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The numerical weather forecasts rely largely on the amount of precipitation available, and the use of 

statistical and empirical methods, but fall short of higher accuracy and relatively short-time required. 

Recently, the fuzzy AHP (that combined AHP with fuzzy logic) for the purpose of arriving at better 

outcomes from fuzzy logic control (FLC) rules-list. While evolutionary computing and fuzzy logic 

techniques are known to guarantee better accuracy and reliability of the outcomes when applied to 

weather uncertainty problems. Though, the fuzzy logic approach has low accuracy, which needs to be 

improved with rules-list refinement. This paper pulls on these approaches to develop a weather 

forecasting model for cities. First of all, the outcomes of the FAHP model revealed that, Wind Direction 

(WND) and Relative Humidity (HUM) as contributing 30.01% and 19.97% influence to the decision-

making process against air temperature, windspeed, WND, HUM, and air pressure identified earlier. 

Secondly, the select FAHP parameters served as antecedents for the FLC model, in which five fuzzy rules 

were included in rule-base. Upon validation with the standard and local datasets, the proposed model 

achieved lower error rates of 0.0010, 0.0317 and 0.0319 for MSE, RMSE and MAPE respectively when 

treated with the Kaggle standard dataset. By comparing the proposed FLC model outcomes to the 

unoptimized FLC model in term of error rates, MSE of 0.0010, RMSE of 0.0317, and MAPE of 0.0355 

were achieved attained by former indicative of its superiority. 

Povzetek: Predstavljena je optimizacija napovedovanja vremena z uporabo mehke logike in izbire 

optimalnih predhodnikov s pomočjo analitične hierarhije.

1   Introduction 
Weather depicts the state of air over earth at given place 

and period. It is an unceasing, data-intensive, disorganized 

and dynamic technique. Forecasting is the procedure of 

evaluation in indefinite circumstances from past data. 

When “weather” and “forecasting” are put together, 

“Weather forecasting”, is systematically and technically 

demanding issues across the globe in the past century. 

Weather forecasting is one field of traction for many 

scholars and researchers, which seek to ascertain the 

present state of atmosphere gets varied. Though, the tasks 

of predicting forecasts are daunting due to their 

unpredictable and muddled nature. These have been 

applied to diverse scenarios including severe weather 

alerts and advisories for transportation, agricultural 

production and development and forest fire 

minimizations[1] . 

Also, weather nowcasting is a short-leaved approach to 

forecasting of weather, which involves analysis and 

estimation of weather on 6-hourly basis. Presently, the 

nowcasting hold special place during risk deterrence and 

crisis administration, even as severe weather happenings 

are imminent. Several stacks of meteorological dataset 

gather from satellite, radar, and other weather observatory 

sites, are used for diverse of analyses by meteorological 

research organizations globally. Weather and Radars 

facilities consistently curating live data whereas cloud 

patterns, temperature, and winds focus data are main 

concern of special satellites. Consequently, there is the 

endless stockpiles of meteorological data required for 

investigations using AI approaches (machine learning 

(ML) algorithms), which could enhance the accuracy of 

the forecasting especially at short-term weather estimation 

[2]. 

Weather-station process cloud data using high-

performance approaches and algorithms in order to mine 

salient features to raise precision of the classification on 

the basis of the inputs supplied. This is made possible in 

recent times with a computationally proven deep learning 

approaches [3]. Aside this, many weathers forecasting 

models have been combined to improve the accuracy of 

outcomes   [4]. AI algorithms have been deployed for 

dealing with real-life tasks in the same way as natural 

schemes. Though, human intelligence is capable of 

differentiating and adapting to fresh environments, AI 

follows a procedural algorithm when conforming to the 

certain situations. Fuzzy logic is an AI approach which 

utilizes an approximate-reasoning instead of actual-

reasoning style by incorporating some levels of ambiguity 

as a form of reasoning procedure. 
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The numerical weather estimations have been used in 

enterprises, civil protection institutions, lifestyles of 

peoples globally; while reducing social and economic 

indemnities. However, there is the need to evolve better 

and more accurate parametrization of physical processes 

to raise the outcomes of estimates generated. There is the 

still the problem inability of existing weather forecasting 

techniques to produce location precise, time efficient and 

intensity of weather-related events [5]. 

Previously, the main procedure for forecasting weather, 

that is the state of atmosphere over a particular place, 

involves the use of statistical and empirical methods by 

means of the principle of physics, but fall short of higher 

accuracy and relatively short-time required [1] . 

Subsequently, the renew calls for machine learning and 

ensemble methods, which utilizes complex computerized 

mathematical models for desirable outcomes. 

The birth of AI, big data analytics and machine learning 

techniques offered the opportunities for planners and 

policymakers to understand the implications of diverse 

weather conditions as well as allocating resources in the 

case of extreme weather-related systems disruptions. 

Nonetheless, researchers and scholars are making efforts 

to increase the accuracy and reliability of the modelling 

systems [6]. But, the accuracy of automated daily weather 

classification relies on both the applied classifiers and the 

training data [7].  

The concept of the multi-criteria decision-making 

(MCDM) schemes undertake multichoice and multi-

objective problems. In particular, there are three kinds of 

solutions derivable using MCDM especially when it 

concerns making choice from pool options having the best 

alternatives. Also, it is possible to rank the order of several 

alternatives in order of importance or preferences. More 

so, sorting and classifying decision alternatives within 

acceptable order of groupings [8], fuzzy TOPSIS, 

VIKOR, and TODIM and [9] are common methods when 

undertaking selection of alternative like bank websites and 

electronic banking application’s quality.  

