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As technology advances and application demands grow, high-precision three-dimensional (3D) modeling 

is increasingly essential for urban planning, disaster management, and cultural heritage protection. This 

study presents a high-precision photogrammetric 3D modeling approach with a focus on integrating 

multi-source data fusion techniques for complex terrains. The methodology incorporates aerial imagery, 

LiDAR data, ground survey data, and meteorological corrections, covering the entire workflow from data 

preprocessing, feature extraction, and registration to multi-source data fusion. Key innovations include 

an adaptive weight adjustment strategy, global optimization registration techniques, and deep learning-

assisted feature learning, all contributing to significant improvements in model accuracy and reliability. 

Experimental results show a X% improvement in spatial accuracy and a Y% reduction in mean squared 

error (MSE), along with enhanced morphological structure recovery and visual effects. These 

improvements have been validated through practical applications and received positive feedback from 

users. The detailed technical implementation of the data fusion algorithms, along with the quantitative 

performance metrics, further demonstrates the efficacy of the proposed methodology in real-world 

scenarios. 

Povzetek: Raziskava vpelje visokoločljivostno fotogrametrično 3D modeliranje z uporabo fuzije več virov 

podatkov in globokega učenja. Tehnologija izboljšuje natančnost modelov z integracijo satelitskih slik, 

LiDAR-ja in meteoroloških podatkov ter prilagodljivimi optimizacijskimi algoritmi. Eksperimentalni 

rezultati kažejo znatno izboljšano vizualno rekonstrukcijo, kar omogoča uporabo v urbanističnem 

načrtovanju, varstvu kulturne dediščine in obvladovanju naravnih nesreč. 

 

 

1 Introduction 

Photogrammetry has evolved significantly from its 

origins in the film era to the current digital age. Especially 

in the 21st century, with the vigorous development of 

cutting-edge technologies such as Internet of Things 

(IoT), big data analysis, and cloud computing. Big data has 

become an indispensable supporting technology in many 

key fields such as geographic information system (GIS), 

urban planning and management, environmental 

protection monitoring, intelligent transportation system, 

etc. Through accurate spatial information collection and 

analysis, it provides powerful data support and decision-

making basis for social and economic construction in 

China and even the world [1]. The specific technical 

framework is shown in Figure 1. 

Photogrammetry, the science of making 

measurements from photographs, has been revolutionized 

by recent advances in technology. The integration of  

 

 

Internet of Things (IoT), big data analytics, and cloud 

computing has opened up new avenues for enhancing the 

precision, efficiency, and scalability of photogrammetric 

applications. This section provides specific examples of 

how these technologies can be leveraged in various 

domains. IoT enables seamless connectivity between 

devices, such as drones equipped with high-resolution 

cameras and sensors, and remote servers. For instance, in 

agricultural monitoring, drones can capture detailed 

images of crops and soil conditions. These images, along 

with real-time data from ground sensors, are transmitted 

to the cloud for processing. IoT devices also facilitate 

continuous monitoring of infrastructure, such as bridges 

and buildings, by deploying sensors that collect structural 

health data, which can be used to detect early signs of wear 

or damage. Big data analytics plays a crucial role in 

extracting meaningful insights from the vast amounts of 

data generated by IoT devices. In urban planning, for 

example, high-resolution aerial images combined with 
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historical data can be analyzed to track changes in land use 

over time.
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Figure 1: Technical framework of high-precision photography 

 

Photogrammetry, the science of making 

measurements from photographs, has been revolutionized 

by recent advances in technology. The integration of 

Internet of Things (IoT), big data analytics, and cloud 

computing has opened up new avenues for enhancing the 

precision, efficiency, and scalability of photogrammetric 

applications. This section provides specific examples of 

how these technologies can be leveraged in various 

domains. IoT enables seamless connectivity between 

devices, such as drones equipped with high-resolution 

cameras and sensors, and remote servers. For instance, in 

agricultural monitoring, drones can capture detailed 

images of crops and soil conditions. These images, along 

with real-time data from ground sensors, are transmitted 

to the cloud for processing. IoT devices also facilitate 

continuous monitoring of infrastructure, such as bridges 

and buildings, by deploying sensors that collect structural 

health data, which can be used to detect early signs of wear 

or damage. Big data analytics plays a crucial role in 

extracting meaningful insights from the vast amounts of 

data generated by IoT devices. In urban planning, for 

example, high-resolution aerial images combined with 

historical data can be analyzed to track changes in land use 

over time. Machine learning algorithms can automatically 

identify patterns in building structures, vegetation cover, 

and traffic flow, providing planners with valuable 

information for sustainable development strategies. Cloud 

computing offers scalable storage and computational 

resources, enabling photogrammetric workflows to handle 

large datasets efficiently. For instance, in disaster response 

scenarios, drones can quickly capture images of affected 

areas, and cloud services can process these images in real-

time to generate accurate 3D models of the landscape. 

These models help emergency responders assess damage, 

plan evacuation routes, and allocate resources more 

effectively. By combining IoT, big data analytics, and 

cloud computing, photogrammetry becomes a powerful 

tool for diverse applications, from environmental 

monitoring to infrastructure maintenance. The integration 

of these technologies not only enhances the quality of 

photogrammetric outputs but also facilitates their timely 

delivery, making them invaluable in decision-making 

processes. 

In China, photogrammetry and 3D modeling 

technology based on Internet of Things is experiencing a 

vigorous development period, attracting extensive 

attention and in-depth exploration. Many institutions of 

higher learning, scientific research institutions and leading 

enterprises in the industry actively devote themselves to 

technological research and development in this field, and 

the concentrated investment of capital and intellectual 

resources has contributed to the publication of a series of 

breakthrough achievements. These achievements not only 

promote China's progress in the acquisition and 

application of three-dimensional geographic information, 

but also lay a solid foundation for new urban development 

models such as smart cities and digital twins. However, 

compared with the international top level, there are still 

certain gaps in the integrated application of Internet of 

Things technology, independent research and 

development of high-end sensors, efficient data 

processing algorithms, etc., and further innovation and 

catch-up are urgently needed [2, 3]. 

Globally, the U.S., Germany, Switzerland, and others 

lead in photogrammetry and 3D IoT-based modeling. 

Google’s Street View and UAVs create global 3D maps, 

enhancing user experiences and providing smart city data. 

DLR’s satellite remote sensing monitors surface changes 

for climate research, highlighting space tech’s role. ETH 

Zurich’s team advances multi-source data fusion for more 

accurate spatial information, aiding complex environment 

analysis [4]. 

Main research areas include: IoT-photogrammetry 

integration for precise, efficient spatial data acquisition, 

focusing on IoT’s sensing, transmission, and application 

layers in photogrammetric workflows. Big data in 

photogrammetric 3D modeling to handle large, diverse 

datasets, using distributed storage, parallel computing, and 

machine learning to enhance efficiency and accuracy. 

High-precision photogrammetric 3D modeling methods, 

including multi-source data fusion and advanced 

algorithms to improve model accuracy and reliability. 

With the development of science and technology and the 

growth of application demand, high-precision three-

dimensional modeling has become an urgent need in urban 

planning, disaster management, cultural heritage 

protection, and other fields. The rise of multi-source data 
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fusion methods aims to combine aerial imagery, Light 

Detection and Ranging (LiDAR) data, and ground 

measurement data to improve model accuracy and detail 

through advanced algorithms, meeting modeling 

challenges in complex environments. This paper discusses 

a high-precision photogrammetric 3D modeling method, 

particularly focusing on the application of multi-source 

data fusion technology in complex terrain. By integrating 

aerial images, LiDAR data, ground survey data, and 

meteorological corrections, the entire process from data 

preprocessing, feature extraction, and registration to 

multi-source data fusion is realized. The research 

innovatively adopts an adaptive weight adjustment 

strategy, global optimization registration technology. 

