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Non-Reference image quality assessment does not rely on reference images, so it is not easy to directly 

obtain the actual label of image quality. Current datasets are often limited in scale, and the labeling 

process is highly subjective, resulting in limited consistency and accuracy in evaluation results. This study 

focuses on the research of reference-free image quality evaluation based on Vision Transformer multi-

scale dual-branch fusion, aiming to build an intelligent system that can accurately and quickly evaluate 

image quality without original image reference through deep learning technology. In this study, the Vision 

Transformer model, combined with a multi-scale dual-branch fusion strategy, is used to conduct an in-

depth exploration of quality assessment in complex image scenes. A deep learning based non-reference 

image quality assessment method utilizing a visual transformer with a multi-scale two-branch fusion 

network is proposed. The method involves image preprocessing, feature extraction and model architecture 

optimization. The experimental results show that the evaluation accuracy of the system on large-scale 

image data sets reaches 94%, and the processing speed is 30% higher than that of the traditional method, 

which is significantly better than the 75% accuracy and lower processing efficiency of the conventional 

algorithm. 

Povzetek: Predstavljen je nov pristop za oceno kakovosti slik brez referenčne slike, ki uporablja Vision 

Transformer z večnivojsko dvovejno fuzijo. Model znatno izboljšuje zanesljivost in učinkovitost analiz 

slikovne kakovosti v kompleksnih scenarijih. 

 

1 Introduction 
In the information age, images have become essential 

for obtaining information and exchanging ideas. 

According to statistics, the amount of image data 

generated by Internet users worldwide has exceeded 3.5 

billion daily, increasing by more than 20% annually [1, 2]. 

However, the instability of image quality, such as 

compression distortion, noise, blur, etc., seriously affects 

the accurate transmission of image information and user 

experience [3, 4]. Against this background, Non-

Reference image quality assessment (NR-IQA) 

technology, which aims to objectively and accurately 

evaluate image quality without original image reference, 

has become an important research direction in image 

processing, computer vision, multimedia communication, 

and other fields. 

However, traditional NR-IQA methods, such as 

algorithms based on image statistical features, structural 

similarity, etc., can reflect image quality to a certain 

extent. However, their accuracy could be higher, making 

it easier to adapt to complex and changeable image scenes 

[5, 6]. According to a survey in the Journal of Image 

Processing in 2020, the evaluation accuracy of traditional 

methods in complex image scenes is only 75%, and the 

processing speed is slow, which cannot meet the real-time 

evaluation needs of large-scale image data [7]. 

Facing this challenge, deep learning technology, 

especially the Vision Transformer (ViT) model, has  

 

brought new opportunities for developing NR-IQA  

technology with its robust feature extraction ability and 

self-attention mechanism [8, 9]. The ViT model has 

shown excellent performance on multiple visual tasks, 

such as image classification and object detection, and its 

accuracy far exceeds that of traditional methods. For 

example, the classification accuracy on the ImageNet 

dataset has reached 88%, while the traditional 

convolutional neural network's accuracy rate is only 75%. 

This achievement verifies the advantages of the ViT 

model in image feature learning and allows the innovation 

of NR-IQA technology [10, 11]. 

This study conducts reference-free image quality 

evaluation research based on Vision Transformer multi-

scale dual-branch fusion, aiming to explore the application 

potential of the ViT model in the field of NR-IQA and 

achieve an accurate and rapid evaluation of image quality 

by constructing a deep learning framework of multi-scale 

dual-branch fusion. We will start with data preprocessing, 

model construction, feature extraction, quality evaluation, 

and other links to conduct in-depth research on the 

performance of ViT models in complex image scenes and 

explore the effects of multi-scale features and dual-branch 

networks in improving evaluation accuracy and 

efficiency.  

Specifically, we will use the self-attention 

mechanism of the ViT model to capture global and local 

features in the image and extract image features at 
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different scales through a multi-scale branch network to 

enhance the model's sensitivity to subtle changes in image 

quality. At the same time, by designing a double-branch 

network, the quality evaluation is carried out from two 

dimensions of image content and structure to realize the 

evaluation's comprehensiveness and accuracy. In addition, 

we will also introduce pre-training and fine-tuning 

strategies for large-scale image data to improve the 

robustness and adaptability of the model in complex 

image scenes. Through this research, we will provide new 

ideas and methods for developing NR-IQA technology, 

which improves the accuracy and efficiency of image 

quality evaluation and lays a solid foundation for 

technological innovation and application practice in image 

processing, computer vision, and other fields. 

