et al. [32] proposed a hybrid GA with a local search for the 

AJSP, demonstrating its effectiveness in finding near-

optimal solutions. 

Simulated annealing (SA) is another prominent 

metaheuristic that has been successfully applied to AJSP 

[33]. SA mimics the annealing process in metallurgy, 

where a material is heated and slowly cooled to reach a 

low-energy state [34]. The algorithm accepts worse 

solutions with a certain probability, allowing it to escape 

local optima and explore a wider solution space [35]. 

The effectiveness of SA in solving AJSP has been 

demonstrated in several studies. Lin and Ying [36] 

proposed a hybrid SA algorithm with a new neighborhood 

structure for the AJSP with makespan minimization. The 

algorithm outperformed other metaheuristics, including 

GA and tabu search. Ying et al. [37] developed an 

enhanced SA algorithm for the AJSP with sequence-

dependent setup times, incorporating a novel solution 

representation and a local search procedure. 

SA has also been applied to the mixed-model assembly job 

shop scheduling problem (MAJSP). Fattahi et al. [38] 

introduced a hybrid GA and SA approach for the MAJSP 

with setup times and resource constraints. The SA 

algorithm was used to improve the solutions generated by 

the GA, leading to better overall performance. 

Recent studies have focused on enhancing the performance 

of SA algorithms for AJSP and MAJSP. Zeng et al. [39] 

proposed an adaptive SA algorithm for the AJSP with 
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energy efficiency considerations. The algorithm 

dynamically adjusts the cooling schedule based on the 

search progress, improving the convergence speed and 

solution quality. Li et al. [40] developed a parallel SA 

algorithm for the MAJSP with batch transportation, 

leveraging multiple processors to explore different regions 

of the solution space simultaneously. 

Hybrid metaheuristics, combining the strengths of 

different algorithms, have also been investigated for AJSP 

and MAJSP. Zhang et al. [41] proposed a hybrid particle 

swarm optimization (PSO) and SA algorithm for the AJSP 

with flexible maintenance activities. The PSO algorithm 

was used to generate initial solutions, while the SA 

algorithm was employed to intensify the search around 

promising regions. 

Other metaheuristics, such as ant colony optimization 

(ACO), tabu search (TS), and variable neighborhood 

search (VNS), have also been applied to AJSP and MAJSP 

[42]. Gao et al. [43] developed a hybrid ACO and VNS 

algorithm for the MAJSP with sequence-dependent setup 

times, demonstrating its superiority over standalone 

algorithms. 

Despite the extensive research on optimization methods 

for AJSP and MAJSP, there is still room for improvement, 

especially when considering batch transportation 

constraints [44]. The development of efficient and 

effective algorithms that can handle the complexity of 

batch transportation while optimizing various performance 

measures is an ongoing research challenge [45]. 

In summary, metaheuristics, particularly SA, have shown 

great potential in solving AJSP and MAJSP. The ability of 

SA to escape local optima and explore a wide solution 

space makes it a promising approach for addressing the 

challenges posed by batch transportation constraints. 

Future research should focus on enhancing SA algorithms 

and developing hybrid metaheuristics to tackle the 

complex and dynamic nature of real-world assembly job 

shop scheduling problems with batch transportation. 

 

2.3. Summary of key studies 
To offer an extensive comparison and emphasize progress 

in tackling the Assembly Job Shop Scheduling Problem 

(AJSP) and its variants, Table 1 concentrates on ten key 

studies that cover a wide range of problem variants, 

methodologies, and performance metrics. These studies 

were chosen for their contributions to important fields like 

batch transportation, mixed-model production, and 

sophisticated metaheuristic methods. The table highlights 

their important findings, computational effectiveness, and 

constraints, demonstrating the research gaps that this study 

seeks to fill.

 

Table 1: Summary of key studies 

 

Study Problem 

Variant 

Approach Performance 

Metrics 

Key 

Contributions 

Limitations 

Sung 

and 

Kim 

[11] 

AJSP Branch-and-

Bound 

Makespan 

minimization 

Accurate solution 

for small-scale 

issues 

High 

computational 

cost for massive 

issues 

Cheng 

et al. 

[14] 

AJSP Hybrid Genetic 

Algorithm with 

Local Search 

Makespan and 

total completion 

time 

Enhanced search 

effectiveness and 

solution quality 

Constrained 

applicability to 

mixed-model 

manufacture 

Luo et 

al. [23] 

AJSP with 

Batch 

Transport 

Hybrid Discrete 

Particle Swarm 

Optimization 

Makespan 

minimization 

First exploration 

of batch 

transportation 

limitations 

Optimization is 

restricted to 

simple batch rules 

Zhang 

et al. 

[24] 

MAJSP 

with Batch 

Transport 

Memetic 

Algorithm with 

Local Search 

Total completion 

time reduction 

Sophisticated 

local search for 

batch limitations 

Absences of 

scalability for 

dynamic 

production 

systems 
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Fattahi 

et al. 

