
https://doi.org/10.31449/inf.v49i10.7114 Informatica 49 (2025) 127-146 127

FD3QN: A Federated Deep Reinforcement Learning Approach for

Cross-Domain Resource Cooperative Scheduling in Hybrid Cloud

Architecture

Liang Xiao1, Honghua Shan1*, Jianwei Zhu2, Ruiwei Mao3, Shuwei Pan2

1Comprehensive Department, China Mobile Group Zhejiang Co., Ltd. Huzhou Branch, Huzhou 313000, Zhejiang, China
2Network Maintenance Department, China Mobile Group Zhejiang Co., Ltd. Huzhou Branch, Huzhou 313000, Zhejiang,

China
3Engineering Construction Department, China Mobile Group Zhejiang Co., Ltd. Huzhou Branch, Huzhou 313000,

Zhejiang, China

E-mail: shanhh@zj.chinamobile.com
*Corresponding author

Keywords: cross-domain resource cooperative scheduling, deep reinforcement learning, federated learning, FD3QN

algorithm, hybrid cloud, UAV trajectory planning, vehicle networking

Received: September 9, 2024

To address the challenge of insufficient computing power in multi-access edge computing (MEC) servers

caused by highly dynamic service requests and uneven service distribution in vehicular networks, this

paper proposes a hybrid multi-server MEC architecture that leverages both fixed road-side units (RSUs)

and mobile unmanned aerial vehicles (UAVs). We introduce the FD3QN algorithm, which integrates

federated learning and deep reinforcement learning, to minimize the weighted sum of service latency and

energy consumption. Specifically, the MATD3 algorithm is employed for safe and efficient UAV trajectory

planning in the offloading decision process. For resource allocation, we embed vertical federated learning

into the D3QN network to enable cross-domain resource cooperative scheduling. A decentralized

federated aggregation framework is utilized to maintain a global model for optimizing resource allocation

in a collaborative and privacy-preserving manner. The proposed algorithm jointly optimizes transmission

power, computing, and storage resources. Extensive simulations are conducted to evaluate the

performance of FD3QN in a realistic vehicular network environment with varying numbers of vehicles

and task arrivals. The results demonstrate that FD3QN outperforms benchmark algorithms, achieving an

11.37% and 12.06% reduction in system cost compared to the FDDQN algorithm in scenarios with 8 and

12 vehicles, respectively. Moreover, FD3QN exhibits a 25% decrease in average service latency and a

15% improvement in energy efficiency compared to traditional deep reinforcement learning approaches.

The proposed algorithm also maintains a high task completion rate of over 98% under dynamic network

conditions. These findings validate the strong model generalization ability of FD3QN in the dynamic

vehicular networking environment and highlight its practicality for real-world deployment. This study

provides novel insights into the development of intelligent transportation systems and edge computing

paradigms.

Povzetek: V prispevku je opisan FD3QN, napreden pristop federativnega globokega okrepljenega učenja

za sodelovalno razporejanje virov v hibridnih oblačnih arhitekturah. Algoritem zmanjšuje zakasnitve in

porabo energije v inteligentnih transportnih sistemih.

1 Introduction

The rapid advancement of intelligent transportation

systems (ITS) has revolutionized the way we perceive and

interact with modern transportation networks. With the

proliferation of connected and autonomous vehicles

(CAVs), the demand for computation-intensive and delay-

sensitive applications has escalated significantly [1].

However, the resource-constrained nature of vehicular

users poses a formidable challenge in meeting the

stringent requirements of these applications [2]. To

address this issue, multi-access edge computing (MEC)

has emerged as a promising paradigm, bringing

computation and storage resources closer to the edge of

the network [3]. By leveraging the proximity of MEC

servers to vehicular users, the latency and network

congestion associated with centralized cloud computing

can be effectively mitigated [4].

Furthermore, the integration of unmanned aerial vehicles

(UAVs) into the MEC framework has opened up new

avenues for enhancing the performance of ITS [5]. UAVs

can act as aerial MEC servers, providing flexible and on-

demand computing resources to vehicular users [6]. The

mobility and line-of-sight (LoS) communication links

offered by UAVs enable them to dynamically adjust their

positions and serve as relay nodes, extending the coverage

https://doi.org/10.31449/inf.v49i10.
mailto:shanhh@zj.chinamobile.com

128 Informatica 49 (2025) 127-146 L. Xiao et al.

and capacity of the vehicular network [7]. Moreover, the

collaboration between ground MEC servers and UAV-

assisted MEC servers forms a hybrid multi-server

architecture, which can efficiently handle the diverse

computational requirements of vehicular applications [8].

However, the deployment of a hybrid multi-server MEC

architecture in ITS presents several challenges. The

heterogeneous nature of vehicular users, with varying

mobility patterns and resource demands, necessitates

efficient resource allocation and computation offloading

strategies [9]. Additionally, the dynamic and uncertain

wireless network conditions, coupled with the limited

battery life of UAVs, further complicate the decision-

making process [10]. To tackle these challenges, advanced

techniques such as deep reinforcement learning (DRL)

have gained significant attention [11]. DRL combines the

power of deep neural networks with reinforcement

learning, enabling agents to learn optimal policies through

interaction with the environment [12].

In this article, we propose a novel framework for hybrid

multi-server computation offloading in UAV-assisted

vehicular networks based on federated deep reinforcement

learning (FDRL). The proposed framework leverages the

distributed learning capabilities of FDRL to enable

collaborative and efficient offloading decisions among

vehicular users, ground MEC servers, and UAV-assisted

MEC servers. By exploiting the local observations and

experiences of individual agents, FDRL allows for the

development of personalized offloading policies while

preserving the privacy of sensitive data [13]. The

framework aims to minimize the overall latency and

energy consumption of vehicular users while ensuring the

stability and scalability of the network.

The main contributions of this article are as follows:

• We formulate the computation offloading problem in

a hybrid multi-server MEC architecture for ITS,

considering the heterogeneous requirements of vehicular

users and the dynamic network conditions.

• We propose an FDRL-based approach to solve the

formulated problem, enabling collaborative and efficient

offloading decisions among the entities in the network.

• We conduct extensive simulations to evaluate the

performance of the proposed framework and compare it

with state-of-the-art offloading strategies.

The remainder of this article is organized as follows.

Section II provides an overview of the related work on

computation offloading in vehicular networks and the

application of DRL in MEC. Section III presents the

system model and problem formulation. The proposed

FDRL-based offloading framework is detailed in Section

IV. Section V discusses the simulation results and

performance evaluation. Finally, Section VI concludes the

article and outlines future research directions.

2 System model

In this section, we present the system model for the

proposed hybrid multi-server MEC architecture in UAV-

assisted vehicular networks. We consider a novel network

architecture that leverages the collaborative computing

capabilities of road-side units (RSUs) and unmanned

aerial vehicles (UAVs) to support computation offloading

for vehicular users [14]. The system model encompasses

the network architecture and the binary offloading model,

which form the foundation for the development of the

FDRL-based offloading framework. Table 1 shows related

works on computation offloading in vehicular networks

Table 1: Comparison of related works on computation offloading in vehicular networks.

Work Computing

Resources

Optimization

Objectives

Solution

Method

Federated

Learning

Comparison with

Proposed Work

[1] RSU Latency DQN No Single-server,

latency only

[2] RSU, Cloud Energy DDPG No Multi-server,

energy only

[3] RSU, UAV Latency, Energy A3C No Multi-server, no

FL

[4] RSU, Cloud Latency, Energy DQN, DDPG No Multi-server, no

FL

[5] UAV Latency, Energy Q-learning No Single-server, no

FL

[6] UAV Energy DDPG No Single-server,

energy only

[7] UAV Energy Lyapunov No Single-server,

energy only

[8] RSU, Cloud Latency, Energy DQN No Multi-server, no

FL

FD3QN: A Federated Deep Reinforcement Learning Approach for… Informatica 49 (2025) 127-146 129

[9] UAV Latency, Energy DRL No Single-server, no

FL

[10] UAV QoE DQN No Single-server, QoE

[11] UAV Latency, Energy DRL No Single-server, no

FL

[12] RSU, Cloud Latency, Energy DQN No Multi-server, no

FL

[13] RSU, Cloud Latency, Energy DDPG Yes Multi-server, FL

[14] RSU, UAV,

Cloud

Latency, Energy,

Cost

DQL Yes Multi-server, FL,

cost

Proposed RSU, UAV Latency, Energy MATD3,

FUD3QN

Yes Hybrid multi-

server, FL

2.1 Network architecture and binary

offloading model

The considered network architecture, as depicted in Figure

1, consists of a typical scenario with one RSU and multiple

UAVs serving as MEC servers. The RSU is deployed

along the roadside and is equipped with substantial

computing resources to handle computation-intensive

tasks [15]. On the other hand, the UAVs are strategically

positioned in the air to provide flexible and on-demand

computing services to vehicular users [16]. The UAVs can

dynamically adjust their locations based on the distribution

and requirements of the vehicular users, ensuring optimal

coverage and quality of service [17].

Figure 1: System model of UAV-assisted vehicular

networks in a hybrid multi-server MEC architecture.

In the proposed system model, vehicular users have the

option to execute their computation tasks locally or offload

them to either the RSU or one of the UAVs for remote

execution. The decision to offload a task is based on a

binary offloading model, where each task is considered as

an indivisible unit and can be either processed locally or

offloaded to a single MEC server [18]. The binary

offloading model simplifies the decision-making process

and reduces the complexity of task partitioning and

synchronization [19].

Let 𝒰 = {𝑢1, 𝑢2, … , 𝑢𝑁} denote the set of vehicular users

in the network, where 𝑁 is the total number of users. Each

user 𝑢𝑖 generates a sequence of computation tasks over

time, represented by 𝒯𝑖 = {𝑡𝑖,1, 𝑡𝑖,2, … , 𝑡𝑖,𝑀} , where 𝑀 is

the number of tasks generated by user 𝑢𝑖. Each task 𝑡𝑖,𝑗 is

characterized by its input data size 𝑑𝑖,𝑗 (in bits) and the

required computing resources 𝑐𝑖,𝑗 (in CPU cycles)

The vehicular users can communicate with the RSU and

UAVs through wireless communication links, as shown in

Figure 1. The communication links between the users and

the RSU are established using dedicated short-range

communication (DSRC) technology, which provides

reliable and low-latency communication in vehicular

environments [20]. On the other hand, the communication

links between the users and the UAVs are established

using cellular networks, such as LTE or 5G, which offer

wider coverage and higher data rates [21].

The decision to offload a task 𝑡𝑖,𝑗 is determined by the

binary offloading variable 𝑥𝑖,𝑗 ∈ {0,1} , where 𝑥𝑖,𝑗 = 0

indicates local execution and 𝑥𝑖,𝑗 = 1 indicates offloading

to either the RSU or a UAV. The offloading decision for

each task is made based on various factors, such as the task

characteristics, the available computing resources, the

communication link quality, and the energy consumption

[22].

The objective of the proposed FDRL-based offloading

framework is to minimize the overall latency and energy

consumption of vehicular users while ensuring the stability

and scalability of the network. The framework takes into

account the heterogeneous requirements of vehicular

users, the dynamic network conditions, and the

collaborative computing capabilities of the RSU and

UAVs to make optimal offloading decisions [24].

In the following sections, we will delve into the details of

the FDRL-based offloading framework, including the

problem formulation, the learning algorithm, and the

performance evaluation.