 

2    Vision transformer multi-scale 

dual-branch fusion technology 

2.1 Vision transformer 
Current image super-resolution tasks mostly use 

methods based on convolutional neural networks. The 

convolution operation automatically learns low-resolution 

and high-resolution image mappings, uses operators to 

extract image features, has translation invariance, and 

effectively captures texture details. However, convolution 

faces limitations in super-resolution tasks, such as limited 

receptive fields, limiting long-term dependence and weak 

texture recovery, and increasing layer depth or kernel size, 

which can trigger parameter expansion, overfitting, or 

gradient disappearance. In addition, convolution interacts 

based on parameters rather than content, applying the 

same convolution kernel to all input positions, ignoring 

the differences and importance of content at different 

positions, and failing to consider the diverse requirements 

of output features for high-resolution recovery, resulting 

in information redundancy or loss. 

Vision Transformer uses a self-attention mechanism 

to process image sequences, automatically learn resolution 

mapping, and extract features. The self-attention 

mechanism, usually in the global or large-kernel local 

form, can capture extensive information, model long-term 

dependencies, restore structures and weak textures, and 

use image self-similarity to improve restoration quality. 

However, when the Transformer deals with super-

resolution tasks, the self-attention mechanism lacks the 

translation invariance and locality of convolution, and 

convolution is superior in adapting to multi-scale input 

and efficiently capturing local information. 

The Transformer model originated in natural 

language processing and was extended to the visual field 

by Dosovitskiy et al. through ViT, showing performance 

beyond Convolutional Neural Networks (CNN) [12, 13]. 

Since then, Transformer-based visual models such as 

Swin, CrossViT, CvT, Twin-SVT, BEiT, etc., have 

emerged one after another, which have been widely used 

in visual tasks and achieved remarkable results [14]. 

Given this, this paper uses Transformer as the cornerstone 

of the method and will focus on the pioneering work of 

visual Transformer-ViT. 

The ViT structure is shown in Figure 1, which mainly 

includes Patch Embedding, Position Embedding, multiple 

Transformer Encoders, and MLP modules. The specific 

process is as follows: the preprocessed image is divided 

into various patches by patch Embedding, each patch is 

flattened into a one-dimensional vector and spliced with 

Class token, then added with Position Embedding, and 

finally processed by Transformer Encoder and sent to 

MLP Head to obtain output [15]. 

The technique is realized by the following steps: first, 

the multi-scale features of the image are extracted on two 

branches separately; second, the feature maps are 

generated, where one branch focuses on the texture details 

and the other captures the global structural information; 

and then, the feature maps of the two branches are 

efficiently integrated using a specific fusion strategy. This 

fusion mechanism not only enhances the richness of 

feature representation, but also improves the prediction 

accuracy through complementary information. The flow 

of data between the two branches ensures the 

comprehensiveness of information and the fusion effect, 

which significantly improves the performance of image 

quality assessment. 

 
Figure 1: ViT structure 

 

In Natural Language Processing (NLP), the 

Transformer processes sequence data, and ViT follows 

this idea, so the image input needs to be converted into 

sequence by Patch Embedding Position Embedding [16, 

17]. Input images I∈RH×W×C，  I∈RH×W×C (H×W is the 

resolution, C is the number of channels) to the Patch 

Embedding module, and first divide them into N image 

blocks p∈RP×P×C (each block resolution P×P, total number 

N=H×WP2), and then linearly map to one dimension. 

Because the Transformer Encoder self-attention 

mechanism cannot model position information, Position 

Embedding needs to be attached. Therefore, the definition 

of the processed image sequence data is shown in 

Equation (1): 
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Where Iclass represents Class Token, E represents the 

linear mapping of each image block, and Epos represents 

the added position information. After image I is processed 

by Patch Embedding and Position Embedding to obtain z0, 
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it must be input to the Transformer Encoder for further 

processing. 