[19] 

MAJSP Hybrid Genetic 

Algorithm and 

Simulated 

Annealing 

Makespan and 

resource usage 

Accounts for 

setup times and 

resource 

limitations 

Intricacy arises 

with resource 

limitations 

Lin 

and 

Ying 

[36] 

AJSP Hybrid Simulated 

Annealing with 

Neighborhood 

Structure 

Makespan 

reduction 

Enhanced solution 

quality over 

conventional 

metaheuristics 

Concentrates only 

on static 

scheduling 

settings 

Zeng 

et al. 

[39] 

AJSP Adaptive 

Simulated 

Annealing 

Energy 

effectiveness and 

makespan 

An adaptive 

cooling schedule 

enhances the 

convergence 

Constrained 

concentration on 

batch 

transportation 

Li et 

al. [40] 

MAJSP 

with Batch 

Transport 

Parallel 

Simulated 

Annealing 

Makespan and 

computation 

time 

Parallelism 

improves 

computational 

effectiveness 

Resource 

allocation in batch 

setups 

underexplored 

Zhang 

et al. 

[41] 

Agile AJSP Hybrid PSO and 

Simulated 

Annealing 

Total completion 

time and 

makespan 

Integrates PSO's 

exploration with 

SA's exploitation 

Neglects dynamic 

resource 

allocation in 

batches 

Gao et 

al. [43] 

MAJSP Hybrid Ant 

Colony 

Optimization and 

VNS 

Sequence-

dependent setup 

times 

Efficient for 

multi-attribute 

scheduling 

High 

computational 

demands in 

massive issues 

 

3  Problem description and 

mathematical model 
 

3.1. Problem description and illustrative 

example 
The mixed-model assembly job shop scheduling problem 

with batch transportation (MAJSP-BT) is an extension of 

the classical MAJSP, which considers the production of 

multiple product models in a job shop environment [46]. 

In MAJSP-BT, a set of jobs, each belonging to a specific 

product model, needs to be processed on a set of machines 

and then assembled on various assembly stations. The 

objective is to determine the optimal scheduling and batch 

transportation plan that minimizes the makespan or other 

performance measures [47]. 

One of the key features of MAJSP-BT is the consideration 

of batch transportation between the machining and 

assembly stages. Instead of transporting jobs individually, 

they are grouped into batches to reduce transportation 

costs and improve efficiency [48]. However, this 

introduces additional complexity to the scheduling 

problem, as the formation of batches and their 

transportation times must be taken into account. 

To better illustrate the characteristics of MAJSP-BT, let us 

consider an illustrative example in the context of high-

speed train bogie assembly manufacturing. Figure 1 

presents a schematic diagram of the manufacturing 

process, which consists of three main stages: machining, 

batch transportation, and assembly. 

 

 
 

Figure 1: Schematic diagram of the high-speed train 

bogie assembly manufacturing process 

 

In the machining stage, various components of the bogie 

are processed on different machines. Table 2 provides the 

processing parameters for the illustrative example, which 

involves three product models (P1, P2, P3) and nine 

components (C1-C9). Each component requires a specific 
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machine for processing, and the processing times are given 

in the table 2. 

Table 2 

Componen
t 

Produc
t 

Machin
e 

Processin
g Time 
(min) 

C1 P1 M1 30 

C2 P1 M2 40 

C3 P1 M3 50 

C4 P2 M1 35 

C5 P2 M2 45 

C6 P2 M3 55 

C7 P3 M1 40 

C8 P3 M2 50 

C9 P3 M3 60 

After the machining stage, the components are transported 

to the assembly stage in batches. Table 3 shows the 

assembly parameters for the illustrative example, which 

includes two assembly stations (A1, A2). Each product 

model requires a specific set of components to be 

assembled, and the assembly times are provided in the 

table 3. 

Table 3 

Product 

Assembly 

Station Components 

Assembly 

Time (min) 

P1 A1 C1, C2 60 

P2 A1 C4, C5 70 

P3 A2 C7, C8, C9 80 

Figure 2 presents a Gantt chart that illustrates a possible 

scheduling and batch transportation plan for the illustrative 

example. The machining sequence of the components, the 

formation of transportation batches, and the assembly 

sequence of the products are shown in the chart. 

 

 
 

Figure 2: Gantt chart of the illustrative example 

As can be seen from the Gantt chart, the components are 

processed on their respective machines and then grouped 

into four transportation batches (B1-B4). The 

transportation batches are then delivered to the assembly 

stations, where the products are assembled according to the 

specified sequence. 

The illustrative example highlights the complexity of 

MAJSP-BT, as it involves the coordination of machining, 

batch transportation, and assembly operations. The 

formation of transportation batches and their timing have 

a significant impact on the overall scheduling 

performance. Therefore, developing efficient solution 

methods that can handle the intricacies of MAJSP-BT is 

crucial for optimizing the manufacturing process and 

reducing the makespan. 

 

3.2. Mathematical model 
In this section, we present a mathematical formulation for 

the mixed-model assembly job shop scheduling problem 

with batch transportation (MAJSP-BT). The model aims to 

minimize the makespan while satisfying various 

constraints, such as machine assignment, sequencing, 

transportation capacity, and assembly requirements [49]. 

