
https://doi.org/10.31449/inf.v49i1.7145 Informatica 49 (2025) 53–60 53

Learning Algorithm for LesserDNN, a DNN with Quantized Weights

Masashi Takemoto1, Yasutake Masuda1, Jingyong Cai2 and Hironori Nakajo2
1BeatCraft, Inc. Tokyo Japan
2Tokyo University of Agriculture and Technology Tokyo, Japan
E-mail: lesser@beatcraft.com, masuda@beatcraft.com, kkkluoruo@hotmail.com, nakajo@cc.tuat.ac.jp

Keywords: Deep neural network, machine learning, simulated annealing, weight quantization

Received: September 12, 2024

This paper presents LesserDNN, a model that uses a set of floating-point values {-1.0, -0.5, -0.25, -0.125,
-0.0625, 0.0625, 0.125, 0.25, 0.5, 1.0} as quantized weights, and a new learning algorithm for the pro-
posed model. In previous studies on deep neural networks (DNNs) with quantized weights, because DNNs
employ the gradient descent method as their learning algorithm, quantized weights were applied only dur-
ing the inference stage. Due to differentiability properties, quantized weights cannot be used when the
gradient descent method is applied during training. To address this issue, we devised an algorithm based
on simulated annealing. Since simulated annealing has no differentiability requirements, LesserDNN can
utilize quantized weights during training. With the use of quantized weights and this simulated annealing-
based algorithm, the learning process becomes a combinatorial problem. The proposed algorithm was
applied to train networks on the MNIST handwriting dataset. The tested models were trained with the
simulated annealing-based algorithm and quantized weights, achieving the same level of accuracy as gra-
dient descent-based comparison methods. Additionally, we conducted tests using the CIFAR-10 dataset,
and achieved the good results to demonstrate the algorithm. Thus, LesserDNN has a simple design and
small implementation scale because backpropagation is not applied. Moreover, this model achieves a high
accuracy

Povzetek: LesserDNN je model globoke nevronske mreže z utežmi, kvantiziranimi na nabor vrednosti -1,0;
-0,5; -0,25; -0,125; -0,0625; 0,0625; 0,125; 0,25; 0,5; 1,0. Za učenje tega modela so razvili algoritem,
ki temelji na simuliranem žarjenju, saj gradientni spust zaradi lastnosti diferencirljivosti ni primeren za
kvantizirane uteži. Ta pristop omogoča uporabo kvantiziranih uteži že med učenjem.

1 Introduction
Deep neural networks (DNNs) have contributed substan-
tially to the development of machine learning and various
machine learning-based applications. To improve accu-
racy, deeper networks, more complex structures, and more
neurons have been introduced in various models. How-
ever, these large models are not suitable for deployment
in small devices. To address this issue, weight quantiza-
tion approaches have been introduced. To reduce model
size while maintaining accuracy, less precise weights are
used only for inference, while training still requires full-
precision weights. Weight quantization successfully re-
duces the memory requirements and computational costs
of DNNs while maintaining the same accuracy as full-
precision weight DNNs. Lower precision weights are not
applied during the DNN training process because of the
learning algorithm, namely, the gradient descent method.
To fully utilize less precise weights, a new learning algo-
rithm must be developed.
Therefore, we devised LesserDNN, a novel approach

that uses a set of floating-point values {- 1.0, -0.5, -0.25,
-0.125, -0.0625, -0.0625, 0.125, 0.25, 0.5, 1.0} as quan-
tized weights instead of arbitrary values such as continu-

ous floating-point numbers, where w≦1.0 and w≧-1.0. (w:
a weight). Moreover, we developed a new learning algo-
rithm. We implemented a framework that utilizes these
quantized weights during both the training and inference
stages; thus, LesserDNN can build arbitrary networks of
freely stacked layers containing neurons with quantized
weights.
In conventional DNNs, the weights are set as arbitrary

real numbers between -1.0 and 1.0, and infinite combina-
tions of these weights are possible during training. On
the other hand, in contrast to traditional DNNs, the learn-
ing process of LesserDNN is formulated as a combinatorial
problem because the number of combinations of quantized
weights is finite.
Although the number of combinations is mathematically

finite, it is intractable for typical computer systems; thus, it
is impossible to search for the optimal solution in a round-
robin fashion within a practical time frame. Therefore,
we devised a learning algorithm using simulated annealing
(SA). SA imitates the most settled arrangement of heated
molecules as they cool, with the weights representing the
molecules and the number of selections representing the
temperature. Randomly selected weights are changed and
updated only when these changes improve the results. The