The core structure of ViT, the Transformer Encoder, 

uses the self-attention mechanism as the base. Let the 

input of the l-th layer be zl−1, and the output zl is obtained 

by the MHSA (multi-head self-attention) module and the 

MLP module after being processed by the Transformer 

Encoder of this layer. Therefore, the definition of the 

Transformer Encoder output zl of the l-th layer is shown in 

equations (2)-(3): 

1 1MHSA LNl l lz ( ( z )) z


− −= +     (2) 

MLP LNl l lz ( ( z )) z
 

= +    (3) 

Where LN represents a layer normalization operation 

(LayerNorm), the calculation method of the MHSA 

module is shown in Equation (4). Q, K and V represent the 

matrices obtained by different linear transformations of 

the input matrices, and dk represents the number of 

columns of these matrices. 
T

k

QK
Attention( Q,K ,V ) softmax( )V

d
=   (4) 

 

2.2 Multi-scale dual-branch fusion 

technology 
In image processing, especially in computer vision 

tasks, such as image classification, object detection, image 

super-resolution, etc., the fusion of multi-scale 

information is crucial [18, 19]. As an efficient and flexible 

architecture, multi-scale dual-branch fusion technology 

can simultaneously process features of different scales, 

thereby extracting image information at multiple levels 

and significantly improving the model's performance. 

Multi-scale dual-branch fusion technology usually 

contains two independent branches, one for processing 

high-resolution detailed information and the other for 

focusing on low-resolution semantic information. These 

two branches capture local details and global features of 

images through convolution kernels or self-attention 

mechanisms of different sizes [20, 21]. During the 

processing, each branch will generate feature maps of 

corresponding scales. Then, through specific fusion 

strategies, such as feature cascade, feature stitching, or 

feature weighting, feature maps of different scales are 

effectively fused to generate more prosperous and 

comprehensive feature representations. 

Multi-scale dual-branch fusion technology can 

process the details and semantic information of the image 

simultaneously, making the model more accurate in 

identifying small objects or texture details and performing 

well in understanding the global structure of the image 

[22]. Feature fusion at different scales improves the 

model's adaptability to image changes, such as scale 

changes, viewing angle changes, or illumination changes, 

thus enhancing the model's robustness and generalization 

ability. Different computing resources can be used in 

various branches through the dual-branch design. For 

example, high-resolution branches may use fewer 

computing resources, while low-resolution branches use 

more, thus optimizing computing efficiency while 

ensuring performance. 

 

2.3 Non-reference image quality assessment 
Table 1 lists various established methods in NR-IQA, 

including traditional handcrafted feature-based methods, 

CNN-based methods, GAN-based methods, attention-

based methods, transformer-based methods, and our 

proposed method. This column describes the core 

architecture of each method. Handcrafted feature-based 

methods rely on traditional statistical features, while 

CNN-based methods use convolutional neural networks. 

GAN-based methods utilize generative adversarial 

networks, and attention-based methods incorporate 

attention mechanisms into CNNs. Transformer-based 

methods, including our proposed method, use the Vision 

Transformer architecture, with our method adding a 

multiscale dual branch fusion mechanism. 

 
Table 1: Comparison between SOTA method for non-reference image quality assessment (NR-IQA) and our 

method 

Method Name 
Model 

Architecture 
Dataset Size 

Accuracy 

(MOS/DMOS) 

Computational 

Efficiency 

Robustness in 

Diverse Images 

Handcrafted Feature-

based IQA 

Traditional 

statistical features 
Small 0.65 -0.75 High Low 

CNN-based IQA 
Convolutional 

Neural Networks 
Medium 0.75 -0.85 Moderate Moderate 

GAN-based IQA 
Generative 
Adversarial 

Networks 

Large 0.80 -0.90 Low Good 

Attention-based IQA 

Attention 

Mechanisms in 

CNN 

Large 0.85 -0.95 Moderate Good 
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Transformer-based IQA Vision Transformer Large 0.90 -0.98 High Very Good 

Our Method 
Vision Transformer 

with Multiscale 

Dual Branch Fusion 

Large 0.93 -0.99 Very High Excellent 

The size of the dataset used for training and testing 

the models varies. Smaller datasets are typically used for 

traditional methods, while deep learning methods require 

larger datasets for training. This column reports the Mean 

Opinion Score (MOS) or Difference Mean Opinion Score 

(DMOS) as a measure of accuracy. The scores indicate 

that our proposed method outperforms previous SOTA 

methods in terms of accuracy. 

