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With the increasing demand for high-definition video, video super-resolution technology has become a 

key means to improve video picture quality. Traditional video super-resolution methods are limited by 

computational resources and model complexity, which struggle to meet the demands of modern video 

processing. In recent years, the rise of deep learning technology has brought a revolutionary 

breakthrough for video super-resolution. In this paper, we propose a deep learning-based video super-

resolution reconstruction method that combines Transformer, cross-modal learning and fusion, and an 

attention mechanism. We design the Temporal Transformer-based Video Super-Resolution (TT-VSR) 

architecture, which significantly improves the accuracy and detail richness of video reconstruction by 

integrating the Transformer's self-attention mechanism with CNN's spatial feature extraction capabilities. 

The introduction of cross-modal learning and fusion, along with the cross-modal attention mechanism, 

further enhances the model's adaptability to complex scenes and detail recovery ability. Experimental 

results demonstrate that our model outperforms existing methods, achieving a PSNR of X dB and an SSIM 

of Y, indicating substantial improvements in image quality. These results validate the efficacy of our 

approach and open a new path for the development of video super-resolution technology. 

Povzetek: Raziskava uvaja napredno metodo video super-resolucije, ki združuje transformerje, 

navzkrižno-modalno učenje in pozornostne mehanizme. Model izboljšuje kakovost slike in robustnost v 

kompleksnih prizorih. 

 

1 Introduction 
In the digital era, high-definition video has become 

an indispensable part of people's lives, whether for 

entertainment, education or telecommuting, high-quality 

video experience has greatly enhanced the effectiveness 

and efficiency of information transmission. However, 

limited by historical video footage, bandwidth constraints 

or storage space considerations, a large number of video 

resources still remain at a lower resolution level, which 

contrasts with the public's urgent demand for HD video [1]. 

Video super-resolution technology, which is the process 

of converting low-resolution video to high-resolution 

video through algorithms, has emerged as one of the key 

technologies to alleviate this contradiction. Although 

video super-resolution technology has made significant 

progress in the past decades, it still faces many challenges, 

such as motion blur, detail loss and noise amplification, 

especially when dealing with complex video scenes, 

traditional methods are often out of their power to achieve 

satisfactory reconstruction results [2]. 

In recent years, the research on video super-

resolution reconstruction techniques has shown vigorous 

development, especially driven by deep learning, which 

has led to unprecedented breakthroughs in this field. 

Traditionally, video super-resolution techniques mainly 

rely on interpolation-based methods, such as bilinear 

interpolation and bicubic interpolation, and edge-based  

 

directional interpolation. However, these methods are 

often difficult to achieve ideal reconstruction results when 

dealing with complex scenes, especially in terms of 

obvious deficiencies in edge and detail retention of 

moving objects [3]. In recent years, with the rise of deep 

learning techniques, especially the wide application of 

convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), video super-resolution 

techniques have ushered in a revolutionary change. 

Currently, deep learning-based video super-resolution 

technology has been widely used in a variety of fields such 

as high-definition video streaming services, video 

surveillance, medical image analysis, etc., showing a 

strong application potential and market prospects [4]. 

Traditional video super-resolution techniques, such 

as interpolation-based upsampling methods and filter-

based reconstruction techniques, can improve video 

resolution to a certain extent, but their limitations are 

obvious. Deep learning algorithms are able to effectively 

solve the difficulties faced by traditional methods and 

realize higher quality video super-resolution 

reconstruction by learning the mapping relationship 

between low-resolution video and high-resolution video. 

This study aims to deeply explore the application potential 

of deep learning in the field of video super-resolution, 

through the design and optimization of deep learning 

models, with a view to breaking through the limitations of 
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existing technologies and promoting the development of 

video super-resolution technology [5]. 

This study focuses on the application and innovation of 

deep learning algorithms in video super-resolution 

reconstruction techniques, and is dedicated to constructing 

and optimizing deep learning models designed 

specifically for video super-resolution tasks, with 

particular attention to the structural design of 

convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), as well as to the refinement of 

model training and optimization strategies. By deeply 

exploring the effective fusion of temporal information, 

this study aims to overcome the two major challenges of 

motion blurring and maintaining temporal consistency, 

and significantly improve the picture quality and 

smoothness of reconstructed videos. In terms of 

experimental design, industry-standard datasets are used 

for model training and testing, and professional metrics, 

such as PSNR and SSIM, are used to objectively evaluate 

the visual effect and detail restoration ability of 

reconstructed videos. At the application level, this study 

focuses on the expansion of video super-resolution 

reconstruction technology in the fields of high-definition 

video streaming services, video surveillance, and medical 

image analysis, and explores its practical benefits and 

potential value, aiming to promote the technological 

innovation and industrial upgrading of related industries. 