54 Informatica 49 (2025) 53–60 M. Takemoto et al

combinations are evaluated according to the difference be-
tween the current result and the correct answer. The op-
timization proceeds by iterating; thus, this difference de-
creases, and the global optimum is eventually reached.
The background of this study is described in Section 2.
LesserDNN is explained in Section 3, and the details of the
algorithm are presented in Section 4. The experiments con-
ducted on the MNIST handwriting dataset are explained in
Section 5, and the results are reported in Section 6, The re-
sults of additional experiments on the CIFAR-10 dataset is
explained in Section 7. Then, we have discussions in Sec-
tion 8.
The code of LesserDNN is available online at https:

//github.com/BeatCraft/LDNN, and the code for ex-
periments also is available online at https://github.
com/BeatCraft/LDNN-mnist.

2 Background

Weight quantization has been proposed as a method of in-
creasing the inference speed while reducing memory foot-
print. Weight quantization involves statistically analyzing
trained DNNs and replacing values. In previous studies,
Vanhoucke et al. [1] initially applied weight quantization to
reduce the computational burden of DNNs. In each layer,
the weights were normalized to a signed integer in the range
of -127 to 127, and the activations were quantized as 8-
bit integers. As a result, the total memory footprint of the
improved network was approximately 3 or 4 times smaller
than that of the original network. Compared with DNNs,
networks that applied quantization exhibited recognizable
improvements in terms of speed while maintaining accu-
racy.
Similar to the initial study, many weight quantization

studies have applied dynamic range quantization; however,
there are some notable studies on fixed-point weight quanti-
zation. Courbariaux et al. [4] introduced BinaryConnect, in
which the weights are aggressively reduced to a single bit (-
1 or 1). Because of these binarized weights, approximately
two-thirds of the multiplication operations can be replaced
by addition and substitution operations. As the calculations
are greatly simplified, the training speed is 3 times faster,
yet the accuracy is reduced by only 19%. To improve the
accuracy of BinaryConnect, Li et al. [5] developed ternary
weight networks. These networks added zero as a bina-
rized weight and introduced a threshold-based ternary func-
tion to transform full-precision weights to ternary weights.
The threshold value for the ternary weights was determined
by optimizing the threshold-based ternary function. This
function minimizes the Euclidian distance between full-
precision weights and ternary weights with a scaling fac-
tor. Since ternary weight networks require 2-bit storage for
each weight unit, their model compression rates are higher
than those of full-precision weight models. The experimen-
tal results showed that when compared with full-precision
weight models, the accuracies of ternary weight networks

were reduced by 0.4% or less.
The results of weight quantization experiments have

been remarkable thus far; however, previous studies have
had difficulty testing weight quantization models with
quantized weights only. In general, these studies statisti-
cally analyze trained DNNs and replace values; thus, train-
ing is initially performed with full-precision weights. The
full-precision weights are replaced by quantized weights af-
ter training, and these quantized weights applied only dur-
ing the inference stage to retain high accuracy.
Vanhoucke et al. [1] applied quantization in pretrained

networks. Courbariaux et al. [4] and Li et al. [5] employed
binary and ternary weights (lower precision weights) in
forward and back propagation and applied full-precision
weights in the gradient method. In these weight quantiza-
tion studies, quantized weights were not fully used during
training.
Weight quantization approaches require full-precision

weights because the gradient descent method is used the op-
timization method in the training process. Because of dif-
ferentiability properties, DNNs are not differentiable with
respect to quantized weights. As the changes in the weights
are large, the gradient descent method cannot accurately de-
termine the gradient and thus cannot differentiate changes
in the weights. Thus, quantized weights cannot be used in
the gradient descent method. To address this issue, this pa-
per applies a non-gradient-based approach, namely, an SA-
based method.
SA is known as a combinatorial optimization method. In

