
Informatica 38 (2014) 313–320 313

Automatic Android-based Wireless Mesh Networks

Paul Wong, Vijay Varikota, Duong Nguyen and Ahmed Abukmail
School of Science and Computer Engineering
University of Houston - Clear Lake, Houston, Tx 77058, USA
Email: wongp7342@uhcl.edu, varikotav6521@uhcl.edu, nguyend4081@uhcl.edu, abukmail@uhcl.edu

Keywords: Android, wireless mesh networks, Wi-Fi Direct, relay

Received: August 14, 2014

Android devices are portable, equipped with powerful processors, and can act as both mesh routers and
clients through Wi-Fi Direct, making them a suitable platform from which to deploy a wireless mesh
network. To allow Android devices to automatically establish and participate in a wireless mesh network,
we circumvent two key problems of the Android’s Wi-Fi APIs: lack of direct support for ad-hoc networking
/ many-to-one Wi-Fi Direct connections, and Wi-Fi Direct WPS authentication limiting applications to ones
which require intermittent user interaction.

Povzetek: Opisana je metoda za izboljševanje vključevanja naprav Android v omrežja.

1 Introduction

Devices running Android[1], such as smartphones and
tablets, are ubiquitous, power efficient, and inexpensive. In
addition, most Android devices come with a suite of sen-
sors which, in a network, may be used to collect physical
data simultaneously in different locations; this gives a wire-
less mesh network containing Android devices the potential
to be immediately useful in a variety of applications, such
as in a wireless sensor network [2, 3]. Android devices
acting as soft access points can extend the coverage of the
network while simultaneously functioning in other capaci-
ties (such as that of a sensor node), reducing the amount of
infrastructure required for deployment of the network over
a given area.

While being comparable in size to many microntroller-
based boards, the open source and popularity of Android
devices have produced an enormous number of applica-
tions and algorithm implementations. Android devices are
capable of executing complex algorithms directly on board,
giving the Android mesh network facility for distributed
computing.

This paper demonstrates how wireless mesh networks
can be constructed by Android devices automatically with
Wi-Fi Direct [4] using a technique that establishes connec-
tions without requiring user interaction. By allowing these
devices to connect to each other automatically, we make
their use practical in a number of different applications in
which they would not otherwise be, namely, ones which
require them to be permanently or semi-permanently in-
stalled - as network infrastructure or as part of a larger sta-
tionary sensor network, for example. Used Android de-
vices are easy to obtain and inexpensive; they will only be-
come more so in the future, making them potentially cost
efficient alternatives to more traditional types of infrastruc-
ture.

In section 2, we review the concept of a wireless mesh
network, acknowledge existing, similar approaches, and
discuss Wi-Fi Direct on Android. In Section 3, we dis-
cuss the existing network implementations for Android.
Sections 4, 5, and 6 outline our implementation in detail,
describing both methodology and architecture. Section 7
shows the structure of the software, and section 8 discusses
our testing and results.

2 Background

2.1 About Wireless Mesh Networks

Wireless Mesh Networks are dynamic, self-organizing net-
works made up of devices which are either mesh clients
or mesh routers. Wireless Mesh Networks are similar to
ad-hoc wireless networks in structure, but differ in that for
a Wireless Mesh Network, there is still a central gateway
through which most network traffic will ultimately pass[5].

Wireless Mesh Networks are an efficient and cost-
effective way of providing wireless network infrastructure,
because of the ease and low cost of installation[5].

2.2 About Android

The key strengths of the Android platform in the context of
automatically constructing Wireless Mesh Networks are:

– Android is open. The source code for the operating
system is freely available, and, as a mobile platform,
applications may be developed and distributed for it
without any significant limitation[6].

– An application which will run on one Android device
will run on another irrespective of its architecture.



314 Informatica 38 (2014) 313–320 P. Wong et al.

– Android devices have a host of built-in sensors. Cam-
eras, GPS, accelerometers, microphones, compasses,
barometers, EM field, RGB light sensors, and gy-
ros are all commonly available and programmer-
accessible through the Android API.

– Android devices are able to communicate over 2.5-4G
networks, Wi-Fi a/b/g/n, and Bluetooth R©.

– Android devices are power efficient, small, and
portable.

– Android devices are typically run by powerful, multi-
core ARM processors, giving them the ability to per-
form complex tasks and computations on board.