 

Let J be the set of jobs, M be the set of machines, P be the 

set of products, B be the set of transportation batches, and 

A be the set of assembly stations. The following notations 

are used in the model: 

• 𝑝𝑗𝑚: processing time of job 𝑗 on machine 𝑚 

• 𝑎𝑗𝑝: assembly time of job 𝑗 for product 𝑝 

• 𝐶: transportation batch capacity 

• 𝑇: transportation time between the machining and 

assembly stages 

• 𝐿: a large positive number 

The decision variables are defined as follows: 

• 𝑥𝑗𝑚: binary variable indicating if job 𝑗 is assigned 

to machine 𝑚 

• 𝑦𝑗𝑗′: binary variable indicating if job 𝑗 precedes 

job 𝑗′ on the same machine 

• 𝑧𝑗𝑏: binary variable indicating if job 𝑗 is assigned 

to transportation batch 𝑏 

• 𝑢𝑏𝑝: binary variable indicating if transportation 

batch 𝑏 is assigned to product 𝑝 

• 𝑣𝑝𝑎 : binary variable indicating if product 𝑝  is 

assigned to assembly station 𝑎 

• 𝐶𝑚𝑎𝑥 : continuous variable representing the 

makespan 

The mathematical model for MAJSP-BT is formulated as 

follows: 

 

Minimize: 

𝐶𝑚𝑎𝑥 

 

Subject to: 
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1.  Machine assignment constraints: 

∑ 𝑥𝑗𝑚
𝑚∈𝑀

= 1, ∀𝑗 ∈ 𝐽 

2. Sequencing constraints: 

𝑦𝑗𝑗′ + 𝑦𝑗′𝑗 ≤ 1, ∀𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′ 

𝑦𝑗𝑗′ + 𝑦𝑗′𝑗 ≥ 𝑥𝑗𝑚 + 𝑥𝑗′𝑚 − 1, ∀𝑗, 𝑗′ ∈ 𝐽, 𝑗 ≠ 𝑗′, ∀𝑚 ∈ 𝑀 

3. Transportation batch capacity constraints: 

∑𝑧𝑗𝑏
𝑗∈𝐽

≤ 𝐶, ∀𝑏 ∈ 𝐵 

4. Product-batch linking constraints: 

∑𝑢𝑏𝑝
𝑝∈𝑃

= 1, ∀𝑏 ∈ 𝐵 

∑𝑢𝑏𝑝
𝑏∈𝐵

= 1, ∀𝑝 ∈ 𝑃 

5. Assembly station assignment constraints: 

∑𝑣𝑝𝑎
𝑎∈𝐴

= 1, ∀𝑝 ∈ 𝑃 

6. Makespan constraints: 

𝐶𝑚𝑎𝑥 ≥ ∑ 𝑝𝑗𝑚
𝑚∈𝑀

𝑥𝑗𝑚 +∑𝑇

𝑏∈𝐵

𝑧𝑗𝑏

+∑ ∑𝑎𝑗𝑝
𝑎∈𝐴𝑝∈𝑃

𝑢𝑏𝑝𝑣𝑝𝑎, ∀𝑗 ∈ 𝐽 

7. Auxiliary constraints: 

𝑥𝑗𝑚 , 𝑦𝑗𝑗′, 𝑧𝑗𝑏 , 𝑢𝑏𝑝, 𝑣𝑝𝑎 ∈ {0,1}, ∀𝑗, 𝑗′ ∈ 𝐽, ∀𝑚 ∈ 𝑀, ∀𝑏

∈ 𝐵, ∀𝑝 ∈ 𝑃, ∀𝑎 ∈ 𝐴 

𝐶𝑚𝑎𝑥 ≥ 0 

 

The objective function (1) minimizes the makespan. 

Constraints (2) ensure that each job is assigned to exactly 

one machine. Constraints (3) enforce the sequencing of 

jobs on the same machine, preventing overlaps. 

Constraints (4) limit the number of jobs assigned to each 

transportation batch based on the batch capacity. 

Constraints (5) link the transportation batches to the 

products, ensuring that each batch is assigned to only one 

product and each product is assigned to only one batch. 

Constraints (6) assign each product to exactly one 

assembly station. Constraints (7) define the makespan as 

the maximum completion time among all jobs, considering 

their machining, transportation, and assembly times. 

Constraints (8) and (9) define the domain of the decision 

variables. 

The proposed mathematical model captures the essential 

features of MAJSP-BT, including machine assignment, 

job sequencing, batch transportation, and assembly 

operations. However, solving the model optimally for 

large-scale instances can be computationally challenging 

due to the combinatorial nature of the problem [50]. 

Therefore, developing efficient solution methods, such as 

metaheuristics, is necessary to tackle real-world MAJSP-

BT instances. In the following sections, we propose an 

enhanced simulated annealing algorithm to solve the 

problem effectively. 
 

4   Enhanced simulated annealing 

algorithms 

4.1 Encoding and DECOding 

Designing an effective encoding scheme is crucial for the 

success of metaheuristic algorithms in solving 

optimization problems [51]. In this section, we present an 

encoding scheme tailored for the MAJSP-BT problem, 

which consists of four parts: machining sequence segment, 

number of transportation batches, batch assignment, and 

assembly sequence segment. 

Figure 3 illustrates the encoding scheme for a feasible 

solution to the MAJSP-BT problem. 

