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This study analyzes the basic principles and structural models of multi-sensor data fusion, and emphasizes 

the importance of effective fusion algorithms. The proposed improved weighted information fusion 

algorithm combines the Jackknife method and the adaptive weighting method, while the improved Kalman 

filter fusion algorithm combines the weighting factor, the state transfer matrix, the measurement transfer 

matrix and the process noise distribution matrix. The effectiveness of the proposed algorithm is verified 

through extensive simulations and practical applications, and the estimation accuracy is improved by 

15% and the error rate is reduced by 20% compared with the traditional methods. The improved algorithm 

shows stronger robustness in dealing with the uncertainty and inconsistency of sensor data, and the 

adaptive weighting mechanism effectively solves the problem of sensor reliability variation. The 

computational complexity and scalability of the proposed algorithms are analyzed, and it is shown that 

they can be implemented in large-scale sensor networks in real time. This study also discusses the 

challenges and opportunities of multi-sensor data fusion, including the integration of deep learning 

techniques, the extension to heterogeneous sensor scenarios, and the need for broader experimental 

validation in real-world precision measurement applications. 

Povzetek: Izboljšana je metoda za fuzijo podatkov več senzorjev, ki temelji na Kalmanovem filtriranju in 

adaptivnem uteževalnem algoritmu, kar povečuje robustnost sistema v realnih aplikacijah. 

 

1 Introduction 

In recent years, the rapid development of sensor 

technology and the increasing demand for high-precision 

measurement have led to the widespread application of 

multi-sensor data fusion techniques [1]. Multi-sensor data 

fusion refers to the process of combining information from 

multiple sensors to obtain more accurate and reliable 

estimates of the state of a system or environment [2]. By 

leveraging the complementary and redundant information 

provided by multiple sensors, data fusion techniques can 

effectively improve the accuracy, reliability, and 

robustness of measurement systems [3]. 

The basic working principle of multi-sensor data fusion 

involves the integration of data from multiple sensors to 

generate a unified and consistent representation of the 

measured object or environment [4]. This process typically 

includes data preprocessing, feature extraction, data 

association, and state estimation [5]. Various data fusion 

algorithms have been proposed in the literature, such as 

Kalman filtering [6], particle filtering [7], and Dempster-

Shafer evidence theory [8]. 

Several structural models have been developed to describe 

the architecture of multi-sensor data fusion systems [9]. 

The most common models include the centralized fusion 

model, the distributed fusion model, and the hybrid fusion 

model [10]. The centralized fusion model involves the 

direct integration of raw data from multiple sensors, while 

the distributed fusion model performs local processing at 

each sensor before fusing the processed data [11]. The 

hybrid fusion model combines the advantages of both 

centralized and distributed fusion approaches [12]. 

Despite the significant progress in multi-sensor data fusion 

techniques, there are still several challenges and 

limitations that need to be addressed [13]. One major issue 

is the alignment and synchronization of data from multiple 

sensors, which can be affected by factors such as sensor 

calibration, time delays, and coordinate system differences 

[14]. Another challenge is the management of uncertainty 

and conflict in the fusion process, particularly when 

dealing with heterogeneous sensors and complex 

environments [15]. 

To overcome these challenges, researchers have proposed 

various solutions, such as adaptive fusion algorithms [16], 

multi-modal data fusion frameworks [17], and deep 

learning-based fusion methods [18]. These approaches aim 

to improve the accuracy, efficiency, and robustness of 

multi-sensor data fusion systems. 
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Research on enhanced Kalman filtering techniques for 

multi-sensor data fusion has gained significant attention in 

recent years [57]. Particularly, the application of adaptive 

weighting methods has shown promise in improving 

fusion accuracy and robustness [58]. A recent study by M. 

Hespanhol et al. [57] presented a comprehensive review of 

multi-sensor fusion techniques in the context of industrial 

Internet of Things (IIoT), highlighting the need for 

advanced filtering and adaptive fusion algorithms. 

Motivated by these developments, this paper focuses on 

the improvement of Kalman filtering and weighted fusion 

algorithms for enhanced multi-sensor data fusion in 

precision measurement applications. 

In summary, multi-sensor data fusion techniques have 

become increasingly important in the field of precision 

measurement. By combining information from multiple 

sensors, data fusion algorithms can provide more accurate 

and reliable estimates of the measured object or 

environment. However, there are still several challenges 

and limitations that need to be addressed to further enhance 

the performance of multi-sensor data fusion systems. As 

research in this field continues to advance, it is expected 

that data fusion techniques will play an even more crucial 

role in enabling high-precision measurement applications. 

 

2    Multi-Sensor data fusion techniques 

2.1 Definition of multi-sensor data fusion 

Multi-sensor data fusion is defined as the process of 

combining data from multiple sensors to generate a more 

accurate, complete, and reliable representation of the 

measured object or environment than what could be 

achieved using a single sensor [19]. This technique aims to 

exploit the complementary and redundant information 

provided by different sensors to enhance the overall 

performance of the measurement system [20]. 

The main advantage of multi-sensor data fusion over 

single-sensor approaches lies in its ability to overcome the 

limitations and uncertainties associated with individual 

sensors. By integrating data from multiple sources, data 

fusion techniques can reduce the impact of sensor noise, 

measurement errors, and environmental disturbances [21]. 

This results in improved accuracy, precision, and 

robustness of the measurement system. 

Moreover, multi-sensor data fusion enables the 

measurement system to capture a more comprehensive 

view of the measured object or environment. Different 

sensors may have different sensing modalities, spatial and 

temporal resolutions, and measurement ranges [22]. By 

combining the information from these diverse sensors, 

data fusion techniques can provide a more complete and 

detailed representation of the measured phenomenon. 

Another benefit of multi-sensor data fusion is its ability to 

handle sensor failures and degradations. In a single-sensor 

system, the failure of the sensor can lead to a complete loss 

of measurement capability. However, in a multi-sensor 

data fusion system, the redundancy provided by multiple 

sensors allows the system to continue functioning even if 

one or more sensors fail [23]. This enhances the reliability 

and fault tolerance of the measurement system. 

Furthermore, multi-sensor data fusion can improve the 

efficiency and cost-effectiveness of the measurement 

process. By leveraging the information from multiple 

sensors, data fusion techniques can reduce the need for 

expensive and high-precision sensors [24]. This can lead 

to significant cost savings and make the measurement 

system more accessible and affordable. 

In addition to these benefits, multi-sensor data fusion also 

enables the measurement system to adapt to changing 

conditions and requirements. By dynamically adjusting the 

fusion algorithm and sensor configuration, the system can 

optimize its performance based on the current 

measurement context and objectives [25]. This flexibility 

and adaptability make multi-sensor data fusion a powerful 

tool for a wide range of precision measurement 

applications. 

 

2.2 Basic principles of multi-sensor data 

fusion 

The basic working principle of multi-sensor data fusion 

involves the integration of data from multiple sensors to 

generate a unified and consistent representation of the 

measured object or environment [26]. This process 

typically consists of several key steps, as illustrated in Fig. 

1. 

 
 

Figure 1: Basic principle of multi-sensor data fusion. 

 

The first step in the multi-sensor data fusion process is data 

acquisition. This involves the collection of raw data from 

multiple sensors, such as optical sensors, thermal sensors, 

acoustic sensors, and mechanical sensors [27]. Each sensor 

provides a unique perspective on the measured object or 

environment based on its sensing modality, resolution, and 

measurement range. 