2017, Mousavi et al. [3] applied SA to an artificial neural
network (ANN). In their empirical analysis, the ANN/SA
model outperformed the ANN model. However, as dis-
cussed in the paper, the ANN/SA model had large time
costs. As the weights are expressed as floating-point num-
bers, the number of combinations in the model is enor-
mous and practically infinite, and the computations cannot
be completed within a practical time range.
The combinatorial optimization method also faces this

issue. For instance, as an implementation limitation, the
number of combinations is varied between -1.0 and 1.0 in
increments of 0.01, which is considered the precision level
of the weights. The number of combinations is 200n, where
n is the number of weights in the model. For example,
a small DNN with 10000 weights contains 20010000 com-
binations. Considering the large number of combinations,
small DNNs with medium-precision weights have reduced
time costs while retaining the large computational power
required to complete the training process. In typical exper-
iments, small DNN models have more than 1000 weights,
and the number of combinations easily surpasses this ex-
ample.
To address this issue, quantized weights are introduced.

The quantized weights are designed as a set of sequential
numbers, where the current number is divided by 2 to de-
termine the subsequent number, such as {-1.0, -0.5, -0.25,
-0.125, -0.0625, 0.0625, 0.125, 0.25, 0.5, 1.0}, because we
found that logarithmic quantization of the weights achieved



Learning Algorithm for LesserDNN, a DNN with… Informatica 49 (2025) 53–60 55

better classification results than linear quantization of the
weights in a previous study [2]. This approach reduces the
level of precision of each weight from 200 to 10.
Thus, when quantized weights are used, the total number

of combinations in the DNN is 1010000. While this is still a
large number, it is 2010000 times smaller than 20010000, and
current computer systems can likely handle this number of
combinations. When an SA-based algorithm is applied to
a DNN, a set of quantized weights can be used for training
because the gradient method is not used as the optimizer.

3 LesserDNN
LesserDNN includes layers, neurons, and weights and has
basic mechanisms such as inference, activation functions,
loss functions, and batches. LesserDNN is similar to exist-
ing DNNs, except that LesserDNN has no backpropagation.
These characteristics and other differences, such as the lack
of bias, and how batches are handled, are explained in this
chapter.
The output of a neuron in a DNN is calculated by adding

a bias to the summation of the product, as shown in (1),
where x is the input value and w are the weights; then,
the output value is passed to an activation function such as
ReLU (2). ReLU and leaky ReLU (3) can be selected as
activation functions in each layer. In (1), y is the output of
the neuron, and a in (3) is a coefficient that depends on the
actual network applied in a given problem.

y =

n∑
i=1

(xi · wi) + bias (1)

f(x) =

{
x (x ≧ 0)

0 (x < 0)
(2)

f(x) =

{
x (x ≧ 0)

a · x (x < 0)
(3)

The bias has two functions: adjusting the output range
of the neuron and ensuring that the output value is differen-
tiable. Ensuring that a value is differentiable means guar-
anteeing that that value is not set to zero. LesserDNN has
no bias since there is no need to consider whether the out-
put of the neuron is differentiable since the gradient descent
method is not used for training and layer normalization is
applied. Layers containing neurons use a function to nor-
malize the output. Inference is executed by performing cal-
culations sequentially starting with the input layer. A layer
receives the output of the previous layer, executes calcu-
lations and passes the results to the next layer. This ba-
sic propagation process is repeated until the output layer is
reached. In the output layer, the softmax function may be
applied. For classification problems, the output of the final
layer is the probability. The softmax function adjusts the

individual values in the output layer to ensure that the sum
of the outputs is equal to 1.0.
The loss function is a function that is used to deter-

mine the magnitude of the discrepancy between the correct
and predicted values. LesserDNN selects either the mean
squared error (MSE) or the cross entropy (CE) to evalu-
ate the model. The MSE is defined in (4), where n is the
number of data points, y is the correct value, and ŷ is the
predicted value. In classification problems, n is the num-
ber of classes. The CE is defined in (5), where p(x) is the
correct probability and q(x) is the predicted probability.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4)

H(p, q) = −
∑
x

p(x) · log q(x) (5)

The calculations are performed in each layer, and basic
functions are implemented to take advantage of hardware
systems such as GPUs or multicore CPUs. LesserDNN
adapts CUDA [10] and OpenCL [9] to support GPUs.
CUDA is an advanced computation library for NVIDIA [8]
GPUs. OpenCL is an open standard for parallel program-
ming on systems with different types of hardware, such as
multicore CPUs, FPGAs, and GPUs. The input data for
training and testing are grouped in two-dimensional arrays
and treated as batches. The inference results on the batched
input data are evaluated in bulk, and the average of the re-
sults is considered the optimization improvement for that
batch.
A batch can be assigned to multiple processes by adapt-

ing a message passing library (MPI). An MPI is a stan-
dard for distributed-memory parallel processing, and Open
MPI [7] is available as an implementation. Open MPI sup-
ports data transfer and synchronization between processes
not only on single computers but also on multiple comput-
ers connected in a network. Thus, very large batches that
consume considerable working memory can be handled.