FAHP is held in high esteem as valuable for complex 

decision-making tasks, which empowers the analysts to 

minimize uncertainty and vulnerability connected to the 

process of preparing chiefs’ judgment not applicable in 

AHP approaches. The AHP proposed by Saaty was fine-

turned or fuzzified in order to control and spot the 

vulnerability [10]. The key concept of the FAHP 

streamlines composite decision-making tasks across tiered 

structure made of criteria and sub-criteria in manner as a 

pairwise comparison to the criteria [11]. 

 

This paper develops an effective FAHP model-based 

antecedents’ selection for fuzzy logic control weather 

forecasting system. The contributions include: 

• To select the fuzzy logic antecedents through 

FAHP model. 

• To develop enhanced fuzzy logic control model 

for weather forecasting. 

The lasting parts of this paper explained the following: 

second section is the related works. Section three is the 

discussion about research methodology. Fourth section is 

results and discussion. The conclusion is obtainable in 

section 5. 

2 Related works 
This section demonstrates and discuss the literature in the 

field of forecasting weather. Selim Furkan Tekin et al. [12] 

proposed a deep learning approach to predict the high-

resolution weather based on observations and input data. 

The prediction model works based on a spatio-temporal 

approach, where it is composed of a convolutional neural 

network with an encoder-decoder structure, and 

convolutional long-short term memory. The matcher 

mechanism is utilized to enhance the interpretability and 

performance of long-short term. The model is 

experimented on a real-life, high-scale numerical dataset 

that holds the temperature, and pressure levels. The results 

show that there is significant improvement when capturing 

temporal and spatial correlations. Matthew Chantry et al. 

in [13] proposed models of emulators based on machine 

learning that work as parameterization scheme 

accelerators for weather forecasting. The emulators are 

trained to produce accurate and stable results of 

forecasting timescales. The accuracy of emulators is 

correlated with the complexity of the networks, while it 

produces more accurate forecasts. With medium range 

forecasting, they found that the proposed emulators 

compared with the parameterization scheme are more 

accurate. With CPU hardware, the proposed emulators are 

similar to existing scheme in computational cost, while 

they performed 10 times faster based on GPU. K. Bala 

Maheswari et al. [14] proposed a model to make long-term 

weather forecasts using a historical dataset. The model is 

implemented based on support vector machine and 

decision tree algorithms to forecast different conditions 

such as rainfall, floods, storms, humidity, and 

temperature. While Mohammad Sadman Tahsin et al. in 

[15] proposed a daily weather forecasting model in an 

urban area. 12 data mining models are implemented over 

20 years of climate data patterns in Chittagong city. The 

evaluation process of the model is implemented based on 

different metrics, such as precision, recall, accuracy, F-

measure, receiver operating characteristics, and area under 

curve. The results show that J48 outperformed the other 

algorithms in accuracy.  

The summary of related works according to author(s), 

objectives(s), methodologies, outcomes and limitations 

are presented in Table 1. 
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Table 1: The related works summary 

S/N References Objective(s) Methodology Outcome(s) Limitation(s) 

1. [16] 
Wind power forecasting based 

on climatic conditions 

Deterministic and 

probabilistic models. 

It provides point 

predictions for 

day-to-day 

operations of 

power systems. 

Accuracy to be improved. 

2. [17] 

Solar Photovoltaic system 

forecasts under several weather 

factors 

Machine learning 

techniques. 

The weighted-

KNN outperforms 

other ML 

approaches. 

Energy efficiency and high error 

rates. 

3. [18] 
Weather Nowcasting under 

Radar products’ values. 

Ensemble of deep 

learning techniques 

(NowDeepN). 

The error is less 

than 4%. 

No relationship between normal 

and adverse metrological 

products’ values. 

4. [19] 

Weather impact on COVID-19 

outbreak based on users’ twitter 

feeds. 

Machine learning. 

Correctly 

classified users’ 

claims based on 

their tweets at 95% 

AUC-PR and 

AUC-ROC. 

Classifier ineffectiveness on 

other languages. 

5. [20] 
Cyclonic weather regimes 

impact on seasonal influenza. 

Step by step linear 

regression model, 

clinical and laboratory 

tests. 

Climate changes 

aggravates health 

risks of people 

using regression 

and root mean 

square difference. 

Large inaccuracies from datasets. 

6. [21] 
Weather-associated delays in 

transport sector. 

ML modeling of weather 

events. 

Determination of 

severe and 

disruptive weather 

events. 

Accuracy could be improved. 

7. [22] 
Weather radar reflectivity 

towards flood events. 

Fraction Skill Score 

(FSS). 

AUC of 91% for 

the predictive 

model. 

Reliability of forecasts to be 

improved. 

8. [23] 
Interpretability of satellite 

imagery. 

CNN-based building 

damage image 

classification. 

Accurate 

classification of 

building damages 

through images. 

Pre-and-post-disaster images 

modelling. 

9. [24] Smart weather reporting system. 

Internet of Everything: 

sensors for measuring 

weather parameters. 

Weather 

information are 

effectively 

disseminated. 

Internet-enabled approach for 

farmers. 

10. [25] 
Weather forecasting with 

gravity wave drag emulation. 

Machine learning based 

on neural networks. 

It has Increased 

speed and accuracy 

of models. 

Neural network algorithms are 

less-effective. 

11. [26] 
Spatio-temporal weather 

forecasting. 
Convolutional LST Ms. 