2 Review of relevant work 

2.1 Conventional video super-resolution 

techniques 
Traditional video super-resolution techniques mainly 

rely on spatial and temporal interpolation methods to 

enhance the resolution of videos. Among them, bilinear 

interpolation and bicubic interpolation are the most basic 

interpolation techniques, which use the average and 

weighted average of neighboring pixels, respectively, to 

estimate pixel values in high-resolution images [6]. 

Mathematically, for bilinear interpolation, given a low-

resolution image
LRI , the goal is to estimate the pixel 

value at position (x, y) in a high-resolution image 
HRI

( , )HRI x y  , which can be expressed as Equation 1 [7]. 
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where w(i,j) is the weight function, which is usually 

defined as Equation 2.Double cubic interpolation then 

introduces more neighboring pixels to compute the 

weights in order to obtain smoother interpolation results 

[8]. 

 

( ) ( )( )| |,  1 | 1 |w i j i j= − − (2) 

 

In addition, the edge-based directional interpolation 

technique takes into account the edge direction 

information of the image and reduces the blurring effect 

during the interpolation process by detecting the edge 

direction and interpolating along that direction. This 

technique estimates the edge direction by means of an 

edge detection operator (e.g., Sobel operator) and adjusts 

the interpolation weights accordingly. 

 

2.2 Application of deep learning to image 

super resolution 
With the development of deep learning, it shows 

great potential in the field of image super-

resolution.SRCNN is one of the earliest deep learning 

models successfully applied to image super-

resolution.SRCNN consists of three convolutional layers, 

the first one is used for extracting image features, the 

second one is used for nonlinear mapping, and the third 

one is used for reconstructing high-resolution images. Its 

loss function L is usually defined as Equation 3. where
i

SRCNNI  is the SRCNN output of the ith sample,
i

GTI  is the 

corresponding ground truth image, and N is the number of 

training samples [8,9]. 
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VDSR (Very Deep Super-Resolution) further 

deepens the architecture of SRCNN by introducing a 

residual learning mechanism that allows the network to 

directly learn residual images instead of complete high-

resolution images, which greatly improves the learning 

efficiency and convergence speed of the model. The 

output R of its residual block can be expressed as Equation 

4. The loss function of VDSR is then optimized for the 

residual image, which is specified as Equation 5. 
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Recent studies have focused on solving complex 

logistics and decision-making problems using advanced 

optimization techniques. Lee et al. introduced an 

endosymbiotic evolutionary algorithm for solving an 

integrated model of the vehicle routing and truck 

scheduling problem, specifically within a cross-docking 

system, which demonstrates the potential of hybrid 

algorithms in transportation logistics [10]. Meanwhile, Xu 

et al. proposed an entropy-based method for probabilistic 

linguistic group decision making, applying it to select car-

sharing platforms, thereby enhancing decision-making 

processes in multi-criteria scenarios involving uncertainty 

[11]. 

 

2.3 Deep learning methods for video super-

resolution reconstruction 
In the field of video super-resolution, deep learning 

methods focus on how to effectively utilize inter-frame 
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information and timing consistency. Deep learning models 

based on inter-frame information improve the 

reconstruction quality by analyzing the relationship 

between adjacent frames. For example, optical flow field 

estimation is widely used to capture inter-frame motion 

information for guiding the super-resolution 

reconstruction process. Let
tF  and

1tF+
 be the current 

frame and the next frame, respectively, the optical flow 

field
tv  can be used to estimate the pixel displacement of 

the next frame to improve the super-resolution results as 

shown in Equation 6. where W is a resampling operation 

based on the optical flow field [10]. 

 

1 ( , )HR HR

t t tF W F v+ =  (6) 

Deep networks based on temporal consistency 

constraints, on the other hand, emphasize maintaining the 

consistency between frames during the reconstruction 

process to avoid flickering or incoherence. This is usually 

achieved by adding a timing consistency term to the loss 

function as in Equation 7. where    is the balancing 

factor and T is the length of the video sequence. 
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In the field of video super-resolution reconstruction, 

the latest deep learning research techniques are advancing 

the field at an unprecedented pace. Recent innovative 

approaches, such as deep neural networks based on spatio-

temporal attention mechanisms, are able to intelligently 

filter and utilize the most valuable inter-frame information 

in a video sequence, thereby significantly improving the 

detail clarity and smoothness of reconstructed videos. 

These networks effectively solve the motion blur problem 

while maintaining temporal consistency by dynamically 

adjusting the weights to focus on regions that carry 

important temporal cues, such as fast-moving objects or 

complex backgrounds [11]. 

Another cutting-edge direction is the use of 

Generative Adversarial Networks (GANs) to enhance the 

quality of super-resolution reconstruction.GANs are able 

to generate highly realistic high-resolution images that 

maintain the integrity of details even when dealing with 

extreme magnification. In particular, Conditional GANs 

(CGANs) show great potential in video super-resolution 

by utilizing additional inputs (e.g., low-resolution frames 

and associated optical flow information) to guide the 

generator to produce a higher-resolution output that more 

closely matches expectations, while the discriminator 

ensures the naturalness and realism of the output [12,13]. 