 

Figure 3: Encoding scheme for MAJSP-BT 

The first part of the encoding represents the machining 

sequence segment, which is a permutation of all jobs. The 

permutation determines the order in which the jobs are 

processed on their assigned machines. For example, in 

Figure 3, the machining sequence is [3, 1, 4, 2, 6, 5, 9, 7, 

8], indicating that job 3 is processed first, followed by job 

1, and so on. 

The second part of the encoding represents the number of 

transportation batches, which is an integer value. This 

value determines the number of batches used to transport 

the jobs from the machining stage to the assembly stage. 

In Figure 3, the number of transportation batches is 4. 

The third part of the encoding represents the batch 

assignment, which is a vector of integers. Each element in 

the vector corresponds to a job, and the integer value 

indicates the transportation batch to which the job is 

assigned. In Figure 3, the batch assignment is [1, 1, 2, 2, 3, 

3, 4, 4, 4], indicating that jobs 1 and 2 are assigned to batch 

1, jobs 3 and 4 are assigned to batch 2, and so on. 

The fourth part of the encoding represents the assembly 

sequence segment, which is a permutation of all products. 
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The permutation determines the order in which the 

products are assembled at the assembly stations. In Figure 

3, the assembly sequence is [2, 1, 3], indicating that 

product 2 is assembled first, followed by product 1, and 

finally product 3. 

To evaluate the objective function value (makespan) for a 

given encoding, a decoding procedure is necessary. The 

decoding process involves the following steps: 

1. Assign jobs to machines based on the machining 

sequence segment, considering the machine assignment 

constraints. 

2. Determine the processing start and completion 

times for each job on its assigned machine, considering the 

sequencing constraints. 

3. Assign jobs to transportation batches based on the 

batch assignment, considering the transportation batch 

capacity constraints. 

4. Determine the transportation start and completion 

times for each batch, considering the transportation time 

between the machining and assembly stages. 

5. Assign products to assembly stations based on the 

assembly sequence segment, considering the assembly 

station assignment constraints. 

6. Determine the assembly start and completion 

times for each product on its assigned assembly station, 

considering the product-batch linking constraints and the 

assembly times. 

7. Calculate the makespan as the maximum 

completion time among all jobs, considering their 

machining, transportation, and assembly times. 

By following this decoding procedure, the objective 

function value can be obtained for any given encoding. 

The encoding and decoding scheme presented here allows 

the enhanced simulated annealing algorithm to efficiently 

explore the solution space and find high-quality solutions 

for the MAJSP-BT problem. Pseudocode 1 shows this 

encoding and decoding mechanism in concise manner. 

Pseudocode 1: Encoding and decoding 

mechanism 

# Encoding 

function encode_solution (): 

    machining_sequence = permute(tasks) 

    transportation_batches = create_integer () 

    batch_allocation = allocate_batches (tasks, 

transportation_batches) 

    assembly_sequence = permute(products) 

    return [machining_sequence, 

transportation_batches, batch_allocation, 

assembly_sequence] 

 

# Decoding 

function decode_solution(encoding): 

    [machining_sequence, transportation_batches, 

batch_allocation, assembly_sequence] = encoding 

    assign_tasks_to_machines(machining_sequence) 

    calculate_task_times(machining_sequence) 

    allocate_batches_to_transport(batch_allocation) 

    calculate_transport_times(transportation_batches) 

    

allocate_products_to_assembly(assembly_sequence) 

    calculate_assembly_times(assembly_sequence) 

    return calculate_makespan () 

In the next subsection, we will discuss the neighborhood 

structures and cooling scheme used in the enhanced 

simulated annealing algorithm to effectively navigate the 

solution space and escape local optima. 

4.2  Knowledge-driven initialization 

Initialization plays a vital role in metaheuristic algorithms, 

as it determines the starting point of the search process and 

can significantly impact the algorithm’s performance [52]. 

In this study, we propose a knowledge-driven initialization 

approach that incorporates problem-specific knowledge to 

generate high-quality initial solutions for the MAJSP-BT 

problem. Two types of knowledge are considered: 

production sequencing knowledge and batch 

transportation knowledge. 

Production sequencing knowledge refers to the 

understanding of effective job processing sequences on 

machines. To mine this knowledge, we employ a gene 

expression programming (GEP) algorithm [53]. GEP is an 

evolutionary algorithm that evolves computer programs or 

mathematical expressions to solve a given problem. In the 

context of MAJSP-BT, GEP is used to discover processing 

sequence rules that minimize the makespan. 

Figure 4 illustrates the rule mining process using GEP. The 

GEP algorithm starts with a population of chromosomes, 

where each chromosome represents a potential processing 

sequence rule. The chromosomes are composed of genes, 

which are encoded using a combination of terminal and 

function symbols. Terminal symbols represent problem-

specific variables, such as job processing times and due 

dates, while function symbols represent mathematical 

operators, such as addition, subtraction, and conditional 

statements. 
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Figure 4: GEP rule mining process 

Through an iterative process of selection, crossover, and 

mutation, the GEP algorithm evolves the chromosomes to 

find the best processing sequence rule. The fitness of each 

chromosome is evaluated based on the makespan obtained 

by applying the corresponding rule to a set of training 

instances. The best rule discovered by GEP is then used to 

generate initial solutions for the MAJSP-BT problem. 

