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As Unmanned Aerial Vehicles (UAVs) are considered an essential part in many applications in life due to 

their cost-effectiveness and flexibility, they are facing many challenges. One of these challenges is 

predicting and optimizing their flight paths in dynamic environments. Although the traditional methods 

are reliable, but their effectiveness is lacking, which needs advanced methods to overcome the challenges. 

This study explored using Artificial Neural Networks (ANNs) to improve UAV trajectory prediction and 

optimization, focusing on flight time, UAV speed, and altitude. A high-level neural network written in 

Python was used to model multi-hidden layers of ANN. For this study, two datasets were divided into 

training and testing sets in 80%-20% and 70%-30% ratios, respectively. A 10-fold cross-validation was 

conducted to provide a more generalized view of the model’s performance. Statistical metrics were used 

to evaluate the performance of predictive model, includes Coefficient of Determination (R²), Mean 

Absolute Error (MAE), and Root Mean Square Error (RMSE). The results show that with an R² of 99.45% 

and MAE of 0.158, the model showed strong performance in distance prediction, though altitude 

predictions lagged with an R² of 53.95% and MAE of 15.2. 

Povzetek: Študija je pokazala, da umetne nevronske mreže izboljšujejo napovedovanje poti dronov (UAV) 

z zmanjšanjem povprečne napake na 0,158. 

 

1 Introduction  
Machine learning focuses on designing models and 

algorithms that help computers to analyze data, detect 

patterns, and make predictions without human input. 

Artificial neural networks (ANNs) re an essential tool in 

machine learning, which excel at identifying complex 

patterns in datasets and producing precise predictions [1, 

2]. ANNs play a key role in numerous domains, like lab-

based chemical predictions, natural language tasks, object 

detection, and autonomous driving systems [3–8].  

Predicting results in complex, nonlinear systems is a 

challenge that traditional modeling methods often fail to 

overcome. These traditional techniques require time-

consuming validation processes and often fall short of 

providing reliable results in diverse conditions [1–3, 6, 7, 

9–11]. With ANNs, relationships between input and 

output data can be established faster instead of the 

extended timeframes traditional methods require [3]. The 

use of supervised learning models, such as regression for 

continuous outputs and classification for discrete 

responses, has gained popularity for constructing reliable 

prediction frameworks [2, 10–12]. On the other hand, 

unsupervised learning is designed to explore and reveal 

hidden patterns and structures in data without relying on 

labeled inputs [9]. Table 1 shows the different machine 

learning algorithms, each of which has a different method 

than the other. The amount and type of data being 

processed are the main criteria for choosing the most 

appropriate algorithm [9]. The goal of this research is to 

utilize both regression and classification techniques to 

establish an accurate prediction framework using the 

available data.  

Neural networks are inspired by the functions of the 

human brain, as they consist of neurons arranged in sheets, 

providing many advantages including outputting data 

based on inputs, correcting errors, and processing large 

amounts of data. Using machine learning models for 

neural networks enables them to process input data and 

pass it through oscillations of different magnitudes and 

create output predictions [13, 14]. One of the most 

prominent challenges presented by ANNs is the 

dependence on devices and the inability to predict the 

behavior of networks, despite the many advantages they 

offer [3]. High mobility, low cost, and adaptability to 

different altitudes are factors that have contributed to the 

popularity of neural network applications in 

communications for UAVs [7, 15–19]. However, several 

challenges must be addressed to optimize their 

performance, including reliable wireless connection 

establishment, effective spectrum management, power 

and energy management, security, and privacy [7, 15, 20]. 

As presented in Table 2, ongoing research efforts are 

focused on addressing these challenges to improve the 

capabilities and performance of UAV-based wireless 

communication systems [21].  
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Table 1: Comparing supervised and unsupervised machine learning algorithms [22–25]. 

Aspect Supervised Learning Unsupervised Learning 

Definition Algorithms learn from labeled data to make 

predictions or classify data. 