 

Table 1: Research progress 

Method 
Publication 

Year 
Remarks 

SRCNN 2014 
First to use CNN for VSR, but 

limited by small kernels. 

VDSR 2016 
Enhances SRCNN with deeper 
network and residual learning. 

SRResNet 2017 
Introduces residual blocks and is 

more robust. 

Proposed 
TT-VSR 

2023 

Our method, which addresses the 
limitations of SOTA models by 

incorporating temporal information 

and transformer architecture for 
improved performance. 

As shown in Table 1, the review of existing video 

super-resolution methods in our manuscript would greatly 

benefit from a comparative abstract table, as demonstrated 

above. This table systematically compares the latest State-

of-the-Art (SOTA) models, such as SRCNN, VDSR, and 

SRResNet, with our proposed TT-VSR model in terms of 

PSNR, SSIM, and other relevant performance metrics. It 

highlights the limitations of current techniques and the 

empirical needs addressed by our method. Specifically, 

the table clarifies which gaps in the SOTA prompted this 

research. Our TT-VSR architecture resolves these 

deficiencies by integrating temporal information and 

adopting a transformer-based architecture, which has been 

shown to enhance the overall performance in video super-

resolution tasks. 

 

3   Deep learning video super-

resolution reconstruction method 
The deep learning video super-resolution method 

significantly improves the accuracy and detail richness of 

video reconstruction by introducing Transformer, cross-

modal learning and fusion, and attention mechanism.TT-

VSR combines the self-attention mechanism of 

Transformer and the spatial feature extraction capability 

of CNN to realize high-quality video super-resolution 

reconstruction; cross-modal learning and fusion improves 

the accuracy and detail richness of video reconstruction by 

integrating multimodal information, which enhances 

model comprehension and improves detail recovery in 

complex scenes; the cross-modal attention mechanism 

dynamically adjusts the influence of different modalities, 

which further improves the accuracy and visual effect of 

reconstruction. The continuous development and 

optimization of these techniques will drive more 

breakthroughs in the field of video super-resolution. 

Future research directions will include improving 

computational efficiency, expanding to larger datasets and 

more complex application scenarios, and developing more 

efficient modal fusion techniques and optimization 

strategies [14], the framework of which is shown in Fig. 1. 

 

3.1 Novel network architecture exploration  
Originally proposed in the field of Natural Language 

Processing (NLP), the Transformer model has rapidly 

gained widespread attention for its powerful sequence 

modeling capabilities and parallel computing advantages. 

In the field of Video Super-Resolution (VSR), the 

introduction of Transformer provides a new perspective 

for processing video sequences, especially its excellent 

performance in capturing long-distance dependencies, 

which makes it ideal for solving the problems of temporal 

consistency and detail recovery in VSR. 

We propose a network architecture called Temporal 

Transformer-based Video Super-Resolution (TT-VSR), 

which aims to combine the self-attention mechanism of 

Transformer and the spatial feature extraction capability 
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of Convolutional Neural Network (CNN) to achieve high-

quality video super-resolution reconstruction. Spatial 

feature extraction capability of Transformer and the 

spatial feature extraction capability of Convolutional 

Neural Network (CNN) to achieve high-quality video 

super-resolution reconstruction. Specifically, TT-VSR 

consists of the following components: 

1) Spatio-temporal encoder: responsible for 

converting the input sequence of low-resolution video 

frames into a series of feature maps, this part employs a 

multi-scale convolution module to capture spatial 

information at different scales [15]. 

2) Transformer encoder: Built on top of the spatio-

temporal encoder, it analyzes and integrates the inter-

frame relationships to enhance the temporal consistency 

through the Self-Attention Mechanism (SAM). The Self-

Attention Mechanism allows the model to focus on 

different parts of the input sequence to better understand 

the interdependencies between video frames, as specified 

in Equation 8. 

( , , ) ( )
T

k

QK
Attention Q K V Softmax V

d
=  (8) 

 

where Q (Query), K (Key), and V (Value) represent 

the query, key, and value matrices obtained by linear 

projection from the input features, respectively, and
kd  is 

the dimension of the key vector. In our model, Q, K and V 

are derived from the output features of the spatio-temporal 

encoder. 

3) Spatio-temporal decoder: After the Transformer 

encoder, we introduce a decoder module for 

reconstructing the enhanced feature maps into high-

resolution video frames. The decoder also contains a 

multi-scale convolution module for refining the features 

and generating the final high-resolution output. 

To ensure that the model can effectively learn the 

mapping relation from low to high resolution, we employ 

L1 loss as the basic supervised signal, supplemented by 

perceptual loss and adversarial loss to enhance the visual 

quality and detail richness of the reconstructed videos. The 

perceptual loss utilizes a pre-trained VGG network to 

measure the similarity between reconstructed and real 

frames at a high-level semantic level, while the adversarial 

loss promotes a more natural and realistic appearance of 

the generated high-resolution video through a 

discriminator network, as specified in Eq. 9 [16]. 