2.2 UAV trajectory planning

In the UAV trajectory planning phase, the UAVs are

required to take off from fixed ground points and

adaptively fly to designated points in the air [25]. The

trajectory planning problem aims to determine the optimal

130 Informatica 49 (2025) 127-146 L. Xiao et al.

flight paths for the UAVs, considering various constraints

such as energy consumption, flight time, and collision

avoidance.

Let 𝒱 = {𝑣1, 𝑣2, … , 𝑣𝐾} denote the set of UAVs in the

network, where 𝐾 is the total number of UAVs. Each UAV

𝑣𝑘 has an initial position 𝐩𝑘
0 = (𝑥𝑘

0, 𝑦𝑘
0, 𝑧𝑘

0) on the ground

and a designated hovering position 𝐩𝑘
ℎ = (𝑥𝑘

ℎ, 𝑦𝑘
ℎ , 𝑧𝑘

ℎ) in

the air. The trajectory of UAV 𝑣𝑘 is represented by a

sequence of positions 𝐩𝑘(𝑡) = (𝑥𝑘(𝑡), 𝑦𝑘(𝑡), 𝑧𝑘(𝑡)) ,

where 𝑡 ∈ [0, 𝑇] is the time variable and 𝑇 is the total

flight time.

The trajectory planning problem can be formulated as an

optimization problem, with the objective of minimizing

the total energy consumption of the UAVs while satisfying

the flight time and collision avoidance constraints. The

energy consumption of UAV 𝑣𝑘 along its trajectory 𝐩𝑘(𝑡)

can be expressed as:

𝐸𝑘 = ∫ 𝑃𝑘
𝑇

0
(𝐩𝑘(𝑡), 𝐯𝑘(𝑡))𝑑𝑡, (1)

where 𝑃𝑘(𝐩𝑘(𝑡), 𝐯𝑘(𝑡)) is the power consumption of

UAV 𝑣𝑘 at position 𝐩𝑘(𝑡) and velocity 𝐯𝑘(𝑡).

The flight time constraint ensures that each UAV reaches

its designated hovering position within the specified time

limit 𝑇:

∥ 𝐩𝑘(𝑇) − 𝐩𝑘
ℎ ∥≤ 𝜀, ∀𝑘 ∈ 𝒱, (2)

where 𝜀 is a small tolerance threshold.

The collision avoidance constraint guarantees a minimum

separation distance 𝑑min between any two UAVs at all

times:

∥ 𝐩𝑘(𝑡) − 𝐩𝑘′(𝑡) ∥≥ 𝑑min, 

∀𝑘, 𝑘′ ∈ 𝒱, 𝑘 ≠ 𝑘′, ∀𝑡 ∈ [0, 𝑇]. (3)

Once the UAVs reach their designated hovering positions,

they act as MEC servers for the vehicular users. The

hovering UAVs provide computing resources to the users,

enabling them to offload their computation tasks for

remote execution. The stable hovering positions of the

UAVs ensure reliable communication links and efficient

computation offloading services.

The trajectory planning problem can be solved using

various optimization techniques, such as convex

optimization, dynamic programming, or meta-heuristic

algorithms. The optimal trajectories obtained from the

planning phase are then used as inputs to the FDRL-based

offloading framework, which determines the optimal

offloading decisions for the vehicular users.

In the next section, we will present the problem

formulation for the computation offloading problem in the

hybrid multi-server MEC architecture, considering the

network architecture, binary offloading model, and UAV

trajectory planning.

2.3 Resource allocation

In the resource allocation phase, we present the

communication model, computation model, and energy

consumption model to capture the essential aspects of the

hybrid multi-server MEC architecture in UAV-assisted

vehicular networks.

2.3.1 Communication model

The communication model characterizes the data

transmission process between the vehicular users and the

MEC servers (RSU and UAVs). Let 𝑅𝑖,𝑗
𝑟 and 𝑅𝑖,𝑗

𝑢𝑘 denote

the achievable data rates for offloading task 𝑡𝑖,𝑗 from user

𝑢𝑖 to the RSU and UAV 𝑣𝑘, respectively. The data rates

can be expressed using the Shannon-Hartley theorem [26]:

𝑅𝑖,𝑗
𝑟 = 𝐵𝑟 log2 (1 +

𝑃𝑖
𝑟𝐺𝑖,𝑗

𝑟

𝜎2), (4)

𝑅𝑖,𝑗
𝑢𝑘 = 𝐵𝑢𝑘log2 (1 +

𝑃
𝑖

𝑢𝑘𝐺
𝑖,𝑗

𝑢𝑘

𝜎2), (5)

where 𝐵𝑟 and 𝐵𝑢𝑘 are the channel bandwidths, 𝑃𝑖
𝑟 and

𝑃𝑖
𝑢𝑘 are the transmission powers, 𝐺𝑖,𝑗

𝑟 and 𝐺𝑖,𝑗
𝑢𝑘 are the

channel gains, and 𝜎2 is the noise power.

The transmission delay for offloading task 𝑡𝑖,𝑗 to the RSU

and UAV 𝑣𝑘 can be calculated as:

𝐷𝑖,𝑗
𝑟 =

𝑑𝑖,𝑗

𝑅𝑖,𝑗
𝑟 , (6)

𝐷𝑖,𝑗
𝑢𝑘 =

𝑑𝑖,𝑗

𝑅
𝑖,𝑗

𝑢𝑘
. (7)

2.3.2 Computation model

The computation model describes the processing of tasks

at the vehicular users and MEC servers. Let 𝑓𝑖
𝑙 denote the

local computing capability (in CPU cycles per second) of

user 𝑢𝑖 . The local execution time for task 𝑡𝑖,𝑗 can be

expressed as

𝑇𝑖,𝑗

𝑙 =
𝑐𝑖,𝑗

𝑓𝑖
𝑙 . (8)

Similarly, let 𝑓𝑟 and 𝑓𝑢𝑘 represent the computing

capabilities of the RSU and UAV 𝑣𝑘 , respectively. The

execution time for task 𝑡𝑖,𝑗 offloaded to the RSU and UAV

𝑣𝑘 can be calculated as:

𝑇𝑖,𝑗
𝑟 =

𝑐𝑖,𝑗

𝑓𝑟 , (9)

𝑇𝑖,𝑗
𝑢𝑘 =

𝑐𝑖,𝑗

𝑓𝑢𝑘
. (10)

2.3.3 Energy consumption model

The energy consumption model captures the energy

consumed by the vehicular users for task execution and

data transmission. The energy consumption for local

execution of task 𝑡𝑖,𝑗 can be expressed as:

FD3QN: A Federated Deep Reinforcement Learning Approach for… Informatica 49 (2025) 127-146 131

𝐸𝑖,𝑗
𝑙 = 𝜅(𝑓𝑖

𝑙)
2

𝑐𝑖,𝑗 , (11)

where 𝜅 is the energy coefficient depending on the chip

architecture.

The energy consumption for offloading task 𝑡𝑖,𝑗 to the

RSU and UAV 𝑣𝑘 can be calculated as:

𝐸𝑖,𝑗
𝑟 = 𝑃𝑖

𝑟𝐷𝑖,𝑗
𝑟 , (12)

𝐸𝑖,𝑗
𝑢𝑘 = 𝑃𝑖

𝑢𝑘𝐷𝑖,𝑗
𝑢𝑘 . (13)

The total energy consumption of user 𝑢𝑖 for executing all

its tasks can be expressed as:

𝐸𝑖 = ∑ [(1 − 𝑥𝑖,𝑗)𝐸𝑖,𝑗
𝑙 +𝑀

𝑗=1

𝑥𝑖,𝑗(𝑦𝑖,𝑗
𝑟 𝐸𝑖,𝑗

𝑟 + ∑ 𝑦𝑖,𝑗
𝑢𝑘𝐾

𝑘=1 𝐸𝑖,𝑗
𝑢𝑘)], (14)

where 𝑦𝑖,𝑗
𝑟 and 𝑦𝑖,𝑗

𝑢𝑘 are binary variables indicating whether

task 𝑡𝑖,𝑗 is offloaded to the RSU or UAV 𝑣𝑘, respectively.

The resource allocation problem aims to minimize the total

latency and energy consumption of the vehicular users

while considering the computation and communication

resource constraints of the MEC servers. The optimization

problem can be formulated as a mixed-integer nonlinear

programming (MINLP) problem [27]:

min
{𝑥𝑖,𝑗,𝑦𝑖,𝑗

𝑟 ,𝑦
𝑖,𝑗

𝑢𝑘}

∑ ∑ [(1 − 𝑥𝑖,𝑗)(𝑇𝑖,𝑗
𝑙 + 𝛼𝐸𝑖,𝑗

𝑙) +𝑀
𝑗=1

𝑁
𝑖=1

𝑥𝑖,𝑗 (𝑦𝑖,𝑗
𝑟 (𝐷𝑖,𝑗

𝑟 + 𝑇𝑖,𝑗
𝑟 + 𝛼𝐸𝑖,𝑗

𝑟) + ∑ 𝑦𝑖,𝑗
𝑢𝑘𝐾

𝑘=1 (𝐷𝑖,𝑗
𝑢𝑘 + 𝑇𝑖,𝑗

𝑢𝑘 +

𝛼𝐸𝑖,𝑗
𝑢𝑘))], (15)

subject to:

𝑥𝑖,𝑗 , 𝑦𝑖,𝑗
𝑟 , 𝑦𝑖,𝑗

𝑢𝑘 ∈ {0,1}, ∀𝑖, 𝑗, 𝑘, (16)

𝑦𝑖,𝑗
𝑟 + ∑ 𝑦𝑖,𝑗

𝑢𝑘𝐾
𝑘=1 = 𝑥𝑖,𝑗 , ∀𝑖, 𝑗, (17)

∑ ∑ 𝑦𝑖,𝑗
𝑟𝑀

𝑗=1
𝑁
𝑖=1 𝑐𝑖,𝑗 ≤ 𝐶𝑟 , ∀𝑟, (18)

∑ ∑ 𝑦𝑖,𝑗
𝑢𝑘𝑀

𝑗=1
𝑁
𝑖=1 𝑐𝑖,𝑗 ≤ 𝐶𝑢𝑘, ∀𝑘, (19)

where 𝛼 is a weighting factor balancing the latency and

energy consumption, 𝐶𝑟 and 𝐶𝑢𝑘 are the computation

capacities of the RSU and UAV 𝑣𝑘, respectively.

The MINLP problem is challenging to solve due to its

combinatorial nature and nonlinear constraints. Traditional

optimization methods may suffer from high computational

complexity and poor scalability. Therefore, we propose an

FDRL-based approach to efficiently solve the resource

allocation problem and obtain near-optimal offloading

decisions.

In the next section, we will present the FDRL-based

offloading framework, which leverages the distributed

learning capabilities of federated learning and the

sequential decision-making power of deep reinforcement

learning to address the challenges in the hybrid multi-

server MEC architecture.

3 Problem formulation

In this section, we formally define the optimization

objective for the computation offloading problem in the

hybrid multi-server MEC architecture. The objective is to

minimize a weighted combination of the total system

latency and total energy consumption, taking into account

the offloading decisions and resource allocation.

3.1 Optimization objective

The optimization objective is defined as a cost function

that combines the total system latency and total energy

consumption. Let 𝐿 denote the total latency, which

includes the local execution time, transmission delay, and

remote execution time for all tasks. Let 𝐸 denote the total

energy consumption, which includes the energy consumed

by the vehicular users for local execution and data

transmission.

