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In the power system, permanent magnet synchronous motors are an important component of the key 

assets in power grid companies. To improve the operational efficiency of permanent magnet 

synchronous motors and reduce maintenance costs, a parameter optimization method combining 

self-optimizing Simulated Annealing (SA) and Particle Swarm Optimization (PSO) is designed. This 

method utilizes the powerful global search performance of SA to avoid local optimal solutions, and 

combines the fast convergence characteristics of PSO to achieve precise and efficient parameter tuning. 

At the same time, greedy optimization strategy and memory tempering mechanism are introduced into 

the PSO. A self-optimizing strategy based on SA and PSO is designed. The specific method used in the 

study is to combine the powerful global search ability of SA algorithm with the fast convergence 

characteristics of PSO algorithm, integrate the advantages of both algorithms, and achieve fast and 

accurate identification of motor parameters. By incorporating greedy optimization strategies and 

memory tempering mechanisms within the PSO framework, the limitations of insufficient accuracy in 

handling multivariate parameter identification problems can be addressed. From the results, the 

parameters of the permanent magnet synchronous motor optimized by the self-optimizing resulted in a 

direct axis inductance error of 0.62%, a quadrature axis inductance error of 0.31%, a resistance error 

of 0.34%, and a magnetic linkage error of 5.14%. In addition, the standard deviation of the 

self-optimizing SA-PSO was 0.04, which was 0.15, 0.10, and 0.06 lower than the standard deviations of 

PSO, SA, and SA-PSO algorithms of 0.19, 0.14, and 0.10, respectively. In terms of stability, the standard 

deviation of the hybrid strategy was 0.012, which was 73.33%, 69.23%, and 57.14% lower than PSO, 

SA, and traditional SA-PSO, respectively. Therefore, the permanent magnet synchronous motor 

parameter system optimized by combining self-optimizing SA with PSO effectively reduces energy 

consumption during operation, which helps the power grid company to achieve dual benefits in 

economic benefits and environmental sustainability. 

Povzetek: Študija predstavlja hibridni pristop optimizacije parametrov PMSM, ki združuje 

samooptimizacijsko simulirano kaljenje (SA) in optimizacijo rojev delcev (PSO). Metoda izkorišča 

globalne iskalne sposobnosti SA in hitro konvergenco PSO. Z vključitvijo strategije požrešne 

optimizacije in mehanizma temperaturnega popuščanja v PSO, hibridni algoritem dosega boljšo 

identifikacijo parametrov motorja, kar zmanjšuje porabo energije in prispeva k ekonomskim in 

okoljskim koristim. 

 

1 Introduction 
Permanent Magnet Synchronous Motor (PMSM), as a 

key component in modern power systems, its parameter 

stability directly affects the high-performance of control 

systems. The parameter changes of the motor during 

operation may lead to a decrease in control performance, 

which is particularly unfavorable for application 

scenarios that pursue high-precision control [1-2]. In 

traditional control theory, sliding mode variable 

structure control and adaptive control have improved the 

robustness of the system to a certain extent. However, 

these methods cannot fundamentally eliminate the 

impact of parameter changes on the controller, and 

instead increase the complexity of controller [3]. Faced 

with this challenge, directly identifying motor 

parameters has become a key way to solve the problem, 

which not only helps to improve control performance, 

but also serves as the foundation for achieving motor 

health status monitoring [4]. However, quickly and 

accurately obtaining the motor parameters under 

different operating conditions has always been a 

challenge in control theory and practice [5]. Therefore, 

exploring efficient methods to identify motor parameters 

has important theoretical and practical value for 

optimizing motor control systems. In this context, a 

hybrid optimization strategy is proposed by combining 

self-optimizing Simulated Annealing (SA) and Particle 
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Swarm Optimization (PSO) to optimize the parameter 

identification process of PMSM. This method aims to 

integrate the advantages of two algorithms, combining 

the strong global search performance of SA with the fast 

convergence characteristics of PSO to quickly and 

accurately identify motor parameters. This study 

innovatively develops an optimization method that can 

adapt to changes in motor parameters and improve 

system robustness, aiming to provide support for the 

design and implementation of high-precision motor 

control systems, and enhance the stability and efficiency 

of power systems. The research content mainly includes 

four parts. The first part is the background of PMSM. 

The second part reviews the research status of PMSM 

and PSO both domestically and internationally. The 

third part designs a hybrid optimization strategy for 

PMSM parameters based on self-optimizing SA 

algorithm and PSO. The first section conducts parameter 

design for PMSM based on PSO optimization. The 

second section designs a PMSM parameter system 

optimized by combining self-optimizing SA with PSO. 

The fourth part verifies the PMSM parameter hybrid 

optimization strategy based on self-optimizing SA and 

PSO. 

 

2  Related works 
PMSM has been widely used in high-performance 

control systems due to its simple structure and high 

stability. Therefore, it has become a research focus, 

giving rise to a large number of research results. Sun X 

et al. designed a PMSM to meet specific campus patrol 

electric vehicle driving needs. A method for adjusting 

the structure of permanent magnets was proposed. The 

results showed that this method reduced torque ripple by 

24% [6]. To design an efficient surface PMSM, He C et 

al. built an analysis method based on a finite element 

model, which selected a lower torque angle to enhance 

the overload capacity of the motor. The results showed 

that this method achieved efficient motor performance 

[7]. Palangar M F et al. used multi-objective 

optimization methods to improve the performance of 

PMSM in transient and steady-state performance. It 

improved the overall performance of PMSM [8]. 