4 Learning algorithm
The learning algorithm of LesserDNN includes triple
nested loops, challenge loops, cooling loops, and a main
loop, as shown in Fig. 1. The challenge loops determine
which weights to update, and the cooling loop is crucial for
applying the SA function in the learning algorithm. The
cooling loop controls the temperature, which represents the
number of weights to update during each iteration. Then,
the main loop iterates to the next cooling loop. More itera-
tions are required for more difficult problems.

4.1 Challenge loop
The challenge loop is the innermost loop and the core of the
algorithm as shown in Fig. 2, and the pseudocode is shown
in Algorithm 1. It includes four basic functions: selecting



56 Informatica 49 (2025) 53–60 M. Takemoto et al

Figure 1: The triple nested loops

the weights, updating the network, evaluating the network,
and reversing changes.

Before the loop, all weights in the LesserDNN network
are initialized by randomly selecting a value in the set {-
1.0, -0.5, -0.25, -0.125, -0.0625, -0.0625, 0.125, 0.25, 0.5,
1.0}. Inference is performed on the training data, and the
difference between the current result and the correct answer
is calculated as the loss function, Λ using either the MSE
or CE. The loop takes a positive integer as a variable, and
the number of weights to handle during each iteration isN .
Then, N weights are randomly selected and changed, and
the loss function, λ, is obtained. Since the training data
include batches with multiple data points, multiple values
are obtained. The average of these values is determined as
the evaluation result for that batch. If λ is smaller than Λ„
the changedweights are maintained; otherwise, the changes
are discarded. The loop stores ρ, which is the ratio of the
number of successful updates to the total number of trials.
The minimum number of iterations is set to 50 by default,
and the loop is terminated when the hit rate falls below 1%.

Figure 2: Flowchart of the challenge loop

Algorithm 1 Challenge Loop
1: function challenge(Λ, N )
2: cnt← 0
3: hit← 0
4: ρ← 1.0
5: while ρ > 0.01 do
6: select(N ) ▷ select N weights randomly
7: update()
8: λ← evaluate()
9: if λ < Λ then
10: hit← hit+ 1
11: Λ← λ
12: keep the changes
13: else
14: discard the changes
15: end if
16: cnt← cnt+ 1
17: ρ← hit/cnt
18: end while
19: return Λ
20: end function

4.2 Cooling loop
The cooling loop controls N in the iterations of the chal-
lenge loop, as shown in Fig. 3, and the pseudocode is shown
in Algorithm 2. N is the number of weights to be updated
at once in the challenge loop. N is calculated according to
the total number of weights M and the temperature in the
cooling loopK.
The maximum value of temperature, θ is also calculated

according to M. In the cooling loop,K decreases from θ to
0 as the temperature of the heated material decreases over
time. In the cooling loop,K decreases asN decreases. We
set the maximum number of weights to be changed during
each iteration to 1%, and the maximum temperature, θ, was
calculated as θ = logϵ(0.01 ·M), where ϵ is set to 2 as a
default value.
Therefore, the number of weights to be changed at once

at temperature k isN = ϵk. ϵ is a hyperparameter that con-
trols the convergence speed. The larger the value of ϵ is, the
more rapidly the optimization process proceeds; thus, the
possibility of falling into a local optimum increases. The
appropriate range for ϵ is 1.1 to 2.0. The cooling loop starts
at θ and is repeated untilK reaches 1.