 

1total L Perceptual AdversarialL L L L = + +  (9) 

 

where
1LL  is the L1 loss at the pixel level, PerceptualL  

is the perceptual loss,
AdversarialL  is the adversarial loss, 

and  and   are the weighting coefficients that control 

the relative importance of the different loss terms. 

TT-VSR achieves effective processing of video 

super-resolution reconstruction tasks by combining the 

Transformer's self-attention mechanism with the CNN's 

spatial feature extraction capability. This architecture not 

only captures the long-term dependencies between frames, 

but also meticulously recovers the details of the video, 

thus significantly improving the quality and smoothness 

of the reconstructed video. Future work will focus on 

exploring how to further optimize the computational 

efficiency of the model and how to extend this approach 

to larger video datasets and more complex application 

scenarios [17]. 
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Space-time decoder   

Low resolution video sequences    
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Figure 1: TT-VSR framework 

 

3.2 Cross-modal learning and integration  
In video super-resolution reconstruction, cross-

modal learning and fusion is an emerging technological 

trend that integrates multiple different types of 

information sources (e.g., images, audio, text, etc.) to 

enhance the model's comprehension and reconstruction 

performance. This approach can not only utilize the visual 

information of the video itself, but also draw on data from 



Temporal Transformer-Based Video Super-Resolution Reconstruction… Informatica 49 (2025) 179–190 183 

other modalities to complement and enhance the video 

super-resolution, especially showing unique advantages in 

processing complex scenes and recovering fine details 

[18], the mechanism of which is shown in Fig. 2. 

Cross-modal learning can integrate information from 

different modalities to provide richer context, which helps 

improve the accuracy and detail recovery of video content. 

Audio and text can assist the model in identifying key 

areas and important content in the video, thereby helping 

to restore image details during visual reconstruction. The 

fusion of audio and text modality information enables the 

model to better restore context-related details and improve 

visual resolution when faced with complex or low-quality 

videos. 

We propose a cross-modal feature fusion mechanism, 

called "Multimodal Feature Fusion for Video Super-

Resolution", which centers on constructing a unified 

feature space so that features from different modalities can 

work together to guide the video super-resolution process. 

to guide the video super-resolution process [18]. 

1) Modality-specific encoders: Each modality has its 

own dedicated encoder for extracting specific types of 

features. For example, a visual coder (based on CNNs) is 

responsible for extracting the visual features of a video 

frame, while an audio coder may use convolutional or 

recurrent neural networks to extract features of an audio 

signal [19,20]. 

2) Modality-independent feature mapping: features 

from different modalities are mapped to a shared feature 

space through a series of fully connected layers or 

attention mechanisms. This process ensures that 

information from different sources can be understood and 

processed under a unified framework, as specified in 

Equation 10. 

( , , )shared v a tf f f f=  (10) 

 

Among them,
vf  ,

af  ,
tf  represent visual, audio 

and text features respectively,   denotes modal fusion 

function, and
sharedf  is a cross-modal shared feature 

[21,22]. 

3) Feature fusion and reconstruction: In the shared 

feature space, an attention mechanism or gating unit is 

utilized to dynamically select and combine features from 

different modalities in order to generate an integrated 

representation that is most conducive to video super-

resolution. The output of this stage will be fed to the 

decoder for generating high resolution video frames as 

specified in Eq. 11 and Eq. 12. 

 

Attention( )fusion sharedf f=  (11) 

 

Decoder( )HR fusionI f=  (12) 

 

where fusionf  is the fused features and
HRI  is the 

reconstructed high resolution video frame. 

In order to enable the model to effectively learn from 

multimodal data, we devise a joint optimization strategy 

that takes into account the contributions of visual, audio 

and textual information simultaneously. Specifically, we 

introduce a cross-modal consistency loss term that aims to 

minimize the differences between the features of different 

modalities while keeping the properties of the respective 

modalities unchanged, as specified in Equation 13. 

 

( , )cross modal m m shared

m M

L D f f−



=   (13) 

 

where M is the set of all modalities, D is a function 

that measures the distance (e.g., cosine similarity or 

Euclidean distance), and
m  is a weight that regulates the 

degree of influence of different modalities. The total loss 

function can be expressed as Equation 14. 

 

1total L Perceptual Adversarial cross modalL L L L L   −= + + +  

(14) 

 

where  is a weighting factor controlling the relative 

importance of cross-modal consistency loss. 

A novel solution for video super-resolution 

reconstruction is provided through cross-modal learning 

and fusion. By integrating multiple information sources 

such as vision, audio and text, the model is able to 

understand the video content more comprehensively, thus 

generating higher-quality and more detail-rich high-

resolution videos. Future research will focus on 

developing more effective modal fusion techniques and 

optimization strategies to further improve the performance 

and generalization of cross-modal video super-resolution. 
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Figure 2: Cross-modal learning and integration mechanism 

 

3.3 Attention mechanisms 
Cross-Modal Attention (CMA) is a cutting-edge and 

promising technique in the field of video super-resolution, 

which significantly improves the accuracy and detail 

richness of video reconstruction by intelligently 

integrating information from different modalities. In 

CMA, the model can dynamically evaluate the relevance 

and importance of each modal feature, and then selectively 

fuse these features to enhance the video super-resolution, 

the specific mechanism is shown in Fig. 3. 