It offered superior 

MSE and 

performance. 

Spatio-temporal dataset was 

utilized. 

12. [27] 
Minimizing turbine clutter 

based on weather radar data. 

Generalized Likelihood 

Ratio Test for 

identifying signal 

subspace and gates 

impacted by WTC. 

It offers better 

prediction due to 

overlap of datasets. 

To improve on local information 

about precipitation and filtered 

radar IQ. 

13. [28] 
Nowcasting of extreme space 

weather events. 

Magnetotelluric data of 

geomatic storms. 

It used bivariate 

approach for 

polarization of 

Short-leaved magnetic field of 

storm for spatial and temporal 

events. 
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storm time electric 

fields. 

14. [29] 

Classification of main synoptic 

meteorological patterns of 

atmosphere. 

Particle formulation 

analysis of air quality. 

It effectively 

determines 

weather scenarios. 

Applicable to particle 

formulation and air quality 

prediction. 

15. [30] 
Weather data knowledge 

mining. 

Machine learning with 

rule base approach such 

as K-NN, ARIMA. 

It improved the 

quality of 

concomitant 

factors prediction. 

High errors during simulation of 

weather reports. 

16. [31] 

NCDC weather data 

classification and predictive 

models. 

Machine learning based 

models including 

CART, AdaBoost, 

Decision Tree, and 

XGBoost. 

KNN, Random 

Forest and 

XGBoost had 

highest accuracy. 

Overfitting and smaller datasets 

impart on performance. 

17. [32] 

Photovotaic (PV) solar power 

forecasting based on climatic 

conditions 

Particle swarm 

optimization and genetic 

algorithms. 

CNN Deep 

learning model 

best for 

determining PV 

power. 

Hyrid algorithms to be 

experimented. 

18. [33] 
Weather files for building 

energy designs optimization. 

Machine learning with 

regression and 

classification models. 

It generated highly 

accurate 

subsequent 

weather files. 

Location and climate change 

events and applications not 

considered. 

19. [34] Weather forecasting 
Numerical weather 

prediction. 

It uses full-field 

weather system to 

perform anomaly 

weather forecasts. 

Outcomes may be inaccurate and 

misleading without full-field 

data. 

20. [35] Rainfall forecasts. 

Hybrid ML model of 

PSO and Feed Forward 

Neural Network. 

It improves 

outcomes of 

forecasts for 

rainfall. 

To increase accuracy. 

21. [36] 
Automated weather data 

processing. 

LSTM based neural 

network model. 

It predicts local 

weather events 

such as Tornado, 

flood, severe 

storm, etc. 

To extend to more parameters of 

soils forecasts. 

22. [37] Weather prediction. 
Classification tree, 

KNN, Naïve Bayes. 

Naïve Bayes had 

best accuracy of 

77.1%. 

More data consisting of weather 

observational data over stations. 

23. [38] 
Weather conditions-based water 

quality prediction. 

Bayesian Belief 

Networks. 

Water surrogates 

are determinants 

for water quality 

prediction. 

Higher accuracy required for 

safety of drinking water. 

24. [39] Weather forecasts. 
Naïve Bayes, C.45 and 

KNN. 

KNN produced 

highest accuracy 

(71.59%) 

forecasts. 

Input criteria and constraints are 

inconsistent. 

25. [40] 
Multi-class classification of 

weather data. 

Selection Based on 

Accuracy Intuition and 

Diversity (SAID) of 

ensemble scheme. 

SAID 

outperformed other 

algorithms in 

classifying weather 

images. 

To explore computer vision for 

weather classification. 

26. [41] 
Solar irradiance forecast based 

on weather variables. 
Naïve Bayes classifier. 

It improved results 

and accuracy for 

real-time weather. 

The smaller training dataset. 
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27. [42] Weather forecasting. 
Machine learning and 

ensemble methods. 

It increased the 

accuracy and speed 

of forecasting. 

To utilize classification and 

clustering approaches. 

28. [43] 
Weather-based major power 

outage forecasts. 

A two-level hybrid risk 

determination model. 

It identified risks to 

be associated with 

different factors. 

To apply to resilience of power 

systems. 

29. [44] 
Weather-based Solar PV power 

forecasting. 

KNN, and SVM 

classifiers. 

SVM produced the 

best accuracy of 

forecasts. 

Expanding the models to K-

Means, Random Forest, etc. 

30. [45] Rainfall forecasts. Data mining approaches. 

Weather data 

extrapolation for 

determining 

rainfall patterns. 

Optimization and integration of 

data-mining techniques for better 

accuracy. 

 

From Table 1, majority of the weather forecasting 

considered different weather parameters using machine 

learning and numerical prediction schemes. However, 

there are no focus on selection of influential factors and 

their fuzziness as well as the effect of complexity of 

meteorological datasets during various forecasts tasks. To 

this end, the roles of the FAHP, AHP and Fuzzy Logic 

techniques in the weather forecasting tasks and others 

were analyzed as follows: 

The concept of FLC identified for determining stock 

prices movements using the Nigeria Stock Exchange 

trading datasets for Dangote Cement PLC. Alfa et al. [46] 

proposed the rules-list’s antecedent optimization with the 

genetic algorithms procedure to improve the forecasts 

effectiveness. Following from that, they further optimized 

the rule-list’s consequent by means of the genetic 

algorithm method in which the error rates diminished 

substantially. However, the studies did not cover effects of 

the dataset complexity on the effectiveness of the fuzzy 

logic control schemes. 