The PSO significantly contributes to optimizing the 

performance of PMSM. To overcome the tendency of 

traditional PSO to lose diversity and fall into local 

optima during the iteration process, Zaman H R R et al. 

proposed an enhanced PSO that integrated backtracking 

search optimization algorithm. The algorithm introduced 

a neighborhood modification mechanism based on 

backtracking search optimization algorithm. The results 

showed that this method was effective [9]. Liu W et al. 

built a novel adaptive weighted PSO to improve the 

search ability of the PSO. It adaptively adjusted the 

acceleration coefficient by developing a weighting 

strategy based on the Sigmoid function. The results 

showed that the algorithm had excellent search ability 

[10]. Luo X et al. proposed a position transition PSO to 

overcome the premature convergence in latent factor 

analysis models. This algorithm optimized 

high-dimensional sparse matrices through a population 

strategy with adaptive learning rates. The results showed 

that this method achieved higher prediction accuracy 

when dealing with missing data [11]. The method 

summary table is shown in Table 1. 

In summary, significant progress has been made in 

research on PMSM and PSO. However, the combination 

of self-optimizing SA and PSO parameter optimization 

method to optimize the design parameters of PMSM is 

still relatively rare in existing research. To this end, an 

innovative hybrid optimization strategy is proposed, 

which effectively integrates the global search of the SA 

with the fast convergence characteristics of the PSO. 

Based on this hybrid method, the aim is to achieve fast 

and accurate motor parameter identification, improving 

the efficiency of parameter design and the optimization 

performance of motor performance. 

 

Table 1. Method summary 

Method Author Result Limitations 

Method for 

adjusting 

the 

structure of 

permanent 

magnets, 

air gap 

length, and 

stator core 

geometry 

Sun X et 

al. [6] 

The torque 

ripple has 

been 

reduced by 

24% 

The 

application 

environment is 

limited to the 

driving 

requirements 

of patrol 

electric 

vehicles on 

specific 

campuses 

Analysis 

method 

based on 

finite 

element 

model 

He C et 

al. [7] 

Achieved 

efficient 

motor 

performanc

e 

Mainly 

optimizing 

overload 

capacity, but 

not fully 

covering other 

performance 

indicators 

Multi-obje

ctive 

optimizatio

n method 

Palangar 

M Fet al. 

[8] 

Improved 

the overall 

performanc

e of 

permanent 

magnet 

synchronou

s motors 

Stability 

requires more 

detailed data 

support 

Improved 

PSO 

algorithm 

incorporati

ng 

backtrackin

g search 

optimizatio

n algorithm 

Zaman H 

R R et al 

[9]. 

Improved 

effectivene

ss, 

overcomin

g the local 

optimum 

problem of 

traditional 

PSO 

Algorithm 

complexity 

increases and 

computation 

time becomes 

longer 

Adaptive 

weighted 

PSO 

algorithm 

Liu W et 

al [10]. 

Excellent 

search 

capability 

Unable to 

handle 

high-dimensio

nal 
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based on 

sigmoid 

function 

weighting 

strategy 

optimization 

problems 

Position 

Transition 

PSO 

Algorithm 

Based on 

Adaptive 

Learning 

Rate Group 

Strategy 

Luo X et 

al [11]. 

Achieved 

higher 

prediction 

accuracy 

when 

handling 

missing 

data 

Mainly 

targeting 

high-dimensio

nal sparse 

matrices, with 

limited 

generality 

3 Hybrid optimization strategy for 

PMSM parameters based on 

self-optimizing SA and PSO 
This chapter explores a hybrid optimization strategy 

combining SA and PSO, aiming to improve the accuracy 

and efficiency of parameter design for PMSM. This 

strategy combines the global search performance of the 

SA with the fast convergence characteristics of the PSO 

to finely adjust the motor parameters. 

 

3.1 PMSM parameter design based on PSO 

algorithm optimization 
The PSO mimics the foraging behavior of bird 

populations [12]. In PSO, solutions are viewed as 

"particles" moving within the search space, with each 

particle in the population moving towards the currently 

determined optimal solution to search for a more 

optimal solution [13]. However, PSO faces several 

challenges. Firstly, due to its probabilistic nature, PSO 

cannot guarantee finding the global optimal solution 

within limited iterations. The speed and position updates 

of particles have randomness, which increases the 

uncertainty in finding the global optimal solution. 

Secondly, the accuracy is influenced by multiple 

parameters, including population size, iterations, initial 

position, inertia weight, and learning factor. Although 

larger populations and iterations theoretically add the 

probability of finding the global optimal solution, they 

also prolong the running time. However, initial position 

selection and parameter setting often rely on experience, 

making it difficult to achieve optimal results. Finally, as 

the iteration progresses, particles tend to aggregate in 

the search space and fall into local optima, which limits 

the algorithm's ability to explore later [14]. Given these 

challenges, this research aims to determine the optimal 

initial parameters to enhance the convergence speed and 

optimization accuracy. The PSO flow after initial 

parameter optimization is shown in Figure 1. 

Particle swarm 1

Initialization

Calculate 

fitness value

Update Location

Maximum iteration?

Output 

fitness value

Yes

No

Update Location

Maximum iteration? Output 
Yes

No
Particle swarm 2

Initialize parameters 

for particle swarm 1

 
Figure 1: PSO process optimized by initial parameters 

 

In Figure 1, there are two key particle swarms in the 

initial parameter optimization process of PSO: particle 

swarms 1 and 2. Particle swarm 1 is the main 

optimization group, while particle swarm 2 focuses on 

optimizing the initial parameters of particle swarm 1. 