– The market for Android devices is directly consumer
driven. Development of new hardware is rapid; mod-
els of perfectly serviceable devices are succeeded al-
most yearly, causing the prices of the older models to
drop along with the demand for them, making them
a prime inexpensive target for building wireless mesh
networks.

– Android applications can be configured to start auto-
matically after device boot-up.

2.3 Wi-Fi Direct on Android
Since Android 4.0, Wi-Fi Direct has been available on
Android devices through the API’s Wi-Fi P2P framework.
A major problem with the implementation is that, if used
in any of the ways shown in the documentation or sam-
ple code[7], many-to-one connections will not work; as
of Android 4.4, attempting to connect to any third device
will cause the existing connection to drop. We describe the
method we have used to bypass this issue in section 4.2.1.

3 Existing mesh/ad-hoc network
implementations for Android

3.1 A multilayer application for multi-hop
messaging on Android devices

Ryan Berti, Abinand Kishore, and Jay Huang of the Uni-
versity of Southern California developed software for the
Android which can send data through a daisy-chain of
phones linked through transient Wi-Fi Direct connections.
Connections between devices are one to one, and each
phone in the network acts as both a relay and a client. The
application computes routes through the devices, and packs
the route data in every message so that each relaying device
knows where to send the data towards[8].

3.2 The serval project
The Serval Project aims to be a backup telecommunications
system that can function outside a normal cellular network.

The Serval Project’s software can use Android’s Wi-Fi in
ad-hoc mode to establish its network, however, using An-
droid’s ad-hoc mode presently requires root permissions on
the device (root permissions can only be acquired on a de-
vice by hacking it, which usually voids the warranty and
may be illegal if the device is a contract phone). If root
permissions are not available on a device, a wireless access
point is needed for the device to communicate using the
software[9].

3.3 Open garden

Open Garden is proprietary software for the Android, Win-
dows, and Mac OS X that allows users to create and take
part in wireless mesh networks to access the Internet. It
does not require root access on a phone and can use Wi-Fi
Direct or Bluetooth R© to establish connections[10].

4 Establishing Android Wi-Fi Direct
connections automatically

4.1 Motivation for connection automation

Android devices such as smartphones, are designed to be
user-driven devices. That is, the Android stack, which sits
on top of Linux, is geared towards facilitating communica-
tion, productivity, and entertainment applications in which
user interaction is central. It is in this user-centric context
that Android’s Wi-Fi Direct framework was created.

The primary connection methods of the framework, and,
indeed, the only documented methods for establishing peer-
to-peer connectivity between Android devices are all user
driven; they must have a user’s input and confirmation in
order to proceed with connection and authentication. While
suitable for the application areas for which Android was
primarily designed, the requirement of having periodic user
interaction to drive connection processes limits the ways
the devices can be used. Permanent installation of these
devices, for example, would be impractical if a user or ad-
ministrator had to periodically press a button on an authen-
tication dialog to keep a network running.

By allowing Android devices to connect to each other
automatically and without any interaction, we eliminate
this requirement of user supervision and make the devices
practical in applications where they may be difficult to ac-
cess and/or frequent and periodic user oversight cannot or
should not be guaranteed.

4.2 Implementation

In our implementation, a device in the mesh network is,
at any given time, either a) a mesh router or b) a mesh
client. Many clients may be connected to a single router
simultaneously and can access the outside network through
that router.



Automatic Android-based Wireless Mesh Networks Informatica 38 (2014) 313–320 315

If necessary to enlarge coverage, multiple routers may
exist in the network. If two routers are outside of each oth-
ers’ ranges, a client that is within the range of both can act
as a relay to ferry information from one router to the other.
To accomplish this, the client acting as a relay temporarily
disconnects from its original mesh router to broadcast and
receive data to and from the other mesh router[5].

Unlike some implementations, ours does not need
root access on any device. It can also run automatically
and establish connections without user intervention, and
works on any device running Android 4.0 or later. It is
also lightweight enough to be used for communications
infrastructure.

The two main obstacles overcome by our implementa-
tion are:

1. As mentioned previously in section 2.3, as of Android
4.4 (API 19), the Wi-Fi Direct interface on Android
may not be used directly to connect more than two
devices at a time.