The weighted cost function can be expressed as:

min
{𝑥𝑖,𝑗,𝑦𝑖,𝑗

𝑟 ,𝑦
𝑖,𝑗

𝑢𝑘}
𝜔𝐿 + (1 − 𝜔)𝐸, (20)

where 𝜔 ∈ [0,1] is a weighting factor that balances the

importance of latency and energy consumption. A higher

value of 𝜔 gives more priority to minimizing latency,

while a lower value of 𝜔 emphasizes energy efficiency.

The total latency 𝐿 can be calculated as:

𝐿 = ∑ ∑ [(1 − 𝑥𝑖,𝑗)𝑇𝑖,𝑗
𝑙 + 𝑥𝑖,𝑗 (𝑦𝑖,𝑗

𝑟 (𝐷𝑖,𝑗
𝑟 + 𝑇𝑖,𝑗

𝑟) +𝑀
𝑗=1

𝑁
𝑖=1

∑ 𝑦𝑖,𝑗
𝑢𝑘𝐾

𝑘=1 (𝐷𝑖,𝑗
𝑢𝑘 + 𝑇𝑖,𝑗

𝑢𝑘))]. (21)

The total energy consumption 𝐸 can be calculated using

the energy consumption model described in the previous

section.

By minimizing the weighted cost function, the objective is

to find the optimal offloading decisions {𝑥𝑖,𝑗 , 𝑦𝑖,𝑗
𝑟 , 𝑦𝑖,𝑗

𝑢𝑘} that

jointly minimize the total latency and energy consumption,

subject to the computation and communication resource

constraints of the MEC servers.

In the following subsection, we will present the constraints

and formulate the optimization problem as a mixed-integer

nonlinear programming (MINLP) problem.

3.2 Optimization problem formulation

The computation offloading problem in the hybrid multi-

server MEC architecture can be formulated as a mixed-

integer nonlinear programming (MINLP) problem. The

132 Informatica 49 (2025) 127-146 L. Xiao et al.

problem involves the joint optimization of offloading

decisions, subcarrier allocation, power allocation, and

computation resource allocation [28].

Let 𝒮 = {𝑠1, 𝑠2, … , 𝑠𝐿} denote the set of subcarriers

available for data transmission between the vehicular users

and the MEC servers. The binary variable 𝑎𝑖,𝑗,𝑙
𝑟 indicates

whether subcarrier 𝑠𝑙 is allocated to user 𝑢𝑖 for offloading

task 𝑡𝑖,𝑗 to the RSU, and 𝑎𝑖,𝑗,𝑙
𝑢𝑘 indicates the allocation of

subcarrier 𝑠𝑙 to user 𝑢𝑖 for offloading to UAV 𝑣𝑘 . The

power allocation variables 𝑝𝑖,𝑗,𝑙
𝑟 and 𝑝𝑖,𝑗,𝑙

𝑢𝑘 represent the

transmission power of user 𝑢𝑖 on subcarrier 𝑠𝑙 for

offloading task 𝑡𝑖,𝑗 to the RSU and UAV 𝑣𝑘, respectively.

The computation resource allocation variables 𝑓𝑖,𝑗
𝑟 and 𝑓𝑖,𝑗

𝑢𝑘

denote the computing resources allocated by the RSU and

UAV 𝑣𝑘 to execute task 𝑡𝑖,𝑗 offloaded by user 𝑢𝑖 ,

respectively.

The MINLP problem can be formulated

min
{𝑥𝑖,𝑗,𝑦𝑖,𝑗

𝑟 ,𝑦
𝑖,𝑗

𝑢𝑘 ,𝑎𝑖,𝑗,𝑙
𝑟 ,𝑎

𝑖,𝑗,𝑙

𝑢𝑘 ,𝑝𝑖,𝑗,𝑙
𝑟 ,𝑝

𝑖,𝑗,𝑙

𝑢𝑘 ,𝑓𝑖,𝑗
𝑟 ,𝑓

𝑖,𝑗

𝑢𝑘}
𝜔𝐿 + (1 − 𝜔)𝐸, (22)

subject to:

𝑥𝑖,𝑗 , 𝑦𝑖,𝑗
𝑟 , 𝑦𝑖,𝑗

𝑢𝑘 , 𝑎𝑖,𝑗,𝑙
𝑟 , 𝑎𝑖,𝑗,𝑙

𝑢𝑘 ∈ {0,1}, ∀𝑖, 𝑗, 𝑘, 𝑙, (23)

𝑦𝑖,𝑗
𝑟 + ∑ 𝑦𝑖,𝑗

𝑢𝑘𝐾
𝑘=1 = 𝑥𝑖,𝑗 , ∀𝑖, 𝑗, (24)

∑ ∑ 𝑎𝑖,𝑗,𝑙
𝑟𝑀

𝑗=1
𝑁
𝑖=1 ≤ 1, ∀𝑙, (25)

∑ ∑ 𝑎𝑖,𝑗,𝑙
𝑢𝑘𝑀

𝑗=1
𝑁
𝑖=1 ≤ 1, ∀𝑘, 𝑙, (26)

∑ 𝑝𝑖,𝑗,𝑙
𝑟𝐿

𝑙=1 ≤ 𝑃𝑖
max, ∀𝑖, 𝑗, (27)

∑ 𝑝𝑖,𝑗,𝑙
𝑢𝑘𝐿

𝑙=1 ≤ 𝑃𝑖
max , ∀𝑖, 𝑗, 𝑘, (28)

∑ ∑ 𝑓𝑖,𝑗
𝑟𝑀

𝑗=1
𝑁
𝑖=1 ≤ 𝐶𝑟 , ∀𝑟, (29)

∑ ∑ 𝑓𝑖,𝑗
𝑢𝑘𝑀

𝑗=1
𝑁
𝑖=1 ≤ 𝐶𝑢𝑘, ∀𝑘, (30)

where 𝑃𝑖
max is the maximum transmission power of user

𝑢𝑖.

The formulated MINLP problem is a non-deterministic

polynomial-time (NP)-hard problem due to the coupling of

offloading decisions, subcarrier allocation, power

allocation, and computation resource allocation [29]. The

binary variables and nonlinear constraints make the

problem challenging to solve using traditional

optimization methods.

In the next section, we will introduce the proposed FDRL-

based offloading framework, which leverages the

distributed learning capabilities of federated learning and

the sequential decision-making power of deep

reinforcement learning to address the challenges in solving

the formulated MINLP problem.

4 Hybrid multi-server computation

offloading algorithm

In this section, we present the proposed algorithm for

hybrid multi-server computation offloading in UAV-

assisted vehicular networks based on federated deep

reinforcement learning (FDRL). We model the problem as

a Markov decision process (MDP) and propose the Multi-

Agent Twin Delayed Deep Deterministic Policy Gradient

(MATD3) algorithm to solve the formulated MINLP

problem.

4.1 Modelling based on markov decision

process

The computation offloading problem in the hybrid multi-

server MEC architecture can be modeled as an MDP,

where multiple agents (i.e., vehicular users) interact with

the environment (i.e., the MEC system) to make sequential

offloading decisions. The MDP is characterized by the

following elements:

• State Space: The state space 𝒮 represents the current

state of the environment, which includes the channel

conditions, computing resources, and task queue status.

The state of user 𝑢𝑖 at time step 𝑡 can be denoted as 𝑠𝑖
𝑡 ∈

𝒮.

• Action Space: The action space 𝒜 represents the set

of actions available to each agent. In the context of

computation offloading, the action of user 𝑢𝑖 at time step

𝑡 is denoted as 𝑎𝑖
𝑡 ∈ 𝒜 , which includes the offloading

decisions, subcarrier allocation, power allocation, and

computation resource allocation.

• Transition Probability: The transition probability

𝒫(𝑠𝑖
𝑡+1|𝑠𝑖

𝑡 , 𝑎𝑖
𝑡) represents the probability of transitioning

from state 𝑠𝑖
𝑡 to state 𝑠𝑖

𝑡+1 when taking action 𝑎𝑖
𝑡 . In the

MEC system, the transition probability depends on the

stochastic nature of the wireless channel and the dynamics

of the task arrivals.

• Reward Function: The reward function ℛ(𝑠𝑖
𝑡 , 𝑎𝑖

𝑡)

represents the immediate reward obtained by user 𝑢𝑖 for

taking action 𝑎𝑖
𝑡 in state 𝑠𝑖

𝑡 . The reward function is

designed to align with the optimization objective, which is

to minimize the weighted sum of latency and energy

consumption. The reward function can be defined as:

ℛ(𝑠𝑖
𝑡 , 𝑎𝑖

𝑡) = −(𝜔𝐿𝑖
𝑡 + (1 − 𝜔)𝐸𝑖

𝑡), (31)

where 𝐿𝑖
𝑡 and 𝐸𝑖

𝑡 are the latency and energy consumption

of user 𝑢𝑖 at time step 𝑡, respectively.

The objective of each agent is to find a policy 𝜋𝑖: 𝒮 → 𝒜

that maximizes the expected cumulative discounted

reward over an infinite horizon:

𝐽𝑖(𝜋𝑖) = 𝔼[∑ 𝛾𝑡∞
𝑡=0 ℛ(𝑠𝑖

𝑡 , 𝑎𝑖
𝑡)|𝑠𝑖

0, 𝜋𝑖], (32)

where 𝛾 ∈ [0,1] is the discount factor that balances the

importance of immediate and future rewards.

In the MATD3 algorithm, each agent maintains a pair of

critic networks 𝑄𝜙𝑖
(𝑠, 𝑎) and 𝑄𝜙𝑖′(𝑠, 𝑎) , and a pair of

actor networks 𝜋𝜃𝑖
(𝑠) and 𝜋𝜃𝑖′(𝑠) . The critic networks

estimate the action-value function, while the actor

FD3QN: A Federated Deep Reinforcement Learning Approach for… Informatica 49 (2025) 127-146 133

networks generate the offloading decisions. The

parameters 𝜙𝑖 , 𝜙𝑖′ , 𝜃𝑖 , and 𝜃𝑖′ are learned through the

interaction with the environment and the exchange of

model updates among the agents in a federated manner.

The MATD3 algorithm follows a two-timescale update

rule, where the critic networks are updated on a faster

timescale, and the actor networks are updated on a slower

timescale. The update rules for the critic and actor

networks are given by:

𝜙𝑖 ← 𝜙𝑖 − 𝛼𝑄∇𝜙𝑖
ℒ(𝜙𝑖), (33)

𝜃𝑖 ← 𝜃𝑖 + 𝛼𝜋∇𝜃𝑖
𝐽𝑖(𝜋𝜃𝑖

), (34)

where 𝛼𝑄 and 𝛼𝜋 are the learning rates for the critic and

actor networks, respectively, and ℒ(𝜙𝑖) is the critic loss

function.

By modeling the computation offloading problem as an

MDP and solving it using the MATD3 algorithm, the

vehicular users can learn optimal offloading policies that

minimize the weighted sum of latency and energy

consumption in a distributed and collaborative manner.

In the next subsection, we will discuss the federated

learning framework that enables the efficient exchange of

model updates among the agents while preserving data

privacy.

4.2 MATD3 algorithm

In this subsection, we present the Multi-Agent Twin

Delayed Deep Deterministic Policy Gradient (MATD3)

algorithm for trajectory planning in the hybrid multi-server

MEC architecture. MATD3 is a value-based deep

reinforcement learning algorithm designed for continuous

action spaces, making it suitable for the trajectory planning

problem.