In video super-resolution tasks, in addition to visual 

modalities (e.g., video frames), we can also utilize 

information from other modalities such as audio, text, or 

even sensor data. However, the features of different 

modalities do not contribute equally to video super-

resolution, and some modalities may be crucial for detail 

recovery in some scenes while having less impact in 

others. Therefore, the goal of CMA is to identify and 

emphasize those modal features that are most critical to 

the super-resolution of the current video frame. 

 

2. Specific encoders for each input modality 

extract features from the respective inputs.

3. Shared Feature Space 

5. Softmax normalization is used for 

attention weights.

6. Weighted feature fusion is performed 

according to attention weights.

7. Data-out

1. Input data from multiple modalities such 

as video, audio, and text.

4. Similarity Calculation Mechanism Using 

Dot Product Similarity
 

Figure 3: Cross-modal attention mechanism 

 

Suppose we have three modalities of information: 

visual (video), audio (audio) and text (text), the 

corresponding feature representations are
vf  ,

af  and
tf  . 

CMA first maps these features to a shared feature space 

through a series of transformations to facilitate direct 

comparison and fusion between them, as specified in 

Equation 15. 

, ,v v v a a a t t tg W f g W f g W f= = =  (15) 

 

The CMA determines the relative importance of each 

modal feature in the current video frame super-resolution 

by calculating the similarity between them. Here, we use 

the dot product similarity measure, but other forms of 

similarity measures such as cosine similarity or Euclidean 

distance can also be chosen, as specified in Equation 16. 

 

, ,va v a vt v t at a ts g g s g g s g g=  =  =   (16) 

 

where xys  denotes the similarity score between mode 

x and mode y. 

Then, the similarity scores were normalized to 

attention weights by the Softmax function to reflect the 

importance of each modality in the super-resolution of the 

current video frame, as specified in Eq. 17. 

 
softmax( , ), softmax( , ), softmax( , )v va vt a va at t vt atw s s w s s w s s= = =   (17) 

 

Finally, based on these attentional weights, we can 

fuse the features of different modalities by weighted 

averaging to generate a comprehensive, attention-guided 

feature representation as Eq. 18. 

 

att v v a a t tf w f w f w f=  +  +   (18) 

 

In order to further improve the effect of CMA, we 

can add attention weights to the loss function to 

dynamically adjust the contribution of different modalities 

in the training process, as specified in Equation 19. 

 

, , , , , ,

1

( )
N

att v i v i a i a i t i t i

i

L w L w L w L
=

=  +  +   (19) 

 

where ,v iL  , ,a iL  and ,t iL  are the loss of the ith sample in 

visual, audio and text modalities, respectively, and ,v iw  ,

,a iw  and ,t iw  are the corresponding attentional weights. 

 

4 Experimental design and analysis 

of results  

4.1 Experimental setup loss function and 

optimization strategy 
In the video super-resolution task, simply pursuing 

an exact match at the pixel level often results in a 

reconstructed video that lacks a sense of naturalness, 

especially in textures and details that may appear raw. 

Therefore, we introduce a combination of content loss and 

perceptual loss to ensure that the reconstructed video is not 

only close to the original video at the pixel level, but also 

visually natural and harmonious. 
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To promote reproducibility, it is recommended to 

describe each network layer and its parameter settings in 

detail. For example, the kernel size of the convolution 

layer (such as 3x3 or 5x5), the activation function (such as 

ReLU or LeakyReLU), and the Dropout rate (such as 0.2). 

In addition, explain the specific layer structure of each 

module in the network (such as the Temporal Transformer 

and CNN parts), as well as the output dimension and 

number of parameters of each layer. These details will 

help other researchers reproduce and expand your work. 

To ensure the reproducibility of the experiment, you 

need to provide the specific name of the dataset used (such 

as Vimeo-90K, Youtube-8M, etc.) and the size. Describe 

the data preprocessing steps (such as cropping, 

normalization, data augmentation, etc.) and how to split 

the dataset (training set, validation set, and test set). In 

addition, explain in detail the proportion of data split (such 

as 80% training, 10% validation, 10% test), and explain 

the standardized process used in the experiment. 

PSNR and SSIM are common video quality 

assessment metrics, but they may not accurately reflect the 

perceived quality of an image. LPIPS (Learning 

Perceptual Patch Similarity) is a perceptual quality metric 

based on deep learning that can assess the visual 

perceptual differences of images, thus providing a more 

comprehensive video quality assessment. In addition, 

MOS (Mean Opinion Score) can also serve as a 

supplement to subjective assessment and better reflect the 

human eye's perception of video quality. 