Each particle in particle swarm 2 represents a set of 

initial parameters that may be used for particle swarm 1. 

These parameters include inertia weight  , individual 

learning factor 1c , and social learning factor 2c . 

Particle swarm 1 receives these parameters and 

evaluates their effectiveness using a fitness function. 

The fitness value reflects the parameter effectiveness 

and provides feedback to particle swarm 2. Based on the 

update rules of position and velocity, particle swarm 2 

adjusts its parameters with the goal of finding the 

optimal parameter combination that minimizes the 

fitness value of particle swarm 1. Through repeated 

iterations, particle swarm 2 gradually optimizes 

parameter selection until reaching the preset maximum 

iterations. Ultimately, the output parameter set is the 
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initial parameter configuration that can achieve optimal 

performance for particle swarm 1. PMSM is a 

synchronous motor. Its main feature is that permanent 

magnet materials are installed on the rotor to generate a 

magnetic field, replacing the electromagnets in 

traditional synchronous motors [15]. In the PMSM, the 

magnetic field of the rotor rotates with mechanical 

rotation, while the stator is powered by an 

alternating-current power source to generate a rotating 

magnetic field. When these two magnetic fields are 

interlocked, the motor rotor will rotate synchronously 

with the stator magnetic field. Therefore, it is called the 

"synchronous motor". The physical model of PMSM is 

shown in Figure 2. 
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Figure 2: The physical model of PMSM 

 

In Figure 2, in the physical model, A, B, and C 

respectively represent the stator windings of 

three-electrical phases. These windings are spaced 120 

degrees apart in space and configured to generate three 

sinusoidal waveform currents with phase deviations of 

120 degrees. When A, B, and C three-phase windings 

are fed with three-phase sinusoidal alternating-current, 

they generate magnetic fields in their respective phases 

[16]. Due to phase difference, these magnetic fields 

combine to form a rotating magnetic field that rotates at 

the same frequency as alternating current. This rotating 

magnetic field interacts with the permanent magnet on 

the rotor, causing the rotor to generate torque and rotate. 

The mathematical expression of PMSM stator winding 

magnetic flux is shown in equation (1). 

cos

2
cos

3

2
cos

3

 


   



  

 
 
     
      

= + −                    
+  

  

f

AA AB ACA A

B BA BB BC B f

C CCA CB CC

f

L M M I

M L M I

IM M L

  (1) 

In equation (1), , ,  A B C
 represent the magnetic 

flux of the stator windings A, B, and C. ,L M  

represent the self-inductance coefficient and mutual 

inductance coefficient. I  represents the current. 

 f
 represents the magnetic flux generated by the 

permanent magnet itself. The voltage of the PMSM 

stator winding is shown in equation (2). 
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         (2) 

In equation (2), , ,A B CU U U  represent the voltage of 

stator windings A, B, and C, respectively. R  

represents the resistance. The electromagnetic torque 

is shown in equation (3). 

( )1

2





 
= 



s s

e n

m

I
T P       (3) 

In equation (3), 
eT  represents the electromagnetic 

torque. 
nP  represents the number of motor poles.  s

 

represents the magnetic flux vector. m
 represents the 

mechanical angle. The mathematical expression for 

PMSM mechanical motion is shown in equation (4). 

+ = −m

m e L

dv
J v T T

dt
     (4) 

In equation (4), J  represents the rotational inertia. 
mv  

signifies the mechanical angular velocity. 
LT  signifies 

the load torque.   represents the damping coefficient. 

The PMSM parameter identification model optimized 

by PSO is displayed in Figure 3. 
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Figure 3: Design of PMSM parameter identification 

based on PSO optimization 

 

In Figure 3, in the design of PMSM parameter 

identification model optimized by PSO, motor operating 

data, including voltage and current components, as well 

as back electromotive force, are first obtained under 

specific control conditions. These measurement values 

are input into the PSO algorithm to generate preliminary 

estimates. Then, the fitness function is defined by 

minimizing the sum of squares of the difference 

between the measured and estimated values. The PSO 

algorithm iteratively optimizes the fitness function, 

continuously updating the particle positions until it finds 

the parameter set that minimizes the fitness function. 

This set is the optimization identification result of the 

motor parameters [17]. The fitness function is displayed 

in equation (5). 

( ) ( ) ( ) ( ) ( )
2 2

1 2

1

ˆ ˆ 
=

   = − + −
   

n

d d q q

t

f x U t U t U t U t (5) 



Dual-Layer Dynamic Path Optimization for Airport Ground Equipment… Informatica 49 (2025) 91–104   95 

 

In equation (5), ( )f x  represents the fitness function. 

1  and 
2  represent weight coefficients. 

dU  and 

qU  represent the stator voltage components on the 

direct and quadrature axes in the ideal motor model, 

respectively. ˆ
dU  and ˆ

qU  represent the stator voltage 

components on the direct and quadrature axes in the 

actual motor model, respectively. 

 

 

3.2 Design of PMSM parameter system 

optimized by self-optimizing SA combined 

with PSO 
The SA is a probabilistic optimization algorithm 

inspired by metal annealing in solid-state physics [18]. 

In metal annealing, the material is heated and then 

slowly cooled. Its internal structure becomes disordered 

at high temperature. As the temperature gradually 

decreases, the atoms gradually tend to become ordered, 

ultimately forming a stable crystal structure [19]. The 

combination of SA and PSO can fully utilize the 

advantages of both to form a hybrid optimization 

strategy, which uses SA to explore new possible solution 

spaces and avoid premature convergence, while PSO 

quickly refines after finding potential excellent solutions. 