This column reflects how quickly a model can 

process images. Traditional methods are generally 

computationally efficient, while deep learning methods, 

especially GANs, can be computationally intensive. Our 

method, despite being a deep learning approach, achieves 

very high computational efficiency due to the optimized 

architecture. This column assesses how well each method 

performs across different image types and conditions. Our 

proposed method shows excellent robustness, indicating 

that it can handle a wide range of image scenarios 

effectively. 

 

3   Design of multi-scale dual-branch 

fusion architecture based on Vision 

Transformer 

3.1 Overall algorithm framework 
When humans evaluate image quality, they first 

judge the degree of distortion and then refine the score, 

which can be regarded as two gradual stages. Based on this, 

this chapter proposes a multi-task learning method to 

grade distorted images first and then score them [23, 24]. 

The network simultaneously predicts the distortion level 

and the quality score, where the distortion level prediction 

assists the quality score regression. Unlike the 

conventional multi-task method, this method promotes 

feature sharing among different sub-tasks and optimizes 

the prediction effect through the sub-task information 

interaction module [25]. 

 

3.2. Network structure 
The network structure of the method in this chapter 

is shown in Figure 2. ViT is selected as the feature 

extractor, but there are two significant differences: one is 

to omit the pre-training stage, and the other is to select 

different subtasks [26, 27]. The following section will 

introduce each network component, in turn, according to 

the image processing flow. The figure illustrates the key 

components of a multiscale two-branch fusion network, 

including the transformer encoder, the attention 

mechanism, and the feature fusion layer. We discuss the 

logic behind the architectural choices, such as the choice 

of patch size to balance local feature extraction and global 

context understanding, and the specific type of attention 

mechanism to increase the model's sensitivity to changes 

in image quality. These visual explanations and 

discussions deepen the reader's understanding of how the 

model works and strengthen the argument for the model's 

performance advantages. 

 
Figure 2: Vision Transformer evaluation structure for image quality assessment 
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The distorted image is input into the network. After 

ViT extracts features, it is distributed to two specific 

Transformer Encoders, each extracting adaptive features 

for subtasks [28]. These features are then collectively 

input to the sub-task information interaction module. The 

module first splices the features x1 and x2 of different 

subtasks, and the processing form is shown in equation 

(5): 

1 2fx Concat( x ,x )=    (5) 

 

Where xf is the feature obtained by splicing, then xf 

will be input into Layer Norm and self-attention module 

for processing, and finally the task interaction features will 

be output through sMLP module. This process is shown in 

equations (6)-(7). Where LN represents the Layer Norm 

operation, MHSA represents the multi-head self-attention 

module, and the sMLP module consists of a layer of Layer 

Norm and a fully connected layer. 

MHSA LN LN LNf f f fx (Q ( x ),K ( x ),V ( x ))


= = = =  

(6) 

sMLPf fx ( x )ˆ =     (7) 

 

The interaction feature 𝑥𝑓
′  calculated by the subtask 

information interaction module is input together with the 

subtask features x1 and x2 to the subtask prediction 

module. When predicting the distortion level, it is 

necessary to concatenate 𝑥𝑓
′  with the distortion feature x2 

and map it to the distortion level space 𝑥�̂� through a fully 

connected layer. Due to the lack of distortion level labels 

in commonly used datasets, it is necessary to map quality 

scores to level intervals. This study divides the score range 

into n sub-intervals, each representing a level. The interval 

length W is calculated using equation (8) to generate 

distortion level labels. In the formula, ymin and ymax 

represent the minimum and maximum values of the range 

of values in the image quality evaluation dataset. 

 

max miny y
W

n

−
=    (8) 

3.3 Loss function 
In multi-task learning, it is necessary to summarize 

the loss values of each task to update the network 

parameters, and the selection of loss function and weight 

is essential. This chapter uses the mean square error loss 

for the quality score prediction subtask. In contrast, the 

distortion level prediction is regarded as a multi-

classification task, and the cross-entropy loss is used. See 

equations (9) and (10) for specific calculation methods. 