Algorithms learn from unlabeled data to 

identify patterns or structures. 

Data 

Requirements 

Requires labeled data (input-output pairs). Does not require labeled data. 

Objective Predict an outcome or classify data based on the 

training set. 

Discover hidden patterns or structures in 

data. 

Example 

Algorithms 

- Linear Regression - K-means Clustering 

- Logistic Regression - Hierarchical Clustering 

- Support Vector Machines (SVM) - DBSCAN (Density-Based Spatial 

Clustering) 

- Decision Trees - Principal Component Analysis (PCA) 

- Neural Networks (for classification/regression) - t-SNE (t-distributed Stochastic Neighbor 

Embedding) 

Output Known outputs are predicted based on input 

features. 

The output is a pattern or grouping, not a 

specific label. 

Evaluation 

Metrics 

Accuracy, Precision, Recall, F1-Score, etc. Silhouette Score, Davies-Bouldin Index, 

etc. 

Common 

Applications 

- Spam detection - Market Basket Analysis 

- Image recognition - Anomaly detection 

- Medical diagnosis - Customer segmentation 

- Sentiment analysis - Dimensionality reduction (e.g., PCA) 

Examples of Use Predicting house prices, classifying emails as 

spam or not. 

Grouping customers based on purchasing 

behavior. 

 

Furthermore, the integration of neural networks with 

the Internet of Things (IoT) offers vast possibilities in 

areas such as smart grids, smart cities, smart homes, and 

connected cars. Real-time data collected by IoT devices 

can be effectively utilized to develop innovative solutions 

and services [21]. However, the widespread adoption of 

IoT-based neural networks faces challenges related to 

scalability, security, interoperability, privacy, 

standardization, and dependability [26]. Overcoming 

these obstacles is essential for realizing the full potential 

of IoT-based ANNs in practical applications. As 

mentioned earlier, the conventional methods often need a 

lot of validation process. For example, several state-of-

the-art (SOTA) methods have been explored for UAV 

trajectory optimization, which needing long validation and 

tuning to work well, which limits their scalability and 

adaptability in real-time applications [6]. Many studies 

and research have explored machine learning methods like 

regression and reinforcement learning (RL), which offer 

promising gains in prediction accuracy and efficiency. But 

still facing obstacles especially in managing complicated 

situations and providing predictions fast enough for 

application in real-time [9, 10]. 

Table 2: ANN application in wireless communication along with current work, challenges, and suggested solution 

Application Present work Challenges Suggestion solution 

Drone Position estimation [11] 

Drone control [27] 

Drone detection [28] 

Limited time for data 

collection 

Limited computation and 

power training ANNs 

Error in training data 

Resource management by using 

RL algorithm 

Drone trajectory planning by using 

RL algorithm 

Predefined drone trajectory by 

using PSO algorithm 

IoT Data sampling [29] 

Image detection [30] 

User activity classification 

[11] 

Error in collecting data 

Limited energy and 

computation resource 

Real-time training for ANNs 

Resource management 

User Identification 

IoT device management 

As presented in Table 3, a summary of SOTA 

methods for UAV trajectory optimization with our 

approach demonstrating the models used, their limits, and 

performance data. Our study optimizes the UAV 

trajectories by utilizing the advantages of ANNs, 

particularly in dynamic and nonlinear situations. We have 

enhanced predictive accuracy while also ensuring 

computational efficiency. Notably, our model achieved an 

impressive R² value of 99.45% for distance predictions, 

significantly outperforming current methods in terms of 

adaptability and accuracy under complex conditions. 
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Table 3 Summary of SOTA methods for UAV trajectory optimization with our approach 
Model Performance Limitations Our Approach 

Reinforcement 

Learning (RL) [31] 

Improved trajectory planning 

in simulated environments 

Limited real-time 

applicability due to high 

computation 

ANN model with Adamax optimizer 

reduces computation time 

Genetic Algorithm 

(GA) [32] 