Once the raw data is acquired, it undergoes preprocessing 

to remove noise, outliers, and redundant information. This 

step is crucial to ensure the quality and consistency of the 

data before it is fused [28]. Preprocessing techniques may 

include filtering, normalization, and feature extraction. 
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After preprocessing, the data from different sensors is 

aligned and synchronized. This step is necessary to ensure 

that the data from all sensors corresponds to the same 

spatial and temporal coordinates [29]. Alignment and 

synchronization can be achieved through various 

techniques, such as time stamping, spatial registration, and 

coordinate transformation. 

The aligned and synchronized data is then fused using 

appropriate data fusion algorithms. These algorithms 

combine the information from multiple sensors to generate 

a unified estimate of the measured object or environment 

[30]. Common data fusion algorithms include Kalman 

filtering, particle filtering, and Dempster-Shafer evidence 

theory. 

The fused data represents a more accurate, complete, and 

reliable estimate of the measured object or environment 

compared to the estimates obtained from individual 

sensors. This fused estimate can be used for various 

purposes, such as decision making, control, and 

visualization [31]. 

To ensure the effectiveness and robustness of the multi-

sensor data fusion process, it is important to incorporate 

uncertainty management and performance evaluation 

techniques. Uncertainty management involves quantifying 

and propagating the uncertainties associated with each 

sensor and the fusion algorithm [32]. Performance 

evaluation involves assessing the accuracy, precision, and 

reliability of the fused estimate using appropriate metrics 

and benchmarks. 

In summary, the basic working principle of multi-sensor 

data fusion involves the acquisition, preprocessing, 

alignment, synchronization, and fusion of data from 

multiple sensors to generate a unified and consistent 

representation of the measured object or environment. This 

process is supported by uncertainty management and 

performance evaluation techniques to ensure the quality 

and reliability of the fused estimate. By leveraging the 

complementary and redundant information provided by 

multiple sensors, multi-sensor data fusion enables more 

accurate, complete, and robust measurement capabilities 

compared to single-sensor approaches. 

 

2.3 Structural models of multi-sensor data 

fusion 

Multi-sensor data fusion systems can be classified into 

three main structural models: centralized structure, 

distributed structure, and hybrid structure [33]. These 

models differ in terms of how the data from multiple 

sensors is processed and fused. 

Centralized structure: The central fusion center performs 

the preprocessing, alignment, synchronization, and fusion 

of the data to generate a unified estimate of the measured 

object or environment. Fig. 2 illustrates the centralized 

structure of multi-sensor data fusion. 

 

 

 
Figure 2: Centralized structure of multi-sensor data 

fusion. 

 
The main advantage of the centralized structure is that it 

allows for the optimal fusion of data from all sensors, as 

the central fusion center has access to the complete set of 

raw data. However, this structure also has some 

drawbacks, such as high communication bandwidth 

requirements, high computational complexity, and single 

point of failure. 

Distributed Structure: In a distributed multi-sensor data 

fusion structure, each sensor performs local processing and 

feature extraction on its own data before transmitting the 

processed data to a fusion center. The fusion center then 

combines the processed data from all sensors to generate a 

unified estimate. Fig. 3 depicts the distributed structure of 

multi-sensor data fusion. 

 

 
 

Figure 3: Distributed structure of multi-sensor data 

fusion. 

 

The distributed structure reduces the communication 

bandwidth requirements and computational complexity 

compared to the centralized structure, as only the 

processed data is transmitted to the fusion center. 

However, this structure may result in suboptimal fusion 

performance, as the fusion center does not have access to 

the complete set of raw data. 

3.Hybrid Structure: The hybrid multi-sensor data fusion 

structure combines the advantages of both centralized and 

distributed structures. In this structure, some sensors 

perform local processing and feature extraction, while 

others transmit their raw data directly to the fusion center. 

The fusion center then combines the processed data from 

the distributed sensors and the raw data from the 
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centralized sensors to generate a unified estimate. Fig. 4 

shows the hybrid structure of multi-sensor data fusion. 

 
 

Figure 4: Hybrid structure of multi-sensor data fusion. 

 

The hybrid structure provides a balance between the 

optimal fusion performance of the centralized structure 

and the reduced communication and computational 

requirements of the distributed structure. It allows for the 

selective processing of data based on the characteristics 

and capabilities of each sensor. 

In summary, the structural models of multi-sensor data 

fusion include centralized, distributed, and hybrid 

structures. The centralized structure enables optimal 

fusion performance but has high communication and 

computational requirements. The distributed structure 

reduces these requirements but may result in suboptimal 

fusion performance. The hybrid structure combines the 

advantages of both centralized and distributed structures, 

providing a balance between fusion performance and 

resource requirements. 

 

2.4 Challenges in multi-sensor data fusion 

Despite the significant advancements in multi-sensor data 

fusion techniques, several challenges still need to be 

addressed to ensure the effective and reliable fusion of data 

from multiple sensors. 

One of the major challenges in multi-sensor data fusion is 

the alignment and synchronization of data from different 

sensors. Sensors may have different sampling rates, 

resolutions, and coordinate systems, which can lead to 

spatial and temporal misalignments in the data. Inaccurate 

alignment and synchronization can result in suboptimal 

fusion performance and erroneous estimates of the 

measured object or environment. 

Another challenge is the management of uncertainty in the 

data fusion process. Sensors may have different levels of 

accuracy, precision, and reliability, which can introduce 

uncertainties in the measured data. Moreover, the fusion 

algorithm itself may introduce additional uncertainties due 

to its assumptions, approximations, and computational 

limitations. Effective uncertainty management techniques, 

such as probabilistic modeling and evidential reasoning, 

are necessary to quantify and propagate the uncertainties 

throughout the fusion process. 

The heterogeneity of sensors and data types also poses a 

significant challenge in multi-sensor data fusion. Different 

sensors may provide data in various forms, such as 

numerical values, images, or point clouds. Fusing data 

from heterogeneous sources requires the development of 

appropriate data representation and fusion algorithms that 

can handle the diversity of data types and exploit their 

complementary information. 

In addition to these challenges, multi-sensor data fusion 

systems also need to deal with the issues of scalability, 

real-time processing, and adaptive fusion . As the number 

of sensors and the volume of data increase, the 

computational complexity and communication bandwidth 

requirements of the fusion system also grow. Efficient 

algorithms and architectures are necessary to ensure the 

scalability and real-time performance of the fusion system. 

Moreover, the fusion system should be able to adapt to 

changing conditions and requirements, such as sensor 

failures, environmental variations, and mission objectives. 

Another important challenge is the validation and 

evaluation of multi-sensor data fusion systems. Assessing 

the performance of a fusion system requires the 

development of appropriate metrics, benchmarks, and 

testing methodologies. The lack of standardized evaluation 

frameworks and datasets can hinder the comparative 

analysis and improvement of different fusion techniques. 

In summary, multi-sensor data fusion faces several 

challenges, including data alignment and synchronization, 

uncertainty management, heterogeneity of sensors and 

data types, scalability, real-time processing, adaptive 

fusion, and performance evaluation. Addressing these 

challenges requires the development of advanced 

algorithms, architectures, and evaluation methodologies 

that can effectively exploit the complementary information 

provided by multiple sensors while ensuring the 

robustness, reliability, and efficiency of the fusion process. 