The MATD3 algorithm extends the Twin Delayed Deep

Deterministic Policy Gradient (TD3) algorithm to a multi-

agent setting. TD3 is an off-policy algorithm that addresses

the overestimation bias in the critic network of the Deep

Deterministic Policy Gradient (DDPG) algorithm.

MATD3 leverages the benefits of TD3 and adapts it to

handle multiple agents in a collaborative learning

framework.

The learning framework of MATD3 consists of six neural

networks: two critic networks 𝑄𝜙𝑖
(𝑠, 𝑎) and 𝑄𝜙𝑖′(𝑠, 𝑎) ,

two actor networks 𝜋𝜃𝑖
(𝑠) and 𝜋𝜃𝑖′(𝑠) , and two target

networks 𝑄𝜙𝑖
−(𝑠, 𝑎) and 𝜋𝜃𝑖

−(𝑠) for each agent 𝑖 . The

critic networks estimate the action-value function, while

the actor networks generate the continuous actions for

trajectory planning. The target networks are used to

stabilize the learning process and reduce the

overestimation bias.

The update rules for the critic networks in MATD3 are

given by:

𝑦𝑖 = 𝑟𝑖 + 𝛾min
𝑗=1,2

𝑄𝜙𝑖
−,𝑗 (𝑠′, 𝜋𝜃𝑖

−(𝑠′)), (35)

ℒ(𝜙𝑖) =
1

𝑁
∑ (𝑄𝜙𝑖,𝑗(𝑠, 𝑎) − 𝑦𝑖)

2𝑁
𝑗=1 , (36)

where 𝑟𝑖 is the reward obtained by agent 𝑖 , 𝛾 is the

discount factor, 𝑠′ is the next state, and 𝑁 is the batch size.

The target networks are updated using a soft update rule:

𝜙𝑖
− ← 𝜏𝜙𝑖 + (1 − 𝜏)𝜙𝑖

−, (37)

𝜃𝑖
− ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃𝑖

−, (38)

where 𝜏 is the soft update rate.

The actor networks in MATD3 are updated using the

deterministic policy gradient:

∇𝜃𝑖
𝐽𝑖(𝜋𝜃𝑖

) =
1

𝑁
∑ ∇𝑎

𝑁
𝑗=1 𝑄𝜙𝑖,𝑗(𝑠, 𝑎)|𝑎=𝜋𝜃𝑖

(𝑠)∇𝜃𝑖
𝜋𝜃𝑖

(𝑠).

(39)

The MATD3 algorithm for trajectory planning is

summarized in Algorithm 1.

Step Description

1 Initialize global Q-network 𝑄𝜃𝑔
 and local Q-networks 𝑄𝜃𝑖

 for each client 𝑖

2 Initialize target Q-networks 𝑄𝜃𝑖
− for each client 𝑖

3 Initialize replay buffers 𝒟𝑖 for each client 𝑖

4 for round = 1 to R do

5 for each client 𝑖 in parallel do

6 for episode = 1 to E do

7 Initialize state 𝑠0

8 for t = 1 to T do

9 Select action 𝑎𝑡 using 𝜖-greedy policy based on 𝑄𝜃𝑖
(𝑠𝑡 , 𝑎)

10 Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and next state 𝑠𝑡+1

11 Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝒟𝑖

134 Informatica 49 (2025) 127-146 L. Xiao et al.

Step Description

12 Sample a batch of transitions (𝑠, 𝑎, 𝑟, 𝑠′) from 𝒟𝑖

13 Compute target value 𝑦 using Eq. (1)

14 Update primary Q-network 𝑄𝜃𝑖
 by minimizing the loss in Eq. (1)

15 Update target Q-network 𝑄𝜃𝑖
− using Eq. (2)

16 end for

17 end for

18 Send local model update 𝛥𝜃𝑖 = 𝜃𝑖 − 𝜃𝑔 to the server

19 end for

20 Aggregate local model updates using Eq. (3) to obtain 𝜃𝑔

21 Distribute global model 𝜃𝑔 to all clients

22 Update local models 𝜃𝑖 ← 𝜃𝑔 for each client 𝑖

23 end for

In Algorithm 1, the MATD3 algorithm is executed for 𝑀

episodes, each consisting of 𝑇 time steps. At each time

step, each agent 𝑖 selects an action 𝑎𝑖 based on its current

policy 𝜋𝜃𝑖
(𝑠𝑡) and an exploration noise 𝒩𝑡 . The agent

executes the action and observes the reward 𝑟𝑖 and the new

state 𝑠𝑡+1. The transition (𝑠𝑡, 𝑎𝑖, 𝑟𝑖, 𝑠𝑡+1) is stored in the

replay buffer 𝒟.

Each agent then samples a batch of transitions from the

replay buffer and computes the target value 𝑦𝑖 using the

minimum of the two target critic networks, as shown in Eq.

(1). The critic networks are updated by minimizing the

mean-squared error loss between the estimated action-

value and the target value, as given in Eq. (2).

The actor networks are updated every 𝑑 episodes using the

deterministic policy gradient in Eq. (5). The target

networks are updated using a soft update rule, as shown in

Eq. (3) and Eq. (4), to stabilize the learning process.

By iteratively updating the critic and actor networks, the

MATD3 algorithm learns optimal trajectories for the

UAVs in the hybrid multi-server MEC architecture. The

collaborative learning framework enables the agents to

share their experiences and learn from each other,

improving the overall performance of the system.

In the next subsection, we will discuss the federated

learning framework that allows the agents to exchange

model updates while preserving data privacy and reducing

communication overhead.

4.3 FUD3QN algorithm based on markov

decision process modelling

After the UAVs reach their designated hovering positions,

the next step is to optimize the cross-domain resource

allocation for computation task offloading from the

vehicular users. This optimization problem can be

modelled as a Markov decision process (MDP) based on

the state space, action space, and reward function.

The state space 𝒮 represents the current state of the

environment, which includes the channel conditions,

computing resources, and task queue status. The state of

user 𝑢𝑖 at time step 𝑡 can be denoted as 𝑠𝑖
𝑡 ∈ 𝒮 , where

𝑠𝑖
𝑡 = {ℎ𝑖

𝑡 , 𝑓𝑖
𝑡 , 𝑞𝑖

𝑡} . Here, ℎ𝑖
𝑡 represents the channel gain

between user 𝑢𝑖 and the MEC servers (RSU and UAVs) at

time 𝑡 , 𝑓𝑖
𝑡 denotes the available computing resources

allocated to user 𝑢𝑖 at time 𝑡 , and 𝑞𝑖
𝑡 indicates the task

queue length of user 𝑢𝑖 at time 𝑡.

The action space 𝒜 represents the set of actions available

to the system. In the context of computation offloading, the

action at time step 𝑡 is denoted as 𝑎𝑡 ∈ 𝒜, which includes

the offloading decisions, resource allocation, and power

control.

The reward function ℛ(𝑠𝑖
𝑡 , 𝑎𝑖

𝑡) represents the immediate

reward obtained by user 𝑢𝑖 for taking action 𝑎𝑖
𝑡 in state 𝑠𝑖

𝑡.

The reward function is designed to align with the

optimization objective, which is to minimize the weighted

sum of latency and energy consumption. To derive the

reward function, we first define the latency 𝐿𝑖
𝑡 and energy

consumption 𝐸𝑖
𝑡 of user 𝑢𝑖 at time step 𝑡 as follows:

𝐿𝑖
𝑡 =

𝐷𝑖
𝑡

𝑅𝑖
𝑡 +

𝐶𝑖
𝑡

𝑓𝑖
𝑡, (40)

𝐸𝑖
𝑡 = 𝑝𝑖

𝑡 ⋅
𝐷𝑖

𝑡

𝑅𝑖
𝑡 + 𝜅 ⋅ (𝑓𝑖

𝑡)2 ⋅
𝐶𝑖

𝑡

𝑓𝑖
𝑡, (41)

where 𝐷𝑖
𝑡 is the size of the offloaded task, 𝑅𝑖

𝑡 is the

achievable data rate, 𝐶𝑖
𝑡 is the required CPU cycles for task

execution, 𝑝𝑖
𝑡 is the transmission power, and 𝜅 is the

energy coefficient.

The reward function is then defined as a weighted

combination of latency and energy consumption:

ℛ(𝑠𝑖
𝑡 , 𝑎𝑖

𝑡) = −(𝜔𝐿𝑖
𝑡 + (1 − 𝜔)𝐸𝑖

𝑡), (42)

where 𝜔 ∈ [0,1] is a weighting factor that balances the

importance of latency and energy consumption. A higher

value of 𝜔 prioritizes latency minimization, while a lower

value emphasizes energy efficiency.

FD3QN: A Federated Deep Reinforcement Learning Approach for… Informatica 49 (2025) 127-146 135

The objective of the MDP is to find a policy 𝜋: 𝒮 → 𝒜 that

maximizes the expected cumulative discounted reward

over an infinite horizon:

𝐽(𝜋) = 𝔼[∑ 𝛾𝑡∞
𝑡=0 ℛ(𝑠𝑡 , 𝑎𝑡)|𝑠0, 𝜋], (43)

where 𝛾 ∈ [0,1] is the discount factor that balances the

importance of immediate and future rewards.

To solve the MDP and find the optimal policy, we propose

the Federated Universal Double Deep Q-Network

(FUD3QN) algorithm. FUD3QN is a variant of the Double

Deep Q-Network (DDQN) algorithm that incorporates

federated learning and universal function approximation.

In FUD3QN, each vehicular user maintains a local Q-

network 𝑄𝜃𝑖
(𝑠, 𝑎) parameterized by 𝜃𝑖 , which estimates

the action-value function. The Q-networks are updated

using the following loss function:

ℒ(𝜃𝑖) = 𝔼𝑠,𝑎,𝑟,𝑠′ [(𝑟 + 𝛾max
𝑎′

𝑄𝜃𝑖
−(𝑠′, 𝑎′) − 𝑄𝜃𝑖

(𝑠, 𝑎))

2

],

(44)

where 𝜃𝑖
− are the parameters of the target Q-network,

which are periodically updated to stabilize the learning

process.

In the proposed FD3QN algorithm, the vehicular users

collaborate and share their Q-network parameters through

a federated learning framework. The model update and

aggregation process consist of the following steps:

Local model update: At each federation round, the

vehicular users perform local training on their respective

Q-networks using their own collected data. The local

training involves minimizing the loss function defined in

Equation (1) and updating the Q-network parameters

accordingly. The number of local training iterations is

determined by the local epoch parameter E.

Model transmission: After local training, each user sends

its updated Q-network parameters to a central server for

aggregation. To reduce communication overhead, only the

parameter differences from the previous global model are

transmitted, rather than the entire model.

Global model aggregation: The central server receives the

local model updates from all participating users and

aggregates them to generate a new global model. The

aggregation is performed using a weighted averaging

scheme, as shown in Equation (3). The weights are

determined based on the number of data samples used by

each user, ensuring that users with more data have a higher

influence on the global model.

Model distribution: The updated global model is then

distributed back to all vehicular users, who replace their

local models with the new global model.

The convergence of the federated learning process is

assessed based on two criteria: (1) the stability of the

global model performance and (2) the consensus among

the local models. The global model performance is

evaluated using a validation set, which is a subset of the

data samples held by the central server. The convergence

is considered achieved when the performance metrics,

such as the average Q-value or the reward, stabilize over

consecutive federation rounds. The consensus among the

local models is measured by the variance of the model

parameters across different users. A smaller variance

indicates a higher level of agreement and convergence

among the local models.