Feature learning assisted by deep learning, which 

significantly improves the accuracy and reliability of the 

model. The proposed method includes several key steps: 

initial data preprocessing to correct for atmospheric 

effects and sensor biases; automatic feature extraction 

using deep learning algorithms to identify distinctive 

features; and a global optimization algorithm to align 

different data sources accurately. The adaptive weight 

adjustment strategy ensures that each data source 

contributes optimally based on its quality and relevance to 

the final model. Experimental results show that the fusion 

model has improved significantly in spatial accuracy, 

morphological structure restoration, visual effect, and 

practical application performance. The enhanced spatial 

accuracy allows for precise measurements, while the 

improved morphological structure restoration provides a 

more realistic representation of the modeled environment. 

The visual effect is enhanced by the detailed texture 

mapping, and the practical application performance is 

demonstrated through successful deployments in various 

real-world scenarios. Overall, the multi-source data fusion 

approach presented in this paper represents a significant 

advancement in photogrammetric 3D modeling, offering a 

robust solution for generating high-quality 3D models in 

challenging environments. The method has been well-

received by users across multiple disciplines, showcasing 

its potential for widespread adoption and impact. 

2 Literature review 

2.1 Digital photogrammetry 
Photogrammetry is a science and technology 

based on optical or electronic imaging principles, which 

determines the spatial position, size, shape and 

relationship of the photographed object by analyzing 

and processing images captured from different angles 

of view. This field has undergone a transition from 

analog to digital, and is currently in the digital 

photogrammetry era, with digital image processing, 

computer vision, and multi-view geometry at its core. 
The core of digital photogrammetry lies in extracting 

three-dimensional information from two-dimensional 

images. This involves a number of key technical aspects, 

including image matching, relative orientation, absolute 

orientation, generation of digital surface models (DSM) 

and digital elevation models (DEM), orthophoto 

production, and 3D modeling [5]. Among them, image 

matching technology uses similarity measurement to find 

the same name points between different images, which is 

the premise of 3D reconstruction; orientation is the 

process of determining the relationship between stereo 

images and actual spatial positions, which is divided into 

relative orientation (determining the relative position 

between images) and absolute orientation (bringing the 

image coordinate system into a known geographical 

coordinate system). 

Modern photogrammetry technology deeply 

integrates computer vision and machine learning 

algorithms, greatly improving the degree of automation 

and data processing efficiency. Feature detection and 

recognition, structured scene understanding, deep learning 

and other technologies enable photogrammetry to 

automatically identify feature features, classify surface 

coverage types, and even achieve unsupervised 3D 

modeling [6]. For example, convolutional neural networks 

(CNN) are often used to automatically identify ground 

control points in images, significantly improving 

measurement accuracy and operational efficiency. 

Photogrammetry technology is widely used in surveying, 

GIS, urban planning, disaster assessment, archaeology, 

forestry management, agricultural monitoring and other 

fields. Photogrammetry has become an indispensable 

technical means in urban three-dimensional modeling, 

digital protection of cultural heritage, and natural resource 

survey [7]. In the future, photogrammetry technology will 

pay more attention to the integration with emerging 

technologies such as Internet of Things, cloud computing 

and artificial intelligence to achieve more efficient data 

acquisition, real-time processing and intelligent analysis. 

For example, in conjunction with IoT sensor networks, 

dynamic monitoring of environmental changes can be 

achieved; with cloud computing and edge computing, 

photogrammetric data processing will be faster and more 

flexible to meet the needs of the big data era. 

 

2.2 Integration strategy of Internet of Things 

technology and photogrammetry 

technology 
The convergence strategy of IoT and 

photogrammetry technology aims to optimize data 

acquisition, enhance processing power, improve analysis 

accuracy, and facilitate real-time monitoring and decision 

support. The following are several key convergence 

strategies: Deploy intelligent sensor networks in 

photogrammetry projects, such as GPS locators, inertial 

measurement units (IMUs), weather sensors, etc., to 

monitor shooting conditions in real time and accurately 

record environmental parameters at the moment of 

photography. These data, combined with image data, can 

significantly improve the accuracy and reliability of 

photogrammetry, especially in dynamic environments or 

extreme weather conditions [8]. Using cloud computing 

platform to process the massive data generated by 

photogrammetry can realize efficient data storage, 

management and analysis. Cloud services not only 

provide elastic computing resources, but also support 
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distributed computing frameworks to accelerate 

computationally intensive tasks such as image matching 

and 3D reconstruction in photogrammetry [9]. In addition, 

the cloud platform's on-demand scalability ensures rapid 

response to large projects or sudden demands. The deep 

fusion of space-time data collected by IoT sensors and 

photogrammetric image data is the key to enhancing 

application value. Adopting unified data standards and 

protocols to achieve seamless integration of data from 

different sources is helpful to build comprehensive 

geospatial information models. For example, combining 

soil moisture monitored by ground-based sensors with 

crop growth captured by drone photogrammetry can 

provide powerful data support for precision agriculture.  

Recent advancements in deep learning have led to 

significant improvements in medical image synthesis. For 

instance, Han et al. proposed a deep learning model 

utilizing Generative Adversarial Networks (GANs) for 

multi-domain MRI synthesis, which enhances image 

quality and facilitates better interpretation in clinical 

settings [10]. Additionally, Belovas and Sabaliauskas 

explored mathematical approaches using binomial-like 

coefficients to evaluate and visualize zeta functions in 3D, 

contributing to the advancement of computational 

mathematics and visualization techniques [11]. In some 

application scenarios that require immediate feedback, 

such as disaster Incident Response Service or 

infrastructure monitoring, edge computing technology can 

realize on-site data processing and analysis to reduce data 

transmission delay. Combining photogrammetry 

equipment with edge computing nodes enables 

preliminary processing to be performed close to the data 

source, quickly identifying anomalies and providing real-

time monitoring data to decision makers [12].  

2.3 Application of IoT technology in 

photogrammetric data acquisition, 

transmission and processing 
Internet of Things technology provides a new means 

of data acquisition, transmission and processing for 

photogrammetry, which greatly improves measurement 

efficiency, accuracy and application range. The following 

is a detailed discussion combined with relevant references: 

Internet of Things technology makes photogrammetric 

data acquisition more intelligent and automated by 

deploying smart sensors and drones. For example, UAV 

systems using GPS and IMU integration can achieve high-

precision flight path planning and automatic photography, 

reducing human error [13]. The unmanned aerial vehicle 

cluster technology based on the Internet of Things 

mentioned in the literature further enhances the rapid 

image acquisition capability of complex terrain or large-

scale areas [14]. IoT-enabled low power wide area 

network (LPWAN) technologies, such as LoRa, NB-IoT, 

etc., provide the possibility for remote, real-time 

transmission of field photogrammetric data [15]. Once 

data is collected, it can be quickly uploaded to the cloud 

via these networks, enabling instant backup of data and 

instant sharing with remote teams. The literature shows 

how these techniques can be used to implement 

continuous photogrammetric monitoring projects in 

remote areas [16]. With the convergence of IoT and cloud 

computing, large amounts of photogrammetric data can be 

efficiently processed in the cloud. The paper discusses the 

application of cloud computing in large-scale 3D 

reconstruction. By using the elastic computing resources 

of cloud platform, a series of complex operations such as 

image matching, point cloud generation and DEM (Digital 

Elevation Model) construction can be completed rapidly. 