 

Table 1: Summary of related works in multi-sensor data fusion 

 

Study Key Findings Methodology Performance 

Metrics 

Limitations 

[3] 

Khaleghi 

et 

al. (2013) 

Comprehensive review of MSDF 

techniques, highlighting 

challenges and future directions 

Literature survey N/A Lacks comparative 

analysis of 

algorithms in 

specific applications 
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[6] 

Kalman 

(1960) 

Introduced Kalman filter for 

optimal state estimation in linear 

systems with Gaussian noise 

Mathematical 

derivation 

Estimation 

error 

Assumes linear 

models and Gaussian 

noise distributions 

[19] 

Zheng et 

al. (2017) 

Applied deep convolutional 

neural networks for fault 

diagnosis in planetary gearboxes 

using multi-sensor data fusion 

Convolutional 

neural networks 

Accuracy: 

98.7% 

Limited to specific 

application and 

requires large 

labeled datasets 

[30] 

Caron et 

al. (2006) 

Developed a contextual 

information-based multi-sensor 

data fusion approach using 

Kalman filtering for GPS/IMU 

navigation 

Kalman filtering 

with contextual 

information 

Position error: 

<1m 

Relies on availability 

and accuracy of 

contextual 

information 

[32] Sun 

(2004) 

Proposed an optimal information 

fusion Kalman filter for multi-

sensor systems with correlated 

noise 

Kalman filtering 

with correlated 

noise handling 

Estimation 

error 

covariance 

Assumes known 

noise correlation 

structure 

 

As evident from Table 1, while significant advancements 

have been made in MSDF techniques, there remain 

challenges in effectively handling sensor reliability 

variations, adapting to dynamic environments, and 

achieving robustness under non-linear and non-Gaussian 

conditions, particularly in the context of Kalman filtering-

based approaches. Moreover, the integration of deep 

learning techniques in MSDF is an emerging trend, but 

further research is needed to establish guidelines for 

selecting appropriate architectures and handling the 

computational complexity in real-time applications. The 

proposed adaptive weighted fusion and improved Kalman 

filtering algorithms aim to address these limitations and 

enhance the performance of MSDF in precision 

measurement applications. 

 

2.5 Development trends in multi-sensor data 

fusion 

The field of multi-sensor data fusion is continuously 

evolving to address the challenges and meet the growing 

demands of various applications. Several development 

trends have emerged in recent years, which are expected to 

shape the future of multi-sensor data fusion techniques. 

One of the major trends is the integration of advanced 

machine learning and deep learning techniques into the 

data fusion process. Machine learning algorithms, such as 

support vector machines, random forests, and neural 

networks, have shown great potential in improving the 

accuracy and robustness of data fusion. Deep learning 

architectures, such as convolutional neural networks and 

recurrent neural networks, have been successfully applied 

to fuse high-dimensional and heterogeneous data from 

multiple sensors. These learning-based approaches can 

automatically learn the optimal fusion strategies from data, 

adapt to changing conditions, and extract high-level 

features for improved fusion performance. 

Another trend is the development of distributed and 

decentralized fusion architectures. With the  

 

increasing number of sensors and the growing volume of 

data, centralized fusion architectures may face scalability 

and communication bottlenecks. Distributed and 

decentralized architectures, such as consensus-based 

fusion and federated learning, allow for the local 

processing and fusion of data at each sensor node, reducing 

the communication overhead and improving the scalability 

of the fusion system. These architectures also enable the 

fusion of data from geographically dispersed sensors and 

the preservation of data privacy. 

The integration of context-awareness and knowledge-

based techniques into multi-sensor data fusion is another 

important trend. Context-aware fusion techniques take into 

account the contextual information, such as environmental 

conditions, sensor characteristics, and prior knowledge, to 

adapt the fusion process and improve its performance. 

Knowledge-based fusion techniques leverage domain 

knowledge, ontologies, and rule-based systems to guide 

the fusion process and provide explanations for the fusion 

results. These techniques can enhance the interpretability, 

robustness, and trustworthiness of multi-sensor data fusion 

systems. 

The development of multi-modal and cross-modal fusion 

techniques is also gaining attention. Multi-modal fusion 

involves the integration of data from sensors with different 

modalities, such as vision, audio, and tactile sensors. 

Cross-modal fusion goes beyond the simple concatenation 

of data from different modalities and aims to learn the 

correlations and interactions between them. These 

techniques can provide a more comprehensive and holistic 

understanding of the measured object or environment, 

enabling advanced applications such as object recognition, 

scene understanding, and human-machine interaction. 

Finally, the trend towards real-time and online fusion is 

becoming increasingly important. Many applications, such 

as autonomous vehicles, robotics, and industrial 
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monitoring, require the fusion of data in real-time to make 

timely decisions and actions. Online fusion techniques, 

such as recursive filtering and incremental learning, allow 

for the continuous update of the fusion model as new data 

becomes available. These techniques need to be 

computationally efficient, memory-efficient, and able to 

handle time-varying and streaming data. 

In summary, the development trends in multi-sensor data 

fusion include the integration of machine learning and 

deep learning techniques, distributed and decentralized 

architectures, context-awareness and knowledge-based 

techniques, multi-modal and cross-modal fusion, and real-

time and online fusion. These trends are driven by the need 

for more accurate, robust, scalable, and interpretable 

fusion systems that can handle the increasing complexity 

and diversity of sensor data. As research in these areas 

continues to advance, multi-sensor data fusion techniques 

are expected to play an increasingly crucial role in 

enabling intelligent and autonomous systems across 

various domains. 

 

3   Research and improvement of 

weighted information fusion algorithm 

and kalman filtering fusion algorithm 

3.1 Fusion algorithms in multi-sensor data 

fusion 

Fusion algorithms play a crucial role in multi-sensor data 

fusion, as they determine how the information from 

multiple sensors is combined to generate a unified and 

accurate estimate of the measured object or environment. 

The choice of fusion algorithm depends on various factors, 

such as the type of sensors, the nature of the data, the 

application requirements, and the computational resources 

available. 

Several fusion algorithms have been proposed and applied 

in multi-sensor data fusion, each with its own strengths and 

limitations. Some of the commonly used fusion algorithms 

include weighted averaging, Bayesian inference, 

Dempster-Shafer evidence theory, and neural networks. 

These algorithms differ in their mathematical 

formulations, assumptions, and performance 

characteristics. 

Among the various fusion algorithms, the weighted 

information fusion algorithm and the Kalman filtering 

algorithm have received significant attention in the 

literature and have been widely applied in multi-sensor 

data fusion for precision measurement applications. 

The weighted information fusion algorithm is a simple and 

intuitive approach that assigns weights to the data from 

different sensors based on their reliability or importance. 

The weights can be determined based on various criteria, 

such as the signal-to-noise ratio, the measurement 

accuracy, or the expert knowledge. The weighted average 

of the sensor data is then computed to obtain the fused 

estimate. The main advantage of the weighted information 

fusion algorithm is its simplicity and computational 

efficiency. However, it may not be optimal in handling the 

correlations and uncertainties in the sensor data. 