2. When two devices try to connect to each other using
Wi-Fi Direct, manual, user-interactive authentica-
tion is required. A WPS confirmation dialog box
will pop up on the screen during a connection attempt
and must be answered by a user in order for the
connection to be accepted. A device that has already
connected once may be “remembered,” which means
that if it attempts to connect again no authentication
dialog will be presented. However, remembered
devices are forgotten after reboots.

4.2.1 Soft access point solution

Though the Android Wi-Fi Direct implementation does
not work properly for many-to-one connections (see sec-
tion 2.3) it does, however, allow for the creation of a soft
access point (AP) that one or more devices can connect to
simultaneously if they know its SSID and preshared key.

Since neither the SSID or preshared key of the access
point can be set by the framework (both are automatically
and randomly generated), they must somehow be given to
the devices which are to connect to the soft access point.

The way we have accomplished this is by packing the
SSID and preshared key into a network service discovery
broadcast, which can be sent wirelessly from the soft ac-
cess point to other devices in range using the Android Wi-
Fi Direct framework. The SSID and the preshared key
are both encrypted with a separate key that all the devices
know beforehand (an encryption key, unlike an access point
preshared key, can be set programmatically).

All devices within range of one of these soft access
points (AP) will receive this network service discovery
broadcast containing the AP’s SSID and PSK (see figure
1). If a client device is within range of more than one soft
access point, it will receive the AP information for all of

them, and if it is to act as a relay, it can take turns connect-
ing to each AP.

Using this method, multiple clients can connect to a sin-
gle device over Wi-Fi simultaneously (see figure 2); a sec-
ond and very important benefit to this method is that the
authentication process can be completely automated.

4.2.2 Security

Soft access points created by Android’s Wi-Fi Di-
rect framework are WPA2 compliant, which means that
all communications between the access point and authenti-
cated clients are encrypted using AES-CCMP or TKIP[11].

The wireless AP password is encrypted in-
side the network service discovery broad-
cast with the javax.crypto.Cipher class using
“AES/GCM/PKCS5PADDING”, which is the AES
algorithm in Galois/Counter mode with the cleartext
padded into 8 byte blocks. The key used for encryption
is stored on each device beforehand to enable them to
create and join the p2p network without periodic user
intervention.

The reason why the preshared key of the soft access
point is not just directly stored beforehand is because it is
randomly generated and subject to change each time the
soft AP is created, at the discretion of the framework and
not the programmer; there is no way to change or mod-
ify it. If the preshared key was stored beforehand, then
users would have to reconfigure all the devices whenever
an Android device running a soft access point decided to
change its preshared key. In other words, we cannot effec-
tively “preshare” the preshared key because it changes at
the whim of Android OS.

By broadcasting the AP’s most recent preshared key
each time it is created, we ensure that clients can always
connect to it without having to be manually reconfigured.
By encrypting the key before broadcasting it, we ensure
that only the clients who we want to be able to connect
to the network will be able to; we can store the encryption
key used to encrypt the AP keys on the devices beforehand,
without having to worry about it changing.

4.3 Mesh router procedure
1. Create a soft AP using Wi-Fi Direct. This is per-

formed by making a group using the createGroup
method of the WifiP2pManager class.
The newly created access point:

(a) creates its SSID from its device name and a ran-
dom string of letters.

(b) is secured using WPA2-PSK; its passphrase is
randomly generated and cannot currently be
changed or set by the programmer.

(c) runs a DHCP service on the device to assign
local IP addresses to connecting client devices.
This device is known as the “group owner”



316 Informatica 38 (2014) 313–320 P. Wong et al.

afterwards[12].

2. Wait for the soft AP to finish starting up.
The Android device will send a WIFI_P2P_-
CONNECTION_CHANGED_ACTION intent when
the AP is up. Associate a BroadcastReceiver
with this intent to catch it. This BroadcastReceiver
will be called by the operating system:

(a) whenever a change in the Wi-Fi Direct connec-
tion is detected.

(b) after createGroup finishes creating the access
point.

Receipt of this intent will act as a signal to pro-
ceed to the next step.

3. Pack the SSID, passphrase, MAC, and connectivity
status into a string.

4. Encrypt the string. Use an encoding for this string
that will not lose information when cast into Unicode,
such as ISO-8859-1[13].

Figure 1: A client device picking up an AP broadcast and
connecting.