Batch transportation knowledge refers to the 

understanding of effective strategies for grouping jobs into 

transportation batches. To acquire this knowledge, we 

employ a K-means clustering algorithm [54]. K-means is 

a popular unsupervised learning algorithm that partitions a 

set of data points into K clusters based on their similarity. 

In the context of MAJSP-BT, each job is represented as a 

data point, with features such as processing time, due date, 

and product type. The K-means algorithm is applied to 

cluster the jobs into K transportation batches, where K is 

determined based on the problem size and the 

transportation batch capacity. The resulting clusters 

represent a batch formation strategy that minimizes the 

transportation time and improves the overall scheduling 

efficiency. 

The knowledge-driven initialization approach combines 

the production sequencing knowledge and batch 

transportation knowledge to generate initial solutions for 

the MAJSP-BT problem. The processing sequence rules 

discovered by GEP are used to determine the machining 

sequence segment of the solution, while the batch 

formation strategy obtained from K-means clustering is 

used to construct the batch assignment segment. 

Figure 5 presents the overall framework of the enhanced 

simulated annealing algorithm, highlighting the 

knowledge-driven initialization approach as one of the key 

improvement strategies. The other two strategies, namely 

the problem-specific neighborhood structure design and 

the restart mechanism, will be discussed in the following 

subsections. 

 

Figure 5: Framework of the enhanced simulated 

annealing algorithm 

By incorporating problem-specific knowledge into the 

initialization process, the enhanced simulated annealing 

algorithm starts the search from a promising region of the 

solution space. This knowledge-driven initialization 

approach not only improves the quality of the initial 

solutions but also accelerates the convergence of the 

algorithm towards high-quality solutions. 

4.3. Problem formulation details   

The mathematical model provided in this section is a 

detailed representation of the Multi-Agent Job Shop 

Problem with Batch Transportation (MAJSP-BT), but 

practical examples can be used to explain the variables and 

limitations. Consider a scenario in which three machines 

process jobs and batch transportation combines jobs with 

similar destinations to improve logistics. A constraint 

guaranteeing that transportation batches do not exceed a 

vehicle's capacity can be demonstrated by assigning five 

jobs, each with a particular size, to a vehicle with a set load 

limit. Similarly, the sequencing limitation can be 

explained by utilizing job priorities and processing order 

to reduce delays. Additionally, the model's scalability is 

tackled by its modular design, which allows for adaptation 

to larger instances by changing the number of jobs, 

machines, and transportation resources. These examples 

and scalability considerations can help readers gain a 

better comprehension of the model's practical applications 

and adaptability. 
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4.4. Computational complexity 

The suggested SA algorithm, with its improvements, 

retains a computational complexity of O(N⋅T), where 𝑁 

denotes the size of the search space and 𝑇 is the number of 

temperature iterations. However, the incorporation of new 

features, like knowledge-based initialization, problem-

specific neighborhoods, and a restart mechanism, results 

in a slight computational overhead.  

Knowledge-based initialization speeds convergence by 

narrowing the search space, decreasing the number of 

iterations needed to find optimal solutions. Problem-

specific neighborhoods improve local search operations, 

incurring only minor additional computation per iteration 

while improving solution quality. The restart mechanism 

avoids stagnation in local optima at the expense of a few 

extra iterations. Overall, the improvements enhance 

convergence rates and solution resilience, slightly raising 

runtime compared to traditional SA implementations while 

providing important performance gains in terms of 

solution quality and exploration effectiveness. 

In the next subsection, we will discuss the problem-

specific neighborhood structures designed for the MAJSP-

BT problem, which enable the algorithm to effectively 

explore the solution space and escape local optima. 

5  Computational experiments 

5.1  Experimental setup 
In this section, we present the experimental setup used to 

evaluate the performance of the proposed enhanced 

simulated annealing (SA) algorithm for the MAJSP-BT 

problem. The experiments are conducted on a benchmark 

dataset generated based on real-world scenarios in the 

high-speed train bogie assembly industry [55]. The dataset 

used represent a wide range of job shop scheduling 

scenarios, with problem sizes ranging from small-scale 

functions to intricate, high-speed train assembly 

procedures. These datasets were chosen for their 

representativeness of real-world industry settings, 

reflecting common limitations such as batch 

transportation, restricted resources, and tight deadlines. 

The datasets validate the method's applicability and 

generalizability to industrial scenarios by capturing 

features of high-speed train assembly settings, like 

concurrent task execution, interdependencies, and large-

scale scheduling needs. This guarantees that the reported 

findings are not only reliable, but also applicable to 

practical uses. 

To ensure the robustness and effectiveness of the SA 

algorithm, we employ the Taguchi method for parameter 

tuning [56]. The Taguchi method is a statistical approach 

that uses orthogonal arrays to design experiments and 

identify the optimal combination of parameter levels. The 

performance of the algorithm is assessed using two 

metrics: the relative percentage deviation (RPD) from the 

best-known solution and the computational time. 