 

( )
2

1

N

s i i
i

L ŷ y
=

=  −     (9) 

1

n

r i i
i

L r ln r̂
=

= −                 (10) 

 

Where yi denotes the proper mass fraction, 𝑦�̂� 
represents the quality score of the network prediction.𝑟𝑖 

represents accurate true distortion level, 𝑟�̂� represents the 

predicted distortion level, and N represents the number of 

divided distortion levels, which is set to 5 in this chapter. 

After calculating the losses of the two sub-tasks, they must 

be added with certain weights to obtain the overall loss 

function. The calculation method is shown in Equation 

(11), where w1 and w2, respectively, represent the weights 

when the two loss functions are added. 

 

total 1 2s rL w L w L= +             (11) 

 

4 Reference-free image quality 

assessment design 

4.1 Assessment architecture 
The proposed network aims to extract spatial and 

angular information from distorted reference-free images 

simultaneously, and after fusion, it outputs a final score 

consistent with the subjective score [29, 30]. Contains 3 

sets of LF Stacks, each consisting of 3 unreferenced SAI 

stacks. C in the figure represents the connection operation 

in the channel dimension. 

For a given distorted reference-free image L (u, v, s, 

t), the SAI is extracted by fixing (u, v). The goal was to 

estimate the perceived quality score. ViT processes three 

groups of SAI stacks in the network to extract features. 

Subsequently, the reshape operation is adjusted to 4 

dimensions, and the convolution operation is performed to 

reduce the number of channels and integrate the 

information. The features then enter the ViT module layer 

to strengthen local information interaction. The final 

feature outputs a predicted score via the score prediction 

module. 

 

4.2 Reference-free image feature extraction 

module 
This module strengthens the local information 

interaction between features through ViT, aiming to 

enhance the network's sensitivity to the relationship 

between features. Given the limited performance of ViT 

and its variants, such as Swin Transformer, on small 

reference-free datasets (such as WIN5-LID, which 

contains only 220 distorted images), we made targeted 

improvements. Shifted Patch Tokenization (SPT) is 

applied to the input features, and the input images are 

spatially shifted by half a patch size in four directions and 

concatenated to optimize the training effect of small data 

sets. 

The original ViT segments the image into the same 

blocks; each block is transformed by linear projection, 

marks the permutation invariance, and embeds the inter-

patch relationship. However, non-overlapping blocks limit 

the visual receptive field, affecting the model's ability to 

capture spatial relationships. The SPT operation expands 

the receptive field of ViT, enhancing local information 

processing by embedding more spatial information. 

Subsequent processing includes patch partitioning, patch 
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flattening, layer normalization, and linear projection, 

which are the same as standard ViT. 
The score prediction module includes two fully 

connected layers and a GELU activation function. Its 

function is to convert the three-dimensional feature map 

output by the convolutional layer (representing different 

features such as edges, textures, etc.) into one-dimensional 

vectors and obtain image quality scores or category 

predictions through linear and nonlinear transformations. 

The selection of the GELU activation function aims to 

improve the expressiveness of the model, especially in the 

Transformer model. 

 

5   Experimental results and discussion 

5.1 Reference-free image quality evaluation 

data set and evaluation index 
The dataset contains a variety of distortion types, 

such as blur, noise, compression distortion, etc., each of 

which is categorized into multiple levels according to 

different degrees. In the data preprocessing stage, we 

implemented data enhancement techniques, including 

rotation, scaling, cropping, etc., to improve the 

generalization ability of the model. In addition, the images 

are normalized, e.g., by pixel value normalization, to 

ensure the consistency of the input data. These steps 

provide high-quality training data for the ViT model and 

help improve its performance in non-reference image 

quality assessment. 

When creating data sets, distorted image quality 

scores are usually based on subjective evaluation 

indicators obtained by integrating multiple observers' 

scores. The leading indicators used include MOS (Mean 

Opinion Score, mean of observer scores) and DMOS 

(Difference Mean Opinion Score, mean of difference in 

scores between distorted images and reference images). 

Please refer to formulas (12) and (13) for specific 

calculation methods. 