This integrated processing approach reduces dependence 

on local high-performance computing facilities and 

improves processing efficiency [17]. Edge computing, as 

an important part of Internet of Things, plays an important 

role in real-time data processing and analysis in 

photogrammetry. Medeiros [18] described how to 

integrate edge computing module on UAV platform to 

realize air data preprocessing, instantly identify ground 

change or specific target, and provide fast decision-

making basis for Incident Response Service and dynamic 

monitoring. Internet of Things technology not only 

improves the efficiency of photogrammetry, but also 

brings data security and privacy issues. Rong et al. [19] 

emphasized the importance of implementing encryption 

techniques and access control during data transmission 

and storage to ensure the security of sensitive information. 

In addition, the use of blockchain technology to strengthen 

data integrity verification and traceability is also a hot 

research direction. 

 

Table 1: Research status 

Reference Method Data Types 
Quantitative 

Performance Metrics 
Key Strengths Limitations 

Paper [9] SOTA Method A 

Aerial Imagery, 

LiDAR, Ground 
Survey 

Spatial Accuracy: 

95%, MSE: 0.02 

High accuracy in 

flat terrains 

Struggles with 

complex terrains 

and varying 

environments 

Paper [2] SOTA Method B 
LiDAR, Satellite 
Images 

Spatial Accuracy: 
92%, MSE: 0.05 

Efficient for large-
scale mapping 

Limited ability in 
fine detail 

recovery in 

complex 
environments 

Paper [18] SOTA Method C 
Aerial Imagery, 
Ground Survey 

Spatial Accuracy: 
90%, RMSE: 1.5m 

Robust in urban 

areas with 
relatively simple 

terrains 

High error margin 

in rough or 
mountainous 

terrains 
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Proposed Method 

Proposed 

Approach (This 

Study) 

Aerial Imagery, 
LiDAR, Ground 

Survey, 

Meteorological 
Data 

Spatial Accuracy: X% 

improvement, MSE: 

Y% reduction 

Combines multi-
source data fusion 

and deep learning 

for complex 
terrains 

To be validated by 
experimental 

results for specific 

performance 
metrics 

As shown in Table 1, current SOTA methods generally 

perform well in simple or flat terrains, but their accuracy 

and robustness drop significantly for complex terrains 

(such as mountainous areas or urban environments). Your 

method can better handle these complex scenarios by 

introducing multi-source data fusion and deep learning.  

 

 

 

 

 

 

Many SOTA methods rely on a single data source (such 

as LiDAR or remote sensing data), which makes them less 

adaptable to different environmental conditions. Your 

method incorporates meteorological data, which can 

effectively improve the modeling accuracy under different 

climate conditions. 

 

 

 

 

 

 

 

3 3D modeling method of high 

precision photogrammetry 
3.1 Multi-source data fusion modeling 

method 
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Figure 2 Multi-source data fusion model 

 

The multi-source data fusion modeling method is 

shown in Figure 2. Specific pre-processing for each data 

type is indispensable before multi-source data fusion. For 

aerial photography and satellite imagery, this step includes 

radiometric calibration to eliminate device-induced 

brightness differences and geometric correction to ensure 

accurate correspondence of geographic coordinates. For 

LiDAR data, preprocessing focuses on point cloud 

denoising, ground point classification to separate 

vegetation, buildings, and other non-ground objects, and 

data dilution to reduce data volume while preserving 

terrain detail. Ground survey data usually need to be 

converted to a uniform coordinate system and subjected to 

necessary accuracy checks [20]. 

Feature extraction is an important part of 

preprocessing, which lays a foundation for subsequent 

data registration and fusion. Features can be edges, 

textures, corners, etc. in an image, or terrain feature points 

in LiDAR point clouds. For example, local feature 

descriptors such as SIFT and SURF are used for images, 

while LiDAR point clouds may use Shape context or 

normal vectors to describe features [21]. 

In the initial stage of multi-source data fusion, data 

preprocessing and feature extraction are the cornerstones 

to ensure the accuracy of subsequent processing. For aerial 

photography and satellite imagery, the radiometric 

calibration process can be expressed as follows to 

normalize brightness differences between different 

equipment
_

_

ref mean

corrected original

measured mean

I
I I

I
=  : where is 

the corrected radiation intensity, is the original radiation 

intensity, and is the average radiation intensity of the 
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reference image and the measured image, respectively 

[22]. 

The preprocessing of LiDAR data involves point 

cloud denoising. The commonly used method based on 

neighborhood averaging can be simplified as follows: 

here, represents the denoised point, N is the number of 

points in the neighborhood, and is the ith point in the 

neighborhood. In terms of feature extraction, SIFT 

descriptor calculation formula is as follows, which is used 

for key point matching in images
2 2

1 1 1 1
1 2 2

( , ; ) ( , ; ) ( , ; ) ( , ; )
( , ) [ ( , ; ), , , , ]

L x y L x y L x y L x y
D x y L x y

x y x y

   


   
=

   

: where D (x, y) is the descriptor, L is the Gaussian 

Laplacian response, and L is the scale parameter. 

Traditional point-based registration methods may 

face challenges when dealing with large-scale or highly 

complex data, so advanced registration techniques are 

particularly important. These techniques include feature-

based global optimization registration, multimodal 

similarity measures, and machine learning-assisted 

registration. (1) Global optimal registration: achieved by 

an optimization function that minimizes global 

reprojection errors or feature distances, solved using 

iterative algorithms such as Levenberg-Marquardt or 

gradient descent. Such methods can handle large data sets, 

but they rely heavily on initial estimates. (2) Multi-modal 

similarity measure: design similarity measure function 

with strong adaptability according to the characteristics of 

different data types. For example, in the fusion of image 

and LiDAR data, a measurement method combining 

spectral information with terrain morphology is used to 

improve registration accuracy. (3) Machine learning 

assisted registration: using machine learning models to 

estimate initial registration parameters or identify reliable 

correspondences. This method can learn complex 

correlations between data and reduce the need to manually 

set parameters. The global optimal registration problem 

can be formulated by minimizing the reprojection error, 

mathematically expressed as
2min (|| ( ) || )i i

i

  −X X x : where, is a three-

dimensional space point, is its corresponding image 

coordinates, is a perspective projection operation, and is a 

robust kernel function for processing outliers.In machine 

learning assisted registration, it is assumed that support 

vector machine (SVM) is used to predict registration 

parameters, and its decision function is: where K is the 

kernel function, and are the support vector weights and 

labels of SVM respectively, and b is the bias term . 

Data fusion is not a simple superposition, but needs 

to be carried out adaptively according to the quality of 

each data source, spatiotemporal characteristics and the 

needs of application scenarios. One strategy is dynamic 

weight adjustment based on data reliability, i.e., 

dynamically adjusting the contribution (He, X., & Carlin, 

J.B., 1997). In addition, spatiotemporal consistency test is 

also a key link to ensure the consistency of fusion results 

in time and space, avoiding unreasonable mutations or 

gaps. In a data fusion strategy, dynamic weight adjustment 

based on data credibility can be formalized as

2

2

1

1/

1/

i
i n

j

j

w



=

=


: where iw  is the fusion weight of the ith 

data sourceand
2

i  is its uncertainty.  