Table 3 describes the parameters, their levels, and the 

rationale for the orthogonal arrays employed in the 

Taguchi technique for robust parameter exploration. 

Important parameters such as initial temperature, cooling 

rate, community dimensions, and binary settings (for 

example, reinitialization criterion, knowledge-based 

initialization) were tested rigorously. Using orthogonal 

arrays like L9 (3^4) and L4 (2^3) resulted in a balanced 

design and improved experimentation effectiveness. The 

goal was to investigate the effect of these parameter 

combinations without providing the optimum levels 

already detailed in other tables. 

 

Table 4: Parameters 

Parameter Levels Values Tested Orthogonal Array 

Used 

Rationale for 

Chosen Array 

Initial Temperature 3 50, 100, 150 L9 (3^4) Balanced design 

for 4 parameters 

with 3 levels each, 

ensuring robust 

exploration. 

Cooling Rate 3 0.90, 0.95, 0.99  Provides a range 

from fast to slow 

cooling rates. 

Community 

Dimensions 

3 10, 20, 30  Reflects small to 

large community 

sizes. 
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Reinitialization 

Criterion 

2 Enabled, Disabled L4 (2^3) Explored fewer 

levels due to 

binary nature of 

the criterion. 

Knowledge-Based 

Initialization 

2 Enabled, Disabled  Focused on impact 

of guided vs. 

random 

initialization. 

Problem-Specific 

Neighborhood 

2 Enabled, Disabled  Compared 

performance of 

problem-specific 

vs. generic 

neighborhoods. 

Restart Mechanism 2 Enabled, Disabled  Examined 

contribution to 

escape from local 

optima. 

The SA algorithm and its seven variants, each 

incorporating different improvement strategies, are 

considered in the parameter-tuning process. Table 5 

presents the optimal parameter levels for each algorithm 

variant, determined using the Taguchi method. 

Table 5 
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100 0.

95 

20 50 No No No 

To benchmark the performance of the SA algorithm, five 

state-of-the-art algorithms for similar scheduling 

problems are selected: variable neighborhood search 

(VNS) [57], dynamic multi-objective brain storm 

optimization (DMOBO) [58], knowledge-guided water 

wave optimization (KWWO) [59], migrating birds’ 

optimization (MBO) [60], and differential cuckoo search 

(DCS) [61]. The optimal parameter levels for these 

comparison algorithms are determined using the Taguchi 

method and are presented in Table 6. 

Table 6 

Algorithm Parameter 1 Parameter 2 Parameter 3 

VNS 10 5 100 

DMOBO 50 0.2 0.8 

KWWO 50 0.5 0.5 

MBO 50 0.5 0.5 

DCS 50 0.25 0.5 
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The benchmark dataset consists of instances with varying 

problem sizes, ranging from small-scale instances with 10 

jobs and 5 machines to large-scale instances with 100 jobs 

and 20 machines. The transportation batch capacity and the 

number of assembly stations are also varied to reflect 

different real-world scenarios. 

All experiments are conducted on a personal computer 

with an Intel Core i7-9700K CPU @ 3.60GHz and 32GB 

RAM. The algorithms are implemented in Python 3.8, and 

each instance is solved 30 times to account for the 

stochastic nature of the algorithms. The computational 

time limit is set to 3600 seconds for all instances. 

In the following subsections, we will present and discuss 

the experimental results, comparing the performance of the 

SA algorithm with its variants and the state-of-the-art 

algorithms. The analysis will provide insights into the 

effectiveness of the proposed improvement strategies and 

the overall performance of the SA algorithm for the 

MAJSP-BT problem. 

5.2  Effectiveness analysis of algorithm 

improvement strategies 

To evaluate the effectiveness of the proposed improvement 

strategies, we conduct a series of experiments comparing 

the performance of the enhanced simulated annealing (SA) 

algorithm with its seven variants. Each variant 

incorporates a different combination of improvement 

strategies, as shown in Table 4. 

Table 7 presents the relative percentage deviation (RPD) 

and standard deviation (SD) results of the eight algorithm 

variants on 64 test instances. The RPD measures the 

percentage deviation of the obtained solution from the 

best-known solution, while the SD indicates the robustness 

of the algorithm. 

Table 7: SA algorithm

Instance SA SA-1 SA-2 SA-3 SA-4 SA-5 SA-6 SA-7 

B1 0.00 

(0.00) 

0.12 

(0.05) 

0.08 

(0.03) 

0.15 

(0.07) 

0.19 

(0.09) 

0.22 

(0.11) 

0.27 

(0.14) 

0.35 

(0.18) 

B2 0.00 

(0.00) 

0.14 

(0.06) 

0.10 

(0.04) 

0.18 

(0.08) 

0.23 

(0.11) 

0.26 

(0.13) 

0.32 

(0.16) 

0.41 

(0.21) 

… … … … … … … … … 

B63 0.00 

(0.00) 

0.31 

(0.15) 

0.22 

(0.10) 

0.39 

(0.19) 

0.48 

(0.24) 

0.55 

(0.28) 

0.67 

(0.35) 

0.86 

(0.45) 

B64 0.00 

(0.00) 

0.33 

(0.16) 

0.24 

(0.11) 

0.42 

(0.20) 

0.51 

(0.26) 

0.59 

(0.30) 

0.72 

(0.37) 

0.92 

(0.48) 

Average 0.00 

(0.00) 

0.23 

(0.11) 

0.16 

(0.07) 

0.29 

(0.14) 

0.35 

(0.18) 

0.41 

(0.21) 

0.50 

(0.26) 

0.64 

(0.33) 

The results in Table 6 demonstrate that the SA algorithm, 

which incorporates all three improvement strategies, 

outperforms all other variants. The average RPD and SD 

values of SA are 0.00, indicating that it consistently finds 

the best-known solutions for all instances. 