A grey fuzzy AHP-based flash flood vulnerability 

evaluation in watershed region of Himalayan, China was 

undertaken by [47]. Authors leveraged on geographical 

information system (GIS) and 12 natural and 

anthropogenic parameters. The low, moderate and high 

classes were assigned to the Flash Flood Vulnerability 

Index in which the sensitivity test revealed LULC was 

highly influential. However, there is the propensity of 

applying more effective methods like fuzzy logic control. 

A GIS with multi-criteria decision making (MCDM) 

method were adopted in determining landslide-prone 

regions in highland of Southern Western Ghats by [48]. 

Nine landslide influencing factors were considered in 

ascertaining the thematic layers for the landslide 

susceptibility map. AUC scores of 79% and F1 scores of 

85% were obtained from the standardized causative factor 

weights. More techniques can be applied to improve the 

performance of the FAHP. 

Zhran et al. in [49] implemented the flood risk zonation in 

Egypt’s Nile districts of Damietta using the IGS, remote 

sensing, and AHP. Twelve thematic layers of slope, 

elevation, vegetation index, topographic wetness index, 

water index, topographic positioning index, stream power 

index, modified Fournier index, drainage density, 

sediment transport index, distance to the river, and 

lithology. Also, six factors serve as flood vulnerability 

zonation including: total population, land cover/ land use, 

distance to hospital, density of population, road density, 

and distance to road. AUC score of 0.741 was obtained for 

AHP approach. Using the multicollinearity analysis 

revealed highly corrected independent variables. Though, 

specificity of the forecasts can be performed using other 

techniques. 

Fanxiao Meng et al. in [50] deployed remote sensing, GIS 

datasets to determine the groundwater recharge zones 

(GWRZ) in Pakistan. The hydrology and geology factors 

influence on the GWRZ were investigated. In particular, 

thematic maps was composed of the slope, rainfall, 

geology, drainage density, land cover/ land use, lineament, 

and types of soil. Authors utilized multi-influencing factor 

and the AHP to assign weights to the factors. But, the use 

of advanced methods could improve the decision-making 

process and its accuracy. 

Husam Musa Baalousha et al. in [51] evaluated the risk of 

flooding based on FAHP and Fuzzy Logic in the Arid 

places of Qatar using the land cover, precipitation, soil 

type, flow accumulation, and elevation. The outcomes 

from both the Fuzzy logic and the FAHP demonstrated 

resemblances in the low-risk and differences in the high-

risk zones. While the FAHP accounted for higher 

variability and more accurate than Fuzzy Logic method. 

Sinan Keskin et al. in [52]developed a fuzzy spatial online 

analytical processing (FSOLAP) framework to provide 

predictive analytics of the complex data applications. The 

framework was validated with meteorological datasets 

from the Turkish Meteorological Office. When compared 

with traditional machine learning approaches, FSOLAP is 

a more scalable and accurate for big meteorological 

databases’ fuzziness or uncertainty. 

Susanta Mahato et al. in [53] combined FAHP and Fuzzy 

Logic techniques to determine the drought-based 

vulnerability factors in Odisha, India. Six criteria of water 

usage and demand, physical attributes, land use, 

groundwater, and development/population, and 22 sub-

criteria were chosen. The FAHP weighted the parameters 

through pair-wise comparisons matrix. The Fuzzy logic 

provided five classes of vulnerability: very high, high, 

moderate, low, and very low. During validation, statistical 

evaluation parameters root means square error, accuracy, 

and mean absolute error were employed.  
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Waseem Alam et al. in [54] introduced the FAHP 

framework in assessing and ranking the criteria and 

weight factors of the behaviour of drivers in Peshawar, 

Pakistan. Three most important risky driving features 

include: errors, violations, and lapses. The driver attention 

and clear road signage were top influential factors in 

raising risk perception of the drivers. Also, the ensemble 

machine learning offered an accuracy of 0.84. 

Nonetheless, there are prospects of FLC in explaining the 

interconnection among various factors and driving 

behaviours. 

The reviewed studies, in the second part, had drawn 

fascinating evidence about the weakness of the FLC and 

the complementary roles to be played by the FAHP in 

dealing with multi-criteria decision-making and highly 

complex meteorological datasets mining in computational 

weather mining and analysis as undertaken in this paper. 

 

3 Research methodology 
The paper utilizes the FAHP in filtering the most 

influencing factors for determining weather conditions of 

places whose datasets are traditionally composed of the 

complex meteorological parameters [52]. To improve the 

accuracy of FLC, the most impacting factors were utilized 

for the construction of the rules-base, which flaws 

decision-making processes and forecasting tasks because 

of redundancy of the rules-lists [51].   

 

3.1 Fuzzy analytical hierarchical process 

criteria selection 

The main steps for the FAHP model adoption in 

determining the most relevant criteria for building fuzzy 

logic control antecedents are analogous to the methods 

undertaken by [55], [56]. 

 
Algorithm: FAHP criteria selection for the FLC rule-base. 

INPUT: Comparison matrix 
Step 1 DEVELOP analytical hierarchy by utilizing a typical 

hierarchy plan based on distinct levels.  

 a. The DETERMINATION of quantification for the 
prospective fuzzy logic  control antecedents. 

 b. ANALYZE prospective FLC antecedents.  

 c. GENERATE pairwise comparison matrix based on 
AHP scale 

 d. TRANSFORM into a fuzzy triangular (FT) scale. 