4.3 Main loop
Themain loop is a loop that simply iterates the cooling loop,
as shown in Algorithm 3. The number of iterations varies
depending on the complexity of the problem. The number
of iterations also depends on the number of training samples
(batch size). Because LesserDNN is an SA-based method,
the number of iterations is a hyperparameter.
In LesserDNN, the cycle of select(), update(), and evalu-

ate() in the challenge loop must be performed sequentially.
The computational costs of the main loop and cooling loop



Learning Algorithm for LesserDNN, a DNN with… Informatica 49 (2025) 53–60 57

Figure 3: Flowchart of the coolong loop

Algorithm 2 Cooling Loop
1: function Cooling
2: M ← total number of the weights
3: ϵ← 2
4: θ ← logϵ(0.01 ·M)
5: Λ← evaluate()
6: K ← θ
7: whileK >= 1 do
8: N ← int(K)
9: Λ← challenge(Λ, N)
10: K ← K/ϵ
11: end while
12: end function

are low and may not change with the complexity of the
problem or the batch size. The evaluation function, which
includes the inference and loss functions, has the largest
computational cost. The evaluation function can be paral-
lelized by assigning divided batches to multiple processes,
thus allowing LesserDNN to maintain the cycle in a single
sequence and distribute the computational costs to as many
processes as the hardware allows.

Algorithm 3Main Loop
1: functionMain(n) ▷ n : number of iterations
2: for i < n do
3: cooling()
4: end for
5: end function

5 Experiments
To validate the learning algorithm and examine the char-
acteristics of LesserDNN, we conducted experiments using
an MNIST dataset.

We constructed a network with the same layer and neu-
ron configuration in TensorFlow and performed the same
experiments for comparison. The performance was eval-
uated with stochastic gradient descent (SGD) and adaptive
moment estimation (Adam) as backpropagation algorithms.
The SGD algorithm is a first-order iterative optimization
algorithm for determining the local minimum of a differ-
entiable function. The strategy involves determining the
steepest descent in a large or infinite space. By repeatedly
applying the strategy, the algorithm eventually finds a lo-
cal minimum. Adam was developed by Kingma et al. [6].
Adam is a stochastic gradient-based optimization method
that calculates the exponential average of the gradient and
the squared gradient and adapts the learning rate for each
weight in the neural network. The hyperparameters control
the decay rates of these moving averages. The moving av-
erages are estimated according to the mean of the uncertain
variance of the gradient.
TheMNIST dataset is a well-known classification exam-

ple in machine learning that contains 60000 training images
and 10000 test images. These images are 28×28 pixel 8-bit
grayscale images. All the images contain handwritten fig-
ures, namely, the digits 0 to 9, shown as Fig. 4. DNNs are
trained with the training images and evaluated with the test
images. A very basic structure, namely, a fully connected
networkwith 2 hidden layers, was used. The input layer had
784 neurons to transform the 28×28 8-bit grayscale image
to 784 floating-point values in the range of 0.0 to 1.0. The
output layer had 10 neurons corresponding to the 10 classes.

Figure 4: Examples of MNIST Dataset

5.1 Network size
The number of neurons in the two hidden layers was ini-
tially set to 256 and then changed to 128, 64, and 32.

5.2 Number of iterations
The number of iterations was set to 100. The accuracy and
CE of the network, which has two hidden layers with 256
neurons, were determined with a learning algorithm that
was iterated 100 times.

5.3 Training batch size
The networks with two 256-neuron hidden layers were
trained on MNIST datasets with different numbers of im-
ages: 250, 500, 750, 1000, 2000, 3000, 4000, 5000, 10000,



58 Informatica 49 (2025) 53–60 M. Takemoto et al

20000, 40000, and 60000. The number of iterations was set
to 100 for all configurations.

5.4 Base of temperature, ϵ
ϵ is a hyperparameter of LesserDNN that controls the speed
of the temperature descent during each iteration of the SA-
based learning algorithm. The networks with two 256-
neuron hidden layers were trained with different ϵ values,
including 2.00, 1.50, 1.25, and 1.10, to assess how this
value influences training.
The number of iterations was set to 100 for all networks.

6 Results

6.1 Network size
Table 1 shows the results of training LesserDNN models
with different network sizes and the results of equivalent
networks in TensorFlow for comparison.

6.2 Number of iterations
Fig. 5 shows the changes in the accuracy and CE as the
learning algorithm is iterated 100 times in the 256 network.

Figure 5: Changes in the accuracy and CE versus the num-
ber of iteration on the MNIST dataset

6.3 Training batch size
Table 2 shows the accuracies of networks trained with 250,
500, 750, and 1000 training images and the results of Ten-
sorFlow for comparison.