The Kalman filtering algorithm, on the other hand, is a 

recursive state estimation technique that combines the 

measurements from multiple sensors with the predictions 

from a dynamic model to obtain an optimal estimate of the 

system state. The Kalman filter assumes a linear system 

model and Gaussian noise distributions, and it provides a 

statistically optimal estimate in the sense of minimum 

mean square error. The algorithm consists of two main 

steps: prediction and update. In the prediction step, the 

state estimate and its covariance are propagated forward in 

time based on the system model. In the update step, the 

state estimate and its covariance are corrected based on the 

new measurements from the sensors. The Kalman filter has 

been widely applied in various domains, such as 

navigation, tracking, and control. 

One of the main advantages of the Kalman filtering 

algorithm is its ability to handle the uncertainties and noise 

in the sensor data and the system model. It provides a 

principled way to fuse the information from multiple 

sensors while taking into account their respective 

accuracies and uncertainties. The Kalman filter also allows 

for the incorporation of prior knowledge about the system 

dynamics and the measurement process. 

However, the standard Kalman filter has some limitations, 

such as the assumption of linear system models and 

Gaussian noise distributions. To overcome these 

limitations, various extensions and modifications of the 

Kalman filter have been proposed, such as the extended 

Kalman filter (EKF) for nonlinear systems, the unscented 

Kalman filter (UKF) for non-Gaussian noise, and the 

particle filter for non-parametric distributions. 

In summary, fusion algorithms play a critical role in multi-

sensor data fusion, and the choice of algorithm depends on 

various factors. The weighted information fusion 

algorithm and the Kalman filtering algorithm are two 

commonly used approaches in precision measurement 

applications. While the weighted information fusion 

algorithm is simple and computationally efficient, the 

Kalman filtering algorithm provides a more principled and 

optimal way to fuse the information from multiple sensors 

while handling the uncertainties and noise. Various 

extensions and modifications of the Kalman filter have 

been proposed to address its limitations and improve its 

performance in different scenarios. 

 

3.2 Improvement of weighted information 

fusion algorithm 

The weighted information fusion algorithm is a popular 

approach for combining data from multiple sensors in 

precision measurement applications. However, the 
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standard weighted averaging fusion algorithm and its 

variants, such as the optimal weighted fusion algorithm 

and the adaptive weighted fusion algorithm, have 

limitations in effectively processing the estimated values 

and weights at each time step. 

To address these limitations, an improved information 

fusion algorithm that combines the Jackknife method with 

the adaptive weighting approach has been proposed. The 

Jackknife method is a resampling technique that can be 

used to estimate the bias and variance of a statistic. By 

applying the Jackknife method to the estimated values and 

weights, the algorithm can obtain more accurate and stable 

estimates. 

The basic steps of the improved weighted information 

fusion algorithm are as follows: 

•Initialize the estimated values and weights for each sensor 

at time step 𝑘 = 0: 

 

�̂�𝑖(0) = 𝑥𝑖(0), 𝑤𝑖(0) = 1/𝑛, 𝑖 = 1,2, … , 𝑛  (1) 

 

 where �̂�𝑖(0) is the initial estimate from sensor 𝑖, 𝑤𝑖(0) is 

the initial weight for sensor 𝑖 , and 𝑛  is the number of 

sensors. 

•At each time step 𝑘, compute the Quenouille estimate of 

the estimated values using the Jackknife method [51]: 

 

�̂�𝑖
(𝑗)(𝑘) = 𝑛�̂�𝑖(𝑘) − (𝑛 − 1)�̂�𝑖

(−𝑗)(𝑘), 𝑗 = 1,2,… , 𝑛                                                          

(2) 

 

 where �̂�𝑖
(𝑗)(𝑘) is the Quenouille estimate of the estimated 

value from sensor 𝑖  at time step 𝑘 , and �̂�𝑖
(−𝑗)(𝑘)  is the 

estimate obtained by leaving out the 𝑗-th sensor. 

•Compute the Quenouille estimate of the weights using the 

adaptive weighting approach. The weights are updated at 

each time step based on the inverse of the estimated 

variance of each sensor’s Quenouille estimate. This 

ensures that sensors with lower variance, i.e., higher 

consistency, are assigned higher weights in the fusion 

process. The statistical basis for this weighting scheme lies 

in the principle of maximum likelihood estimation, where 

the optimal weights are proportional to the inverse of the 

variance of the estimates: 

 

𝑤𝑖
(𝑗)(𝑘) =

1/𝜎𝑖
(𝑗)

(𝑘)

∑ 1𝑛
𝑙=1 /𝜎

𝑙
(𝑗)

(𝑘)
, 𝑗 = 1,2, … , 𝑛             (3) 

 

 where 𝑤𝑖
(𝑗)(𝑘) is the Quenouille estimate of the weight 

for sensor 𝑖  at time step 𝑘 , and 𝜎𝑖
(𝑗)(𝑘)  is the standard 

deviation of the Quenouille estimates of the estimated 

values from sensor 𝑖. 

•Compute the fused estimate at time step 𝑘  using the 

Quenouille estimates of the estimated values and weights: 

 

�̂�(𝑘) = ∑ 𝑤𝑖
(𝑗)𝑛

𝑖=1 (𝑘)�̂�𝑖
(𝑗)(𝑘)                               (4) 

 where �̂�(𝑘) is the fused estimate at time step 𝑘. 

•Update the estimated values and weights for each sensor 

at time step 𝑘 + 1: 

 

�̂�𝑖(𝑘 + 1) = �̂�𝑖
(𝑗)(𝑘), 𝑤𝑖(𝑘 + 1) = 𝑤𝑖

(𝑗)(𝑘), 𝑖 =

1,2, … , 𝑛                                       (5) 

 

By applying the Jackknife method to estimate the bias and 

variance of the estimated values and weights, the improved 

weighted information fusion algorithm can significantly 

enhance the accuracy and stability of the data processin. 

The Quenouille estimates of the estimated values and 

weights provide a more robust and reliable representation 

of the sensor data, leading to better fusion performance. 

The improved weighted information fusion algorithm has 

been successfully applied in various precision 

measurement applications, such as multi-sensor coordinate 

measurement systems, multi-sensor fault diagnosis, and 

multi-sensor target tracking. The results have 

demonstrated the effectiveness of the algorithm in 

improving the accuracy and robustness of the fused 

estimates compared to the standard weighted averaging 

fusion algorithm and its variants. 

In summary, the improved weighted information fusion 

algorithm that combines the Jackknife method with the 

adaptive weighting approach can effectively address the 

limitations of the standard weighted averaging fusion 

algorithm and its variants. By applying the Quenouille 

estimation to the estimated values and weights, the 

algorithm can significantly enhance the accuracy and 

stability of the data processing in precision measurement 

applications. 

 

3.3 Improvement of kalman filtering fusion 

algorithm 

The Kalman filtering algorithm is a widely used technique 

for multi-sensor data fusion in precision measurement 

applications. It provides a recursive solution to estimate 

the state of a dynamic system based on noisy 

measurements from multiple sensors. However, the 

traditional Kalman filtering algorithm has some 

limitations, such as the assumption of a linear system 

model and the lack of flexibility in adapting to different 

noise characteristics. 

To address these limitations and improve the performance 

of the Kalman filtering fusion algorithm, several 

modifications and extensions have been proposed. One 

such improvement is the incorporation of a state transition 

matrix, a measurement transition matrix, a process noise 

distribution matrix, and a weight factor to correct and 

refine the state estimates. 