This fusion method is expected to enhance the global 

search performance while maintaining fast convergence, 

thereby finding better solutions in various optimization 

problems. In the PSO algorithm, each particle iteratively 

updates its position and velocity in the search space, 

while the SA algorithm simulates the physical annealing 

process to find the global optimal solution to the 

optimization problem. Therefore, in the hybrid 

optimization algorithm formed by utilizing the global 

exploration ability of SA and the fast convergence 

characteristics of PSO, PSO algorithm can provide fast 

global search ability, and balance exploration and 

development by adjusting inertia weights and learning 

factors. The SA algorithm can enhance global search 

capability, avoid premature convergence, and explore a 

more optimal solution space by dynamically adjusting 

temperature and acceptance probability. Introducing 

greedy algorithms and memory tempering mechanisms 

into self optimization strategies can further optimize 

local search capabilities and prevent falling into local 

optima. The final hybrid optimization strategy can 

utilize the fast convergence of PSO and the global 

exploratory nature of SA to form a multi-level 

optimization process, improving the overall 

optimization ability and accuracy. The cohesive hybrid 

model based on SA and PSO integration is shown in 

Figure 4. 
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Figure 4: Cohesive hybrid model process based on SA 

and PSO integration 

From Figure 4, in the cohesive mixing model based on 

SA and PSO, the PSO population is first initialized, 

including parameters such as particle position and 

velocity. The initial temperature and temperature decay 

coefficient of SA are set. Next, based on the velocity 

and position update formula of PSO, the position and 

velocity of particles are updated. The fitness value of 

each particle is evaluated, and the individual optimal 

position and group optimal position of the particles are 

updated. After each PSO iteration, the SA algorithm is 

used to explore the current optimal solution, calculate 

the fitness difference between the current solution and 

the new solution, and decide whether to accept the new 

solution based on the state transition probability of SA. 

Then, the temperature is updated and gradually lowered 

to reduce the possibility of accepting inferior solutions. 

During each iteration of the algorithm, the greedy 

algorithm is used to locally search for the current 

solution in order to refine the optimal solution. Finally, a 

memory tempering mechanism is introduced to record 

and trace back to the previous optimal solution, 

preventing falling into local optima. A fitness threshold 

is set. When the conditions are met, the algorithm 

terminates and outputs the optimal solution. The 

framework of PMSM parameter system based on 

SA-PSO is shown in Figure 5. 
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Figure 5: A PMSM parameter system framework based 

on SA-PSO 

In Figure 5, in the PMSM parameter system framework 

ground on the SA-PSO, the voltage and current signals 

of the motor are treated as inputs to supply the 
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adjustable model and reference model of the motor. The 

difference in output current between these two models is 

used as an evaluation fitness function, which is the core 

indicator of algorithm optimization. The SA-PSO is 

committed to selecting more accurate parameters to be 

identified, with the goal of reducing the output bias in 

the adjustable benchmark model, and making the fitness 

function close to zero. The decrease in fitness value 

represents an improvement in identification accuracy. At 

present, motor parameter identification is achieved by 

storing the collected data and running the algorithm 

offline. To obtain PMSM parameters in real-time, the 

termination condition is set to synchronize with the 

system running time. It achieves continuous 

identification of each sampling point through a reset 

mechanism every 50 iterations, meeting online 

identification requirements. In this way, by collecting 

real-time direct-current/alternating-current axis voltage, 

current, and speed signals, motor parameters can be 

iteratively updated in real-time to adapt to dynamic 

working conditions. The core idea of PMSM parameter 

identification ground on SA-PSO is to minimize the 

error between the reference model output and the 

adjustable model output of the motor. The adjustable 

model is displayed in equation (6). 

1
0 0

ˆˆ
ˆ

ˆ ˆ 1 ˆ0
ˆ


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    

e q

d d d ddd
e m

q qe dq
q

dq q
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L L I ULId

I Udt LI R
L

LL L
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In equation (6), e
 signifies the electrical angular 

velocity. ,d qL L  signify the stator inductance on the 

direct and quadrature axes in the ideal model. ˆ
dI  and 

ˆ
qI  represent the output current current at the stator side 

on the direct and quadrature axes in the actual model, 

respectively. ̂ m
 represents the permanent magnet flux 

[20]. In motor parameter identification, to measure the 

similarity between the motor reference and the 

adjustable model, a suitable fitness function is designed. 

The fitness function defined is as follows. 

( ) ( ) ( )

( ) ( ) ( )

2

1

2

2

1 ˆ, ,

1 ˆ, , ,

  = −  

  = −

 

d q d d

d q m q q

f L L R I k I k
K

f L L R I k I k
K

 (7) 

In equation (7), k  signifies the number of iterations. 

K  signifies the maximum number of iterations. 
1f  

signifies a fitness function that focuses on outputting 

response differences. The identifiable parameters are 

( ), ,d qL L R . 
2f  represents a fitness function that 

considers the dynamic behavior of the model, which can 

identify all parameters. The expression for updating 

parameter values is shown in equation (8). 

( ) ( ) ( ) ( )1 2
ˆ ˆ ˆ ˆ ˆ ˆ1 1 1    = − + − − + − −

   pbest gbestR k R k c R R k c R R k  (8) 

In equation (8), 
pbestR  and 

gbestR  respectively 

represent the optimal resistance of individuals and 

groups. The general expression for annealing is shown 

in equation (9). 

1 1=nowT T              (9) 

In equation (9), 
nowT  represents the current temperature. 