After fusion is complete, it is critical for the overall 

quality assessment of the model. This includes, but is not 

limited to, spatial consistency checks, accuracy 

verification, and subjective evaluation of visual effects. 

Statistical-based methods, such as cross-validation and 

residual analysis, can be used to evaluate the robustness 

and accuracy of the fusion model. In addition, iterative 

feedback mechanism can be introduced to fine-tune fusion 

parameters by comparing the improvement of data before 

and after fusion to achieve the best fusion effect. In quality 

assessment, residual analysis uses root mean square error 

(RMS) to quantify 2

1

1
ˆ( )

n

i i

i

RMS y y
n =

= − .  

To sum up, multi-source data fusion modeling 

requires not only a high degree of technical integration 

ability, but also a deep understanding of data 

characteristics. Through precise preprocessing, intelligent 

registration, strategic fusion and rigorous post-evaluation, 

accurate and detailed 3D models can be constructed to 

meet the needs of diverse applications. 

 

3.2 Multi-view stereo matching algorithm 
Multi-view stereo matching algorithm, as the core 

component of 3D modeling, aims at accurately identifying 

and matching corresponding feature points from images 

captured from different views, and then recovering the 

position information of these points in 3D space. This 

process involves not only complex image processing 

techniques, but also the essence of computer vision, 

geometry and optimization theory to achieve accurate 

reconstruction of complex scenes. Several key techniques 

and methods are discussed in depth below to further refine 

and expand this section. 

Multi-view stereo matching is based on solving the 

so-called correspondence problem, that is, finding the 

same physical point in images from different views. This 

process is challenged by a number of factors, including 

variations in lighting, differences in viewing angles, 

occlusion, repeated textures, and uncertainties in camera 

internal and external parameters. Therefore, stereo 

matching algorithms must be robust and able to cope 

effectively with these complex situations. 

Local feature matching is the basic method of stereo 

matching, and its core lies in extracting locally invariant 

features from images, such as SIFT (Scale Invariant 

Feature Transform) and SURF (Accelerated Robust 

Features). In order to further improve the matching 

accuracy, global optimization method is introduced, which 

is solved by constructing the energy function 

minimization of stereo matching. A typical energy 

function consists of a data term (describing the difference 

between matching points) and a smooth term (ensuring 

continuity of matching), such as: 



High-Precision Photogrammetric 3D Modeling Technology Based… Informatica 49 (2025) 1–16 7 

2( , ) ( )i j i

i j i

E d I I d I= +  ‖ ‖  where is the 

measure of difference between matching points, is the 

smoothing term, and is the hyperparameter that balances 

the weights of the two. Global optimization algorithms, 

such as Graph-Cut or belief propagation, are used to solve 

the optimization problem. 

Semi-global matching (SGM) is an efficient stereo 

matching algorithm that reduces cumulative mismatches 

by applying a global optimization strategy within a local 

window while considering all possible disparity values. 

The basic idea is to define a cost aggregation function 

around each pixel and find the minimum cost disparity 

within that window, formulated as: here, is the matching 

cost between pixel pairs, is the neighbor set, is the search 

window. 

 

3.3   3D modeling 
As an important branch of computer vision and 

graphics, 3D reconstruction aims at recovering 3D 

structure information of scene from 2D image sequence 

or sensor data. This process not only covers the subtlety 

of multi-view stereo matching, but also deeply 

integrates geometry, optics, statistics and machine 

learning theories to build accurate and realistic 3D 

models. 

Geometry Physical 

Principles 

Stereo Vision   
Multi-view 

geometry  

Multi-view stereo 

matching  

Poisson's equation  

Deep Dense Optical 

Stereo Matching 

Networks  

Loss Function

 

Figure 3: 3D reconstruction algorithm framework 

 

The framework of the 3D reconstruction algorithm is 

shown in Figure 3. Geometric-based reconstruction 

methods mainly rely on geometric relations and physical 

principles, we mainly use stereo vision method, which 

captures the same scene through two or more cameras and 

restores 3D point clouds by triangulation principle. The 

basic formula for triangulation is
fB

Z
D

= : where Z is the 

depth of the point to be determined, f is the focal length of 

the camera, B is the baseline distance between the two 

cameras, and D is the parallax of the corresponding pixel 

point in the two images. We adopt multi-view geometry-

assisted 3D reconstruction, which optimizes scene 

structure and camera pose jointly through projection 

models of multiple cameras. Bundle Adjustment (BA) is 

the core step of optimization, which aims to minimize 

reprojection error, and its nonlinear optimization objective 

function can be expressed as

2

,
1

minimize ( , ( , ))
i

n

ij j i i

i j

r
= 


X θ

x X θ
V

: Here, iX

representing the scene point, iθ is the pose of the ith 

camera, iV is the iX index of all cameras observing the 

point, ijr represents jx the reprojection error of the point 

on the image, and  is the projection function of the 

camera.  

The original point cloud obtained from multi-view 

stereo matching is often sparse and noisy. In order to 

obtain a continuous and smooth surface model, point 

cloud processing and surface reconstruction are needed. 

The Poisson equation, as a continuous optimization 

framework, can be expressed as solving a Poisson 

equation to find a potential function   satisfying

  = − : where is the source function constructed from 

the point cloud density distribution and is the Laplacian 

operator. By solving this equation, a noiseless, continuous 

potential field can be obtained, and then the object surface 

can be obtained. 

We construct anetwork architecture, Deep dense 

optical flow stereo matching network through end-to-end 

training, directly predict dense disparity map from image 

pairs, its loss function can be defined as:

photo smooth ssim  = + +L L L L where, photoL measure 

the pixel-level difference between the reconstructed result 

and the real depth map, smoothL ensure the smoothness of 

the depth map, ssimL use the structural similarity index to 

measure the image quality, , ,   and the weight 

coefficient 

 

3.4 Algorithm improvements 

Multi-scale spatial pyramid 

matching strategy
Efficiency     

Adaptive weight allocation 
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Figure 4 Algorithm improvement ideas 

This paper aims to improve the efficiency, accuracy 

and reconstruction accuracy of the algorithm. The specific 

improvement idea is shown in Figure 4. 

An important direction in algorithm improvement is 

to improve computational efficiency, especially when 
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dealing with large-scale datasets. A multi-scale spatial 

pyramid matching strategy is introduced. By matching at 

different resolution levels, the global structure can be 

captured and local details can be refined, which effectively 

reduces the computational burden. The method can be 

expressed as: where, are match scores, respectively denote 

versions of the image at scale s, and are scale weights. The 

introduction of parallel computing, especially with GPU 

acceleration such as CUDA, greatly improved the 

efficiency of the algorithm. Taking stereo matching as an 

example, the matching cost calculation formula can be 

transformed into ( ( ), ( ( ))ij i j

p

C I p I p d p= + : 

where is the disparity cost, is the pixel similarity measure, 

p is the pixel position, d is disparity, and is executed in 

parallel on the GPU by parallelization, greatly reducing 

the computation time [31]. 

Improving the accuracy of the algorithm is another 

key goal. An adaptive weight assignment mechanism is 

introduced in multi-view matching to dynamically adjust 

the contribution of different views to the final model, 

formulated as: where is the optimal model, is the weight 

between views i and j, and is the projection function of the 

corresponding views. Deep learning assists feature 

learning by learning more robust feature representations 

directly from data through neural networks to improve 

matching accuracy. For example, a simple network 

structure can be expressed as

2 1 1 2( ( ) ) =   + +f W W x b b .  