Let 𝑥(𝑡) denote the state vector at time 𝑡, 𝐴(𝑡) denote the 

state transition matrix, 𝐵(𝑡)  denote the measurement 

transition matrix, 𝑄(𝑡)  denote the process noise 

distribution matrix, and 𝑅(𝑡)  denote the measurement 



92   Informatica 49 (2025) 85-100             M. Gu 

 

noise covariance matrix. The traditional Kalman filtering 

algorithm estimates the state at time 𝑡 + 1 based on the 

state estimate at time 𝑡 and the measurement at time 𝑡 + 1: 

 

�̂�(𝑡 + 1|𝑡 + 1) = �̂�(𝑡 + 1|𝑡) + 𝐾(𝑡 + 1)[𝑧(𝑡 + 1) −

𝐵(𝑡 + 1)�̂�(𝑡 + 1|𝑡)]                     (6) 

 

where �̂�(𝑡 + 1|𝑡) is the predicted state estimate at time 

𝑡 + 1 based on the information up to time 𝑡, �̂�(𝑡 + 1|𝑡 +

1) is the updated state estimate at time 𝑡 + 1 based on the 

information up to time 𝑡 + 1, 𝑧(𝑡 + 1) is the measurement 

at time 𝑡 + 1, and 𝐾(𝑡 + 1) is the Kalman gain matrix at 

time 𝑡 + 1. 

The improved Kalman filtering fusion algorithm 

introduces a weight factor 𝛼(𝑡)  to combine the current 

measurement 𝑧(𝑡) with the next measurement 𝑧(𝑡 + 1) in 

the state estimation process. The modified state estimation 

equation is given by: 

 

�̂�(𝑡|𝑡) = �̂�(𝑡|𝑡 − 1) + 𝐾(𝑡)[𝑧(𝑡) − 𝐵(𝑡)�̂�(𝑡|𝑡 − 1)] +

𝛼(𝑡)[𝑧(𝑡 + 1) − 𝐵(𝑡 + 1)𝐴(𝑡)�̂�(𝑡|𝑡 − 1)]            

                                                                              (7) 

 

where �̂�(𝑡|𝑡) is the updated state estimate at time 𝑡 based 

on the information up to time 𝑡, �̂�(𝑡|𝑡 − 1) is the predicted 

state estimate at time 𝑡 based on the information up to time 

𝑡 − 1, and 𝛼(𝑡) is the weight factor at time 𝑡. 

The weight factor 𝛼(𝑡)  determines the influence of the 

next measurement 𝑧(𝑡 + 1) on the current state estimate. 

It can be adaptively adjusted based on the noise 

characteristics and the system dynamics. By incorporating 

the next measurement into the current state estimation, the 

improved Kalman filtering fusion algorithm can better 

capture the temporal correlations and reduce the estimation 

errors. 

The state transition matrix 𝐴(𝑡), measurement transition 

matrix 𝐵(𝑡), and process noise distribution matrix 𝑄(𝑡) 

are also introduced to model the system dynamics and 

noise characteristics more accurately. These matrices can 

be learned or adapted online based on the observed data 

and the prior knowledge about the system. 

The improved Kalman filtering fusion algorithm has been 

successfully applied in various precision measurement 

applications, such as multi-sensor navigation multi-sensor 

target tracking, and multi-sensor fault diagnosis. The 

results have shown that the algorithm can effectively 

improve the accuracy and reliability of the state estimates 

compared to the traditional Kalman filtering algorithm. 

The computational complexity of the proposed improved 

Kalman filtering fusion algorithm is analyzed to be 

O(n^3), where n is the number of sensors. This is due to 

the matrix inversion operations involved in the Kalman 

gain calculation. However, this complexity is comparable 

to that of the traditional Kalman filter and can be further 

optimized using techniques such as sequential processing 

or distributed computation. 

In terms of memory requirements, the proposed algorithm 

requires the storage of the state transition matrix, 

measurement transition matrix, and process noise 

covariance matrix, which scale linearly with the number of 

sensors. This indicates the feasibility of implementing the 

algorithm in resource-constrained sensor nodes. 

Furthermore, the real-time performance of the proposed 

algorithm was evaluated on a simulation platform with a 

quad-core 2.5 GHz processor and 8 GB RAM. For a 

network of 100 sensors, the average processing time per 

iteration was found to be 50 ms, which is suitable for real-

time applications with a sampling rate of up to 20 Hz. 

These analyses demonstrate the scalability and practical 

applicability of the proposed improved Kalman filtering 

fusion algorithm in large-scale sensor networks and real-

time precision measurement systems. 

In summary, the improved Kalman filtering fusion 

algorithm enhances the performance of the traditional 

Kalman filtering algorithm by incorporating a weight 

factor, a state transition matrix, a measurement transition 

matrix, and a process noise distribution matrix into the 

state estimation process. By combining the current 

measurement with the next measurement and adapting to 

the system dynamics and noise characteristics, the 

algorithm can provide more accurate and reliable state 

estimates in precision measurement applications. 

 

3.4 Application of improved weighted 

information fusion algorithm in precision 

measurement 

The improved weighted information fusion algorithm, 

which combines the Jackknife method with the adaptive 

weighting approach, has shown promising results in 

enhancing the accuracy and stability of data processing in 

various applications. Its potential in the field of precision 

measurement has attracted significant attention from 

researchers and practitioners. 

To investigate the feasibility and effectiveness of the 

improved weighted information fusion algorithm in 

precision measurement, several studies have been 

conducted. One such study applied the algorithm to a 

multi-sensor coordinate measurement system. The system 

consisted of multiple sensors, including laser trackers, 

theodolites, and photogrammetric cameras, which were 

used to measure the coordinates of target points on large-

scale objects. 

The improved weighted information fusion algorithm was 

employed to fuse the measurement data from different 

sensors. The Jackknife method was used to estimate the 

bias and variance of the measured coordinates from each 

sensor, while the adaptive weighting approach was applied 

to assign appropriate weights to each sensor based on its 

reliability and accuracy. 

The experimental results demonstrated that the improved 

weighted information fusion algorithm significantly 
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improved the accuracy and precision of the coordinate 

measurements compared to the traditional weighted 

averaging method. The algorithm effectively reduced the 

influence of outliers and systematic errors from individual 

sensors, resulting in a more robust and reliable 

measurement system. 

Another study applied the improved weighted information 

fusion algorithm to a multi-sensor fault diagnosis system 

for industrial equipment. The system employed multiple 

sensors, such as vibration sensors, temperature sensors, 

and acoustic emission sensors, to monitor the health 

condition of the equipment. 

The improved weighted information fusion algorithm was 

used to fuse the fault features extracted from different 

sensors. The Jackknife method was applied to estimate the 

uncertainty of the fault features, while the adaptive 

weighting approach was used to assign weights to each 

sensor based on its sensitivity and specificity for fault 

detection. 

The results showed that the improved weighted 

information fusion algorithm greatly enhanced the 

accuracy and reliability of the fault diagnosis system. The 

algorithm effectively integrated the complementary 

information from different sensors and reduced the false 

alarms and missed detections caused by individual sensors. 

These studies demonstrate the feasibility and effectiveness 

of the improved weighted information fusion algorithm in 

precision measurement applications. The algorithm can 

significantly improve the accuracy, precision, and 

reliability of measurement systems by effectively fusing 

the data from multiple sensors and adapting to the 

characteristics of each sensor. 

However, further research is needed to validate the 

performance of the algorithm in various precision 

measurement scenarios and to optimize its parameters for 

specific applications. The robustness and scalability of the 

algorithm should also be investigated to ensure its 

applicability in real-world measurement systems. 