5. Create a WifiP2pDnsSdServiceInfo object
and put the encrypted string into it. This can be done
from inside the BroadcastReceiver.

6. Begin broadcasting the service information by call-
ing WifiP2pManager’s addLocalService method.

7. Start a netsock server on a separate thread and begin
listening for clients attempting to connect. In our im-
plementation, each connected client is given its own
new thread for the sake of simplicity.

Router Pseudocode:

CreateAP()
en_ssid← Encrypt(GetMySSID())
en_psk ← Encrypt(GetMyPSK())
MakeNSDBroadcast(en_ssid, en_psk)
server_socket← OpenServerSocket()

while program_is_running
client_socket← BlockingAccept()
StartNewClientIOThread(client_socket)

4.4 Client procedure
1. Make a callback object to receive network ser-

vice discovery (NSD) broadcasts by creating a
DnsSdServiceResponseListener. This will
be called any time a Upnp broadcast is received. The
DnsSdServiceResponseListener must:

(a) Receive the broadcast data as a String
(b) Unencrypt the received broadcast string
(c) Parse out the SSID and passphrase from the un-

encrypted string
(d) Store the parsed out information in an instance

of a Class designed to hold it
(e) Push that instance with the data into a list.

2. Start listening for network service discovery
broadcasts by calling WifiP2pManager’s setDnsS-
dResponseListeners, addServiceRequest, and disco-
verServices methods to register, associate, then
start the UpnpService discovery service with the
DnsSdServiceResponseListener.

3. Begin a timer that will stop the NSD listening some
time after the receipt of the first broadcast. This
gives the network service discovery broadcast receiver
time to pick up other broadcasts, if there are any.

4. Decide which access point among those heard from
is the best to connect to once the time expires. The
“best” may be the first AP in the list that is connected
to the outside network, the AP with the strongest radio
signal, or the only AP available.



Automatic Android-based Wireless Mesh Networks Informatica 38 (2014) 313–320 317

Figure 2: Server broadcasting AP info and allowing multi-
ple clients to connect simultaneously.

5. Connect to the “best” AP using WifiManager.

6. Once the device has connected to the mesh router
over Wi-Fi, connect to the router’s netsock server
and begin exchanging information.

Client Pseudocode:

x← 0
while listening_for_NSD_broadcasts

if received_new_broadcast
AP [x].SSID ← Decrypt(Broadcast.SSID)
AP [x].PSK ← Decrypt(Broadcast.PSK)
x← x+ 1

maxaps← x
i← 1
t← arbitrary time interval
server_ip_address← “192.168.49.1”

while program_is_running
ConnectToAP(AP [i])
csocket← ConnectSock(server_ip_address)

PerformIO(csocket)
wait(t)
DisconnectFromAP()
if i ≤ maxaps
i← i+ 1

else i← 0

4.5 The relay procedure
Clients which are to act as relays between access points re-
member all the access points they heard from during the
initial broadcast listening period. For now, they connect
to all the access points in range in a round robin fashion,
switching from one access point to the next after an arbi-
trary amount of time (see figure 3); our future work will ex-
plore more sophisticated routing schemes, such as demand
and event-based relaying.

1. After connecting to the first access point in its list and
receiving data, the relay client will disconnect from
the AP.

2. After disconnecting, the relay client will connect to
the next AP in its list.

3. While connected to this AP, the relay client will broad-
cast any information it knows that it needs to forward.
The mesh router will have timestamped all messages
it has queued as outgoing, and will check these times-
tamps against the last time this client disconnected.
Messages which are more recent than this time will
be sent to the client.

4. After all data is transmitted, upon instruction from
its access point, or after an arbitrary amount of time,
the client relay will disconnect from this access point
device and connect to the next one (which is the first
access point in its list if it has reached the end of the
list).

5 Broadcasting a message
1. The message to be sent is prefixed with a universally

unique identifier (UUID) used to identify it, and the
MAC address of its origin. The UUID is randomly
generated when the message is created and is im-
mutable.

2. If a router or a node receives a message with a UUID
that it has already received recently, the message is ig-
nored and discarded, not to be passed on. An arbitrary
number of UUIDs may be stored in a circular buffer
from which to check against. The ideal size of the
buffer will depend on the size of the network and the
frequency of data exchange.



318 Informatica 38 (2014) 313–320 P. Wong et al.

Figure 3: Relay procedure.