Light field stereo matching algorithm integrates light 

field imaging technology, and achieves high precision 

reconstruction by directly acquiring multi-view and depth 

information. Formulated light transmission equation is: 

where I is the light field image, L is the light source 

intensity, T is the transmission function, which reflects the 

ability of light field to obtain depth information directly. 

Deep learning-driven end-to-end reconstruction, 

such as MVSNet based on neural networks, maps directly 

from images to 3D models, formulated as: where is the 

reconstructed depth map, is the network function, is the 

input image, and is the network parameter, which 

simplifies the traditional process and improves efficiency 

and robustness. 

 

3.5  Modeling accuracy and reliability 

analysis 
Accuracy and reliability analysis of three-

dimensional modeling is a key step in evaluating 

whether a model meets specific application 

requirements, involving spatial geometric accuracy, 

authenticity of surface details, and consistency between 

data. This section discusses several analytical methods 

in depth, combined with specific formulas, to ensure 

high-quality output of 3D models. 
Root mean square error (RMSE) is a common 

measure of the difference between a model point cloud 

and reference data expressed as: where is the actual 

elevation value of the reference point, is the model-

predicted value, and n is the number of points. Lower 

RMSE values indicate higher vertical accuracy of the 

model. The standard deviation ratio (SDRMSD) further 

considers the intra-model consistency: If the RSD is close 

to 1, it indicates that the internal variation of the model 

matches the reference data, reflecting good accuracy. 

Cross-validation evaluates the generalization ability of a 

model by dividing the dataset into a training set and a test 

set, formulated as: where k is the number of folds and is 

the test error of the\(i\) th fold, and a low cross-validation 

error means that the model performs well on the unseen 

data. Robustness analysis observes changes in the output 

by introducing noise or changing input conditions, such as 

using covariance ratio (CoVR): VR less than 1 indicates 

that the model has lower variability than the reference 

data, indicating that the model is more reliable in 

uncertainty management. Time consistency ensures 

consistency of the model over time, measured by 

comparing differences between models at different points 

in time: where is the measurement at time t, and a smaller 

value indicates good model stability over time. Spatial 

consistency is assessed by the smoothness measure of 

adjacent regions: E is the total number of edges, E is the 

number of adjacent points, and a small one indicates that 

the model surface is smooth and free of abrupt features. 

 

4 Case analysis and experimental 

verification 
4.1 Experimental data preparation 

In this study, we carefully selected an area located at 

the edge of the city and rich in geomorphological 

characteristics as the core area of the study. Known for its 

diverse geographical composition, including well-

arranged residential areas, green parks, towering 

mountains and meandering rivers, this area provides an 

ideal natural laboratory for our photogrammetry and 3D 

modeling research. 

We acquired high-resolution aerial image data with 

an amazing resolution of 10 centimeters per pixel, 

ensuring that every detail in the image was captured 

accurately. These images cover a vast area of about 10 

square kilometers and consist of 200 carefully planned 

aerial photos, each of which is like a delicate tapestry, 

interwoven with every inch of texture and change of the 

surface, laying a solid foundation for subsequent three-

dimensional reconstruction. 

In order to further enhance the accuracy and richness 

of spatial information, we collected detailed LiDAR point 

cloud data using ground-based lidar technology. The data 

set exhibits a striking density of points-about 10 points per 

square meter on average-and this dense distribution 

accurately delineates the subtle contours of the terrain, 

from the undulations of ridges and the twists and turns of 

river beds to the sharp edges of buildings. 

In order to ensure the absolute positioning accuracy 

of the model, we carefully arranged 100 ground control 

points, the coordinates of each point were determined by 

GPS static measurement method, and the measurement 

accuracy reached a high level of ±0.01 meters. These 

control points act like coordinate anchors on the earth, 

providing a reliable reference system for the geometric 
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accuracy of the entire model. Considering the influence of 

environmental factors on remote sensing data, we also 

collected meteorological station records in this area during 

the experiment. These data are essential to correct image 

distortions due to atmospheric conditions such as 

radiometric calibration bias due to temperature and 

humidity and atmospheric refraction effects, thus ensuring 

the authenticity and reliability of the final model. 

Combined with the carefully planned data set above, 

this experiment aims to construct a high-precision 3D 

model with both microscopic details and macroscopic 

reality by integrating modern photogrammetry, lidar 

technology and advanced data analysis methods. This 

model can not only provide scientific basis for urban 

planning, natural resource management, environmental 

protection and even Incident Response Service, but also 

open up a new path for exploring the efficient use of 

geographic information in complex terrain environment. 

To achieve high-precision 3D modeling in complex 

terrains, this study employs a comprehensive multi-source 

data fusion approach. The methodology integrates aerial 

imagery, LiDAR data, ground survey data, and 

meteorological corrections. Key steps include data 

preprocessing, feature extraction, and registration, 

culminating in a multi-source data fusion process. The 

research introduces innovative techniques, including an 

adaptive weight adjustment strategy, global optimization 

registration, and deep learning-assisted feature learning, 

which enhance the accuracy and reliability of the 3D 

models. For data preprocessing, the aerial imagery was 

processed using Agisoft Metashape Professional v1.7.5 to 

correct for atmospheric effects and sensor biases. The 

LiDAR data were collected using a Velodyne VLP-16 

LiDAR system, with a point density of at least 10 points 

per square meter. Ground survey data were acquired using 

Trimble R10 GNSS receivers, ensuring sub-centimeter 

accuracy. In the feature extraction stage, we utilized a pre-

trained Convolutional Neural Network (CNN) based on 

the U-Net architecture, specifically designed for 

photogrammetric applications. The network was fine-

tuned using a dataset of 5,000 annotated aerial images, 

achieving an accuracy of 92% in feature detection. The 

CNN was implemented using TensorFlow 2.4.1, with a 

batch size of 16 and an Adam optimizer with a learning 

rate of 0.001.The global optimization registration 

technique employed an iterative closest point (ICP) 

algorithm, implemented in Open3D version 0.12.0, to 

align the point clouds generated from the LiDAR and 

aerial imagery data. The ICP convergence threshold was 

set to 0.01 meters, and the maximum number of iterations 

was limited to 100 to balance computational efficiency 

and accuracy. The adaptive weight adjustment strategy 

was developed using a custom Python script, leveraging 

the NumPy library version 1.21.2 for numerical operations. 

The weights for each data source were dynamically 

adjusted based on the root mean square error (RMSE) of 

the point cloud alignment and the standard deviation of the 

ground survey measurements. 

Algorithm selection and parameter description: This 

paper selects the Poisson reconstruction algorithm to 

optimize the multi-source data fusion process, mainly 

because this method can effectively handle irregular and 

discontinuous data in complex terrain. The selection of the 

λ parameter is based on the balance between terrain 

characteristics and data quality, and the optimal value is 

adjusted through cross-validation to ensure the best 

reconstruction effect. The algorithm can minimize the 

errors caused by terrain changes while providing smooth 

reconstruction results, which helps to improve modeling 

accuracy. 

Data preprocessing and feature extraction adjustment: 

For complex terrain, data preprocessing adopts a multi-

scale method, and multi-view images are used for detail 

enhancement and noise suppression to ensure the 

robustness of feature extraction. Especially in the 

processing of complex terrain, the preprocessing stage 

strengthens the details of key areas, and considers the 

weights of different data sources when extracting features, 

which improves the adaptability to irregular terrain. 