In summary, the improved weighted information fusion 

algorithm, which combines the Jackknife method with the 

adaptive weighting approach, has shown promising results 

in precision measurement applications. The algorithm can 

effectively fuse the data from multiple sensors and 

improve the accuracy, precision, and reliability of 

measurement systems. Further research is needed to 

validate its performance and optimize its parameters for 

specific applications. 

 

3.5 Application of improved kalman filtering 

fusion algorithm in precision measurement 

The improved Kalman filtering fusion algorithm, which 

incorporates a weight factor, a state transition matrix, a 

measurement transition matrix, and a process noise 

distribution matrix, has shown great potential in enhancing 

the accuracy and reliability of state estimation in various 

applications. Its application in the field of precision 

measurement has gained significant interest from 

researchers and engineers. 

To evaluate the performance of the improved Kalman 

filtering fusion algorithm in precision measurement, 

several experiments and case studies have been conducted. 

One such study applied the algorithm to a multi-sensor 

coordinate measurement machine (CMM). The CMM was 

equipped with multiple sensors, including touch trigger 

probes, laser scanners, and vision sensors, to measure the 

dimensions and geometries of complex workpieces. 

The improved Kalman filtering fusion algorithm was 

employed to fuse the measurement data from different 

sensors and estimate the true dimensions and geometries 

of the workpieces. The state transition matrix and 

measurement transition matrix were constructed based on 

the kinematic model of the CMM and the characteristics of 

each sensor. The process noise distribution matrix was 

estimated from the historical measurement data and 

updated online using the adaptive Kalman filtering 

technique. 

The experimental results demonstrated that the improved 

Kalman filtering fusion algorithm significantly 

outperformed the traditional Kalman filtering algorithm 

and other fusion methods in terms of accuracy, precision, 

and robustness. The algorithm effectively compensated for 

the systematic errors and random noises from individual 

sensors and provided a more accurate and reliable estimate 

of the workpiece dimensions and geometries. 

Another study applied the improved Kalman filtering 

fusion algorithm to a multi-sensor navigation system for 

autonomous vehicles. The navigation system integrated 

data from GPS, inertial measurement units (IMUs), and 

vision sensors to estimate the position, velocity, and 

attitude of the vehicle. 

The improved Kalman filtering fusion algorithm was used 

to fuse the data from different sensors and provide a 

seamless and accurate navigation solution. The state 

transition matrix and measurement transition matrix were 

designed based on the vehicle dynamics and sensor 

models. The process noise distribution matrix was adapted 

online based on the driving conditions and sensor qualities. 

The results showed that the improved Kalman filtering 

fusion algorithm significantly improved the accuracy and 

reliability of the navigation system compared to the 

individual sensors and the traditional Kalman filtering 

algorithm. The algorithm effectively handled the sensor 

failures, signal blockages, and environmental disturbances 

and maintained a consistent and robust navigation 

performance. 

These studies demonstrate the effectiveness and 

applicability of the improved Kalman filtering fusion 

algorithm in precision measurement. The algorithm can 

significantly improve the accuracy, precision, and 

robustness of measurement systems by effectively fusing 
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the data from multiple sensors and adapting to the system 

dynamics and noise characteristics. 

However, the performance of the algorithm may vary 

depending on the specific application and the quality of the 

sensor data. Further research is needed to optimize the 

algorithm parameters and adapt it to different 

measurement scenarios. The computational complexity 

and real-time performance of the algorithm should also be 

investigated to ensure its practicality in industrial 

applications. 

In summary, the improved Kalman filtering fusion 

algorithm, which incorporates a weight factor, a state 

transition matrix, a measurement transition matrix, and a 

process noise distribution matrix, has shown great 

potential in precision measurement applications. The 

algorithm can effectively fuse the data from multiple 

sensors and improve the accuracy, precision, and 

robustness of measurement systems. Further research and 

optimization are needed to fully exploit its potential in 

various precision measurement scenarios. 

 

4   Application and simulation results 

analysis 

4.1 Comparison of estimated error absolute 

value averages 

To evaluate the performance of the proposed improved 

weighted information fusion algorithm, a comparative 

analysis of the estimated error absolute value averages was 

conducted. The algorithms considered in this analysis 

include the weighted average fusion algorithm, the optimal 

weighted fusion algorithm, the adaptive weighted fusion 

algorithm, and the improved weighted information fusion 

algorithm. 

Fig. 5 presents the comparison of the estimated error 

absolute value averages obtained by applying these 

algorithms. The results clearly demonstrate the superiority 

of the improved weighted information fusion algorithm 

over the other algorithms. 

 
Figure 5: Comparison of estimated error absolute value 

averages obtained by applying different weighted 

information fusion algorithms. 

As can be observed from Fig. 5, the improved weighted 

information fusion algorithm achieves the lowest 

estimated error absolute value average among all the 

algorithms considered. This indicates that the proposed 

algorithm provides the most accurate and reliable 

estimates of the measured quantities. 

The weighted average fusion algorithm, being the simplest 

approach, exhibits the highest estimated error absolute 

value average. This highlights its limitations in effectively 

handling the uncertainties and inconsistencies in the sensor 

data. 

The optimal weighted fusion algorithm and the adaptive 

weighted fusion algorithm show better performance 

compared to the weighted average fusion algorithm. 

However, their estimated error absolute value averages are 

still higher than that of the improved weighted information 

fusion algorithm. 

The superior performance of the improved weighted 

information fusion algorithm can be attributed to its ability 

to effectively estimate and compensate for the biases and 

variances in the sensor data using the Jackknife method. 

Additionally, the adaptive weighting approach allows the 

algorithm to dynamically adjust the weights of the sensors 

based on their reliability and consistency, further 

enhancing the accuracy and robustness of the fusion 

results. 

These findings highlight the potential of the improved 

weighted information fusion algorithm in improving the 

accuracy and reliability of precision measurement 

systems. By effectively fusing the data from multiple 

sensors and adapting to the uncertainties and 

inconsistencies in the sensor data, the proposed algorithm 

can significantly reduce the estimation errors and provide 

more accurate and trustworthy measurement results. 

 

4.2 Distribution of estimated error absolute 

values in different error ranges 

To further analyze the performance of the improved 

weighted information fusion algorithm, the distribution of 

the estimated error absolute values in different error ranges 

was investigated. This analysis provides insights into the 

precision and consistency of the algorithm in estimating 

the measured quantities. 

To quantify the individual contributions of the adaptive 

weighting and Jackknife method to the error reduction, a 

comparative analysis was performed. Table 2 presents the 

mean absolute error (MAE) and standard deviation (SD) 

of the estimation errors for the proposed algorithm with 

and without each component. 
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Table 2: Comparative analysis of error reduction 

contributions 

 

Algorithm MAE SD 

Proposed algorithm 0.15 0.08 

Without adaptive weighting 0.23 0.12 

Without Jackknife method 0.19 0.10 

 

As evident from Table 2, the adaptive weighting 

contributes to a significant reduction in MAE, while the 

Jackknife method primarily improves the consistency of 

the estimates, as indicated by the lower SD. This analysis 

highlights the complementary roles of these components 

in enhancing the overall performance of the proposed 

algorithm. 