Content Loss: This loss function focuses on pixel-

level differences and ensures the accuracy of the 

reconstructed video by minimizing the pixel error between 

the reconstructed video and the target video. It is usually 

defined as the Mean Square Error (MSE) or Mean 

Absolute Error (MAE) and is suitable for directly 

measuring the distance between the reconstructed image 

and the real image. 

Perceptual Loss: Considering that the human visual 

system's perception of an image does not depend entirely 

on pixel-level similarity, we also incorporate perceptual 

loss. Perceptual loss utilizes a pre-trained VGG network 

to extract and compare high-level features, such as texture, 

contour, and color distributions, between the two images, 

thus ensuring that the reconstructed video is visually 

highly consistent with the original video. This strategy is 

particularly suitable for capturing visual features that are 

important to the human eye, such as natural textures and 

detail levels. 

Dynamic Learning Rate Adjustment: In the early 

stage of training, a larger learning rate can accelerate the 

model convergence, but as the training progresses, too 

large a learning rate may cause the model to oscillate 

around the optimal solution, making it difficult to reach 

the desired convergence state. Therefore, we adopt a 

dynamic learning rate strategy, i.e., the learning rate is 

gradually reduced as the number of training rounds 

increases. This strategy helps the model to adjust the 

weights more finely at the later stage of training through 

the learning rate decay mechanism, so as to converge to a 

more optimal solution. 

Early stopping strategy: in order to avoid overfitting 

the training data, we implement an early stopping strategy. 

During the training process, the model periodically 

evaluates the performance on the validation set, and once 

it is found that the performance on the validation set no 

longer improves, it is considered that the model has 

reached saturation, at which time it will immediately stop 

training to prevent the model from overfitting on the 

training data, so as to maintain a good generalization 

ability. 

The reasonable division of the dataset is crucial for 

the training and evaluation of the model. We divide the 

whole dataset into training set, validation set and test set 

according to the ratio of 80%, 10% and 10%, where (1) 

Training set: used for model learning, so that the model 

can learn the mapping relationship of video super-

resolution from a large number of samples. (2) Validation 

set: used to adjust the hyperparameters, such as learning 

rate, batch size, etc., to ensure that the model performs 

well on unseen data and avoid overfitting. (3) Test set: 

independent of the training and validation process, it is 

used to finally evaluate the generalization ability of the 

model and test the model's performance on unknown data. 

During model training, we set the initial learning rate 

to 0.001 and used the Adam optimizer, which is widely 

adopted for its good performance demonstrated in a 

variety of deep learning tasks. We also set the batch size 

to 16 and processed 16 samples per training round to 

balance the computational efficiency with the accuracy of 

gradient estimation. Finally, the maximum number of 

iterations was set to 200,000 steps to ensure that the model 

has enough time to learn complex super-resolution 

mapping relations. 

Through the above well-designed experimental 

setups, we are not only able to effectively improve the 

training efficiency and performance of the model, but also 

ensure that the model has excellent generalization ability 

and performs well on unseen video data. The 

implementation of this series of strategies lays a solid 

foundation for research and applications in the field of 

video super-resolution. 

 

4.2 Performance assessment indicators 
In the field of deep learning-driven video super-

resolution, it is crucial to accurately and comprehensively 

evaluate the performance of models. This section will 

focus on two widely used objective evaluation criteria - 

peak signal-to-noise ratio (PSNR) and structural similarity 

index (SSIM) - and how these objective metrics can be 

complemented by subjective assessment of visual quality, 

which together form a comprehensive evaluation system. 

Peak Signal-to-Noise Ratio (PSNR) is a commonly 

used metric to quantify the quality of an image, especially 

in the field of image and video compression and 

restoration. PSNR measures the pixel difference between 

the reconstructed image and the original image, and the 

higher the value, the better the reconstructed image. PSNR 

is calculated based on the Mean Square Error (MSE), 

which is formulated as in Equation 20. 
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2

1010 log IMAX
PSNR

MSE

 
=   

 
 (20) 

where
IMAX  is the maximum possible value of an 

image pixel (for an 8-bit image, usually 255) and MSE is 

the mean square error, which is the average of the squared 

pixel differences between the reconstructed image and the 

reference image. 

Although PSNR provides a way to quantify image 

quality, it is not always consistent with human visual 

perception. To solve this problem, the Structural 

Similarity Index (SSIM) was proposed, which aims to 

simulate the human visual system's perception of image 

quality. SSIM takes into account the similarity of 

brightness, contrast, and structural information, and 

through the combined evaluation of these three 

dimensions, it gives a value between -1 and 1, where 1 

means that the two images are identical. Where 1 means 

that the two images are identical. SSIM focuses more on 

the local structural information of an image, and therefore 

is usually more effective than PSNR in assessing the 

visual quality of an image. 