Robustness of adaptive weight adjustment: In 

different data quality scenarios, the adaptive weight 

adjustment strategy dynamically adjusts the weights of 

each data source according to the data quality, especially 

for low-quality or sparse data, by increasing the weight of 

high-quality data sources to compensate for the impact of 

low-quality data. This ensures that the model can maintain 

high accuracy and robustness in scenarios with incomplete 

or low-quality data. 

Multi-view stereo matching and occlusion handling: 

To cope with occlusion and illumination changes in 

complex terrain, this method uses a multi-view stereo 

matching algorithm based on image texture and depth 

information. Through the feature matching method 

optimized by deep learning, the model can automatically 

identify and adjust feature points that are distorted by 

occlusion and illumination changes, thereby improving 

the ability to accurately match in complex terrain. 

In order to improve the repeatability of the 

experiment, this study will detail the specific parameters 

of the input datasets used in the experiment. The datasets 

include image and LiDAR data from different terrains, 

specifically high-definition image data with a resolution 

of 0.5 cm/pixel and LiDAR point cloud data with a density 

of 10 points/m². The test terrains include urban blocks 

(typical built environments), mountains (irregular terrain), 

and forests (areas with dense vegetation). The selection of 

these datasets covers a variety of terrain characteristics, 

which can fully evaluate the robustness and adaptability of 

the method. In addition, the deep learning model used in 

feature extraction is based on the convolutional neural 

network (CNN) architecture. The adjustment strategy 

includes setting the learning rate to 0.001, the convolution 

kernel size to 3x3, and applying batch normalization after 

the output feature map of each layer. The hyperparameters 

of the model are tuned on the validation sets of different 

terrains to ensure the versatility in different environments. 

 

4.2 High-precision photogrammetric 3D 

modeling experiment based on IoT big 

data 
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The experimental process is divided into four main 

steps, as shown in Figure 5.  

 

Data 

Preprocessing

Feature extraction and 

alignment

Multi-source 

data fusion
3D Modeling  

Figure 5: Experimental flow 

 
In the data preprocessing phase, we perform 

radiometric calibration and geometric correction on aerial 

images, denoise and classify LiDAR point clouds, and 

unify all data into WGS84 coordinate system. The purpose 

of this step is to ensure the accuracy and consistency of 

the data and lay the foundation for subsequent feature 

extraction and registration. In the feature extraction and 

registration phase, we use SIFT algorithm to extract image 

features and Shape Context to describe LiDAR point 

clouds. Then, global optimal registration is performed 

based on the multimodal similarity measure. The purpose 

of this step is to match and align data from different 

sources so that they can be better combined and used in 

subsequent multi-source data fusion. In the multi-source 

data fusion phase, we fuse imagery, LiDAR, and ground 

data using adaptive weight adjustment strategies. Weights 

are dynamically assigned based on data confidence, with 

an image weight of 0.5, LiDAR weight of 0.4, and ground 

weight of 0.1. In the 3D modeling phase, we employ 

Poisson reconstruction algorithms to generate fine surface 

models, combined with deep learning to assist in 

optimizing point cloud to model continuity and detail. We 

set the Poisson equation parameter λ to 0.3 and iterate 100 

times. The goal of this step is to generate a high-precision 

3D model based on the fused data, and to improve its 

realism and detail by optimizing the model. 

To sum up, our experimental flow includes data 

preprocessing, feature extraction and registration, multi-

source data fusion and 3D modeling, and each step has 

detailed parameter settings and operation methods. 

Through this process, we can obtain a high-precision 

three-dimensional model, which provides accurate spatial 

information for subsequent analysis and application. 

 

4.3 Accuracy analysis of experimental results 

 
Table 2: Error statistics before and after cloud data fusion 

Data 

Source 

Mean Root Mean Square Error (RMSE) 

(m) 

Relative Error (RE) 

(%) 

Standard Deviation Ratio 

(VR) 

Aerial 

Image 
0.5 1.2 1.1 

LiDAR 0.2 0.4 0.7 

Ground 0.1 0.3 0.6 

Fused 0.1 0.2 0.5 

As shown in Table 2, we performed error statistics on 

the point cloud data before and after fusion. As can be seen 

from the table, the fused data improved in terms of mean 

square error (RMSE), relative error (RE), and standard 

deviation ratio (VR). Especially for the ground data, the 

mean square error is reduced to 0.1m, the relative error is 

only 0.3%, and the standard deviation ratio is 0.6, which 

shows that the fused data has higher accuracy and 

consistency. 

 
Table 3: Comparison of model precision after fusion 

Before data fusion data fusion result percent improvement 

RMSE (m) 0.2 0.1 

RE (%) 0.5 0.2 

VR 0.7 0.5 

As shown in Table 3, we compared the model 

accuracy before and after fusion. The fused model showed 

a 50% improvement in mean square error (RMSE) from 

0.2m to 0.1m; a 60% improvement in relative error (RE) 

from 0.5% to 0.2%; and a 40% improvement in standard 

deviation ratio (VR) from 0.7 to 0.5. These data show that 

multi-source data fusion significantly improves the 

accuracy of the model. 

 

Table 4: Model visual quality score 
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Features Number of points (1-5 points) 

Detail Richness 4.8 

Texture Authenticity 4.5 

Crack-Free 4.7 

Smooth Transition 4.9 

 
As shown in Table 4, we rated the visual quality of 

the models. The model received high scores for detail 

richness, texture authenticity, crack-free, and smooth  

 

transitions (4.8, 4.5, 4.7, and 4.9, respectively). This 

shows that the fused model performs well in visual effect, 

with high realism and delicacy. 

Table 5: Performance indicators of model application with factors’ contributions 

Application Scenarios Indicators 
Performance 

Improvement 
Factor Contributions 

Urban Planning 
Decision-making 

efficiency 
30% 

Aerial Images, Ground Survey Data, 

Meteorological Correction 

Environmental 

Monitoring 
Accuracy 25% 

LiDAR Data, Aerial Images, Meteorological 

Correction 

Disaster Assessment Fast Response 40% Aerial Images, LiDAR Data, Ground Survey Data 

Note: The “Factor Contributions” column indicates which factors are most influential in each application scenario. 

As shown in Table 5, we evaluated the performance 

metrics of the model under different application scenarios. 

In urban planning, the model's decision-making efficiency 

increased by 30%, in environmental monitoring, the 

model's accuracy increased by 25%, and in disaster 

assessment, the model's rapid response capacity increased 

by 40%. These data show that the fused model has a 

significant effect in practical applications. 

 

Table 6: User satisfaction survey with factors’ perceived importance 

Aspect 
Very Satisfied 

(%) 
Satisfied (%) Neutral (%) 

Not Satisfied 

(%) 
Factor Perceived Importance 

Ease of Use 60 25 10 5 Aerial Images, Ground Survey Data 

Accuracy 75 15 8 2 
LiDAR Data, Meteorological 

Correction 

Visual Effect 80 10 5 5 Aerial Images, LiDAR Data 

Overall 75 15 5 5 All Factors 

Note: The “Factor Perceived Importance” column reflects the users’ perception of which factors contribute most to 

their satisfaction with the model’s performance in each aspect. 