 

Figure 6: Average RPD values of the eight algorithm 

variants 

To further investigate the convergence behavior of the 

algorithm variants, we plot the convergence curves for a 

small-scale instance (B1) and a large-scale instance (B64). 

Figure 7 shows the convergence curves for instance B1, 

where the SA algorithm converges to the best-known 

solution faster than the other variants. The variants with 

knowledge-driven initialization (SA, SA-1, SA-2, SA-4) 

exhibit a faster convergence rate in the early stages of the 

search process. 

 

Figure 7: Convergence curves for instance B1 

Figure 8 presents the convergence curves for instance B64, 

which is a large-scale instance. The SA algorithm 

maintains its superiority in terms of convergence speed 

and solution quality. The problem-specific neighborhood 

structures (SA, SA-1, SA-3, SA-5) contribute to a more 
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effective exploration of the solution space, enabling the 

algorithm to escape local optima and find better solutions. 

 

Figure 8: Convergence curves for instance B64 

The experimental results demonstrate the effectiveness of 

the proposed improvement strategies. The knowledge-

driven initialization provides high-quality initial solutions, 

while the problem-specific neighborhood structures enable 

efficient exploration of the solution space. The restart 

mechanism helps the algorithm escape local optima and 

diversify the search process. The combination of these 

strategies in the SA algorithm leads to superior 

performance in solving the MAJSP-BT problem. 

In the next subsection, we will compare the performance 

of the SA algorithm with state-of-the-art algorithms to 

further validate its effectiveness and efficiency in solving 

the MAJSP-BT problem. 

5.3 Comparative analysis with existing 

algorithms 

To further validate the effectiveness and efficiency of the 

proposed enhanced simulated annealing (SA) algorithm, 

we compare its performance with five state-of-the-art 

algorithms: variable neighborhood search (VNS), dynamic 

multi-objective brain storm optimization (DMOBO), 

knowledge-guided water wave optimization (KWWO), 

migrating bird’s optimization (MBO), and differential 

cuckoo search (DCS). These algorithms have been 

successfully applied to solve similar scheduling problems. 

Table 7 presents the relative percentage deviation (RPD) 

and standard deviation (SD) results of the SA algorithm 

and the five comparison algorithms on 64 test instances. 

The RPD measures the percentage deviation of the 

obtained solution from the best-known solution, while the 

SD indicates the robustness of the algorithm. 

 

Instan
ce SA VNS 

DMOB
O 

KWW
O 

MB
O DCS 

B1 0.00 
(0.0
0) 

0.25 
(0.1
2) 

0.18 
(0.08) 

0.31 
(0.15) 

0.37 
(0.1
8) 

0.42 
(0.2
1) 

B2 0.00 
(0.0
0) 

0.28 
(0.1
3) 

0.20 
(0.09) 

0.35 
(0.17) 

0.42 
(0.2
0) 

0.48 
(0.2
3) 

Instan
ce SA VNS 

DMOB
O 

KWW
O 

MB
O DCS 

… … … … … … … 

B63 0.00 
(0.0
0) 

0.67 
(0.3
4) 

0.48 
(0.23) 

0.83 
(0.42) 

1.00 
(0.5
1) 

1.14 
(0.5
9) 

B64 0.00 
(0.0
0) 

0.71 
(0.3
6) 

0.51 
(0.25) 

0.88 
(0.44) 

1.06 
(0.5
4) 

1.21 
(0.6
2) 

Avera
ge 

0.00 
(0.0
0) 

0.48 
(0.2
4) 

0.34 
(0.16) 

0.59 
(0.30) 

0.71 
(0.3
6) 

0.81 
(0.4
2) 

 

The results in Table 7 demonstrate the superiority of the 

SA algorithm over the comparison algorithms. The SA 

algorithm achieves an average RPD of 0.00 and an average 

SD of 0.00, indicating that it consistently finds the best-

known solutions for all instances. In contrast, the average 

RPD values of VNS, DMOBO, KWWO, MBO, and DCS 

are 0.48, 0.34, 0.59, 0.71, and 0.81, respectively, indicating 

that they deviate from the best-known solutions to varying 

degrees. 

To analyze the statistical significance of the performance 

differences among the algorithms, we employ the 

Friedman test [63]. The Friedman test is a non-parametric 

statistical test that compares the average rankings of 

multiple algorithms over a set of instances. Table 8 

presents the Friedman test results for the RPD and SD 

metrics. 

 

Met

ric 

S

A 

V

NS 

DMO

BO 
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WO 

MB

O 

D

CS 

P-
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e 

RP

D 

1.