Figure 6: Changes in accuracy versus batch size forMNIST

6.4 Base of temperature, ϵ
Fig. 7 shows how the accuracy changes with the parameter,
ϵ. The range of the Y axis varies from 0.90 to 1.00 because
differences were observed only in this range.

Figure 7: Accuracy versus ϵ

7 Additional experiments with the
CIFAR-10 dataset

CIFAR-10 is a well-known image classification dataset
with 60000 32 × 32 color images in 10 classes, including
objects like airplanes, cars, and animals, shown as Fig. 8.
Divided into 50000 training and 10000 test images, it is
widely used to benchmark image recognition models due
to the challenges posed by its diverse object orientations,
lighting, and backgrounds.

Figure 8: Examples of CIFAR-10 Dataset

DNNs with two hidden layers, each containing 64, 128,
256, and 512 neurons, were configured in both LesserDNN
and TensorFlow for comparison. The accuracies achieved
with the CIFAR-10 dataset were then compared between
the two implementations, shown as Table3. In the Tensor-
Flow model, features such as batch normalization and data
augmentation were not used to ensure a direct comparison
of the optimization algorithms.

8 Discussion
The experimental results showed that the SA-based learn-
ing algorithm can be applied to train LesserDNN, a DNN
with quantized weights. Moreover, the fully connected



Learning Algorithm for LesserDNN, a DNN with… Informatica 49 (2025) 53–60 59

Table 1: Different network sizes for MNIST
32 64 128 256

LesserDNN 0.9537 0.9675 0.9731 0.9776
TensorFlow/SGD 0.9618 0.9699 0.9734 0.9753
TensorFlow/Adam 0.9721 0.9789 0.9830 0.9848

Table 2: Different batch sizes for MNIST
250 500 750 1000

LesserDNN 0.7832 0.8463 0.8766 0.8870
TensorFlow/SGD 0.6552 0.7689 0.8216 0.8347
TensorFlow/Adam 0.8082 0.8614 0.8850 0.8985

Table 3: Different network sizes for CIFAR-10
64 128 256 512

LesserDNN 0.483200 0.4857 0.4706 0.4795
TensorFlow/SGD 0.4962 0.513 0.5231 0.5319
TensorFlow/Adam 0.5019 0.518 0.5333 0.5504

model achieved an accuracy comparable to that of existing
DNNs on a classification task with the MNIST dataset.
The MNIST experimental results showed that

LesserDNN has almost equivalent performance to
TensorFlow, and we confirmed a decrease in accuracy of
less than 1%. Furthermore, we confirmed that the accuracy
decreased because the network size and batch size were
reduced; however, even in such cases, considerable accu-
racy was maintained, indicating that a tradeoff between
computational complexity and accuracy can be established.
When the batch size and number of iterations were

fixed, the accuracy decreased slightly depending on the size
of the network, as shown in Table 1. TensorFlow/SDG
and TensorFlow/Adam both showed similar results. Thus,
LesserDNN exhibits similar characteristics to DNNs.
Fig. 5 shows that no overfitting occurred in the exper-

iments. After a certain number of iterations, the accuracy
changed only slightly, although the loss function kept de-
creasing. The algorithm appears to switch between semi-
optimal solutions of weights. The iterations should be ter-
minated when the accuracy no longer increases. It is impor-
tant that the method for determining the appropriate batch
size be clear since the number of iterations is the hyperpa-
rameter of the LesserDNN model.
In Fig. 6, as the batch size varied from 60000 to 1000,

the accuracy of LesserDNN decreased gradually from 97%
to 88%. Then, when the batch size was 500, the accuracy
decreased sharply to 84% and decreased further to 78%
when the batch size was 250. The accuracy of Tensor-
Flow decreased in the same trend with the both SDG and
Adam. LesserDNN showed considerably equimbarent per-
formance with TensorFlow.
ϵ moderates the learning rate. This parameter controls

the numbers of neurons that are modified during each itera-
tion in the cooling loop and is a major factor in determining
the learning rate. A higher learning rate narrows the search

direction, while a lower learning rate allows the search to
proceed without narrowing the range of possibilities. Fig. 7
shows that the maximum accuracy does not change signifi-
cantly as ϵ varies, although the accuracy in the 1st iteration
of the main loop is higher when ϵ is smaller.
The additional evaluation on the CIFAR-10 dataset