3. If the message is new, process the information, ap-
pend the device’s MAC to the header, then send the
message out.

5.1 Message structure
The message may contain either data or commands, and
may be, as described in the previous sections, broadcast to
all devices or sent to a specific device only.

The parts of the message are (see figure 4):

1. Header:

(a) UUID: Uniquely identifies a message. Useful in
determining whether or not a message has been
received before.

(b) Message Type Data: Indicates whether the
message contains one of the following:

– data intended for a single recipient
– data intended for all devices on the network
– a command intended for a single recipient
– a command intended for all devices on the

network

(c) MAC address list: Used to construct route data
and to determine the directions the message is
to be passed in (Note: the first two characters
of a MAC address may change for the same
device and same network interface, and should
be ignored.)

2. Data: The payload of the message. May be anything
from a command to raw binary data.

5.2 Sending a message intended for a single
recipient

If the network is to send messages meant for particular de-
vices, the steps for broadcasting a message may be used to
construct a graph of the network. After step 5, you would
check to see if the recipient of the message can connect to
any devices other than the mesh router to which it is already
connected. If it cannot, the message has reached a “leaf”
node, and sends the data back up to the source of the mes-
sage. The header will contain, in order, the MAC addresses
of each mesh router and mesh client which the message has
passed over on its way to the leaf.

Depending on the needs of the network, it may be sim-
pler to broadcast all messages, regardless of whether they
are intended for a single recipient. The devices can all
check to see if the message was intended for them, and ig-
nore its contents if it was not (though still passing it along
as needed). In this fashion, the message will eventually
reach the device it is supposed to, though it may not take
the shortest path.



Automatic Android-based Wireless Mesh Networks Informatica 38 (2014) 313–320 319

Figure 4: Internal structure of a message.

6 Starting the software on device
boot

An application can be configured to start after the
Android OS has completed booting. Permission for
android.permission.RECEIVE_BOOT_COMPLETED
must be requested in the application’s
manifest file, and a receiver for the
android.intent.action.BOOT_COMPLETED
intent must be declared. The OS will start the application
after it is completed booting, then send the specified
receiver this intent, after which the receiver can start up
the main activity.

Also, the lock screen can be disabled manually in the
Security section of the device’s settings; by default, it will
be shown as soon as the device powers on.

7 The structure of the software
Our software can be installed on any Wi-Fi capable device
running Android 4.0 or later, and can be divided into three
main parts (See figure 5):

1. The main activity, which provides a console for on-
device logging and debugging, as well as basic UI
functionality

2. The network service, which either runs the mesh
router service or the mesh client service

3. The BOOT_COMPLETED broadcast receiver, which is
registered with the system from the application mani-
fest, and the starting point of the program if started by
the system

Figure 5: The overall architecture of the software.

7.1 Main activity / boot receiver

The first time the program is run on a device, the main ac-
tivity will ask whether the device is to be a mesh client or
a mesh router via a dialog box. This only needs to be done
once, as the choice will be saved to file and remembered
the next time the program starts.

The program can be manually set to either router or
client mode at any time from an action bar menu.

After being configured for the first time, the program will
run automatically on device boot through its Boot Receiver,
which is called by the operating system.

7.2 Network service

The network service started by the main activity is either
the mesh router service or the mesh client service, both of
which inherit from a common “network service” superclass
and present an identical I/O interface, which can be used to
query the service if it can talk to any other device, as well
as send and listen for messages.

The services themselves are divided into two modules:

1. the Wi-Fi Direct and Wi-Fi module, which is respon-
sible for a) advertising and listening for network ser-
vice discovery broadcasts containing access point in-
formation, and b) establishing and maintaining Wi-Fi
connections.

2. the netsock module, which is a) started by the previ-
ous module after a Wi-Fi connection has been estab-
lished, b) transfers data over TCP sockets, and c) is
multi-threaded for efficiency, and to keep the main ac-
tivity thread from being killed by the operating sys-
tem.



320 Informatica 38 (2014) 313–320 P. Wong et al.

7.3 Attaching other components
Our software provides network communications, and may
be either used as part of other software, or potentially run
on its own and used through Android’s IPC mechanisms.
Messages may arrive asynchronously depending on a de-
vice’s location in the mesh network; this must be taken into
account by the code to use this service.