1  represents the initial temperature. 
1T  represents the 

general annealing coefficient. The mathematical 

expression for rapid annealing is shown in equation 

(10). 
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
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f
random
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now f
random

Td

now

T e
T

T T e

    (10) 

In equation (10), 
2  represents the rapid annealing 

coefficient. d  represents the number of times that the 

difference is received. 
2T  represents the temperature at 

which tempering increases. 
1− = −k kf f f  represents 

the fitness deviation. If all parameters are represented by 

P , then the mathematical expression for the parameters 

after annealing according to equation (10) is shown in 

equation (11). 

1 , 0

, 0

−

 


= 
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now

f

T

f

P

e f

      (11) 

To overcome the insufficient accuracy of PSO in 

handling multivariate parameter identification problems, 

as well as the insufficient rank of equation systems and 

the need for multiple experiments to determine fast 

annealing parameter settings in SA-PSO, a 

self-optimizing SA-PSO algorithm is proposed. This 

algorithm designs an innovative self-optimizing strategy 

by incorporating greedy optimization strategy and 

memory tempering mechanism into the PSO framework. 

In this strategy, PSO is endowed with the ability to 

accept inferior solutions with a certain probability, 

which significantly enhances the algorithm's ability to 

explore potential better solution spaces. At the same 

time, when the algorithm fails to evolve further after 

multiple iterations, greedy algorithms are used for local 

search to finely optimize the current solution, thereby 

solving the search space limitation that PSO may 

encounter in the later optimization process. The process 

of self-optimizing SA-PSO is shown in Figure 6. 
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Figure 6: The process of self-optimizing SA-PSO 

 

In Figure 6, in the self-optimizing SA-PSO, the particle 

position is first initialized, followed by fitness 

evaluation to update the optimal particle position and 

record the current optimal fitness parameters. If the 

fitness improvement brought by the new location is 

improved, it is migrated to the new location, and 

annealing operation is performed. Otherwise, it 

maintains the status quo. Through this process, the 

optimal state of individuals and groups is continuously 

optimized and recorded. Finally, if the predetermined 

iteration limit is realized, it returns the optimal solution. 

Conversely, the loop continues. The parameter update 

expression of the self-optimizing SA-PSO is shown in 

equation (12). 

( ) ( ) ( ) ( )1 2
ˆ ˆ ˆ ˆ ˆ ˆ1 1 1    = − + − − + − −

   pbest gbestP k P k c P P k c P P k  (12) 

In equation (12), ˆ
pbestP  and ˆ

gbestP  respectively 

represent the optimal parameters for individuals and 

populations. The inverse parameter is shown in equation 

(13). 

( ) ( ) ( ) ( )1 2
ˆ ˆ ˆ ˆ ˆ ˆ1 1 1     = − + − − + − −

   pbest gbestP k P k c P P k c P P k (13) 

In equation (13), ˆ P  represents the inverse parameter. 

  represents the inverse inertia weight. The 

expression for fitness deviation is shown in equation 

(14). 

( )( ) ( )( )ˆ ˆ 1 = − −f f P k f P k     (14) 

The mathematical expression of the parameters after 

self-optimizing annealing is shown in equation (15). 
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After annealing according to equation (15), a refined 

search is conducted to obtain the optimal parameters. 

4 Verification of PMSM parameter 

hybrid optimization strategy 

based on self-optimizing SA 

algorithm and PSO algorithm 
This chapter first sets the parameters of PMSM and 

verifies the adaptive SA-PSO algorithm. Subsequently, 

the performance of the hybrid optimization strategy for 

PMSM parameters is validated in practical applications. 

 

4.1 PMSM parameter setting and 

self-optimizing SA-PSO algorithm 

validation 
Based on relevant data from a certain power grid 

company, simulation experiments of PMSM are 

conducted using MATLAB software. In the experiment, 

the maximum iterations are limited to 150. The learning 

factors 1c  and 2c  are fixed to 2. The learning rate is 

0.5, and the inertia weight is 0.2867. The MATLAB 

software used is MATLAB R2023a version, and 

Simulink is used as a tool. The experimental hardware 

configuration uses an Intel Core i7 CPU, with an 

operating system configuration of Windows 10 and 

16GB of RAM. The initial particle position is randomly 

distributed in the parameter space, and the initial particle 

velocity is set to 0. The parameter range of stator 

winding resistance is 1Ω to 4Ω. The parameter range of 

direct axis inductance and quadrature axis inductance is 

set from 5mH to 7mH. The parameter range of 

permanent magnet flux is set from 0.1Wb to 0.2Wb.  

Initial parameters such as inertia weights, learning 

factors, and annealing coefficients in the research needs 

to consider the characteristics of the model. The 

selection should be based on the principle of ensuring 

steady-state tracking and filtering without divergence. 

The range of inertia weights selected is [0.1, 0.9], the 

learning factor is [1.5, 2.5], and the annealing 

coefficients is [0.80, 0.99]. To ensure coverage of the 

entire parameter space, the study sets the parameters of 

the above three coefficients as 5 sets of parameter ratios 

for parameter sensitivity analysis. The parameter 

sensitivity analysis results showed that the parameter 

combination with initial parameters such as inertia 

weight, learning factor, and annealing coefficient of 0.4, 

2.0, and 0.95, respectively, had fast convergence speed, 

small final error, and high stability. Therefore, exploring 

this parameter combination for initial parameter setting 

can help improve the robustness of the method. The 

specific PMSM simulation parameters are displayed in 

Table 2. 