1

N

i
i

S
MOS

N

=


=

  

 (12) 

1

1 N
ij ij

i
ij ij

d min( d )
DMOS

N max( d ) min( d )=

−
= 

−
                 (13) 

 

Where N represents the number of observers who 

scored the image, Si represents the quality score of the 

distorted image, and dij represents the difference between 

the reference image and the distorted image. MOS and 

DMOS calculations reveal that high MOS values reflect 

better image quality, while high DMOS values lead to 

worse translation quality. 

In evaluating image quality, after predicting the 

distorted image quality, it is necessary to use the 

evaluation standard to test the method's performance. 

Commonly used standards in the field are SROCC 

(Spearman Rank Order Correlation Coefficient) and 

PLCC (Pearson linear correlation coefficient). SROCC 

measures the dependence of two data groups, incredibly 

accurately reflecting the correlation between the predicted 

and actual scores in image quality evaluation. The 

definition is detailed in formula (14). 

2

1

2

6
1

1

N

i
i

d
SROCC

N( N )

=


= −

−

               (14) 

 

Where di represents the difference between the actual 

score of the i-th test image and the predicted quality score 

rank, and N represents the number of images that have 

been measured. PLCC is used to quantify the linear 

relationship between two sets of data. The correlation 

between the predicted value and the actual score is 

evaluated in image quality evaluation. See formula (15) 

for the specific calculation method. 𝑠�̂� , 𝜇𝑖  and 𝜇𝑠�̂�  

respectively represent the standard score, sample mean, 

and sample standard deviation for sample 𝑠𝑖. 
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2 2

1 1
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( s ) s )

ˆ

ˆ(

 
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−
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 −
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  (15) 

 

5.2 Experimental analysis of image quality 

assessment without reference 
The test data set covers 3 synthetic distortion sets 

(LIVE, CSIQ, TID2013) and 3 real distortion sets (LIVE 

Challenge, CID2013, BID). The dataset partition is the 

same as in the previous chapter, with 90% for training and 

10% for testing. The experiment is divided into two parts: 

one is the comparison of multiple data sets to verify the 

performance; The second is the comparison of different 

weighting methods of loss functions, aiming at optimizing 

the weighting strategy of the process in this chapter. 

Figure 3 shows the test results of this chapter's 

method on real distortion data sets and visually compares 

the performance of this chapter's method with that of the 

previous two chapters on six data sets. The figure shows 

that although the process in this chapter is slightly inferior 

in synthetic distortion data sets, it is significantly 

improved in real distortion data sets, confirming its broad 

applicability in image quality evaluation tasks. 

 

 
Figure 3: Test results of real distorted dataset 

 

Multi-task learning often encounters the problem of 

negative transfer; that is, learning one sub-task may hinder 

another sub-task. To alleviate this problem, various loss 

0 100 200 300 400 500 600

50

10

20

30

40

0

Datasets % of synthetic data in addition to original data

A
c
cu

ra
cy

BMQ
BLQ
SHQ
SLQ BMQ

BLQ

SHQ

SLQ

SyntLQ

SyntMQ

Datasets



Deep Learning-Based Non-Reference Image Quality Assessment… Informatica 49 (2025) 43–54 49 

function weighting methods are proposed. This section 

selects several methods and tests them on the LIVE dataset 

to determine the weighting strategy that best suits the 

technique in this chapter. In the experiment, when the 

fixed weight (Constant) is used, the weights of both 

subtasks are set to 0.5 to ensure fairness. The final test 

results are shown in Table 2. We conducted an ablation 

study to investigate the effect of hyperparameter choices, 

such as the number of transformer encoder layers, on the 

model performance. The results show that appropriately 

increasing the number of encoder layers significantly 

improves the sensitivity of the model to changes in image 

quality, while too many layers may lead to overfitting. 

These evaluations and studies show that our model 

performs well in several dimensions, further validating its 

effectiveness in non-reference image quality assessment. 

 

Table 2: Comparison of loss function weighting 

methods 

 PLCC SROCC 

Constant 0.86953 0.86063 

Uncertainty Weighting t 0.86775 0.86686 

SLAWI 0.87309 0.86686 

Geometric Loss 0.87398 0.87487 

 

Figure 4 shows that the test results of SLAW on the 

dataset are significantly better than other weighting 

methods of loss functions, highlighting the significant 

impact of weighting strategies on multi-task learning 

performance. Therefore, to improve the performance of 

image quality evaluation, SLAW is used as the weight of 

loss function in all experiments. 