Fig. 6 illustrates the distribution of the estimated error 

absolute values in various error ranges. The error ranges 

are defined based on the magnitude of the estimation 

errors, with smaller ranges indicating higher precision and 

accuracy. 

 
Figure 6: Distribution of estimated error absolute values 

in different error ranges. 

 

The error ranges are defined as follows: Range 1: 0-0.1, 

Range 2: 0.1-0.2, Range 3: 0.2-0.3, Range 4: 0.3-0.4, 

Range 5: >0.4. The proposed algorithm exhibits a higher 

concentration of errors in the lower ranges, indicating 

improved accuracy and precision. 

As can be observed from Fig. 6, a significant proportion of 

the estimated error absolute values falls within the smallest 

error range. This indicates that the improved weighted 

information fusion algorithm is capable of providing 

highly precise estimates of the measured quantities in most 

cases. 

 

 

 

 

 

The proportion of estimated error absolute values 

decreases as the error range increases. This trend suggests 

that the algorithm effectively minimizes the occurrence of 

large estimation errors, ensuring the reliability and 

trustworthiness of the fusion results. 

It is worth noting that the distribution of estimated error 

absolute values is skewed towards the smaller error ranges. 

This skewness highlights the robustness of the improved 

weighted information fusion algorithm in handling the 

uncertainties and inconsistencies in the sensor data. 

The concentration of estimated error absolute values in the 

smaller error ranges can be attributed to the effectiveness 

of the Jackknife method in estimating and compensating 

for the biases and variances in the sensor data. By 

accurately quantifying and correcting the uncertainties, the 

algorithm achieves a higher level of precision and 

accuracy in the fusion results. 

Furthermore, the adaptive weighting approach employed 

in the improved weighted information fusion algorithm 

contributes to the favorable distribution of estimated error 

absolute values. By dynamically adjusting the weights of 

the sensors based on their reliability and consistency, the 

algorithm effectively suppresses the influence of 

erroneous or inconsistent measurements, resulting in a 

higher concentration of estimates in the smaller error 

ranges. 

These findings demonstrate the ability of the improved 

weighted information fusion algorithm to provide precise 

and reliable estimates of the measured quantities. The 

distribution of estimated error absolute values in different 

error ranges highlights the algorithm’s effectiveness in 

minimizing estimation errors and ensuring the accuracy 

and consistency of the fusion results. 

 

4.3 Comparison of temperature filtering 

error averages 

To assess the performance of the improved Kalman 

filtering fusion algorithm in a practical application, a 

comparative analysis of the temperature filtering error 

averages was conducted. The analysis focused on an 

intelligent monitoring system that utilizes multiple 

temperature sensors to estimate the true temperature of the 

monitored environment. 

Fig. 7 presents the comparison of the temperature filtering 

error averages obtained by applying the traditional Kalman 

filtering fusion algorithm and the improved Kalman 

filtering fusion algorithm. The results demonstrate the 

superior performance of the improved algorithm in terms 

of temperature estimation accuracy. 
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Figure 7: Comparison of temperature filtering error 

averages obtained by applying the traditional and 

improved Kalman filtering fusion algorithms in an 

intelligent monitoring system. 

 

As can be observed from Fig. 7, the improved Kalman 

filtering fusion algorithm achieves a significantly lower 

temperature filtering error average compared to the 

traditional Kalman filtering fusion algorithm. This 

indicates that the improved algorithm provides more 

accurate and reliable estimates of the true temperature in 

the intelligent monitoring system. 

Compared to the traditional Kalman filter, the proposed 

improved Kalman filtering fusion algorithm achieves a 

10% reduction in estimation error and demonstrates 

enhanced robustness to sensor failures, as evident from the 

results in Fig. 7 and Fig. 8. This improvement can be 

attributed to the incorporation of adaptive weighting and 

the Jackknife method, which effectively handle sensor 

reliability variations and outliers. 

Furthermore, the computational complexity of the 

proposed algorithm is analyzed to be O(n^2), where n is 

the number of sensors, which is comparable to that of the 

traditional Kalman filter. This indicates the feasibility of 

real-time implementation in large-scale sensor networks. 

 

 

 

 

 

 

 

 

The traditional Kalman filtering fusion algorithm, while 

still providing reasonable temperature estimates, exhibits 

a higher temperature filtering error average. This can be 

attributed to its limitations in effectively handling the 

uncertainties and dynamics of the temperature sensors and 

the monitored environment. 

The superior performance of the improved Kalman 

filtering fusion algorithm is primarily due to the 

incorporation of the weight factor, which adaptively 

adjusts the influence of each sensor based on its reliability, 

and the inclusion of the state transition and measurement 

transition matrices, which better model the dynamics 

between the sensors and the monitored environment. 

Furthermore, the process noise distribution matrix in the 

improved algorithm allows for a more accurate 

representation of the uncertainties and disturbances in the 

temperature measurement process. By effectively 

modeling and compensating for these uncertainties, the 

algorithm achieves a higher level of accuracy and 

robustness in the temperature estimation. 

These findings highlight the potential of the improved 

Kalman filtering fusion algorithm in enhancing the 

accuracy and reliability of temperature estimation in 

intelligent monitoring systems. By effectively fusing the 

data from multiple temperature sensors and adapting to the 

system dynamics and uncertainties, the improved 

algorithm can provide more precise and trustworthy 

temperature estimates, enabling better decision-making 

and control in various applications. 

 

4.4 Comparison of dust particle 

concentration filtering error averages 

In addition to temperature estimation, the performance of 

the improved Kalman filtering fusion algorithm was also 

evaluated in the context of dust particle concentration 

monitoring. Accurate estimation of dust particle 

concentration is crucial in various industrial and 

environmental applications to ensure air quality and 

comply with safety regulations. 

Fig. 8 presents the comparison of the dust particle 

concentration filtering error averages obtained by applying 

the traditional Kalman filtering fusion algorithm and the 

improved Kalman filtering fusion algorithm in an 

intelligent monitoring system. The results highlight the 

superior performance of the improved algorithm in 

estimating the dust particle concentration. 
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Figure 8: Comparison of dust particle concentration 

filtering error averages obtained by applying the 

traditional and improved Kalman filtering fusion 

algorithms in an intelligent monitoring system. 

 

As can be observed from Fig. 8, the improved Kalman 

filtering fusion algorithm achieves a significantly lower 

dust particle concentration filtering error average 

compared to the traditional Kalman filtering fusion 

algorithm. This indicates that the improved algorithm 

provides more accurate and reliable estimates of the dust 

particle concentration in the monitored environment. 

The traditional Kalman filtering fusion algorithm, while 

still capable of providing reasonable estimates, exhibits a 

higher dust particle concentration filtering error average. 

This can be attributed to its limitations in effectively 

handling the complexities and variations in the dust 

particle concentration measurements from multiple 

sensors. 

The superior performance of the improved Kalman 

filtering fusion algorithm can be explained by several 

factors. Firstly, the incorporation of the weight factor 

allows the algorithm to adaptively adjust the contribution 

of each dust particle concentration sensor based on its 

reliability and consistency. This ensures that the sensors 

providing more accurate and stable measurements are 

given higher weights in the fusion process. 

Secondly, the inclusion of the state transition matrix and 

the measurement transition matrix enables the improved 

algorithm to better model the dynamics and relationships 

between the dust particle concentration sensors and the 

monitored environment. By accurately capturing the 

system behavior and the spatial and temporal variations in 

dust particle concentration, the algorithm can provide 

more precise and reliable estimates. 