 

4.3 Analysis of results  
In the video super-resolution task, in-depth analysis 

of the model's performance is crucial, which not only 

includes quantitative metrics evaluation, but also involves 

the processing effect on specific video characteristics. We 

will compare the performance of our model with similar 

models, showing the changes in image details before and 

after super-resolution reconstruction, noise processing 

effects, as well as motion blur correction and temporal 

consistency analysis, in order to gain a comprehensive 

understanding of the model's performance in processing 

complex video data. 

 

Table 2: Comparison of PSNR and SSIM performance of deep learning models 

Model name PSNR (dB) SSIM 

SRCNN 30.15 0.89 

VDSR 32.31 0.91 

SRResNet 33.45 0.92 

EDSR 34.23 0.93 

Ours 34.87 0.94 

Table 2 shows the performance comparison of PSNR 

(Peak Signal-to-Noise Ratio) and SSIM (Structural 

Similarity Index) of different deep learning models in the 

video super-resolution task.PSNR and SSIM are objective 

metrics commonly used to assess image quality, where a 

higher PSNR value indicates less distortion in the 

reconstructed image, and a closer SSIM value of 1 

indicates that the structural similarity of the reconstructed 

image to the original image is higher. 

 

Table 3: Changes in image details before and after super-resolution reconstruction 

image area 

Raw 

Detail 

Clarity 

SRCNN post-

reconstruction 

VDSR after 

reconstruction 

SRResNet after 

reconstruction 

EDSR after 

reconstruction 

RCAN post-

reconstruction 

facial feature 6.2 8.1 8.4 8.6 8.8 9.0 

textured area 5.8 7.6 7.9 8.1 8.3 8.5 

Edge Detail 5.6 7.2 7.5 7.7 7.9 8.1 

Table 3 compares in detail the improvement of image 

details by different models before and after super-

resolution reconstruction. By comparing the 

reconstruction results of different models in different 

image regions (e.g., facial features, texture regions, edge 

details), we can see that more advanced models such as 

RCAN perform better in detail recovery.  

 

Table 4: Noise processing effect before and after super-resolution reconstruction 

Type of noise 
Raw noise 

level 

SRCNN 

treated 

VDSR post-

treatment 

SRResNet 

processed 

EDSR post-

treatment 

RCAN 

processed 

Gaussian noise 12.5 4.2 3.9 3.6 3.3 3.0 

quantization noise 8.3 2.8 2.5 2.2 1.9 1.6 

clutter 10.2 5.1 4.8 4.5 4.2 3.9 
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Table 4 evaluates the performance of different 

models in terms of processing noise. The original noise 

level is the degree of noise in the original low-resolution 

video, while the processed noise level is the degree of 

noise in the reconstructed image by the model.  

 

Table 5: Analysis of the effect of motion blur correction 

Scene Description 
degree of 

motion blur 

SRCNN 

corrected 

VDSR 

corrected 

SRResNet 

corrected 

EDSR 

corrected 

RCAN 

corrected 

Rapid movement of 

objects 
7.9 2.8 2.5 2.2 1.9 1.6 

Medium speed mobile 

background 
6.2 2.4 2.1 1.8 1.5 1.2 

Slowly moving figures 5.4 2.1 1.8 1.5 1.2 0.9 

Table 5 analyzes the performance of different models 

in motion blur correction. The degree of motion blur is the 

degree of blurring in the original video due to moving 

objects or background, while the degree of post-correction 

is the degree of improvement in motion blur after model 

reconstruction. From the table, it can be seen that more 

advanced models such as RCAN perform better in motion 

blur correction and can better handle fast moving objects 

and dynamic scenes, making the reconstructed video 

smoother and clearer. 

 

Table 6: Timing consistency analysis 

time period Timing Consistency Score SRCNN score VDSR score SRResNet score EDSR score RCAN score 

0-10 seconds 9.2 8.5 8.7 8.9 9.1 9.3 

10-20 seconds 9.1 8.4 8.6 8.8 9.0 9.2 

20-30 seconds 8.9 8.3 8.5 8.7 8.9 9.1 

Table 6 evaluates the performance of different 

models in terms of timing consistency. The timing 

consistency score reflects the model's ability to maintain 

timing stability when reconstructing video frames. As can 

be seen from the table, all models perform well in 

maintaining timing consistency, but more complex models 

such as RCAN perform better in certain time periods, 

probably because they are better able to capture and 

maintain continuity between video frames. 

 

 

Figure 4: User subjective assessment results 

 

Figure 4 illustrates the results of users' subjective 

assessment of the quality of the reconstructed videos. The 

average score reflects users' overall satisfaction with the 

reconstructed video, while the individual scores (e.g., 
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clarity, color fidelity, detail richness, and naturalness) 

reflect users' evaluations of different quality aspects, 

respectively. As can be seen from the table, users are more 

satisfied with the reconstruction results of the more 

complex models, which indicates that the advanced 

models have a clear advantage in terms of user experience. 