showed that the accuracy was lower than that of Tensor-
Flow, but the results were still comparable.. The difference
isminimal, especially when the network size is small. Since
LesserDNN transforms learning into a weight combination
problem, having fewer neurons makes the search easier and
allows for more efficient use of computational resources.
The process of training LesserDNN iterates between in-

ference and evaluation; thus, training is possible even in
systems with limited resources, such as embedded systems
and IoT devices. Additionally, training can be distributed
among GPUs in the same system or among different sys-
tems over IP networks. Therefore, various systems can be
constructed. For example, in one system, only inferences
may be performed on edge devices, while training can be
performed on GPUs in a cloud service.

9 Future work
We conducted performance comparisons with TensorFlow,
for algorithm validation, and as a result, we did not pre-
cisely measure the computation times. However, there was
a substantial difference, even in relatively simple problems
like MNIST. This issue is expected to become more signif-
icant when dealing with more complex problems in the fu-
ture. Therefore, it will be necessary to explore methods for
efficient batch switching during training, similar to SGD.
In future work, we intend to address how to apply

convolutional neural networks (CNNs) to LesserDNN as
well as attempt to apply LesserDNN to more difficult
problems, such as CIFAR-100 and Tiny ImageNet. In



60 Informatica 49 (2025) 53–60 M. Takemoto et al

this paper, we assure that the small fully connected net-
works in LesserDNN are sufficient for small problems such
as MNIST. However, CNNs are important for applying
LesserDNN to practical problems.
Another issue we intend to address is accelerating the

hardware with the algorithm. Multiplications of the weight
and input values of the neurons can be replaced by SHIFT
operations since quantized weights are representable by a
factor of 2. This is advantageous for creating efficient log-
ics in FPGA and converting networks to ASICs.
One important concept of LesserDNN is that the training

process solves a combinatorial problem; thus, LesserDNN
should have a high affinity with emerging quantum comput-
ers. Quantum computers are known to be great for solving
combinatorial optimization problems. Therefore, we will
attempt to apply our algorithm in quantum computers in fu-
ture work.

Acknowledgement
To Tadasuke Furuya Ph.D. of the Faculty of Marine Tech-
nology at Tokyo University of Marine Science and Tech-
nology, and Takehiko Kashiwagi from Parallel Networks
LLC, we would like to express our sincere gratitude for the
support.

References
[1] Vincent Vanhoucke, Andrew Senior and Mark Z.

Mao. Deep Learning and Unsupervised Feature
Learning Workshop, NIPS 2011.

[2] Jingyong Cai, Masashi Takemoto, and Hironori
Nakajo. A Deep Look into Logarithmic Quantization
of Model Parameters in Neural Networks. In Pro-
ceedings of the 10th International Conference on Ad-
vances in Information Technology (IAIT ’18). Associ-
ation for Computing Machinery, Article 6, 1–8, 2018.
https://doi.org/10.1145/3291280.3291800

[3] Seyyed Mohammad Mousavi, Elham S. Mostafavi,
Pengcheng Jiao. Next generation prediction model for
daily solar radiation on horizontal surface using a hy-
brid neural network and simulated annealing method,
Energy Conversion and Management, Volume 153,
Pages 671-682, 2017. https://doi.org/10.1016/
j.enconman.2017.09.040

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-
Pierre David. BinaryConnect: training deep neural
networks with binary weights during propagations. In
Proceedings of the 29th International Conference on
Neural Information Processing Systems - Volume 2
(NIPS’15), Vol. 2, 3123–3131, 2015.

[5] B. Liu, F. Li, X. Wang, B. Zhang and J. Yan. Ternary
Weight Networks. ICASSP 2023 - 2023 IEEE Inter-
national Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 1-5, 2023 https://doi.
org/10.1109/ICASSP49357.2023.10094626

[6] Diederik P. Kingma and Jimmy Ba. Adam: AMethod
for Stochastic Optimization, arXiv, 2017, https://
doi.org/10.48550/arXiv.1412.6980

[7] Open MPI https://www.open-mpi.org/

[8] NVIDIA Corporation https://www.nvidia.com/

[9] OpenCL https://www.khronos.org/opencl/

[10] CUDAToolkit https://developer.nvidia.com/
cuda-toolkit/