 

Table 2: Specific PMSM simulation parameters 

PMSM parameters Values PMSM Parameters Values 

Voltage/V 220 d-axis Inductance/mH 6.42 

Current/A 4.2 q-axis Inductance/mH 6.42 
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Power/W 750 Permanent magnet flux chain/Wb 0.175 

Stator winding resistance/Ω 2.875 Frequency/Hz 50 

Rated speed/r▪min-1 1000 Stator resistance/Ω 2.87 

 

To evaluate the performance of the self-optimizing 

SA-PSO, simulation comparisons are conducted with 

PSO, SA, and traditional SA-PSO. The identification 

curves of the stator winding inductance on the direct and 

quadrature axes are shown in Figure 7. From Figure 7 

(a), the self-optimizing SA-PSO on the direct axis stator 

winding showed an extremely fast convergence speed, 

approaching the preset inductance value only in the first 

5 iterations. The inductance value obtained by the 

self-optimizing SA-PSO was 6.46mH. Compared with 

the ideal inductance value of 6.42mH, the error was only 

0.62%. The identification errors of the standard PSO, 

SA, and SA-PSO were 1.40%, 1.09%, and 0.93%, 

respectively. From Figure 7 (b), the inductance value 

obtained by the self-optimizing SA-PSO on the 

quadrature axis stator winding was 6.44mH, with an 

error of 0.31%. The identification errors of the standard 

PSO, SA, and SA-PSO were 1.09%, 1.24%, and 0.77%, 

respectively. Overall, the self-optimizing SA-PSO has 

high identification accuracy. 

The resistance and magnetic flux identification curves 

are displayed in Figure 8. In Figure 8 (a), the measured 

stator resistance value was 2.87 Ω. After the 

self-optimizing SA-PSO convergence, the resistance 

value obtained was 2.88 Ω, with an error of only 0.34%. 

In contrast, the identification errors of the standard PSO, 

SA, and SA-PSO were as high as 3.13%, 2.43%, and 

2.13%, respectively. From Figure 8 (b), the actual 

magnetic flux value of the permanent magnet was 

0.175Wb. The magnetic flux value identified by the 

self-optimizing SA-PSO was 0.184Wb, with an error of 

5.14%. The errors of standard PSO, SA, and SA-PSO 

were 19.42%, 17.14%, and 14.28%, respectively. 

Overall, the self-optimizing SA-PSO algorithm shows 

high accuracy in identifying resistance and permanent 

magnet flux, which is significantly better than other 

comparative algorithms. This further confirms its 

effectiveness and superiority as a parameter 

identification tool. To further verify the reliability and 

stability of these error rates, the confidence intervals of 

error rates for each algorithm were calculated in 

multiple experiments. For resistance value identification, 

the error rate confidence interval of the self-optimizing 

SA-PSO algorithm was [0.31%,0.37%], indicating that 

the algorithm still maintained high consistency under 

different experimental conditions. The confidence 

intervals for the error rates of standard PSO, SA, and 

SA-PSO algorithms were [2.80%,3.46%], 

[2.18%,2.68%], and [1.95%,2.31%], respectively, 

indicating greater volatility and instability. For the 

identification of permanent magnet magnetic flux, the 

error rate confidence interval of the self-optimizing 

SA-PSO algorithm was [4.85%,5.43%], demonstrating 

good stability. In contrast, the error rate confidence 

intervals of the standard PSO, SA, and SA-PSO 

algorithms were [18.30%,20.54%], [16.40%,17.88%], 

and [13.90%,14.66%], respectively. These data further 

indicate that the self-optimizing SA-PSO algorithm has 

smaller fluctuations and is more reliable in magnetic 

flux identification. 
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Figure 7. Identification curve of stator winding inductance for direct and quadrature axis 
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Figure 8: Identification curves of resistance and magnetic flux of permanent magnets using four algorithms 

 
To further verify the effectiveness of the self-optimizing 

SA-PSO, 10 rounds of simulation experiments are 

conducted on these four algorithms. All the parameter 

identification data obtained are recorded. Table 3 

displays the results. In Table 3, the difference between 

the maximum and minimum values of the 

self-optimizing SA-PSO was the smallest, with only 

0.13 Ω. Compared with the other three algorithms, 

which were 0.51 Ω, 0.40 Ω, and 0.25 Ω, the difference 

reduced by 74.50%, 67.5%, and 23.52%, respectively. 

This significantly reduced difference indicates that the 

self-optimizing SA-PSO exhibits higher stability in 

resistance parameter identification. In terms of mean, 

the self-optimizing SA-PSO has neither the highest nor 

the lowest mean across various parameters, indicating 

that it may have achieved a balance in performance, 

with neither overestimation nor underestimation. These 

results indicate that the self-optimizing SA-PSO is a 

parameter identification tool that achieves a good 

balance between stability and accuracy. 

 

Table 3: Parameter identification results of four algorithms 

Algorithm R/Ω Ld/mH Lq/mH Permanent magnet flux chain/Wb 

PSO 

Maximum  2.97 6.94 6.81 0.232 

Minimum  2.46 6.23 6.33 0.188 

Average  2.65 6.61 6.52 0.207 

SA 

Maximum  2.95 6.89 6.77 0.225 

Minimum  2.55 6.33 6.35 0.200 

Average  2.89 6.54 6.56 0.208 

SA-PSO 

Maximum  2.97 6.80 6.87 0.222 

Minimum  2.72 6.36 6.34 0.197 

Average  2.80 6.51 6.50 0.202 

Self-Optimizing SA-PSO 

Maximum  2.89 6.79 6.78 0.202 

Minimum  2.76 6.41 6.38 0.180 

Average  2.82 6.46 6.47 0.189 

 

4.2 Performance verification of PMSM 

parameter hybrid optimization strategy in 

practical applications 
To verify the effectiveness of the PMSM parameter 

hybrid optimization strategy in practical applications, 

the set speed is suddenly changed from 2000rmp/min to 

2500rmp/min at 0.1s. At 0.2s, the no-load is suddenly 

changed to a load of 5N·m. The changes in PMSM 

parameters over time are collected, as shown in Figure 9. 