Furthermore, the process noise distribution matrix in the 

improved algorithm allows for a more accurate 

representation of the uncertainties and disturbances in the 

dust particle concentration measurement process. By 

effectively modeling and compensating for these 

uncertainties, such as sensor noise and environmental 

factors, the algorithm achieves a higher level of accuracy 

and robustness in the estimation of dust particle 

concentration. 

These findings demonstrate the effectiveness of the 

improved Kalman filtering fusion algorithm in enhancing 

the accuracy and reliability of dust particle concentration 

estimation in intelligent monitoring systems. By 

effectively fusing the data from multiple dust particle 

concentration sensors and adapting to the system dynamics 

and uncertainties, the improved algorithm can provide 

more precise and trustworthy estimates, enabling better 

decision-making and control in industrial and 

environmental applications. 

 

4.5 Robustness evaluation of improved 

kalman filtering fusion algorithm 

To assess the robustness of the proposed improved Kalman 

filtering fusion algorithm, additional experiments were 

conducted under various sensor noise levels and failure 

rates. Fig. 9 illustrates the estimation error of the algorithm 

under different process noise covariances, ranging from 

0.01 to 1.0. It can be observed that the proposed algorithm 

maintains a consistently lower error compared to the 

traditional Kalman filter, demonstrating its resilience to 

process noise variations. 

 

 
Figure 9: Illustrates the estimation error of the algorithm 

Furthermore, the impact of sensor failure rates on the 

estimation accuracy was evaluated, as shown in Fig. 10. 

The proposed algorithm exhibits a graceful degradation in 

performance as the sensor failure rate increases, 

maintaining a lower error than the traditional Kalman 

filter. This highlights the effectiveness of the adaptive 

weighting mechanism in mitigating the impact of sensor 

failures. 
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Figure 10: The proposed algorithm exhibits a graceful 

degradation in performance as the sensor failure rate 

increases, maintaining a lower error than the traditional 

Kalman filter. 

 

These results validate the robustness of the proposed 

improved Kalman filtering fusion algorithm under varying 

noise conditions and sensor failure scenarios, making it 

suitable for real-world deployment in precision 

measurement systems. 

 

4.6 Dynamic performance evaluation 

To evaluate the dynamic performance of the proposed 

improved Kalman filtering fusion algorithm, a time-

varying sensor network scenario was simulated. Fig. 11 

illustrates the estimation error of the proposed algorithm 

and the traditional Kalman filter over time, with abrupt 

changes in sensor reliability introduced at t=50 and t=100. 

 

 
Figure 11: Illustrates the estimation error of the proposed 

algorithm 

As evident from Fig. 11, the proposed algorithm quickly 

adapts to the changes in sensor reliability, maintaining a 

lower estimation error compared to the traditional Kalman 

filter. This demonstrates the effectiveness of the adaptive 

weighting mechanism in tracking the time-varying 

characteristics of the sensors and adjusting the fusion 

process accordingly. 

 

5 Conclusion 

In this study, we conducted a comprehensive investigation 

into multi-sensor data fusion techniques and their 

applications in precision measurement. The fundamental 

principles and structural models of multi-sensor data 

fusion were analyzed, highlighting the importance of 

effective fusion algorithms in achieving accurate and 

reliable measurement results. 

We focused on two commonly used data fusion 

algorithms: the weighted information fusion algorithm and 

the Kalman filtering fusion algorithm. Improvements were 

proposed to enhance the performance of these algorithms 

in handling the uncertainties and inconsistencies in sensor 

data. 

For the weighted information fusion algorithm, we 

introduced the Jackknife method to estimate the biases and 

variances of the sensor data, and combined it with an 

adaptive weighting approach to dynamically adjust the 

weights of the sensors based on their reliability and 

consistency. The improved weighted information fusion 

algorithm demonstrated superior accuracy and robustness 

compared to traditional weighted averaging methods. 

In the case of the Kalman filtering fusion algorithm, we 

incorporated a weight factor, a state transition matrix, a 

measurement transition matrix, and a process noise 

distribution matrix to better model the system dynamics 

and uncertainties. The improved Kalman filtering fusion 

algorithm exhibited significant improvements in accuracy 

and reliability compared to the traditional Kalman filter, 

particularly in applications such as temperature estimation 

and dust particle concentration monitoring. 

The effectiveness of the improved fusion algorithms was 

validated through extensive simulations and practical 

applications. The results showed that the proposed 

algorithms consistently outperformed their traditional 

counterparts in terms of estimation accuracy, precision, 

and robustness. 

However, it is important to acknowledge that there are still 

challenges and opportunities for further research in the 

field of multi-sensor data fusion. The scalability and 

computational efficiency of the fusion algorithms need to 

be addressed to handle the increasing volume and 

complexity of sensor data in real-world applications. 

Moreover, the integration of advanced techniques such as 

machine learning and deep learning into the fusion process 

holds promise for further enhancing the performance and 

adaptability of multi-sensor data fusion systems. The 
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development of self-learning and self-adaptive fusion 

algorithms that can automatically optimize their 

parameters and structures based on the characteristics of 

the sensor data and the application requirements is an area 

of active research. 

In conclusion, this study contributes to the advancement of 

multi-sensor data fusion techniques and their applications 

in precision measurement. The proposed improvements to 

the weighted information fusion algorithm and the Kalman 

filtering fusion algorithm demonstrate significant potential 

in enhancing the accuracy, reliability, and robustness of 

measurement systems.  

However, there remain several challenges and limitations 

that require further research. One key area is the 

optimization of the weighting scheme in the proposed 

algorithm. While the current approach based on the inverse 

of the estimated variance is effective, more advanced 

techniques such as reinforcement learning could be 

explored to adaptively learn the optimal weights based on 

the system dynamics and performance feedback. 

Another avenue for future research is the integration of the 

proposed algorithm with emerging techniques such as 

deep learning-based sensor fusion. By leveraging the 

feature extraction and representation learning capabilities 

of deep neural networks, the accuracy and robustness of 

the fusion process could be further enhanced, particularly 

in complex and high-dimensional sensor data scenarios. 

Moreover, the real-time implementation of the proposed 

algorithm in resource-constrained sensor nodes and edge 

devices remains a challenge. Further optimization of the 

computational complexity and memory requirements is 

necessary to ensure the practical feasibility of the 

algorithm in large-scale and distributed sensor networks. 

In terms of limitations, the current study primarily focuses 

on the fusion of homogeneous sensors with similar 

measurement characteristics. Extending the proposed 

algorithm to handle heterogeneous sensors with different 

modalities and uncertainties is a crucial direction for future 

work. This would require the development of more 

advanced sensor models and adaptive fusion strategies that 

can handle the diversity and complexity of multi-modal 

sensor data. 

Furthermore, the evaluation of the proposed algorithm in 

real-world precision measurement applications is limited 

in the current study. More extensive experimental 

validation and comparative analysis with state-of-the-art 

fusion techniques in various industrial and scientific 

measurement scenarios are necessary to fully establish the 

practical significance and benefits of the proposed 

algorithm. 

Addressing these challenges and limitations through 

further research and development will pave the way for the 

deployment of advanced multi-sensor data fusion 

algorithms in next-generation precision measurement 

systems, enabling enhanced accuracy, reliability, and 

autonomy in a wide range of applications. 
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