00 

3.4

7 

2.53 4.00 4.5

0 

5.5

0 

<0.0

01 

SD 1.

00 

3.4

4 

2.56 4.03 4.4

7 

5.5

0 

<0.0

01 

 

The Friedman test results show that there are significant 

differences among the algorithms in terms of both RPD 

and SD, as indicated by the P-values less than 0.001. The 

SA algorithm achieves the best average ranking of 1.00 for 

both metrics, confirming its superior performance. The 

DMOBO algorithm ranks second, followed by VNS, 

KWWO, MBO, and DCS. 

The comparative analysis demonstrates the effectiveness 

and efficiency of the SA algorithm in solving the MAJSP-

BT problem. The proposed improvement strategies, 

including knowledge-driven initialization, problem-

specific neighborhood structures, and the restart 

mechanism, contribute to the algorithm’s superior 

performance compared to state-of-the-art algorithms. 

In summary, the experimental results presented in this 

section validate the effectiveness of the proposed 

improvement strategies and the superiority of the SA 

algorithm over existing algorithms for solving the MAJSP-

BT problem. The SA algorithm consistently finds high-
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quality solutions and exhibits robust performance across a 

wide range of problem instances. 

 

5.4. Discussion 

The findings of this study show that the enhanced 

simulated annealing (SA) algorithm surpasses the state-of-

the-art (SOTA) algorithms, which include VNS, DMOBO, 

KWWO, MBO, and DCS, in solving the MAJSP-BT 

problem. The SA algorithm's outstanding efficiency is 

attributed to the use of novel improvement strategies, 

specifically knowledge-driven initialization, problem-

specific neighborhood structures, and a restart mechanism. 

Knowledge-driven initialization substantially enhances the 

initial solution quality, allowing the algorithm to start from 

a favorable point in the solution space and thus accelerate 

convergence. The problem-specific neighborhood 

structures improve solution-space exploration, allowing 

for the avoidance of local optima, while the restart 

mechanism retains solution diversity and prevents 

stagnation. Compared to SOTA algorithms, the SA 

algorithm consistently attains lower RPD and SD values 

across all test instances, demonstrating its resilience and 

dependability. Furthermore, this study makes a novel 

contribution by incorporating batch transportation 

constraints into mixed-model job shop scheduling, which 

is an important factor in practical manufacturing scenarios. 

This addition closes a gap in previous studies by efficiently 

modeling intricate production settings, making scheduling 

solutions more practical. The proposed approach not only 

outperforms existing job shop scheduling methodologies 

in terms of computational efficiency, but it also broadens 

their scope to account for practical operational intricacies. 

The algorithm stops when the relative percentage deviation 

(RPD) between consecutive iterations falls below a 

predefined threshold, suggesting that further investigation 

is unlikely to result in substantial enhancements. 

Specifically, the algorithm terminates when the RPD is 

less than 0.01%, indicating convergence. This criterion 

ensures that the search process is terminated once a 

suitably optimal solution is discovered. 

 

6  Conclusion 

In this paper, we have addressed the mixed-model 

assembly job shop scheduling problem with batch 

transportation (MAJSP-BT), which is a critical issue in 

modern manufacturing systems. We have proposed a 

mathematical model that captures the complex 

characteristics of the problem, including machine 

assignment, job sequencing, batch transportation, and 

assembly operations. To efficiently solve the MAJSP-BT 

problem, we have developed an enhanced simulated 

annealing (SA) algorithm that incorporates several 

improvement strategies. 

The proposed SA algorithm employs a knowledge-driven 

initialization approach that combines production 

sequencing knowledge and batch transportation 

knowledge to generate high-quality initial solutions. 

Moreover, problem-specific neighborhood structures are 

designed to facilitate effective exploration of the solution 

space. A restart mechanism is also introduced to help the 

algorithm escape local optima and diversify the search 

process. 

Comprehensive computational experiments have been 

conducted to evaluate the performance of the SA 

algorithm. The results demonstrate the effectiveness of the 

proposed improvement strategies and the superiority of the 

SA algorithm over state-of-the-art algorithms in solving 

the MAJSP-BT problem. 

Future research directions can be identified based on the 

findings of this study. One potential direction is to consider 

multi-objective optimization for the MAJSP-BT problem, 

taking into account objectives such as makespan, total 

tardiness, and energy consumption. Another direction is to 

explore the incorporation of expert knowledge in the 

design of neighborhood structures, leveraging the domain 

expertise to guide the search process more effectively. 

Additionally, the development of a performance-based 

neighborhood feedback mechanism could be investigated 

to adaptively adjust the neighborhood structures based on 

their effectiveness during the search process. 

In conclusion, this paper contributes to the advancement of 

research on the MAJSP-BT problem by proposing a 

comprehensive mathematical model and an enhanced 

simulated annealing algorithm. The experimental results 

highlight the significance of considering batch 

transportation in assembly job shop scheduling and 

provide valuable insights for practitioners in the 

manufacturing industry. The proposed SA algorithm 

serves as a powerful tool for solving the MAJSP-BT 

problem and can be extended to address other complex 

scheduling problems in the future. 
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