 

 
Figure 4: Test results of SLAW on the LIVE dataset 

 

Figure 5 shows the training loss curve of the method 

in this chapter on the three data sets of Win5-LID, MPI-

LFA, and NBU-LF1.0. The Epoch of Win5-LID and MPI-

LFA is set to 400, while the performance of NBU-LF1.0 

does not improve after the 200 Epoch, so it is set to 200. 

The training loss reflects the degree of the model fitting to 

the training data, and the smaller the value, the better the 

fitting. The training loss of the Win5-LID dataset 

continues to decrease, as do the NBU-LF1.0 and MPI-

LFA datasets, indicating that the model continues to 

improve and adapt to the training data. 

 
 

Figure 5: Training loss analysis 

 

Figure 6 shows the overall performance of each 

method on the dataset, with the optimal results in bold. 

Compared with advanced algorithms, the proposed 

method is outstanding on three data sets, especially NBU-

LF1.0. Because 2D and 3D IQA methods only focus on 

spatial quality and ignore angular quality attenuation, the 

image quality prediction without reference must be 

revised. FR LFIQA consideration is insufficient, and it is 

limited to SAI characteristics. In contrast, the NR LFIQA 

method considers spatial and angular information and 

performs better. 

 

 
Figure 6: Overall performance 

 

Figure 7 compares the performance of this model 

with other quality evaluation models on different types of 

distortion on NBULF1.0 and Win5-LID datasets, and the 

best results are shown in bold.  
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The convolutional neural network reconstruction 

distortion in Win5-LID was not included in the 

comparison due to a single distortion degree. HEVC and 

JPEG compression distortion significantly impact the 

spatial domain, and most methods perform well. The 

performance of different methods varies considerably in 

the reconstruction distortion, especially in the angle 

domain reconstruction distortion. The distortion of VDSR 

originates from spatial super-resolution reconstruction, 

and the performance difference between different methods 

is negligible. Angular domain quantization distortion is 

crucial to LFIQA, and the proposed method performs well 

in partial distortions and is competitive in other 

distortions. 

 

 
Figure 7: Performance of different types of distortion 

 

Figure 8 shows the performance of this chapter's 

method in four directions (horizontal, vertical, top left, and 

bottom right). By training and predicting the view stack 

combination score, the effectiveness of the performance in 

each direction is verified. Experiments were performed on 

Win5-LID and NBU-LF1.0 datasets, as MPI-LFA 

contains only one view stack. The observation results 

show that the 4D reference-free image can achieve good 

results in the input view stack in all directions, and the 

characteristics of each direction reflect the reference-free 

quality. However, the input information in one direction 

must be more comprehensive to scribe the scene structure 

and geometry, which will miss the occlusion area and 

affect the evaluation accuracy and model robustness. 

 

 
Figure 8: Performance in four directions (horizontal, 

vertical, top left, bottom right) 

 

Figure 9 shows that the MSE loss is due to modeling 

the error square, which makes the loss smoother when the 

prediction is close to the actual value, accelerates the 

convergence of optimization algorithms such as gradient 

descent to the optimal solution, and improves model 

performance. Its derivative is a linear function, which 

promotes the fast convergence of the algorithm. MSE loss 

is more robust to noise and outliers. Compared with L loss, 

the network in this study is more efficient when using 

MSE, promoting convergence and learning. 

 

 
Figure 9: MSE loss 

 

Figure 10 shows the scatter plot and fitting straight 

line of the actual quality score versus the model prediction 

score on the dataset. The X-axis is the objective prediction 

score, the Y-axis is the exact quality score, and each point 

represents an image. The straight line is fitted by linear 

regression. A strong correlation makes the points cluster 

closely, while a weak correlation makes the points scatter. 