 
Step 2. DEVELOP a pairwise fuzzy comparison vector (PCV) 

with selected weather parameters or criteria. The crisp numeric 

values create PCV as the evaluation method being a single numeric 
value for categorizing FLC antecedents. 

 

Step 3. COMPUTE fuzzy geometric mean from the lower, median, 
and upper fuzzy geometric means. 

 

Step 4. COMPUTATE fuzzy AHP weight using the lower, 
median and upper fuzzy weights accordingly.  

 

Step 5. GENERATE normalized weights of the parameters. 
 

Step 6. SELECT top-two weighted parameters to serve as the 

antecedents for FLC-based weather forecasting system. 
Step 7. CONSTRUCT the triangular fuzzy numbers. 

e. DEFINE the values and linguistic of the first antecedent 
and matching  membership  functions, 

that is, low, medium and high. 

 f. DEFINE the values and linguistic of the second 
antecedent and matching  membership functions, 

that is, low, medium and high. 

 g. DEFINE the values and linguistic of the consequent and 
matching  membership functions, that is, low, medium 

and high. 

Step 8. BUILD the fuzzy rules from the membership functions for 
the Antecedents and Consequents for all the possible combinations. 

Step 9. OPTIMIZE the fuzzy rules (the chromosomes) with genetic 

algorithm procedure to select the best rules for the FLC weather 
forecasting system. 

Step 10. APPLY the weather datasets to evaluate the FLC system. 

STOP. 
End 

OUTPUT: Normalized weights of criteria and FLC rule-base. 

 

3.2 Data collection and preprocessing 
This paper utilized both primary and secondary sources of 

datasets. Firstly, standard historical metrological data was 

collected from the Antarctic Automatic weather facilities 

(AntAWS) 

Dataset: https://amrdcdata.ssec.wisc.edu/dataset/antaws-

dataset) is 3-hourly, daily and monthly under strict quality 

control. Five parameters were measured by 267 AWSs 

from the period of 1980-2021 [57]. These include: air 

pressure, air temperature relative humidity, wind speed, 

and wind direction) by 267 AWSs collected between 1980 

and 2021. The 25% and 75% thresholds were used to 

compute the products for daily and monthly quality-

controlled readings.  

Secondly, structured questionnaire was constructed to 

curate the required data for building effective antecedents 

for fuzzy logic control-based weather forecasting model. 

The lists of weather criteria including: TMP, PRS, WNS, 

WND, HUM, and VNS. The survey questionnaire was 

created using the identified weather criteria or parameters 

with associated nominal scale (1 – 9) of weather attributes 

as described in Table 2 [58], [59]. 

 

 

Table 2: The adopted membership function and linguistic 

scale. 

Fuzzy 

scale 
Linguistic scale 

Triangular 

fuzzy 

numbers 

Triangular 

reciprocal 

fuzzy 

numbers 

9 
Extreme 

importance 
9, 9, 9 1/9, 1/9, 1/9 

8 
Very, very 

strong 
7, 8 ,9 1/9, 1/8, 1/7 

7 

Very strong or 

demonstrated 

importance 

6, 7, 8 1/8, 1/7, 1/6 

6 Strong plus 5, 6, 7 1/7, 1/6, 1/5 

5 
Strong 

importance 
4, 5, 6 1/6, 1/5, 1/4 

4 Moderate plus 3, 4, 5 1/5, 1/4, 1/3 

3 
Moderate 

importance 
2, 3, 4 1/4, 1/3, 1/2 

2 Weak or slight 1, 2, 3 1/3, 1/2, 1 

1 
Equal 

importance 
1, 1, 1 1, 1, 1 
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3.3 Materials for experimentation 
The weather forecasting model was validated on 

MATLAB R2019b discrete simulator on Laptop Personal 

Computer system. The minimum specifications of the 

computational resources include:  

Hardware: 

AMD E1-1200 APU Processor with RadeomTM Graphics 

1.40 GHz, 4.00 GB RAM, 64-bit Operating System, x64-

based processor. 

Software: 

Windows 10 Single Language 2012, 3.5 Windows 

Experience Index.  

Genetic algorithm procedure parameters: 

Crossover probability: 0.8, Population selection method: 

Elitism, Offspring Rank and Mutation, Original 

chromosomes: 18, Iteration: 5, Crossover type: Uniform 

crossover, Maximum population: 30, Mutation 

probability: 0.09. 

 

3.4 Evaluation parameters  
The effectiveness of the proposed weather forecasting 

model after applying the similar test and target datasets is 

computed by means of the mean square error (MSE), root 

mean square error (RMSE), and mean absolute percentage 

error (MAPE) metrics given by Equations 1, 2 and 3:   

 
where, 

𝐴𝑖 is the target of actual value of the output sample, 

�̂�𝑖 is the predicted value of the output sample, 

g is the index term starting at 1 to x of test dataset, and 

 x is the size of the test dataset. 

4 Results and discussion 
This section presents the weather forecasting outcomes 

after selecting antecedents with FAHP model. The 

conditions forecasts of cities were determined with 

optimized FLC model. 

 

4.1 FAHP Model-based criteria selection 

from survey outcomes 
The research question, what is are two topmost parameters 

influencing weather conditions? was posed to the three 

experts recruited for the survey. The three participants’ 

responses in crisp numerical values and computed 

consistency index (CI) are shown in Tables 3, 4, and 5. 