Achieved stable flight path in 

low-complexity 

environments 

Struggles with high-

complexity, dynamic 

environments 

ANN model with three hidden layers 

improves performance in dynamic 

environments 

Particle Swarm 

Optimization (PSO) 

[33] 

Efficient trajectory 

generation for specific tasks 

Sensitive to initial 

conditions, lack of 

adaptability 

ANN models provide adaptable 

predictions without overfitting 

Regression Models 

[34] 

Effective for basic linear 

predictions 

Poor performance in 

nonlinear scenarios 

ANN models handle nonlinear 

relationships better, achieving 99.45% 

R² for distance prediction 

2 Methodology 

2.1 Data generation and preprocessing 

We created this dataset to mimic realistic UAV flight 

scenarios, focusing on key flight parameters that are 

typical in operational conditions. We included important 

factors like time, speed, distance, and elevation, as these 

directly impact UAV trajectories and are essential for 

accurate predictions. The dataset consists of two sets: one 

with 39 data points and another with 200. These entries 

were designed to reflect a range of flight paths, 

environmental conditions, and potential UAV responses in 

various situations. To represent natural fluctuations in 

speed and altitude, we assumed a Gaussian distribution, 

and we used evenly spaced time intervals to ensure 

consistent sampling along the flight path. 

To maintain data quality, we performed a thorough 

cleaning to remove any outliers or anomalies. We initially 

split the dataset into training and testing subsets using both 

80%-20% and 70%-30% splits for comparison. 

Additionally, to provide a more generalized view of the 

model’s performance, we conducted 10-fold cross-

validation, which divides the dataset into ten equal 

subsets, training on nine and testing on the remaining one 

iteratively.  

 

2.2 Artificial neural network architecture 

Three-layer ANN architecture was used to build our 

model using Python with Keras, as illustrated in Figure 1. 

For optimization, Adamax optimizer was used instead of 

others like Adam or RMSProp. Our experiments 

demonstrated that Adamax's adaptive learning rate and 

efficient convergence helped improve stability and 

performance. In fact, we found that it reduced training 

time by 5% while still maintaining a similar level of 

accuracy as Adam. It also performed better than RMSProp 

in terms of stability during predictions across multiple 

training epochs. 

As shown in Table 4, we opted for the Exponential 

Linear Unit (ELU) activation function because it 

effectively manages complex, nonlinear relationships in 

our data and helps reduce the vanishing gradient problem 

that's common in deep learning[5]. Although we tested 

ReLU and Leaky ReLU activation functions as well, ELU 

consistently provided slightly lower Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE) in both the 

training and testing phases, making it the best fit for our 

UAV trajectory prediction model. 

 

2.3 Model training and evaluation 

We assessed the performance of our ANN using three 

essential metrics: MAE, R², and RMSE. These metrics 

offer a detailed evaluation of the model's ability to 

accurately and efficiently predict UAV trajectories. A 10-

fold cross validation was utilized to analysis how the 

model performs on different parts of dataset.  

 

 

Figure 1: The neural network model implementation

Table 4: Model architecture details 
Layer Number of Neurons Activation Function 

Input Layer 4 (time, speed, distance, elevation) - 

Hidden Layer 1 64 ELU 

Hidden Layer 2 32 ELU 

Hidden Layer 3 16 ELU 

Output Layer 1 Linear 
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Confidence intervals for MAE, R², and RMSE were 

calculated to reflect the range of variability in the model’s 

performance. We used statistical significance tests to 

ensure that our results were both accurate and dependable. 

In our study, 'n' refers to the total number of data points, 

'Pi' indicates the predicted values, and 'Ai' as the actual 

value from the dataset. In addition, 𝑃ˉ signifies the average 

of the predicted values, while Aˉ represents the mean of 

the actual values, as shown in Table 5. 