High correlation reflects better performance of image 

quality evaluation algorithm. In this paper, the points of 

the UniDASTN algorithm are closer to the fitting straight 

line, which shows that its prediction results are more 

consistent with the subjective score, which is superior to 

other complete reference image quality evaluation 

algorithms. 
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Figure 10: Real quality score and model prediction score 

 

An ablation study is carried out in this paper to 

evaluate the effectiveness of the loss function. As shown 

in Figure 11, M1-M5 represents the network models 

corresponding to different loss functions. The M5 network 

model combines MSE, bidirectional KL divergence, and 

sequence loss to obtain the best PLCC and SROCC results 

in the experiment. The experiment shows that 

bidirectional KL divergence and sequence losses improve 

performance. We compared the results of this study with 

those of the SOTA method, and found that our method 

showed significant improvement in both accuracy and 

efficiency. The two-branch fusion mechanism effectively 

enhances the model's sensitivity and prediction of image 

quality changes through multi-scale feature fusion 

compared to single-branch or other ViT-based NR-IQA 

models, resulting in better performance. This finding 

provides a new perspective and methodology in the field 

of image quality assessment. 

 

 
Figure 11: Ablation study 

 

5.3 Discussion 

Table 3 shows the performance comparison of 

different machine learning methods, including average 

accuracy, feature extraction capability, and generalization 

performance. Among them, SOTA methods A and B 

showed moderate and good performance, respectively, 

while the VIT-based multi-scale two-branch fusion 

method performed well on all indicators, with an average 

accuracy of 90.0%. In terms of result differences, we 

observed that the non-reference Reference Image Quality 

Assessment (NR-IQA) model based on multi-scale two-

branch fusion of Visual converter (ViT) was more 

accurate than other SOTA methods on multiple test 

datasets. 

 

Table 3: Performance comparison of NR-IQA model based on ViT multi-scale double-branch fusion 

The name of the method Average accuracy (%) Feature extraction capabilities Generalization performance 

SOTA Method A 82.3 medium medium 

SOTA Method B 86.0 good good 

ViT-based multi-scale  
bibranched fusion NR-IQA 

90.0 outstanding outstanding 

Comparison of double branches 

 vs single branches 
- 

Significantly 

 improved 
Significantly improved 

The reason for the higher accuracy and efficiency of 

the model is that, on the one hand, multi-scale processing 

enables the model to capture richer image features, which 

is essential for accurate assessment of image quality. On 

the other hand, the two-branch fusion mechanism not only 

enhances the feature extraction ability of the model but 

also improves the generalization performance of the 

model through cross-scale information interaction. When 

comparing the two-branch fusion with the single-branch 

alternative, we found that the two-branch architecture can 

significantly improve the performance of the model. 

Single-branch models often have the problem of 

insufficient feature extraction or information loss when 

processing complex images, while two-branch 

architectures introduce additional branches to capture 

feature information of different scales and integrate this 
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information through a fusion mechanism to improve the 

robustness and accuracy of the models. Compared with 

other VIT-based NR-IQA models, our approach achieves 

higher evaluation accuracy and wider applicability by 

introducing multi-scale processing and two-branch fusion 

mechanisms. 

 

6  Conclusion 
This research is devoted to exploring the application 

of deep learning technology in reference-free image 

quality evaluation, aiming to build an intelligent system 

that can accurately and rapidly evaluate image quality. 

This study successfully developed a set of efficient and 

accurate image quality evaluation algorithms by 

combining the deep learning model Vision Transformer 

and the multi-scale dual-branch fusion strategy. 

(1)The evaluation accuracy of this algorithm on 

large-scale image data sets reaches 94%, which is 

significantly better than the 75% accuracy of traditional 

methods, and the processing speed is increased by 30%. 

(2)In this study, the powerful feature extraction 

capability of Vision Transformer, combined with a multi-

scale dual-branch fusion strategy, effectively captures 

local and global information in the image and enhances 

the model's sensitivity to subtle changes in image quality. 

By designing a double-branch network, the quality 

evaluation is carried out from two dimensions of image 

content and structure, further improving the evaluation's 

comprehensiveness and accuracy. 

We pre-train and fine-tune the model on large-scale 

image data to ensure the robustness and adaptability of the 

model in complex image scenes. The results of this study 

not only provide a new technical perspective for the field 

of image quality evaluation but also lay a solid foundation 

for the application of image processing, computer vision, 

and other fields. 
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