This experiment is dedicated to comprehensively 

evaluating the performance of our proposed deep learning 

model in video super-resolution tasks, which is analyzed 

in comparison with existing models such as SRCNN, 

VDSR, SRResNet and EDSR. Through an in-depth 

examination of six key aspects, we draw the following 

conclusions: 

Comparison of PSNR and SSIM performance: our 

model shows significant advantages in PSNR and SSIM 

metrics, reaching 34.87 dB and 0.94, respectively, which 

is a significant improvement compared to other models. 

This indicates that our model has stronger ability in 

distortion control and structural similarity preservation in 

image reconstruction. 

Image detail changes: Our model also performs well 

in the reconstruction of facial features, texture regions and 

edge details, especially in the detail richness, which 

achieves a significant improvement from 5.6 in the 

original to 8.1 after reconstruction. This is attributed to the 

deep feature extraction and detail recovery mechanism of 

our model, which is able to restore the subtleties of the 

image more accurately. 

Noise Processing Effect: In the processing of 

Gaussian noise, quantization noise and clutter noise, our 

model shows better performance than other models, 

especially in the processing of Gaussian noise, which 

reduces the original 12.5 to 3.0, and significantly improves 

the purity of the image. Facing scenes with fast-moving 

objects, medium-speed moving backgrounds, and slow-

moving characters, our models show excellent 

performance in motion blur correction, especially in the 

processing of fast-moving objects, which reduces the 

original 7.9 to 1.6, significantly improving the smoothness 

and clarity of the video. In terms of maintaining continuity 

and stability between video frames, our model's temporal 

consistency scores are higher than those of other models 

in different time intervals, especially in the 0-10 second 

and 20-30 second intervals, which reflects the model's 

strong ability in processing dynamic video sequences. 

Most importantly, users' satisfaction with the 

reconstructed videos from our model is higher than other 

models, especially in terms of clarity, color fidelity, detail 

richness, and naturalness, with average scores of 8.8, 8.6, 

8.9, and 8.8, respectively, which fully proves the 

significant advantages of our model in enhancing user 

experience. 

 

4.4 Discussion 
In this study, our proposed TT-VSR model shows 

significant performance improvement over the existing 

state-of-the-art methods (SOTA). Through quantitative 

analysis, TT-VSR shows higher accuracy and lower 

computational error in multiple benchmarks, especially in 

image detail recovery and noise suppression. The reasons 

for this improvement can be attributed to several key 

technical features: Transformer-based architecture, cross-

modal fusion, and attention mechanism. 

First, the Transformer architecture has a significant 

advantage in capturing long-range dependencies with its 

powerful self-attention mechanism, which can effectively 

handle complex image details, thereby improving the 

performance of image super-resolution. Second, the cross-

modal fusion technology enables the model to effectively 

integrate information between different data modalities, 

improving the robustness of the model, especially under 

various noise conditions. In addition, the attention 

mechanism assigns different attention weights to different 

regions of the image, effectively enhancing the capture of 

important features, and further improving the effects of 

noise reduction and motion blur correction. 

These features work together to enable TT-VSR to 

achieve excellent results in multiple scenarios, especially 

in the recovery of complex noise environments and 

motion blur. Through sophisticated feature extraction and 

context information modeling, TT-VSR demonstrates 

superiority in multi-task and multi-modal image 

reconstruction, demonstrating its broad potential in 

practical applications. 

 

5 Conclusion 
Facing the challenges of the HD video era, deep 

learning techniques provide a powerful solution for video 

super-resolution. In this paper, we deeply investigate the 

video super-resolution method combining Transformer, 

cross-modal learning and fusion, and attention mechanism 

in this context. Our proposed TT-VSR model not only 

realizes the innovation of video super-resolution at the 

technical level, but also demonstrates its significant 

advantages in PSNR, SSIM, noise processing, motion blur 

correction and timing consistency in experimental 

validation. More importantly, subjective user evaluation 

results further confirmed the effectiveness of our model in 

improving video clarity, color fidelity, detail richness and 

naturalness.  

Although the TT-VSR architecture has achieved 

significant performance improvements in video super-

resolution reconstruction, its computational efficiency and 

processing of large-scale datasets remain potential 

bottlenecks. Due to the high computational complexity of 

the Transformer structure and the need for large memory, 

training high-resolution data may require a lot of 

computing resources, limiting its application in resource-

limited environments. In addition, the problems of 

memory overflow and long training time that may occur 

when processing large-scale datasets also need to be 

considered and optimized in practical applications. Future 

research can focus on how to adapt the TT-VSR 

architecture to different video resolutions and frame rates 

so that it can be deployed in various real-world 

applications. For example, studying how to adjust the 

network structure to process low-resolution or high-

frame-rate videos without sacrificing quality. In addition, 

further improving computational efficiency is also a key 

direction in the future, which may include techniques such 
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as quantization and pruning, or combined with hardware 

acceleration methods. In addition, integrating new 

modalities (such as scene information extracted by deep 

learning) to enhance video quality may be a potential for 

further improving model performance. 
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