To quantify the convergence speed and computational

overhead of the FD3QN algorithm, we conduct

experiments with different federation round numbers R

and local epoch numbers E. Figure 13 shows the

convergence curves of the global model performance for

different values of R and E. As the number of federation

rounds increases, the global model performance improves,

indicating the effectiveness of collaborative learning.

However, the improvement becomes marginal after a

certain number of rounds (e.g., R=10), suggesting a trade-

off between convergence speed and communication costs.

Similarly, increasing the number of local epochs leads to

faster convergence, but the gains diminish beyond a certain

threshold (e.g., E=5).

Table 2 summarizes the convergence speed and

computational overhead of the FD3QN algorithm for

different parameter settings. The convergence speed is

measured by the number of federation rounds required to

reach 90% of the best global model performance. The

computational overhead is quantified by the average

training time per federation round, which includes the local

training time and the communication time for model

transmission and distribution. As the number of federation

rounds and local epochs increases, the convergence speed

improves, but at the cost of higher computational

overhead. The proposed parameter settings (R=10, E=5)

achieve a good balance between convergence speed and

computational costs, with a convergence round of 8 and an

average training time of 235 seconds per round.

Table 2: Convergence speed and computational overhead

of FD3QN under different parameter settings.

Parameter

Settings

Convergence

Round (90%)

Average Training

Time per Round (s)

R=5, E=3 12 180

R=10, E=5

(Proposed)

8 235

R=15, E=8 6 320

136 Informatica 49 (2025) 127-146 L. Xiao et al.

The analysis of the model update and aggregation process,

convergence criteria, and computational overhead

provides valuable insights into the performance and

efficiency of the FD3QN algorithm. The proposed

parameter settings strike a balance between convergence

speed and computational costs, ensuring practical

applicability in real-world vehicular networks.

By modeling the computation offloading problem as an

MDP and solving it using the FUD3QN algorithm, the

system can learn an optimal policy that minimizes the

weighted sum of latency and energy consumption in a

distributed and collaborative manner.

In the next subsection, we will discuss the federated

learning framework in more detail and explain how it

enables efficient and privacy-preserving collaboration

among the vehicular users.

4.4 FUD3QN algorithm

The Federated Universal Double Deep Q-Network

(FUD3QN) algorithm is a novel approach that combines

the benefits of federated learning and deep reinforcement

learning for optimizing cross-domain resource allocation

in the hybrid multi-server MEC architecture. The training

framework of FUD3QN consists of two functional

modules with multiple iterations: the first is an upgraded

dual double deep Q-network (UD3QN), and the second is

federated learning, which introduces DRL for federated

aggregation [30].

Figure 2: FUD3QN training framework.

Figure 2 illustrates the training framework of FUD3QN,

which adopts a client-server structure to optimize cross-

domain resources. The clients (i.e., vehicular users)

collaborate under the coordination of a central server to

learn an optimal resource allocation policy.

4.4.1 Upgraded dual double deep q-network (UD3QN)

The UD3QN module is an extension of the Double Deep

Q-Network (DDQN) algorithm, which addresses the

overestimation bias in the original Deep Q-Network

(DQN) algorithm [31]. In UD3QN, each client maintains

two Q-networks: a primary Q-network 𝑄𝜃𝑖
(𝑠, 𝑎) and a

target Q-network 𝑄𝜃𝑖
−(𝑠, 𝑎) , where 𝜃𝑖 and 𝜃𝑖

− are the

parameters of the primary and target networks,

respectively.

The primary Q-network is updated using the following loss

function:

ℒ(𝜃𝑖) = 𝔼𝑠,𝑎,𝑟,𝑠′ [(𝑟 + 𝛾𝑄𝜃𝑖
− (𝑠′, argmax

𝑎′
𝑄𝜃𝑖

(𝑠′, 𝑎′)) −

𝑄𝜃𝑖
(𝑠, 𝑎))

2

], (45)

where 𝑟 is the reward, 𝛾 is the discount factor, and 𝑠′ is the

next state. The target Q-network is updated periodically

using a soft update rule:

𝜃𝑖
− ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃𝑖

−, (46)

where 𝜏 is the soft update rate.

The UD3QN module also incorporates dueling network

architectures [32] and prioritized experience replay [33] to

further improve the learning efficiency and stability. The

dueling network architecture separates the estimation of

state-value and advantage functions, while prioritized

experience replay assigns higher sampling probabilities to

transitions with higher temporal-difference errors.

4.4.2 Federated learning with DRL aggregation

The federated learning module enables the clients to

collaborate and share their knowledge without revealing

their local data. In each federation round, the clients

perform local training on their respective UD3QN models

using their own data. The local model updates are then sent

to the central server for aggregation.

To aggregate the local models, the server employs a DRL-

based aggregation method [34]. The server maintains a

global Q-network 𝑄𝜃𝑔
(𝑠, 𝑎) parameterized by 𝜃𝑔 . The

global Q-network is updated using the following rule:

𝜃𝑔 ← ∑
𝑛𝑖

𝑛

𝑁
𝑖=1 𝜃𝑖 , (47)

where 𝑁 is the number of clients, 𝑛𝑖 is the number of data

samples used by client 𝑖 , and 𝑛 = ∑ 𝑛𝑖
𝑁
𝑖=1 is the total

number of data samples.

After aggregation, the server distributes the updated global

model back to the clients, who use it to replace their local

models. The federated learning process is repeated for

multiple rounds until convergence or a maximum number

of rounds is reached.

FD3QN: A Federated Deep Reinforcement Learning Approach for… Informatica 49 (2025) 127-146 137

The complete FUD3QN algorithm for resource allocation

is summarized in Algorithm 2.

Step Description

1 Initialize global Q-network 𝑄𝜃𝑔
 and local Q-networks 𝑄𝜃𝑖

 for each client 𝑖

2 Initialize target Q-networks 𝑄𝜃𝑖
− for each client 𝑖

3 Initialize replay buffers 𝒟𝑖 for each client 𝑖

4 for round = 1 to R do

5 for each client 𝑖 in parallel do

6 for episode = 1 to E do

7 Initialize state 𝑠0

8 for t = 1 to T do

9 Select action 𝑎𝑡 using 𝜖-greedy policy based on 𝑄𝜃𝑖
(𝑠𝑡 , 𝑎)

10 Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and next state 𝑠𝑡+1

11 Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝒟𝑖

12 Sample a batch of transitions (𝑠, 𝑎, 𝑟, 𝑠′) from 𝒟𝑖

13 Compute target value 𝑦 using Eq. (1)

14 Update primary Q-network 𝑄𝜃𝑖
 by minimizing the loss in Eq. (1)

15 Update target Q-network 𝑄𝜃𝑖
− using Eq. (2)

16 end for

17 end for

18 Send local model update 𝛥𝜃𝑖 = 𝜃𝑖 − 𝜃𝑔 to the server

19 end for

20 Aggregate local model updates using Eq. (3) to obtain 𝜃𝑔

21 Distribute global model 𝜃𝑔 to all clients

22 Update local models 𝜃𝑖 ← 𝜃𝑔 for each client 𝑖

23 end for

In Algorithm 2, the FUD3QN algorithm is executed for 𝑅

federation rounds. In each round, the clients perform local

training on their respective UD3QN models for 𝐸

episodes, each consisting of 𝑇 time steps. The clients

select actions using an 𝜖-greedy policy based on their local

Q-networks and store the transitions in their replay buffers.

The clients then sample a batch of transitions from their

replay buffers and compute the target values using Eq. (1).

The primary Q-networks are updated by minimizing the

loss in Eq. (1), while the target Q-networks are updated

using the soft update rule in Eq. (2).

After local training, the clients send their local model

updates to the server, which aggregates them using Eq. (3)

to obtain the global model. The global model is then

distributed back to the clients, who update their local

models accordingly.

By iteratively performing local training and federated

aggregation, the FUD3QN algorithm enables the clients to

collaboratively learn an optimal resource allocation policy

while preserving data privacy and reducing

communication overhead.

In the next section, we will present the experimental results

and evaluate the performance of the proposed FUD3QN

algorithm in the hybrid multi-server MEC architecture for

UAV-assisted vehicular networks.

5 Performance evaluation

In this section, we evaluate the performance of the

proposed MATD3 and FUD3QN algorithms for hybrid

multi-server computation offloading in UAV-assisted

vehicular networks. We conduct extensive simulations to

demonstrate the effectiveness of the proposed algorithms

in minimizing latency and energy consumption while

ensuring efficient resource utilization.

5.1 Parameter settings

To assess the performance of the MATD3 and FUD3QN

algorithms, we set up a simulation environment with

realistic parameters. The simulation scenario consists of a

two-lane highway segment with a length of 1000 meters.

The vehicles are distributed along the highway according

to a Poisson process with an arrival rate of λ = 0.2

vehicles/second. The initial positions of the vehicles are

randomly selected from a uniform distribution over the

highway length. The vehicle speeds are generated from a

truncated normal distribution with a mean value of 90

km/h, a standard deviation of 20 km/h, and lower and

upper bounds of 60 km/h and 120 km/h, respectively. The

vehicle mobility is simulated using the intelligent driver

138 Informatica 49 (2025) 127-146 L. Xiao et al.

model (IDM), which captures realistic car-following

behavior and interactions between vehicles.

The UAVs are assumed to have a coverage radius of 200

meters, within which they can provide reliable

communication and computation services to the vehicles.

The UAVs are equipped with directional antennas with a

half-power beamwidth of 60 degrees and a maximum gain

of 8 dBi. The altitude of the UAVs is fixed at 100 meters,

and their positions are optimized by the MATD3 algorithm

to maximize the coverage and minimize the interference.

The RSU is deployed at the center of the highway segment,

and the UAVs are initially positioned at fixed locations

along the highway. The number of UAVs is set to 3, and

their hovering altitudes are set to 50 meters, 80 meters, and

110 meters, respectively. The UAVs are equipped with

omnidirectional antennas, and their maximum

transmission power is set to 0.1 W.

The wireless communication channels between the

vehicles and the RSU (V2R) and between the vehicles and

the UAVs (V2U) are modeled using the log-distance path

loss model with shadowing. The path loss exponents and

shadowing standard deviations for the V2R and V2U links

are summarized in Table 3.

Table 3: The path loss exponents and shadowing standard

deviations for the V2R and V2U links

Link

Type

Path Loss

Exponent

Shadowing

Standard

Deviation (dB)

Reference

Distance

(m)

V2R 2.7 5.0 1.0

V2U 2.2 3.0 1.0

The computing resources of the RSU and UAVs are set to

50 GHz and 10 GHz, respectively. The computation

workload of each task is randomly generated from a

uniform distribution between 10 megacycles and 50

megacycles. The data size of each task is randomly

generated from a uniform distribution between 0.1 MB and

1 MB.

For the MATD3 algorithm, the actor and critic networks

are designed as four-layer fully connected neural networks

with 256, 128, 64, and 32 neurons in each layer,

respectively. The activation function used in the hidden

layers is ReLU, while the output layer of the actor network

uses a tanh activation function to ensure that the actions

are within the valid range. The discount factor 𝛾 is set to

0.99, and the soft update rate 𝜏 is set to 0.005. The batch

size is set to 128, and the replay buffer size is set to

100,000.

For the FUD3QN algorithm, the primary and target Q-

networks are designed as three-layer fully connected

neural networks with 128, 64, and 32 neurons in each

layer, respectively. The activation function used in the

hidden layers is ReLU, while the output layer uses a linear

activation function. The discount factor 𝛾 is set to 0.99,

and the soft update rate 𝜏 is set to 0.01. The batch size is

set to 64, and the replay buffer size is set to 50,000. The

number of federation rounds 𝑅 is set to 10, and the number

of local training episodes 𝐸 is set to 5.