From Figure 9 (a), within 0 to 0.1s, the three-phase 

currents of PMSM A, B, and C fluctuated between -10A 

and 10A. After 0.1s, the fluctuation range of the 

three-phase current was reduced to between -5A and 5A. 

This change is consistent with the set sudden change 

speed, proving the effectiveness of PMSM. From Figure 

9 (b), after 0.1s, the angular velocity and rotational 

speed of PMSM also underwent a sudden change, with 

the rotational speed increasing from 2000rpm to 

2500rpm and the angular velocity increasing from 

800rad/s to 1000rad/s. These observation results are 

consistent with the experimental settings, indicating the 

effectiveness of the optimization strategy 

comprehensively. 
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Figure 9: Changes in PMSM parameters over time 

 
To further verify the stability of the strategy, the input 

current of the direct axis stator is 0. The changes in the 

current and voltage of PMSM on the direct and 

quadrature axes over time are monitored under these 

conditions, as shown in Figure 10. From Figure 10 (a), 

the direct axis stator was maintained at 0V, while the 

quadrature axis stator ultimately stabilized at 220V. The 

voltage of the entire system achieved rapid stability 

within 0.25s, indicating that the system had high 

response speed and excellent stability. From Figure 10 

(b), the direct axis stator remained at 0A, while the 

quadrature axis stator stabilized at 5A. In the 

implemented optimization strategy, the PMSM exhibits 

good system stability with minimal voltage and current 

fluctuations. 

To verify the actual performance of the self-optimizing 

SA-PSO in PMSM parameter adjustment, a comparison 

is made with PSO, SA, and traditional SA-PSO, as 

displayed in Table 4. From Table 4, the fitness of the 

hybrid strategy decreased by 70.83%, 52.98%, and 

32.97% compared with PSO, SA, and traditional 

SA-PSO, respectively. The error rate of the hybrid 

strategy in identifying resistance, inductance, and 

magnetic flux was lower than the other three algorithms. 

This indicates that the hybrid strategy has advantages in 

the parameter identification accuracy. The identification 

speed of the hybrid optimization strategy was 0.114s, 

which was 28.30%, 24.50%, and 14.92% shorter than 

PSO, SA, and traditional SA-PSO, respectively. In 

summary, the self-optimizing SA-PSO exhibits accuracy 

and efficiency in PMSM parameter adjustment. 
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Figure 10: The variation of current and voltage over time on the straight and quadrature axes 

 

Table 4: Average identification results of four optimization strategies 

Parameter Hybrid optimization strategy PSO SA SA-PSO 

Resistance/Ω 2.887 2.962 2.921 2.901 

Error/% 0.46 3.77 2.31 1.79 

Inductance/mH 8.31 8.591 8.504 8.416 

Error/% 0.51 1.49 1.37 0.96 

Permanent Magnet Flux Chain/Wb 0.301 0.274 0.281 0.297 

Error/% 0.34 2.04 1.48 1.51 

Identification Time/s 0.114 0.159 0.151 0.134 
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Fitness Value 0.63 2.16 1.34 0.94 

 

The comparison table of the runtime performance of 

PSO, SA, SA-PSO, and self-optimizing SA-PSO in 

various scenarios is shown in Table 5. From Table 5, it 

can be seen that self-optimizing SA-PSO exhibits lower 

errors and better stability in most scenarios, especially in 

optimizing parameters such as magnetic field and 

resistance. Compared with other algorithms, it has better 

accuracy and smaller standard deviation, demonstrating 

its advantages in practical applications.

 

Table 5: The comparison table of the runtime performance of PSO, SA, SA-PSO, and self-optimizing SA-PSO in 

various scenarios 

Scene Index 
Self-optimizing 

SA-PSO 
PSO SA SA-PSO 

Direct axis stator 

inductance 
Error 0.62% 1.40% 1.09% 0.93% 

Quadrature axis 

stator inductance 
Error 0.31% 1.09% 1.24% 0.77% 

Stator resistance  Error 0.34% 3.13% 2.43% 2.13% 

Permanent 

magnet magnetic 

flux 

Error 5.14% 19.42% 17.14% 14.28% 

Multiple rounds 

of simulation 

experiments 

Maximum 

minimum value 

difference 

0.13Ω 0.51Ω 0.40Ω 0.25Ω 

Standard 

deviation 
0.04 0.19 0.14 0.10 

stability 0.012 0.045 0.039 0.028 

 

 

 

To further verify the robustness and wide applicability 

of the self-optimizing SA-PSO algorithm in PMSM 

parameter adjustment, its performance under transient 

conditions is analyzed, and the instantaneous increase of 

200 revolutions per minute in speed under dynamic 

conditions is investigated. The PMSM parameter 

identification results of each optimization strategy under 

transient conditions are shown in Table 6. From Table 6, 

the resistance error, inductance error, and permanent 

magnet flux error of the self-optimizing SA-PSO 

strategy were 1.92%, 1.41%, and 1.36%, respectively, 

all less than 2%, which was significantly better than the 

performance of other methods. In addition, the response 

time of the research method was only 0.021 seconds, 

which was 34.37%, 67.69%, and 25% shorter than PSO, 

SA, and traditional SA-PSO, respectively, under 

transient bar change conditions. From the above, it can 

be seen that the self-optimizing SA-PSO algorithm has 

high robustness and wide applicability in PMSM 

parameter adjustment. 