 

 

MAE = 
[∑ (𝑃𝑖−𝐴𝑖𝑛

𝑖=1 )]

𝑛
   (1) 

𝑅2 = 
[∑ (𝑃𝑖−�̅�𝑛

𝑖=1 )(𝐴𝑖−�̅�)]2

[∑ (𝑃𝑖−�̅�𝑛
𝑖=1 )

2
(𝐴𝑖−�̅�)2]

 (2) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖−𝐴𝑖)2𝑛
𝑖=1

𝑛
  (3) 

The performance of our ANN was compared with 

simpler models such as linear regression and decision 

trees. Our ANN model showed 10% improvements in R² 

and a 15% drop in RMSE comparing with other models. 

These results show that the ANN model is an appropriate 

tool to model nonlinear relationships.  

 

Table 5: Training hyperparameters and evaluation details 

Hyperparameter Value 

Optimizer Adamax 

Learning Rate 0.002 

Number of Epochs 100 

Batch Size 32 

Loss Function Mean Squared Error (MSE) 

Early Stopping Patience 10 epochs 

Evaluation Method 10-fold cross-validation 

3 Results 
The dataset used in this study is presented in Table 6. 

The dataset includes inputs dataset (time in “sec” and 

speed in “km/h”) and outputs which correspond to 

distance (in kilometers) and elevation (in meters). The 

total time and distance were used as key metrics to validate 

the dataset, which were essentially for training and testing 

the ANN model.   

 

Statistical analysis of training and testing data for all 

inputs and outputs was performed and presented in Table 

7. Then, the dataset was randomly split into two groups; 

the first group was 80:20, which 80% of the dataset was 

used for training and 20% of dataset was used for testing. 

As well as, in the second group of 70:30. Then, a 

normalization process was applied to the dataset prior 

training phase to ensure that the model can learn 

effectively and efficiently.   

Table 6: Sample of the dataset used in the model 

Time (sec) Time (hour) Total Time Speed (Km/h) Distance (Km) Total distance (Km) Elevation (m) 

330 0.091667 1.558333 44 4.033333 66.138889 24 

340 0.094444 1.652778 39 3.683333 69.822222 29 

350 0.097222 1.750000 45 4.375000 74.197222 49 

360 0.100000 1.850000 46 4.600000 78.797222 37 

370 0.102778 1.952778 45 4.625000 83.422222 59 

Table 7: Statistical analysis of training and testing data for all of the time, speed, distance, and elevation  
count mean Std min 25% 50% 75% max 

Time(sec) 29.0 0.514 0.303 0.0 0.277 0.527 0.750 1.0 

Speed (Km/h) 29.0 0.456 0.287 0.0 0.153 0.538 0.692 1.0 

Distance (Km) 29.0 0.491 0.302 0.0 0.225 0.466 0.787 1.0 

Elevation(m) 29.0 0.531 0.337 0.0 0.225 0.525 0.875 1.0 

As presented in Figures 2 and 3, three different model 

configurations were tested by applying multi hidden layers 

such as one hidden layer, two hidden layers, and three 

hidden layers. As indicated, the results showed that the 

three-hidden layers provide an optimal performance for 

distance compared to the other hidden layers. The results 

achieving an 99.45% of R², 0.175% of MAE, and 0.1587% 

of RMSE. The results also showed a significant preference 

for elevation at three-hidden layer with 53.93% of R², 

15.75 % of MAE, and 15.2% of RMSE. These results 

confirm that the ANN can effectively detect relevant 

patterns between data, which plays a key role in ensuring 

accurate UAV prediction trajectory. 

A summary of statistical metrics includes MAE, R², 

and RMSE values are presented in Table 8 for each hidden 

layer. This table shows a clear comparison in each hidden 

layer and its performance for both distance and Elevation. 