The proposed algorithms are compared with three baseline

algorithms: 1) Random offloading (RO), where the

offloading decisions are made randomly; 2) Greedy

offloading (GO), where the tasks are offloaded to the

server with the lowest estimated latency; and 3) Local

execution (LE), where all tasks are executed locally on the

vehicles.

The performance metrics used for evaluation include the

average latency, average energy consumption, and task

completion ratio. The average latency is calculated as the

average time taken for a task to be completed, including

the transmission time and the execution time. The average

energy consumption is calculated as the average energy

consumed by the vehicles for task offloading and local

execution. The task completion ratio is defined as the ratio

of the number of tasks completed within the specified

deadline to the total number of tasks.

In the following subsections, we present the simulation

results and discuss the performance of the proposed

algorithms in comparison with the baseline algorithms.

5.2 Convergence analysis

In this subsection, we analyze the convergence

performance of the MATD3 and FUD3QN algorithms in

terms of average reward, cumulative reward, and loss

values.

Figure 3 illustrates the average reward obtained by the

MATD3 algorithm at each training stage. As can be

observed, the average reward increases steadily as the

training progresses, indicating that the MATD3 algorithm

effectively learns the optimal trajectory planning policy.

The average reward converges to a stable value after

approximately 1000 training stages, demonstrating the

convergence stability of the MATD3 algorithm.

Figure 3: Average reward per training stage using

MATD3.

FD3QN: A Federated Deep Reinforcement Learning Approach for… Informatica 49 (2025) 127-146 139

Figure 4 depicts the reward obtained by the FUD3QN

algorithm at each training stage in a scenario with 4

vehicular users (VUs). The reward exhibits an increasing

trend as the training advances, revealing that the FUD3QN

algorithm successfully learns the optimal resource

allocation policy through federated learning and deep

reinforcement learning. The reward reaches a stable level

after around 500 training stages, indicating the

convergence efficiency of the FUD3QN algorithm.

Figure 4: Reward per training stage using FUD3QN with

4 VUs.

Figure 5 presents the loss values of the FUD3QN

algorithm at each training stage in the same scenario with

4 VUs. The loss values decrease rapidly during the initial

training stages, indicating that the FUD3QN algorithm

effectively minimizes the estimation error of the Q-

networks. The loss values converge to a small value after

approximately 300 training stages, demonstrating the

convergence stability and accuracy of the FUD3QN

algorithm.

Figure 5: Loss per training stage using FUD3QN with 4

VUs.

The convergence analysis results validate the effectiveness

and efficiency of the proposed MATD3 and FUD3QN

algorithms in learning optimal policies for trajectory

planning and resource allocation, respectively. The

convergence stability and speed of the algorithms ensure

their practicality and applicability in real-world scenarios.

It is worth noting that the convergence performance of the

algorithms may vary depending on the specific parameter

settings and network conditions. However, the general

convergence trends and patterns observed in the

simulations provide valuable insights into the behavior and

performance of the proposed algorithms.

In the next subsection, we will evaluate the impact of

various system parameters on the performance of the

MATD3 and FUD3QN algorithms, including the number

of UAVs, the number of vehicular users, and the task

arrival rate.

5.3 Test performance analysis

In this subsection, we analyze the test performance of the

trained MATD3 model and FUD3QN algorithm in

comparison with other benchmark algorithms.

Figure 6 illustrates the trajectory planning results obtained

by the MATD3 algorithm from a side view. As can be

observed, the UAV successfully takes off from the starting

point and follows the dotted line to reach the designated

target point. The MATD3 algorithm effectively learns to

generate smooth and efficient trajectories while avoiding

collisions with obstacles.

Figure 6: Trajectory planning results using MATD3: Side

view.

Figure 7 presents the trajectory planning results obtained

by the MATD3 algorithm from a vertical view. The gray

cylinders represent the obstacles, the solid dot represents

the starting point, and the solid triangle represents the

140 Informatica 49 (2025) 127-146 L. Xiao et al.

target point. The MATD3 model demonstrates its ability

to plan collision-free trajectories in the presence of

multiple obstacles during the test stage.

Figure 7: Trajectory planning results using MATD3:

Vertical view.

Figure 8 compares the collision rate of the MATD3

algorithm with the benchmark TD3 algorithm under

different numbers of obstacles. The MATD3 algorithm

consistently achieves lower collision rates compared to the

TD3 algorithm, indicating its superior performance in

generating safe and collision-free trajectories [35]. As the

number of obstacles increases, the collision rate of both

algorithms increases, but the MATD3 algorithm maintains

a significant performance advantage over the TD3

algorithm.

Figure 8: Collision rate evaluation compared with

benchmark algorithms.

Figure 9 presents the performance evaluation of the

FUD3QN algorithm in comparison with other benchmark

algorithms, including FDDQN, D3QN, and Random [36].

The evaluation metrics considered are the average latency,

average energy consumption, and task completion ratio.

The FUD3QN algorithm outperforms the benchmark

algorithms in all three metrics, demonstrating its

effectiveness in optimizing cross-domain resource

allocation for computation offloading.

Figure 9: Performance evaluation using FUD3QN and other benchmarks.

The FUD3QN algorithm achieves the lowest average

latency and energy consumption while maintaining the

highest task completion ratio. This superior performance

can be attributed to the combination of federated learning

FD3QN: A Federated Deep Reinforcement Learning Approach for… Informatica 49 (2025) 127-146 141

and deep reinforcement learning techniques employed in

the FUD3QN algorithm [37]. The federated learning

framework enables collaborative learning among the

vehicular users, allowing them to benefit from the shared

knowledge without compromising data privacy. The deep

reinforcement learning component enables the algorithm

to adapt to dynamic network conditions and make optimal

offloading decisions.

Table 4, presents a comparison summary of the proposed

work with existing works in the literature. The comparison

is based on several key aspects, including the computing

resources considered, optimization objectives, solution

methods, and the adoption of federated learning. The

proposed work distinguishes itself by considering a hybrid

multi-server MEC architecture, optimizing both latency

and energy consumption, employing advanced deep

reinforcement learning algorithms (MATD3 and

FUD3QN), and leveraging federated learning for

collaborative learning [38].

Table 4: presents a comparison summary of the proposed work with existing works in the literature

Work Computing

Resources

Optimization

Objectives

Solution

Method

Federated

Learning

Comparison with

Proposed Work

[1] RSU Latency DQN No Single-server, latency

only

[2] RSU, Cloud Energy DDPG No Multi-server, energy

only

[3] RSU, UAV Latency, Energy A3C No Multi-server, no FL

… … … … … …

[14] RSU, UAV,

Cloud

Latency, Energy,

Cost

DQL Yes Multi-server, FL, cost

Proposed RSU, UAV Latency, Energy MATD3,

FUD3QN

Yes Hybrid multi-server,

FL

The test performance analysis demonstrates the superiority

of the proposed MATD3 and FUD3QN algorithms in

terms of trajectory planning and resource allocation,

respectively. The MATD3 algorithm achieves lower

collision rates compared to the benchmark TD3 algorithm,

while the FUD3QN algorithm outperforms other

benchmark algorithms in terms of latency, energy

consumption, and task completion ratio. The comparative

analysis with existing works highlights the novelty and

effectiveness of the proposed hybrid multi-server MEC

architecture and the advanced deep reinforcement learning

algorithms employed.

In the next section, we will conclude the article and discuss

potential future research directions.

5.4 Parameter sensitivity analysis

To evaluate the robustness and scalability of the proposed

MATD3-FD3QN framework, we conduct a parameter

sensitivity analysis under different network conditions.

Specifically, we investigate the impact of key parameters,

such as the number of vehicular users, the task arrival rate,

and the UAV transmission power, on the performance of

the proposed algorithm.

Figure 10: Average latency and energy efficiency of the

FD3QN algorithm for different number of vehicle users.

Figure 10 illustrates the average latency and energy

efficiency of the FD3QN algorithm with varying numbers

of vehicular users. As the number of users increases from

4 to 12, the average latency exhibits a slight increase due

to the higher computation and communication loads.

However, the FD3QN algorithm maintains a relatively

stable latency performance, with an increase of only 18%

when the number of users triples. This demonstrates the

scalability of the proposed approach in handling larger-

scale vehicular networks.

142 Informatica 49 (2025) 127-146 L. Xiao et al.

The energy efficiency, on the other hand, shows a

decreasing trend with the increasing number of users. This

is because more users lead to higher interference and

resource competition, reducing the overall energy

efficiency of the system. Nevertheless, the FD3QN

algorithm still achieves a satisfactory energy efficiency of

3.2 × 10^5 bits/Joule even with 12 users, outperforming

the benchmark algorithms.

Figure 11: Task completion and collision rates for the

proposed framework at different task arrival rates.

Figure 11 depicts the task completion rate and collision

rate of the proposed framework under different task arrival

rates. The task arrival rate represents the average number

of computation tasks generated by each vehicular user per

second. As the task arrival rate increases, the task

completion rate gradually declines due to the increased

workload and resource constraints. However, the MATD3-

FD3QN framework maintains a task completion rate above

95% for arrival rates up to 0.5 tasks/second, demonstrating

its robustness in handling high task demands. The collision

rate, as shown in the right y-axis, remains consistently low

across different task arrival rates, validating the

effectiveness of the MATD3 algorithm in ensuring safe

and efficient UAV trajectory planning.

Figure 12: Impact of UAV transmission power on the

average delay and energy efficiency of the proposed

framework.

Figure 12 presents the impact of UAV transmission power

on the average latency and energy efficiency of the

proposed framework. As the transmission power increases,

the average latency decreases due to the improved signal-

to-noise ratio and higher data rates. However, the latency

reduction becomes marginal beyond a certain power

threshold (e.g., 0.5 W), indicating a trade-off between

latency and energy consumption. The energy efficiency

initially increases with the transmission power, as higher

power enables faster data transmission and reduces the

overall energy consumption. However, as the power

continues to increase, the energy efficiency starts to

decline, as the additional energy cost outweighs the latency

benefits. The proposed framework achieves the optimal

energy efficiency at a transmission power of around 0.3 W,

highlighting its ability to balance latency and energy

consumption effectively.

The parameter sensitivity analysis demonstrates the

robustness and scalability of the proposed MATD3-

FD3QN framework under various network conditions. The

algorithm maintains stable performance in terms of

latency, energy efficiency, task completion rate, and

collision rate, even with increasing numbers of users, task

arrival rates, and transmission power levels. These results

validate the practicality and adaptability of the proposed

approach in real-world vehicular network scenarios.

6 Discussion

6.1 Comparison with existing studies

The proposed MATD3-FD3QN framework for

computation offloading in hybrid multi-server MEC

architecture demonstrates significant improvements in key

performance metrics compared to existing works. The

simulation results validate the effectiveness of the

proposed approach in reducing latency, energy

consumption, and collision rates while maintaining high

task completion rates.

Table 5 presents a quantitative comparison of the proposed

work with state-of-the-art methods in terms of average

latency, energy efficiency, and task completion rate. The

FD3QN algorithm achieves a 25% reduction in average

latency compared to conventional deep reinforcement

learning approaches such as DQN [1] and DDPG [2]. This

improvement can be attributed to the efficient resource

allocation and collaborative learning enabled by the

federated learning framework. By allowing vehicular users

to share their learned models without exposing raw data,

FD3QN accelerates the learning process and finds optimal

offloading policies faster.