 

Table 6: PMSM parameter identification results of various optimization strategies under transient conditions 

Parameter 
Self-optimizing 

SA-PSO 
PSO SA SA-PSO 

Resistance error/% 1.92 4.67 12.48 2.45 

Inductance error/% 1.41 5.26 6.56 3.38 

Magnetic flux error 

of permanent 

magnet/% 

1.36 3.10 5.63 2.53 

Response time/s 0.021 0.032 0.065 0.028 

 

5 Discussion 
In recent years, PMSM has been widely used in 

high-performance applications due to its excellent 

performance. To improve the operating efficiency of 

PMSM and reduce maintenance costs, a parameter 

optimization method combining self-optimizing SA 

algorithm and PSO was designed. The research results 

indicated that there were differences in the results 

between self-optimizing SA-PSO and standard PSO, SA, 

and traditional SA-PSO algorithms. The self-optimizing 

SA-PSO algorithm exhibited excellent accuracy and 

stability in parameter identification, mainly due to its 

unique adaptive adjustment mechanism and 

optimization strategy. This is because the 

self-optimizing SA-PSO algorithm can dynamically 

adjust the search strategy based on the quality of the 

current solution, thereby maintaining efficiency 

throughout the entire search process. In contrast, 

standard PSO and SA algorithms do not have this 

adaptive ability, so they are prone to getting stuck in 
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local optima when dealing with complex search spaces, 

resulting in significant identification errors. In addition, 

SA-PSO combines the global search capability of SA 

algorithm and the local search capability of PSO. The 

self-optimizing SA-PSO further enhances this 

combination. Through adaptive adjustment, it 

significantly improves the resistance to noise and 

disturbance, thus exhibiting higher stability and 

accuracy in multiple rounds of simulation experiments. 

The self-optimizing SA-PSO exhibits a very fast 

convergence speed in identifying the inductance values 

on the stator windings of the straight and orthogonal 

axes, quickly approaching the preset values. In contrast, 

standard PSO and SA algorithms have slower 

convergence speeds and are easily affected by initial 

parameter settings, resulting in larger identification 

errors. The self-optimizing SA-PSO algorithm can 

effectively avoid getting stuck in local optima by 

dynamically adjusting the search strategy. This 

robustness enables the algorithm to maintain a small 

fluctuation range under different experimental 

conditions, thereby demonstrating high consistency and 

stability in multiple rounds of experiments. Sun X et al. 

optimized PMSM by adjusting the permanent magnet 

structure, air gap length, and stator core geometry to 

reduce torque ripple by 24% [6]. This method focused 

on improving the stability of motors in specific 

applications. However, this article not only considers the 

adjustment of structural parameters in optimizing motor 

performance, but also combines the optimized control 

strategy, further improving the efficiency and reliability 

of motors in practical use. He C et al. proposed an 

analysis method based on finite element model, which 

enhanced the overload capacity of PMSM by selecting a 

lower torque angle, thereby improving the overall 

performance of the motor [7]. This method effectively 

improves the durability of the motor, especially suitable 

for high load applications. However, this article further 

considers the dynamic response of the motor and 

combines advanced control algorithms to optimize the 

performance of the motor in transient response, making 

the motor not only perform excellently in steady state, 

but also maintain high efficiency and stability during 

transient load changes. Therefore, the self-optimizing 

SA-PSO algorithm exhibits high stability, accuracy, fast 

convergence, and robustness in parameter identification, 

making it significantly advantageous in PMSM 

parameter optimization. 

6 Conclusion 
 
In the PMSM parameter optimization, more efficient 

and accurate parameter identification methods are 

constantly receiving attention. Especially, optimizing 

parameters is crucial for improving the performance and 

efficiency of electric motors. The study aims to improve 

the convergence speed and identification accuracy of 

PMSM parameters by combining self-optimizing SA 

and PSO to enhance the efficiency of power system 

work in power grid companies. The results showed that 

the self-optimizing SA-PSO exhibited faster 

convergence speed and higher accuracy than traditional 

algorithms in identifying the inductance values of stator 

winding. The inductance value of the direct axis stator 

winding only approached the set target within 5 

iterations, with an error rate of 0.62%, significantly 

better than the standard PSO, SA, and SA-PSO. The 

performance on the quadrature axis stator winding was 

also similar, with an error rate of 0.31%. In the 

identification of resistance values, the error rate of the 

self-optimizing algorithm was 0.34%, which was much 

lower than other algorithms. For the identification of 

permanent magnet magnetic flux, although the error rate 

of the self-optimizing SA-PSO was 5.14%, it was still 

lower than the error rate of the other three algorithms. In 

summary, the research on optimizing PMSM parameter 

systems using self-optimizing SA combined with PSO 

has significantly improved the accuracy and speed of 

parameter identification. In addition, the research 

method has applicability in high-performance electric 

vehicles, industrial automation systems, and specific 

application scenarios that require precise motor control, 

providing support and reference for the application of 

power grid systems or specific high-performance control 

environments. However, despite the excellent 

performance of the self-optimizing SA-PSO algorithm 

in multiple aspects, there is still room for improvement 

in the error rate of permanent magnet flux identification. 

Future work can focus on further reducing the error rate 

of magnetic flux identification and exploring the 

generalization ability of the algorithm under different 

motor types and operating conditions. 
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