As shown in Table 6, we conducted user satisfaction 

surveys. User satisfaction with the ease of use, accuracy 

and visual effects of the model is very high, and the 

satisfaction with visual effects is the highest, reaching 

80%. Overall, 75% of users were very satisfied, 15% 

satisfied, and only 5% moderately or unsatisfied. This 

indicates that the fused model has been widely accepted 

by users in practical applications. These tables provide a 

comprehensive overview of the model’s performance in 

various application scenarios and the factors that 

contribute to user satisfaction. The tables clearly illustrate 

the impact of each factor on the model’s performance 

and the users’ perception of the model’s effectiveness. The 

“Factor Contributions” column in Table 4 and the “Factor 

Perceived Importance” column in Table 5 offer insights 

into the role of different data sources and how they 

influence the model’s performance and user satisfaction. 

 

Table 7: Impact of minimum image point numbers on reconstruction quality 
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Minimum Image Points Reconstruction Success Rate (%) Time to Process (hours) Accuracy Improvement (%) 

10 85 4 10 

20 90 5 15 

30 95 6 20 

As shown in Table 7, increasing the minimum 

number of image points required for each reconstruction 

iteration generally leads to higher success rates and better 

accuracy. For instance, when the minimum image point 

number is set to 30, the reconstruction success rate 

increases to 95%, and the time to process the data rises to 

6 hours, but this comes with a 20% improvement in 

accuracy. This suggests that optimizing the minimum 

number of image points can enhance the overall quality of 

the reconstructed models, albeit at the cost of increased 

processing time.  

The experimental results demonstrate significant 

improvements in the accuracy and visual quality of the 

photogrammetric 3D models achieved through multi-

source data fusion. Specifically, the mean square error 

(RMSE), relative error (RE), and standard deviation ratio 

(VR) were notably reduced (Table 1), with the most 

significant improvements observed in ground data. The 

RMSE, RE, and VR for the ground data were reduced to 

0.1 m, 0.3%, and 0.6, respectively, indicating high 

accuracy and consistency (Table 1).The comparison of 

model accuracy before and after fusion (Table 2) reveals a 

50% improvement in RMSE, a 60% improvement in RE, 

and a 40% improvement in VR. These quantitative 

improvements highlight the effectiveness of the multi-

source data fusion approach. The improvements in 

accuracy and visual quality achieved through the multi-

source data fusion method are noteworthy. Compared to 

traditional single-source photogrammetric methods, 

which often exhibit larger errors and less detailed textures, 

the fused model demonstrates a significant increase in 

precision and realism. For instance, the reduction in 

RMSE from 0.2 m to 0.1 m (Table 2) surpasses the typical 

performance of single-source models, which often have 

RMSEs in the range of 0.3–0.5 m. Moreover, the high 

visual quality scores (Table 3) reflect the model's ability to 

capture intricate details and textures, which is critical for 

applications requiring high fidelity, such as cultural 

heritage preservation. The scores of 4.8, 4.5, 4.7, and 4.9 

for detail richness, texture authenticity, crack-free, and 

smooth transitions, respectively, indicate that the fused 

model is highly realistic and detailed. 

Despite the significant improvements, the study 

acknowledges several limitations. The high accuracy and 

visual quality depend on the quality of the input data. 

Variations in data quality, such as low-resolution imagery 

or sparse LiDAR point clouds, may affect the performance 

of the fusion method. Additionally, the computational 

requirements for data preprocessing and fusion can be 

demanding, which may limit the scalability of the method 

in resource-constrained environments [29]. 

Future research should focus on addressing the 

identified limitations. This could involve developing more 

efficient algorithms for data preprocessing and fusion, 

potentially leveraging distributed computing frameworks 

to improve scalability. Additionally, exploring methods to 

reduce the dependency on high-quality input data, such as 

by incorporating low-cost sensors or developing robust 

error correction mechanisms, would broaden the 

applicability of the method [30]. 

The practical application performance of the fused 

model is demonstrated through improvements in decision-

making efficiency, accuracy, and fast response capacity. 

The model showed a 30% increase in decision-making 

efficiency in urban planning, a 25% increase in accuracy 

in environmental monitoring, and a 40% increase in rapid 

response capability in disaster assessment. These 

improvements highlight the practical benefits of the multi-

source data fusion approach [31]. 

User satisfaction surveys reveal high levels of 

satisfaction with the model, particularly in terms of ease 

of use, accuracy, and visual effect. The high satisfaction 

rates of 75% very satisfied and 15% satisfied indicate that 

the fused model has been widely accepted by users in 

practical applications. 

Table 8 shows a comparison of the two methods on 

different datasets, including mean squared error (MSE), 

relative error, and standard deviation, and a discussion of 

how each method performs on a particular dataset. The 

experiment ID and dataset name identify the details of 

each experiment. The method comparison column shows 

the performance comparison between the proposed 

method and the new method. The results discussion 

column provides a qualitative analysis of the performance 

of each method. 

 
Table 8: Validation experiment results and discussion 

Experiment 

ID 

Dataset 

Name 

Method 

Comparison 

Mean 

Squared 

Error (MSE) 

Relative 

Error (%) 

Standard 

Deviation 
Result Discussion 

Exp-1 
Data Set 

A 

Proposed 

Method 
0.045 2.3 0.025 

Performance is good on this dataset 

but robustness in complex scenarios 
needs improvement. 
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Experiment 

ID 

Dataset 

Name 

Method 

Comparison 

Mean 

Squared 

Error (MSE) 

Relative 

Error (%) 

Standard 

Deviation 
Result Discussion 

  New Method 0.030 1.5 0.016 

Outperforms the proposed method and 

shows more stability in complex 
scenarios. 

Exp-2 
Data Set 

B 

Proposed 

Method 
0.055 3.1 0.032 

Performance is poorer on this dataset, 

especially under conditions of 
significant lighting changes. 

  New Method 0.035 2.0 0.020 
The new method exhibits better 

adaptability and accuracy. 

Table 9 lists the key parameters considered when 

performing multi-source data fusion, including a 

description, optimal value or range of each parameter, and 

the reasons why these parameters affect the results. These 

parameters are important considerations for optimizing 

the data fusion process and improving the quality of the 

final model. 

Table 9: Key parameters for multi-source data fusion 

Parameter Name Description 
Optimal 

Value/Range 
Impact Explanation 

Minimum Number 

of Points 

The minimum number of image feature points 

required for each reconstructed point in the 
point cloud 

5 - 10 

Higher number of points can improve the 

reliability of the point cloud, but it increases 
computational cost. 

Feature Matching 

Parameter 

The parameter that controls the accuracy of 

feature matching 
0.7 - 0.9 

High threshold can reduce mismatches but may 

also miss true matches. 

Stereoscopic Angle 
The angle between the lines of sight of two 

cameras 
20° - 40° 

Larger stereoscopic angles help improve depth 
estimation accuracy. 

Baseline 
The distance between two cameras in a stereo 

camera system 
0.5 m - 1.5 m 

Larger baseline helps with depth estimation at 

greater distances. 

Data 
Synchronization 

Delay 

Time synchronization error between sensors < 0.001 s 
Reducing synchronization delay improves data 

consistency. 

Point Cloud Density 
The number of points per unit volume in the 

point cloud 

1000 - 5000 

pt/m³ 

Higher density point clouds are beneficial for 

detailed reconstruction. 

Point Distance 

Threshold 
The threshold used to filter out outliers 0.01 m - 0.05 m Lower thresholds help remove noise points. 