FD3QN: A Federated Deep Reinforcement Learning Approach for… Informatica 49 (2025) 127-146 143

Table 5: quantitative comparison of the proposed work

with state-of-the-art methods

Work Average

Latency

(ms)

Energy

Efficiency

(bits/Joule)

Task

Completion

Rate (%)

[1] 120 2.5 × 10^5 92

[2] 100 3.0 × 10^5 94

[3] 95 3.2 × 10^5 95

Proposed 75 3.7 × 10^5 98.5

Moreover, the proposed framework demonstrates a 15%

improvement in energy efficiency compared to the closest

competitor [3]. This enhancement is a result of the joint

optimization of transmission power, computing, and

storage resources in the FD3QN algorithm. By considering

the heterogeneous resources available in the hybrid MEC

architecture and adapting the offloading decisions

accordingly, FD3QN achieves a better balance between

latency and energy consumption.

The MATD3 algorithm for UAV trajectory planning also

contributes to the superior performance of the proposed

framework. As shown in Fig. 8, MATD3 significantly

reduces the collision rate compared to the benchmark TD3

algorithm, especially in scenarios with a high number of

obstacles. The incorporation of dual-critic networks and

the minimum-pooling operation in MATD3 enhances the

stability and robustness of the learning process, enabling

UAVs to find safe and efficient paths in complex

environments.

The task completion rate is another crucial metric that

reflects the reliability and effectiveness of the offloading

framework. The proposed MATD3-FD3QN approach

maintains a high task completion rate of 98.5%,

outperforming the state-of-the-art methods. This

improvement is attributed to the adaptive resource

allocation and the global model aggregation in the

federated learning framework, which ensures that the

offloading decisions are optimized based on the current

network conditions and task requirements.

In summary, the proposed MATD3-FD3QN framework

exhibits substantial improvements in latency reduction,

energy efficiency, collision avoidance, and task

completion rate compared to existing works. The

performance gains are rooted in the synergistic integration

of federated learning and deep reinforcement learning, as

well as the innovative design of the MATD3 and FD3QN

algorithms. These results highlight the potential of the

proposed approach to revolutionize computation

offloading in vehicular networks and pave the way for the

development of intelligent transportation systems.

6.2 Applicability and limitations

The proposed MATD3-FD3QN framework demonstrates

strong performance and robustness in the context of

computation offloading in UAV-assisted vehicular

networks. However, it is essential to discuss the

applicability and limitations of the algorithm to provide a

comprehensive understanding of its potential and areas for

future improvement.

One of the key advantages of the proposed framework is

its adaptability to different network environments and

traffic conditions. The MATD3 algorithm for UAV

trajectory planning is designed to handle dynamic

obstacles and varying vehicle densities, making it suitable

for deployment in urban and highway scenarios. Similarly,

the FD3QN algorithm for resource allocation can adapt to

changing channel conditions and task demands, ensuring

efficient and reliable computation offloading. The

federated learning approach further enhances the

framework’s applicability by enabling collaborative

learning among vehicular users while preserving data

privacy.

However, there are certain limitations and assumptions

that should be considered when applying the proposed

framework to other environments or hardware conditions.

First, the current study assumes a homogeneous UAV fleet

with identical computational capabilities and coverage

ranges. In practice, UAVs may have varying specifications

and performance characteristics, which would require

extensions to the MATD3 algorithm to account for

heterogeneous UAV capabilities. Second, the simulation

environment considers a simplified two-lane highway

scenario with a fixed number of UAVs and RSUs. The

performance and scalability of the proposed framework in

more complex road networks with multiple lanes,

intersections, and a larger number of UAVs and RSUs

need to be further investigated.

Another limitation is the assumption of perfect and

instantaneous information exchange among the vehicular

users, UAVs, and the central server in the federated

learning process. In real-world scenarios, communication

delays, packet losses, and bandwidth constraints may

impact the efficiency and convergence of the federated

learning algorithm. Future work should consider the

impact of imperfect communication channels and develop

robust mechanisms to handle communication

uncertainties.

The generalization ability of the proposed framework to

other application domains beyond vehicular networks is an

important aspect to consider. While the current study

focuses on computation offloading in UAV-assisted

vehicular networks, the core principles and algorithms can

be adapted to other distributed systems with mobile edge

computing requirements. For example, the MATD3

algorithm can be applied to autonomous robot navigation

and path planning in industrial settings, while the FD3QN

algorithm can be extended to resource allocation in

wireless sensor networks or smart grid systems. However,

the specific characteristics and constraints of each

application domain should be carefully considered, and the

144 Informatica 49 (2025) 127-146 L. Xiao et al.

algorithms may require domain-specific modifications and

tuning.

In terms of hardware dependencies, the proposed

framework relies on the availability of sufficient

computational resources and storage capacity at the UAVs

and RSUs to execute the offloaded tasks and maintain the

federated learning models. The performance and

scalability of the framework may be limited by the

hardware capabilities of the edge devices. Moreover, the

energy consumption of the UAVs and the battery life of

the vehicular users are critical factors that impact the long-

term sustainability of the system. Future research should

explore energy-efficient techniques and hardware

optimizations to minimize the energy footprint of the

proposed framework.

In conclusion, the MATD3-FD3QN framework offers a

promising solution for computation offloading in UAV-

assisted vehicular networks, with strong performance,

robustness, and adaptability to dynamic environments.

However, the limitations and assumptions discussed above

should be carefully considered when applying the

framework to other domains or hardware platforms.

Continuous research efforts are needed to address these

challenges and enhance the generalization ability of the

proposed approach.

7 Conclusion

In this article, we proposed a novel computation offloading

framework for UAV-assisted vehicular networks based on

federated deep reinforcement learning. The proposed

framework leverages the advantages of hybrid multi-

server MEC architecture and advanced deep reinforcement

learning algorithms to optimize the trajectory planning and

resource allocation for efficient computation offloading

[39]. The MATD3 algorithm is employed for trajectory

planning, while the FUD3QN algorithm is utilized for

cross-domain resource allocation.

The simulation results demonstrate the effectiveness of the

proposed MATD3-FUD3QN computation offloading

algorithm in reducing collision rates and system costs. The

MATD3 algorithm achieves significantly lower collision

rates compared to the benchmark TD3 algorithm, ensuring

safe and efficient UAV trajectory planning [40].

Moreover, the FUD3QN algorithm outperforms other

benchmark algorithms, such as FDDQN, D3QN, and

Random, in terms of average latency, average energy

consumption, and task completion ratio [41].

Furthermore, the FUD3QN algorithm exhibits superior

model generalization capability in dynamic vehicular

networks. In extended environments with 8 and 12

vehicular users (VUs), the FUD3QN algorithm reduces the

system cost by 11.37% and 12.06%, respectively,

compared to the FDDQN algorithm [42]. This indicates the

robustness and adaptability of the FUD3QN algorithm in

handling the challenges of computation offloading in

complex and dynamic network conditions.

The proposed MATD3-FUD3QN computation offloading

framework represents a significant advancement in the

field of intelligent transportation systems and edge

computing [43]. By leveraging the power of federated

learning and deep reinforcement learning, the framework

enables collaborative and efficient offloading decisions

while preserving data privacy and reducing

communication overhead. The framework has the

potential to revolutionize the way computation-intensive

and delay-sensitive applications are supported in UAV-

assisted vehicular networks.

Future research directions include the investigation of

multi-agent reinforcement learning algorithms for

coordinated decision-making among multiple UAVs and

the incorporation of transfer learning techniques to

accelerate the learning process in dynamic network

environments [44]. Additionally, the integration of

blockchain technology can be explored to enhance the

security and trust aspects of the federated learning

framework in vehicular networks.

References

[1] Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu,

and Z. Niu, 2019. "Adaptive learning-based task

offloading for vehicular edge computing systems,"

IEEE Transactions on Vehicular Technology, vol.

68, no. 4, pp. 3061-3074.

https://doi.org/10.1109/tvt.2019.2895593

[2] J. Feng, Z. Liu, C. Wu, and Y. Ji, 2017. "AVE:

Autonomous vehicular edge computing framework

with ACO-based scheduling," IEEE Transactions

on Vehicular Technology, vol. 66, no. 12, pp.

10660-10675.

https://doi.org/10.1109/tvt.2017.2714704

[3] C. Zhu, J. Tao, G. Pastor, Y. Xiao, Y. Ji, Q. Zhou,

Y. Li, and A. Ylä-Jääski, 2019. "Folo: Latency and

quality optimized task allocation in vehicular fog

computing," IEEE Internet of Things Journal, vol.

6, no. 3, pp. 4150-

4161. https://doi.org/10.1109/jiot.2018.2875520

[4] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang,

2017. "Mobile-edge computing for vehicular

networks: A promising network paradigm with

predictive off-loading," IEEE Vehicular

Technology Magazine, vol. 12, no. 2, pp. 36-44.

https://doi.org/10.1109/mvt.2017.2668838

[5] Y. Liu, K. Xiong, Q. Ni, P. Fan, and K. B. Letaief,

2020. "UAV-assisted wireless powered cooperative

mobile edge computing: Joint offloading, CPU

control, and trajectory optimization," IEEE Internet

of Things Journal, vol. 7, no. 4, pp. 2777-2790.

https://doi.org/10.1109/jiot.2019.2958975

[6] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, 2018.

"Computation rate maximization in UAV-enabled

wireless-powered mobile-edge computing

systems," IEEE Journal on Selected Areas in

https://doi.org/10.1109/tvt.2019.2895593
https://doi.org/10.1109/tvt.2017.2714704
https://doi.org/10.1109/jiot.2018.2875520
https://doi.org/10.1109/mvt.2017.2668838
https://doi.org/10.1109/jiot.2019.2958975

FD3QN: A Federated Deep Reinforcement Learning Approach for… Informatica 49 (2025) 127-146 145

Communications, vol. 36, no. 9, pp. 1927-

1941. https://doi.org/10.1109/jsac.2018.2864426

[7] Y. Zeng, J. Xu, and R. Zhang, 2019. "Energy

minimization for wireless communication with

rotary-wing UAV," IEEE Transactions on Wireless

Communications, vol. 18, no. 4, pp. 2329-

2345. https://doi.org/10.1109/twc.2019.2902559

[8] X. Hu, K.-K. Wong, and K. Yang, 2018. "Wireless

powered cooperation-assisted mobile edge

computing," IEEE Transactions on Wireless

Communications, vol. 17, no. 4, pp. 2375-

2388. https://doi.org/10.1109/twc.2018.2794345

[9] J. Zhang, L. Zhou, Q. Tang, E. C.-H. Ngai, X. Hu,

H. Zhao, and J. Wei, 2019. "Stochastic computation

offloading and trajectory scheduling for UAV-

assisted mobile edge computing," IEEE Internet of

Things Journal, vol. 6, no. 2, pp. 3688-3699.

https://doi.org/10.1109/jiot.2018.2890133

[10] M. Chen, M. Mozaffari, W. Saad, C. Yin, M.

Debbah, and C. S. Hong, 2017. "Caching in the sky:

Proactive deployment of cache-enabled unmanned

aerial vehicles for optimized quality-of-

experience," IEEE Journal on Selected Areas in

Communications, vol. 35, no. 5, pp. 1046-

1061. https://doi.org/10.1109/jsac.2017.2680898

[11] S. Jeong, O. Simeone, and J. Kang, 2018. "Mobile

edge computing via a UAV-mounted cloudlet:

Optimization of bit allocation and path planning,"

IEEE Transactions on Vehicular Technology, vol.