 

 

 

 

Table 3: The first respondent responses on two topmost 

weather parameters.  
TMP PRS WNS WND HUM VMS CR 

TMP 1 1 1/3 1 1 1/3 0.0905 

PRS 1 1 1/2 1/3 1/3 1/4  

WNS 3 2 1 1/4 1/5 1/4  

WND 1 3 4 1 4 5  

HUM 1 3 5 1/4 1 4  

VMS 3 4 4 1/5 1/4 1  

 

From Table 3, the responses offered by the showed 

preferences for the first item in the pair, which showed that 

highest score of 5 for HUM against WNS, and WNS 

against VMS. The lowest score of 1/5 was awarded to 

WNS against HUM, and WNS against VMS. The 

computed CR of 0.0905 < 0.1 threshold for acceptance of 

the responses of first respondent as reliable for further 

processing of the research questions. 

 

Table 4: The second respondent responses on two 

topmost weather parameters. 

 
TM

P 

PR

S 

WN

S 

WN

D 

HU

M 

VM

S 
CR 

TMP 1 1/8 1/8 1/6 1/5 1/7 
1.186

7 

PRS 9 1 1/6 8 1/7 1/5  

WNS 8 6 1 6 5 7  

WN

D 
6 1/8 1/6 1 3 8  

HU

M 
5 7 1/5 1/3 1 8  

VMS 7 5 1/7 1/8 1/8 1  

 

In Table 4, the responses collected for the second 

respondent indicated the preferences for the both items in 

the pair. In case of the responses of first item against 

second item, highest score of 9 was awarded to PRS over 

TMP, and the lowest score of 1/8 was awarded to TMP 

against PRS, WND against PRS, VMS against WND, and 

VMS against HUM. In the case of the second item against 

first item, the highest score of 8 was preferred VMS 

against WND, and VMS against HUM. The lowest score 

of 1/8 was preferred to WNS against VMS, and HUM 

against VMS. The computed CR of 1.1867 > 0.1 

threshold, the responses of second respondent were 

rejected as unreliable for further processing of the research 

question. 
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Table 5: The third respondent responses on two topmost 

weather parameters.   
TM

P 

PR

S 

WN

S 

WN

D 

HU

M 

VM

S 

CR 

TMP 1 1/7 1/7 1/8 1/9 1/6 1.343

2 

PRS 7 1 1/7 6 1/7 1/8  

WNS 7 7 1 5 6 7  

WN

D 

8 1/6 1/5 1 7 6  

HU

M 

9 7 1/6 1/7 1 6  

VMS 6 8 1/7 1/6 1/6 1  

 

In Table 5, the responses collected for the third respondent 

point to the preferences in the both items in the pair. In 

case of the responses of first item against second item, 

highest score of 9 was preferred on HUM against TMP, 

and the lowest score of 1/7 was given to VMS against 

WNS, WND against PRS, VMS against WNS. In the case 

of the second item against first item, the highest score of 

7 was preferred to HUM against WND, and VMS against 

WNS. The lowest score of 1/8 was given to VMS against 

PRS, and VNS against WNS. The calculated CR value of 

1.3432 > 0.1 threshold, the responses of third respondent 

were rejected as unreliable and removed from further 

processing of the research question. 

Considering the initial analysis of collected responses of 

respondents contained in Tables 3, 4, and 5, the computed 

CR values for first, second and third respondents are 

0.0905, 1.1867, and 1.3432 respectively, which are greater 

than 0.1 threshold for the consistency and reliability of the 

participant’s responses except for first respondent. This 

implies that, only the first respondent’s responses were 

accepted on the basis of CR value for further investigation 

of the subject.   

Similarly, the fuzzy numbers format PCM corresponding 

to crisp numerical values of the first participant’s 

responses (refer to Table 3) are shown in Table 6. Each 

crisp number for every response in the Table 3 is 

substituted with matching fuzzy numbers and inverse 

fuzzy numbers in Table 6. 

 

 

Table 6: The Fuzzy numbers for first participant responses on two weather parameters.  
TMP PRS WNS WND HUM VMS 

TMP (1,1,1) (1,1,1) (1/4,  1/3, 1/2) (1,1,1) (1,1,1) (1/4,  1/3, 1/2) 

PRS (1,1,1) (1,1,1) (1/3,  1/2, 1) (1/4,  1/3,1/2) (1/4,  1/3, 1/2) (1/5,  1/4, 1/3) 

WNS (2, 3,4) (1,2, 3) (1,1,1) (1/5,  1/4, 1/3) (1/6,  1/5, 1/4) (1/5,  1/4, 1/3) 

WND (1,1,1) (2, 3, 4) (1/5,  1/4, 1/3) (1,1,1) (3, 4, 5) (4, 5, 6) 

HUM (1,1,1) (2, 3, 4) (1/6,  1/5, 1/4) (1/5,  1/4, 1/3) (1,1,1) (3, 4, 5) 

VMS (2, 3, 4) (3, 4,5) (1/5,  1/4, 1/3) (1/6,  1/5, 1/4) (1/5,  1/4, 1/3) (1,1,1) 

Table 6 contains the computed outcomes of the Chang’s 

FAHP codes on MATLAB R2013b. The FAHP model 

computes the weights, normalized weights, and ranks 

based on independent responses. The FAHP model uses 

the extended approach in determining the top two 

parameters that are highly influencing weather forecasts 

and related decision-making tasks as illustrated in Table 

7. 

Table 7: The weights and ranks of respondent’s 

responses computed. 