8 Testing and results
Our build environment was Eclipse with the Android De-
veloper Tools plugin running on both Windows and Linux.
The devices we deployed our software on included a pair
of twin Samsung Galaxy Nexuses, the Motorola Moto, and
the Nexus 7, which used Android versions 4.3, 4.4.2, and
4.4.3, respectively. All of the phones were running either
OEM versions of Android, or locked, contract-phone ver-
sions of it. The software is written entirely in Java using
the Google Android APIs and does not require any of the
devices to be rooted.

During testing, we were able to establish the network on
up to four devices, with one acting as a soft AP tethered to
the Internet, another acting as a soft AP with no direct Inter-
net connection, a client acting as a relay between the two,
and a client persistently connected to the same soft AP. We
were also able to configure the devices so that three of them
acted as soft APs, while the last worked as a relay between
all of them. In both configurations, the phones were able
to construct the network automatically after being turned
on. One of the challenges we have experienced is making a
device’s NSD broadcasts continuously visible to other de-
vices. Sometimes, this required us to power-cycle the wi-fi
radio, clear the phone’s program cache, or restart the device
several times.

With a clear, unobstructed line of sight, the wireless ra-
dios on the Android devices we tested were capable of
maintaining a direct connection to a device-created soft ac-
cess point at distances up to 32 to 35 meters. We found that
obstructions such as walls, doors, etc. significantly reduced
the operable range.

9 Conclusion
In this article, we discussed and demonstrated how the An-
droid’s Wi-Fi Direct API can be used to automatically es-
tablish connections to other Wi-Fi Direct devices. By us-
ing network service discovery broadcasts over Wi-Fi Di-
rect, we are able to transmit a soft AP’s preshared key to
other devices, then connect these devices to the AP using
their regular Wi-Fi facilities without ever requiring a user
to perform manual WPS authentication on any of them.

Also, we have shown that, once freed from the require-
ment of manual user authentication, it becomes practical
for Android devices to automatically construct and partic-
ipate in a wireless mesh network, acting as mesh routers,

mesh clients, and relays.

10 Acknowledgements
We thank Dr. Robert Ryan and Mary Pagnutti from In-
novative Imaging and Research for their advice, guidance,
and feedback on this paper. The material in this paper is
based on work supported by NASA STTR Phase 2 contract
No. NNX13CS14C.

References
[1] Google, “Android,” Jan. 2014. [Online]. Available:

http://www.android.com/

[2] W.-J. Yi, W. Jia, and J. Saniie, “Mobile Sensor Data
Collector using Android Smartphone,” Circuits and
Systems (MWSCAS), 2012 IEEE 55th International
Midwest Symposium on, no. 55, pp. 956–959, 2012.

[3] P. P. Jayaraman, A. Zaslavsky, and J. Delsing, “Sen-
sor Data Collection Using Heterogeneous Mobile De-
vices,” Pervasive Services, IEEE International Con-
ference on, pp. 161–164, 2007.

[4] “Wi-fi direct,” Jan. 2014. [Online]. Available:
http://www.wi-fi.org/discover-wi-fi/wi-fi-direct

[5] Wireless Mesh Networks: Architectures and Proto-
cols. Springer, 2007.

[6] R. Meier, Professional Android 4 Application Devel-
opment. Wrox, 2012.

[7] Google, “Wifip2pmanager,” Jan. 2014. [Online].
Available: http://developer.android.com/guide/topics/
connectivity/wifip2p.html

[8] K. Huang, Berti, “A multilayer application for
multi-hop messaging on android devices,” Oct. 2013.
[Online]. Available: http://anrg.usc.edu/ee579_2012/
Group02/Design.html

[9] “Serval mesh documentation,” Oct. 2013. [Online].
Available: http://developer.servalproject.org/

[10] “Opengarden.com,” Oct. 2013. [Online]. Available:
https://opengarden.com/

[11] “IEEE 802.11i-2004: Part 11: Wireless lan medium
access control (mac) and physical layer (phy) specifi-
cations,” Jul. 2004.

[12] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano,
“Device-to-Device Communications with WiFi Di-
rect: Overview and Experimentation,” IEEE Wireless
Communications, vol. 20, no. 3, pp. 96–104, 2013.

[13] “ISO-8859-1: Information technology – 8-bit single-
byte coded graphic character sets – Part 1: Latin al-
phabet No. 1,” 2003.