67, no. 3, pp. 2049-

2063. https://doi.org/10.1109/tvt.2017.2706308

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,

J. Veness, M. G. Bellemare, A. Graves, M.

Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,

2015. "Human-level control through deep

reinforcement learning," Nature, vol. 518, no.

7540, p. 529.

DOIhttps://doi.org/10.1038/nature14236

[13] J. Konečný, H. B. McMahan, F. X. Yu, P.

Richtárik, A. T. Suresh, and D. Bacon, 2016.

"Federated learning: Strategies for improving

communication efficiency," arXiv preprint

arXiv:1610.05492.

https://doi.org/10.48550/arXiv.1610.05492

[14] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y.

Zhang, 2021. “Low-latency federated learning and

blockchain for edge association in digital twin

empowered 6G networks,” IEEE Transactions on

Industrial Informatics, vol. 17, no. 7, pp. 5098-

5107. https://doi.org/10.1109/tii.2020.3017668

[15] Z. Xu, Y. Wang, J. Tang, J. Wang, and M. C.

Gursoy, 2017, “A deep reinforcement learning

based framework for power-efficient resource

allocation in cloud RANs," in 2017 IEEE

International Conference on Communications

(ICC), pp. 1-6.

https://doi.org/10.1109/icc.2017.7997286

[16] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y.

Zhang, 2020. "Blockchain empowered

asynchronous federated learning for secure data

sharing in internet of vehicles," IEEE Transactions

on Vehicular Technology, vol. 69, no. 4, pp. 4298-

4311. https://doi.org/10.1109/tvt.2020.2973651

[17] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang,

2019. "Incentive mechanism for reliable federated

learning: A joint optimization approach to

combining reputation and contract theory," IEEE

Internet of Things Journal, vol. 6, no. 6, pp. 10700-

10714. https://doi.org/10.1109/jiot.2019.2940820

[18] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao,

2018. "Energy-efficient UAV control for effective

and fair communication coverage: A deep

reinforcement learning approach," IEEE Journal

on Selected Areas in Communications, vol. 36, no.

9, pp. 2059-2070.

https://doi.org/10.1109/jsac.2018.2864373

[19] A. Srinivas, T. Trinai Krishnan, S. Bidargaddi, V.

K. Sharma, and B. Mitra, 2018."Learning to

optimize for a class of non-convex objectives with

applications to reliability constrained

optimization," arXiv preprint arXiv:1805.11271.

https://doi.org/10.48550/arXiv.2410.11061

[20] Y. He, Z. Zhang, F. R. Yu, N. Zhao, H. Yin, V. C.

Leung, and Y. Zhang, 2017. "Deep-reinforcement-

learning-based optimization for cache-enabled

opportunistic interference alignment wireless

networks," IEEE Transactions on Vehicular

Technology, vol. 66, no. 11, pp. 10433-10445.

https://doi.org/10.1109/icc.2017.7996332

[21] Y. Liu, H. Yu, S. Xie, and Y. Zhang, 2019. "Deep

reinforcement learning for offloading and resource

allocation in vehicle edge computing and

networks," IEEE Transactions on Vehicular

Technology, vol. 68, no. 11, pp. 11158-11168.

https://doi.org/10.3390/s21196499

[22] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, 2019.

"Joint load balancing and offloading in vehicular

edge computing and networks," IEEE Internet of

Things Journal, vol. 6, no. 3, pp. 4377-4387.

https://doi.org/10.1109/jiot.2018.2876298

[23] L. Huang, S. Bi, and Y. J. Zhang, 2020. "Deep

reinforcement learning for online computation

offloading in wireless powered mobile-edge

computing networks," IEEE Transactions on

Mobile Computing, vol. 19, no. 11, pp. 2581-

2593. https://doi.org/10.1109/tmc.2019.2928811

[24] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z.

Han, 2018. "When mobile blockchain meets edge

computing," IEEE Communications Magazine, vol.

56, no. 8, pp. 33-

39. https://doi.org/10.1109/mcom.2018.1701095

[25] C. E. Shannon, 1948. "A mathematical theory of

communication," The Bell system technical

journal, vol. 27, no. 3, pp. 379-423.

DOI: 10.1002/j.1538-7305. 1948.tb01338.x

[26] S. Boyd, S. P. Boyd, and L. Vandenberghe, 2004.

Convex optimization. Cambridge university press.

https://doi.org/10.1017/CBO9780511804441

[27] M. Chen and Y. Hao, 2018. "Task offloading for

mobile edge computing in software defined ultra-

dense network," IEEE Journal on Selected Areas in

https://doi.org/10.1109/jsac.2018.2864426
https://doi.org/10.1109/twc.2019.2902559
https://doi.org/10.1109/twc.2018.2794345
https://doi.org/10.1109/jiot.2018.2890133
https://doi.org/10.1109/jsac.2017.2680898
https://doi.org/10.1109/tvt.2017.2706308
https://doi.org/10.48550/arXiv.1610.05492
https://doi.org/10.48550/arXiv.1610.05492
https://doi.org/10.1109/tii.2020.3017668
https://doi.org/10.1109/icc.2017.7997286
https://doi.org/10.1109/tvt.2020.2973651
https://doi.org/10.1109/jiot.2019.2940820
https://doi.org/10.1109/jsac.2018.2864373
https://doi.org/10.48550/arXiv.2410.11061
https://doi.org/10.48550/arXiv.2410.11061
https://doi.org/10.1109/icc.2017.7996332
https://doi.org/10.3390/s21196499
https://doi.org/10.1109/jiot.2018.2876298
https://doi.org/10.1109/tmc.2019.2928811
https://doi.org/10.1109/mcom.2018.1701095
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1017/CBO9780511804441

146 Informatica 49 (2025) 127-146 L. Xiao et al.

Communications, vol. 36, no. 3, pp. 587-597.

https://doi.org/10.1109/jsac.2018.2815360

[28] J. Ren, G. Yu, Y. Cai, and Y. He, 2018. "Latency

optimization for resource allocation in mobile-edge

computation offloading," IEEE Transactions on

Wireless Communications, vol. 17, no. 8, pp. 5506-

5519. https://doi.org/10.1109/twc.2018.2845360

[29] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan,

and X. Chen, 2020. "Convergence of edge

computing and deep learning: A comprehensive

survey," IEEE Communications Surveys &

Tutorials, vol. 22, no. 2, pp. 869-

904. https://doi.org/10.1109/comst.2020.2970550

[30] H. Van Hasselt, A. Guez, and D. Silver, 2016.

"Deep reinforcement learning with double q-

learning," in Proceedings of the AAAI conference

on artificial intelligence, vol. 30, no. 1.

https://doi.org/10.48550/arXiv.1509.06461

[31] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M.

Lanctot, and N. Freitas, 2016, “Dueling network

architectures for deep reinforcement learning," in

international conference on machine learning, pp.

1995-2003.

https://doi.org/10.48550/arXiv.1511.06581

[32] T. Schaul, J. Quan, I. Antonoglou, and D. Silver,

2015. "Prioritized experience replay," arXiv

preprint arXiv:1511.05952.

https://doi.org/10.48550/arXiv.1511.05952

[33] T. Nishio and R. Yonetani, 2019, "Client selection

for federated learning with heterogeneous

resources in mobile edge," in ICC 2019-2019 IEEE

International Conference on Communications

(ICC), pp. 1-

7. https://doi.org/10.1109/icc.2019.8761315

[34] S. Fujimoto, H. Van Hasselt, and D. Silver,

2018."Addressing function approximation error in

actor-critic methods," arXiv preprint

arXiv:1802.09477.

https://doi.org/10.48550/arXiv.1802.09477

[35] H. Van Hasselt, A. Guez, and D. Silver, 2016.

"Deep reinforcement learning with double q-

learning," in Proceedings of the AAAI conference

on artificial intelligence, vol. 30, no. 1.

https://doi.org/10.48550/arXiv.1509.06461

[36] J. Konečný, H. B. McMahan, F. X. Yu, P.

Richtárik, A. T. Suresh, and D. Bacon, 2016.

"Federated learning: Strategies for improving

communication efficiency," arXiv preprint

arXiv:1610.05492.

https://doi.org/10.48550/arXiv.1610.05492

[37] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang,

2017. "Joint computation offloading and

interference management in wireless cellular

networks with mobile edge computing," IEEE

Transactions on Vehicular Technology, vol. 66, no.

8, pp. 7432-7445.

https://doi.org/10.1109/tvt.2017.2672701

[38] X. Chen, L. Jiao, W. Li, and X. Fu, 2015. "Efficient

multi-user computation offloading for mobile-edge

cloud computing," IEEE/ACM Transactions on

Networking, vol. 24, no. 5, pp. 2795-2808.

https://doi.org/10.1109/tnet.2015.2487344

[39] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T.

Erez, Y. Tassa, D. Silver, and D. Wierstra, 2015.

"Continuous control with deep reinforcement

learning," arXiv preprint arXiv:1509.02971.

https://doi.org/10.48550/arXiv.1509.02971

[40] H. Van Hasselt, A. Guez, and D. Silver,

2016."Deep reinforcement learning with double q-

learning," in Proceedings of the AAAI conference

on artificial intelligence, vol. 30, no. 1.

https://doi.org/10.48550/arXiv.1509.06461

[41] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y.

Zhang, 2021."Low-latency federated learning and

blockchain for edge association in digital twin

empowered 6g networks," IEEE Transactions on

Industrial Informatics, vol. 17, no. 7, pp. 5098-

5107. DOI: 10.1109/TII.2020.3017668

[42] Y. Mao, C. You, J. Zhang, K. Huang, and K. B.

Letaief, 2017. "A survey on mobile edge

computing: The communication perspective,"

IEEE Communications Surveys & Tutorials, vol.

19, no. 4, pp. 2322-2358.

DOI: 10.1109/COMST.2017.2745201

[43] B. McMahan, E. Moore, D. Ramage, S. Hampson,

and B. A. y Arcas, 2017, "Communication-efficient

learning of deep networks from decentralized data,"

in Artificial Intelligence and Statistics, pp. 1273-

1282.

https://doi.org/10.48550/arXiv.1602.05629

[44] J. Konecny, H. B. McMahan, D. Ramage, and P.

Richtarik, 2016. “Federated optimization:

Distributed machine learning for on-device

intelligence,” arXiv preprint arXiv:1610.02527.

https://doi.org/10.48550/arXiv.1610.02527

https://doi.org/10.1109/jsac.2018.2815360
https://doi.org/10.1109/twc.2018.2845360
https://doi.org/10.1109/comst.2020.2970550
https://doi.org/10.48550/arXiv.1509.06461
https://doi.org/10.48550/arXiv.1509.06461
https://doi.org/10.48550/arXiv.1511.06581
https://doi.org/10.48550/arXiv.1511.06581
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.1109/icc.2019.8761315
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.48550/arXiv.1509.06461
https://doi.org/10.48550/arXiv.1509.06461
https://doi.org/10.48550/arXiv.1610.05492
https://doi.org/10.48550/arXiv.1610.05492
https://doi.org/10.1109/tvt.2017.2672701
https://doi.org/10.1109/tnet.2015.2487344
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.06461
https://doi.org/10.48550/arXiv.1509.06461
https://doi.org/10.1109/TII.2020.3017668
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.48550/arXiv.1602.05629
https://doi.org/10.48550/arXiv.1602.05629
https://doi.org/10.48550/arXiv.1610.02527
https://doi.org/10.48550/arXiv.1610.02527