 
 

In Table 7, the five weather parameters received various 

contributions to the subject of weather forecasts and 

decision-making process. As shown, TMP paid 9.46%, 

PRS contributed 7.41%, WNS donated 14.59%, WND 

gave 30.03%, HUM explained 19.97%, and 18.54% was 

accounted by VMS. Interestingly, the two topmost 

parameters having extreme importance, and very, very 

Parameter Weight 
Normalized 

Weight(%) 
Rank Remarks 

TMP 0.0946 9.46 5 
Moderate 

importance 

PRS 0.0741 7.41 6 
Weak or slight 

importance 

WNS 0.1459 14.59 4 Strong plus 

WND 0.3003 30.03 1 
Extreme 

importance 

HUM 0.1997 19.97 2 Very, very strong 

VMS 0.1854 18.54 3 
Very strong 
importance 
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strong importance when determining weather conditions 

of regions in the study area include: WND and HUM at 

30.03% and 19.97% respectively. 

More so, graphical comparisons of the select parameters 

preferred by the respondent using the FAHP 

computational weights are shown in Figure 1. 

 

Figure 1: The contributions of the select parameters on 

weather conditions forecasts. 

 

From Figure 1, the graphical display of the select weather 

parameters in forecasts and determination using FAHP 

model weights, which showed clearly the top leading 

parameters as WND and HUM at 0.3 and 0.2 weighting 

scale respectively. While the least contributing parameter 

to the weather forecasting tasks was PRS at 0.09 of the 

FAHP model’s weighting scale. The FAHP model derived 

two weather parameters of WND and HUM as important 

to the subject of weather forecasting; thereby included as 

antecedents for FLC system as explained in the next 

subsection. 

 

4.2 Outcomes of the fuzzy logic control 

model 
The fuzzy rules are generated according to data items and 

type of datasets selected from the FAHP model’s 

outcomes. The two top parameters, WIND and HUM, 

were to serve as the antecedents for the inference engine 

of the FLC. The FLC model developed to determine 

uncertainty problems and trends of weather in the city of 

Austin, United States at more effective and reliability 

style. The antecedents and consequents with their 

respective conditions are given in Table 8. 

 

Table 8. Antecedents and consequent constraints for the 

fuzzy engine. 

 
 

 

 

 

From Table 8, the antecedents for the FLC include: wind 

direction (WND), and Humidity (HUM). The range of 

values are [93.37 – 226.53], and [70.24 – 84.10]. The 

consequent variable is weather condition (WEATHER) 

under investigation whose range of values are derived 

from minimum and maximum values of the antecedents, 

that is, [84.10 – 226.53]. The layout of the FLC-based 

weather forecasting model is composed of two inputs 

(FAHP select parameters/antecedents: HUM and WND), 

and an output (consequent: weather condition) as shown 

in Figure 2. 

 

 
Figure 2: The FLC-based weather forecasting system 

layout. 

The triangular membership function was adopted because 

of its popularity and effectiveness for modeling 

uncertainties and fuzziness during decision-making 

processes. Three membership conditions were developed 

for both antecedents and consequent namely: Low, 

Medium and High. While, the matching indices of 

membership functions include: 1, 2, and 3. The 

membership functions, variables, and range of values for 

all the input and output are specified in Table 8. These 

refined fuzzy rules-list is used in constructing the fuzzy 

inference engine by means of the logical AND, and IF-

THEN statements as established by [60]. Therefore, the 

rule-list for the fuzzy inference engine of the proposed 

forecasting weather events is given in Table 9. 

 

Table 9: The optimized FLC rules-list indices after 

genetic algorithm refinement. 
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Weather parameter

Antecedents Conditions 

Indices 

Range of Values 

Wind direction (WND) High (3) 

Medium (2) 

Low (1) 

[93.37 – 226.53] 

Humidity (HUM) High (3) 
Medium (2) 

Low (1) 

[70.24 – 84.10] 

Consequents   

Weather condition 
(WEATHER) 

High (3) 
Medium (2) 

Low (1) 

[84.10 – 226.53] 
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From Table 9, the refined fuzzy rule-lists are utilized for 

generating different mapping of the antecedents’ 

membership function indices to the membership functions 

of the consequent using the input and output weather 

parameters defined in Table 8. The rule-base generated for 

the FLC, from Table 9, is illustrated in Figure 3. 

 

 

Figure 3: The optimized rules-list design of the FLC 

weather forecasting model. 
 

Following from Figure 3, the antecedent variables are 

WND and HUM, which correspond to the inputs of the 

FLC weather system. Also, the consequent is the output of 

the FLC system. The logic function of “AND” are used to 

map the different membership functions of the inputs to 

those of the output. More importantly, the weight of the 

rules-list is 1, which denotes equal importance of all the 

inputs and output membership functions indices in order 

to remove biases in decision-making process about 

weather conditions of cities. 

The performance of the proposed optimized FLC weather 

forecasting system in terms of error rates using optimized 

rules-list the fuzzy inference engine against conventional 

FLC weather forecasting system is given in Table 10. 

 

 

Table 10: Proposed weather FLC forecasting model 

performances with different datasets. 

 
From Table 9, the performance of the proposed optimized 

FLC with the standard dataset was better at MSE of 0.0010 

against the local NIMET dataset of 0.1563. The same 

trend was observed for the RMSE error measure that put 

the proposed model performance with the standard dataset 

at 0.0317 over the NIMET dataset at 0.3953. When MAPE 

evaluation parameter was considered, the proposed 

weather model performed highly at 0.0319 for Kaggle 

dataset when compared to the NIMET dataset at 0.2104. 

This shows the proposed weather forecasting model 

performed best with less complex and refined factors 

against highly complex meteorological local weather 

datasets as depicted by Figure 3. 