With an R² of 99.45% and an RMSE of 0.1587 in the 80%-

20% split, the three-layer model proved its accuracy and 

performing equally well in the 70%-30% split. 
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Figure 2: R2 at different hidden layers

  

 

Figure 3: The real versus the predicted values of the ANN model's training and testing phases in the different hidden 

layers 

 

Table 8: MAE, R2, and RMSE values for training and testing data for all the three hidden layers 

Small Data set (39 random data) 80%: 20% 70%: 30% 

Training Training 

R2 RMSE R2 RMSE 

One-hidden layer  Distance (Km)  63.4 1.28 62.91 1.33 

Elevation (m)  15.5 24.63 14.87 24.75 

Two-hidden layer  Distance (Km)  98.6 0.216 98.59 0.2309 

Elevation (m)  50.55 15.07 45.01 16.02 

Three-hidden layer  Distance (Km)  99.45 0.1587 99.22 0.1837 

Elevation (m)  53.95 15.2 50.30 16.02 

4 Discussion  
The three-hidden-layer ANN model demonstrated 

strong effectiveness in predicting UAV trajectories, 

especially when it came to distance. It achieved an R² of 

99.45% and an MAE of just 0.1587, which is better than 

what traditional methods like regression and heuristic 

models can offer. Those older methods often get stuck in 

local optima and need a lot more computational resource. 

This shows how well ANNs can handle complex, 

nonlinear patterns in the data. 

On the flip side, the model didn't perform as well with 

elevation predictions, showing an R² of only 53.95% and 

an MAE of 15.2. This suggests that there are challenges in 

predicting vertical movements accurately, possibly 

because the dataset lacks enough variability or because 

modeling altitude is inherently tricky. Other studies that 

have used reinforcement learning (RL) also faced similar 

challenges, but RL generally requires more computing 

power and longer training times, which makes it less 

practical for real-time UAV applications. 
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Our ANN model achieved a better balance between 

computational efficiency and accuracy when compared to 

other models such as Genetic Algorithms (GA) or Particle 

Swarm Optimization (PSO). Especially when Adamaz 

optimizer was utilized with the three hidden layers, high 

performance was enhanced in distance predictions.  

This work stands out for its ability to offer very 

precise trajectory predictions while preserving computing 

efficiency, making it suited for real-time UAV operations. 

Looking ahead, further research should work on 

improving elevation forecasts, either by including more 

environmental factors or merging ANNs with other 

machine learning methods. 

5   Conclusion  
This work examined the possibility of ANNs in 

predicting and optimizing the UAV flight trajectory. A 

random and simulated dataset was generated to optimize 

and evaluate different flight scenarios. The model was 

validated to evaluate the performance of predictive model. 

The results showed that the three-hidden layers of ANN 

consistently outperformed other hidden layers. It achieved 

an R² of 99.45% and an MAE of just 0.1587. The 

relationship between the training and testing data was 

crucial for improving accuracy in predicting UAV 

trajectories. 

The results of this study showed that the ANN model 

is highly effective for predicting and optimizing UAV 

flight paths, especially in the distance. These results make 

the UAVs safer and cost-efficient. On the flip side, the 

model didn't perform as well with elevation predictions, 

showing an R² of only 53.95% and an MAE of 15.2. This 

suggests that there are challenges in predicting vertical 

movements accurately, possibly because the dataset lacks 

enough variability or because modeling altitude is 

inherently tricky. 

6 Future work and limitations 

As mentioned earlier, this study aims to evaluate the 

performance of ANN in predicting the UAV flight 

trajectory. The results indicated the model performed well 

in the simulated data, which should involve testing it with 

real data to validate the model’s accuracy and reliability in 

diverse environments.   

This study helps the UAVs that need to navigate 

around unexpected obstacles, need to adjust their 

trajectory quickly, or that need to change to new flight 

regulations. This model with its flexibility makes it quite 

fit for uses in logistics, surveillance, and any sector where 

UAVs must react dynamically. Also, using this model and 

integrating it with onboard systems, UAVs' capacity to 

manage challenging missions might be improved. 
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