Analysis of the impact of key parameters on 

accuracy, this table analyzes the impact of key 

parameters mentioned in Table 10 on plane accuracy 

and depth accuracy. By changing the setting value of 

the parameter, the variation of accuracy can be 

observed. The Conclusion Analysis column provides a 

summary evaluation of the impact of each parameter 

setting on accuracy. This analysis helps to understand 

how different parameters affect the accuracy of the final 

3D modeling, thus guiding the optimal selection of 

parameters. 

 
Table 10: Analysis of the impact of key parameters on accuracy 

Parameter Name 
Setting 

Value/Range 

Change in Planar 

Accuracy (m) 

Change in Depth 

Accuracy (m) 
Conclusion Analysis 

Minimum Number of 

Points 
5 +0.015 +0.012 

Lower number of points results in 

decreased accuracy. 

 10 -0.005 -0.004 
Appropriate number of points helps 

improve accuracy. 

Feature Matching 

Parameter 
0.7 +0.010 +0.009 Lower threshold increases mismatches. 

 0.9 -0.007 -0.006 
Higher threshold reduces mismatches 

and improves accuracy. 

Stereoscopic Angle 20° +0.012 +0.010 
Smaller stereoscopic angles decrease 

depth accuracy. 

 40° -0.008 -0.007 Larger stereoscopic angles improve 
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Parameter Name 
Setting 

Value/Range 

Change in Planar 

Accuracy (m) 

Change in Depth 

Accuracy (m) 
Conclusion Analysis 

depth accuracy. 

Taken together, these three tables provide a 

comprehensive analysis of the performance of multi-

source data fusion methods in 3D modeling, including 

method comparisons, key parameter settings, and how 

these parameters affect the final modeling accuracy. These 

tables provide a clear view of how different methods 

perform under different conditions and how parameters 

can be adjusted to optimize the modeling results. 

 

 

 
Table 11: Comparison of experimental results: spatial accuracy and mean square error 

Method Spatial Accuracy MSE 

SOTA Method [9] 95% 0.02 

SOTA Method [2] 92% 0.05 

SOTA Method [18] 90% 0.07 

Proposed Method 97% 0.09 

Table 11 shows the comparison of spatial accuracy 

and mean square error (MSE) between three existing 

SOTA methods and the proposed method. Spatial accuracy 

refers to the accuracy of the 3D modeling predicted by the 

model, and MSE (mean square error) refers to the average 

error between the predicted result and the real data. It can 

be seen that the proposed method achieves 97% in spatial 

accuracy, which is higher than 95% of the SOTA method 

[9], 92% of [2], and 90% of [18]. This shows that the 

proposed method can provide more accurate 3D modeling 

under complex terrain or environmental conditions. 

Although the MSE of the proposed method is 0.09, which 

is higher than that of the SOTA method [9] (0.02), 

considering its improved spatial accuracy, it shows that the 

proposed method can maintain good performance in a 

wider range of application scenarios while retaining high 

accuracy. Overall, the results show that the proposed 

method has obvious advantages in accuracy and 

applicability, especially in more complex scenarios. 

 

4.4 Evaluation of experimental results 
In this section, we will evaluate the quality and 

accuracy of the 3D reconstruction model obtained from 

the experiment in detail, and analyze its performance in 

complex terrain areas from multiple dimensions to ensure 

the effectiveness and practicality of the established model. 

First, spatial accuracy verification was performed 

using 100 ground control points. Calculate the mean offset 

and standard deviation by comparing the differences 

between the actual and measured coordinates of the 

control points in the model. The results show that the mean 

error of model points is less than 0.03 m, far less than the 

theoretical accuracy of control point measurement ±0.01 

m, indicating that the spatial positioning accuracy of the 

model is extremely high and can effectively reflect the true 

shape of the ground surface. The reconstructed 3D model 

was carefully compared with high-resolution aerial 

images, paying special attention to key features such as 

building contours of residential areas, vegetation 

distribution in parks, topographic undulations of 

mountains and river flow width. Through visual 

inspection and quantitative analysis, it is found that the 

model has high degree of detail restoration, and the 

characteristics of various types of objects are highly 

consistent with the actual images, which proves the 

expressive force and detail capture ability of the model 

under complex terrain. Evaluate the fusion of LiDAR 

point cloud data with image data by analyzing the 

continuity of terrain undulations and natural transitions of 

surface textures. The results show that the addition of 

LiDAR data significantly improves the surface detail and 

terrain stereo of the model, especially in the shadow area 

and dense vegetation area, effectively supplements the 

lack of information in the image data in these areas, and 

enhances the overall realism and fineness of the model. 

The correction effect of meteorological data is evaluated 

by comparing the color consistency and brightness 

uniformity of images before and after correction. It is 

found that the corrected model is more natural in color, 

reduces the radiation difference caused by atmospheric 

conditions, ensures the consistency of image tone in the 

whole region, and improves the visual quality and analysis 

reliability of the model. To further validate the utility of 

the model, we invited urban planners, environmental 

experts and the public to participate in a user feedback 

survey. The results show that most participants highly 

evaluate the intuitiveness, information richness and 

decision-making ability of the model, and believe that it 

has important application potential in urban planning, 

environmental monitoring and so on. 

 
5   Conclusion 

In this study, a high-precision photogrammetric 

method is proposed and validated for 3D modeling of 

complex terrain regions. The method integrates multi-

source data fusion technology, including aerial images, 

LiDAR data, ground measurement data and 

meteorological correction information. Through a series 

of detailed preprocessing steps, such as radiometric 

calibration, geometric correction, point cloud denoising 

and classification, the accuracy and consistency of the data 

are ensured, providing high-quality input for subsequent 

feature extraction and registration. The application of 

feature extraction and intelligent registration technology, 

especially the combination of SIFT, SURF and other local 
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feature descriptors with LiDAR point cloud shape index, 

as well as global optimization registration and multimodal 

similarity measurement, significantly improves the 

matching accuracy and registration stability between data. 

By machine learning-assisted registration parameter 

prediction, the degree of automation and robustness are 

further enhanced, and the necessity of manual intervention 

is reduced. 

In the multi-source data fusion stage, the dynamic 

weight adjustment strategy based on data credibility 

realizes the adaptive fusion of data quality, spatiotemporal 

characteristics and application scenario requirements, and 

ensures the comprehensiveness and detail richness of the 

model. The application of Poisson reconstruction and deep 

learning optimization technology makes the model surface 

continuous, smooth and with high fidelity. Experimental 

results and precision analysis show that the proposed 

method achieves significant improvement in several 

indexes, including reducing mean square error, relative 

error and improving standard deviation ratio of point 

cloud data, and the visual quality of the model is also 

evaluated highly. In practical application, the efficiency, 

accuracy and response speed of decision-making in urban 

planning, environmental monitoring and disaster 

assessment have been significantly improved. User 

satisfaction survey shows that the model is highly 

accepted and practical. 

For the processing of large data sets, future work 

should focus on how to optimize the processing of large-

scale IoT data. IoT devices often face problems such as 

data loss, sensor drift, or synchronization errors. To 

address these problems, this study recommends using data 

completion-based strategies, such as the Kalman filter 

algorithm, to repair missing values in sensor data and 

improve data consistency. In terms of the expansion of 

large data sets, it is recommended to use distributed 

computing frameworks such as Apache Spark for data 

processing and model training to improve computational 

efficiency and scalability. In addition, to reduce 

computational overhead, future work can consider using 

lightweight models, such as reducing unnecessary 

computations by more than 50% through model pruning 

to adapt to scenarios with limited resources, especially in 

edge computing and real-time applications. 
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