 

 
Figure 3: The performance of the FLC weather 

forecasting systems with diverse datasets. 

 

Again, the outcomes of weather forecasting model with 

the optimized FLC were superior when compared to the 

ordinary FLC with refined rules-base as shown in Table 

11. 

 

Table 11: The comparisons of the proposed model to the 

FLC model. 

 
From Table 11, the weather forecasting model performed 

better with fewer rules-lists in the rule-base rather than 

unfiltered rules-list. These showed that the proposed 

weather forecasting model in terms of the evaluation 

metrics of MSE, RMSE, and MAPE at 0.0010, 0.0317 and 

0.0355 were most preferred because of their capability to 

explain smaller variations in the outcomes against the 

target weather data in the area of study as illustrated in the 

Figure 4.   

 

0 0,1 0,2 0,3 0,4 0,5

NIMET

Kaggle

Error rate

D
at
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yp

e

MAPE RMSE MSE

Rule N Input 1 Input 2 Output 

1 3 1 2 

2 1 1 2 

3 3 3 3 

4 3 1 2 

5 2 2 3 

 

Dataset MSE RMSE MAPE Remarks 

NIMET 0.1563 0.3953 0.2104 Effective 

Kaggle 0.0010 0.0317 0.0319 More 
Effective 

 

Model MSE RMSE MAPE Remarks 

FLC 0.0011 0.0332 0.0319 Effective 

Optimized 

FLC 

0.0010 0.0317 0.0355 More 
Effective 
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Figure 4: The performance of FLC and Optimized FLC 

methods for weather forecasts. 

The reasons being that, FAHP model procedure improves 

the selection of the most influencing parameters required 

to building FLC rule bases. More so, the FLC model’s 

rules-list redundancy was filtered with genetic algorithm 

procedure to realize 5 best rules out of 9 original rules. The 

outcomes of this paper increase the reliability of the 

weather information generation for diverse purposes as 

shown in Figure 5. 

 

  
Figure 5: The Line graph of FLC weather forecasts 

model performances compared. 

 

From Figure 5, the testing dataset is 30% of the entire 

weather dataset collected in which the target line depicts 

the original weather data for 25 days periods 

corresponding to after 51 months of observations. As 

shown, the weather forecast model was unsteady from the 

starting 110 points by 51st month, and changed sharply to 

attain its lowest value at 42 points. Then, it continues to 

gain at the highest point of 139 points by 64th month. 

However, by the end of 71 months testing period, the 

weather condition reached 86 points. In terms of the 

forecasts performance, the optimized FLC weather system 

outcomes (the Actual line in the graph) showed similar 

trends as the Target line through the comparable periods 

of observations, that is, 51st month, 54th month, 56th 

month, 58th month, 60th – 67th months, 70th month and 

71th month accordingly.  

These illustrate the capabilities of the proposed FLC 

system in accurately forecasting weather conditions of 

cities at minimal error rates. It can be attributed to the 

involvement of AI techniques like FAHP and FLC 

systems for the decision-making processes. Furthermore, 

the process of filtering weather parameters, and refining 

of the rules-list in rule-base increased the outcomes of 

FLC weather forecasting system. The FLC weather 

forecasting system has shown to perform better with the 

removal of redundancy in the rules-list as well as its input 

variables (or weather parameters). In this paper, the choice 

of the FAHP and FLC methods offer complementary roles 

which increase the variability and accuracy [51]. The 

uncertainty and fuzziness of meteorological datasets like 

Kaggle and NIMET, were best interpreted using both 

approaches [52]. The FAHP method refines the decision-

making procedure and data analytics of the FLC [50]. The 

paper extended the prospects of the both FAHP and FLC 

to the weather forecasting and analytics, which falls into 

the MCDM research domain. 

5 Conclusion and future works 
This paper provides required tool for determining weather 

and state of the atmosphere in certain places and periods 

through the application of fuzzy logic technique. It will 

benefit individuals, government agencies, business sector, 

built and construction sector, researchers and scholars 

concerned with planning and policymaking depending on 

weather outlooks. This increases the understanding of the 

hidden relationships and patterns available for a more 

accurate and reliable local weather information 

dissemination.  

The outcomes of the FAHP model when used to select the 

most important parameters affecting weather forecasts of 

cities identified Wind Direction (WND) and Relative 

Humidity as contributing 30.01% and 19.97% influence to 

the decision-making process.   

Thereafter, the select parameters from the FAHP model 

procedure served as antecedents of the FLC model. The 

GA-optimized FLC model was adopted from the study by 

[46] which overcame the problem of redundancy of the 

fuzzy inference engine rule-list. Consequently, the refined 

rules-list serves the building block for the proposed FLC 

weather forecasting model. The outputs revealed that the 

FLC weather forecasting model in terms of the MSE, 

RMSE, and MAPE at 0.0010, 0.0317 and 0.0355 were 

most preferred against comparable models because of its 

capability to explain smaller variations of the datasets. It 

was superior due to the initial FAHP-based selection of 

weather parameters and rule-list reduction procedures. It 

equally attributable is the filtered rules-list used to 

construct the fuzzy inference engine of the FLC.  

This paper found that, the subjectivity of expert 

judgements during FAHP modelling of the criteria and the 

over reliance of FLC model on its rule-base’s optimization 

impact greatly on the outcomes of the weather forecasts 

generated. In future works, more dataset can be 

experimented to include long periods and extended site 

specificity.  
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