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The paper summarizes a Doctoral Thesis that focuses on two new approaches for unobtrusive contact-free
monitoring of cardiorespiratory and hemodynamic states. First approach is based on radar signals and
proposes a novel branched neural network architecture for classification of hemodynamic scenarios. The
second is based on RGB camera signals and proposes multi-wavelength depth-dependant photoplethysmo-
gram reconstruction, allowing for single-site pulse transit time measurement and blood pressure estimation
using a consumer camera.

Povzetek: Članek povzema doktorsko dizertacijo, ki se osredotoča na brezstično zaznavanje fizioloških
signalov z uporabo radarja in RGB kamere.

1 Introduction
Omnipresence of sensor-equipped devices spurred rapid de-
velopment of e-health and m-health applications in the past
decades. Despite their wide-spread adoption in the form
of wearables [1], such devices are ultimately not a univer-
sal or ideal solution for regular health monitoring due to
their reliance on battery, requiring skin contact and gen-
eral obtrusive nature. Ideally, the need for direct user-
device interaction should be completely removed in the
paradigm of ubiquitous and pervasive computing, which
can be achieved using contact-free sensors such as radars
and cameras that monitor different parts of electromagnetic
(EM) spectrum [2]. These devices can be used to monitor
different physiological parameters unobtrusively, making
them feasible for subjects who cannot use wearables (e.g.,
neonates, burn victims, elderly with dementia) [3].

2 Radar-based classification of
hemodynamic scenarios

We initially explored the potential of radio-frequency part
of the EM spectrum, measured by radars, for detection
of complex hemodynamic states. These are expressed
via several physiological parameters, including respiration.
Radars allow for measurement of periodic thoracic expan-
sion and contraction even in challenging conditions, such
as night time and occlusion, making them ideal for sleep
monitoring. We proposed a novel branched neural network
architecture that can take a different number and type of
input signals [4]. Two types of layers were primarily in-

vestigated, namely 1D convolutional networks (1D CNN)
and fully connected networks (Dense ANN). Several input
options were checked in terms of window length, modal-
ity (contact, radar, or fusion) and data type (temporal, fre-
quency representation via FFT, or fusion).
We showed that we can detect five different hemody-

namic states available in a public dataset [5] (Apnea, Val-
salva, Tilting table ascent, Tilting table descent, Resting)
with up to 0.83 accuracy and F1 score when using only
contact-free radar signals as input. These results were only
4-5% behind traditional contact sensors, as shown in Ta-
ble 1, confirming feasibility of radar-based physiological
monitoring.

3 Camera-based MW PTT
measurement and BP estimation

In the second part, we investigated the feasibility of us-
ing the visible part of the EM spectrum, specifically the
feasibility of a modified consumer RGB camera for multi-
wavelength (MW) pulse transit time (PTT) measurement
between different skin layers [6]. Different wavelengths
penetrate to different depths and allow for depth-specific
photoplethysmogram (PPG) reconstruction, as shown in
Figure 1.
These PPGs can be used for MW PTT computation and

subsequent blood pressure (BP) estimation. We found
that algorithmic channel separation of mentioned PPGs is
mandatory due to the imperfect nature of image sensor de-
sign, which causes spectral overlap between PPGs from dif-
ferent depths. We thus developed several algorithms that
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Table 1: Accuracy and F1 score (Acc. / F1) for the investigated Dense and 1D CNN networks at different window lengths,
input modalities, and input data types, always using the best-performing set of hyperparameters. Best results for each
network architecture are bolded, and the overall best results are highlighted in green.

Window Network Modality Temp. Data Freq. Data Temp. + Freq.

5 s

Dense ANN
Contact 0.69 / 0.68 0.68 / 0.66 0.69 / 0.66
Radar 0.64 / 0.61 0.72 / 0.71 0.72 / 0.72
Fusion 0.68 / 0.68 0.66 / 0.65 0.70 / 0.70

1D CNN
Contact 0.65 / 0.65 0.67 / 0.65 0.70 / 0.69
Radar 0.62 / 0.60 0.61 / 0.60 0.62 / 0.62
Fusion 0.63 / 0.63 0.63 / 0.62 0.64 / 0.63

10 s

Dense ANN
Contact 0.78 / 0.77 0.80 / 0.80 0.80 / 0.79
Radar 0.75 / 0.75 0.76 / 0.76 0.75 / 0.74
Fusion 0.79 / 0.79 0.80 / 0.78 0.79 / 0.78

1D CNN
Contact 0.76 / 0.76 0.73 / 0.71 0.75 / 0.74
Radar 0.74 / 0.74 0.72 / 0.71 0.74 / 0.73
Fusion 0.79 / 0.78 0.75 / 0.75 0.78 / 0.78

20 s

Dense ANN
Contact 0.84 / 0.84 0.88 / 0.87 0.87 / 0.86
Radar 0.81 / 0.81 0.83 / 0.83 0.82 / 0.81
Fusion 0.86 / 0.84 0.87 / 0.87 0.88 / 0.87

1D CNN
Contact 0.85 / 0.85 0.82 / 0.80 0.84 / 0.83
Radar 0.82 / 0.82 0.80 / 0.78 0.81 / 0.80
Fusion 0.86 / 0.84 0.82 / 0.82 0.85 / 0.85

Figure 1: Layered structure of human skin, showing vascular presence and important structures. Pulse waves propagate
through the vessels between different sites (horizontal arrow) and between different layers (vertical arrow).

allow for data-driven camera-independent channel separa-
tion, which in turn allows for precise measurement of MW
PTTs [7]. Initially we checked the performance of exist-
ing blind source separation methods such as PCA and ICA.
Our first proposed algorithm was based on camera physics
– specifically quantum efficiency of the specific image sen-
sor, using it to separate the bands. Subsequent variants
were fully data driven, using the genetic algorithm (GA)
paradigm to optimize parameters governing the linear com-
binations of channel mixtures, with different fitness func-

tions – either phase delay (PD) between waveforms or error
of a trained BP regressor [8]. These lead to good channel
separation andMWPTT computation, enabling subsequent
training of BP estimation models. Finally we confirmed on
an in-house dataset with 13 subjects that such MW PTTs
are well-correlated with BP, and trained RandomForest re-
gression models to predict both systolic and diastolic BP in
a leave-one-subject-out (LOSO) experiment with and with-
out personalization. The best-performing models achieved
errors within clinical standards, as shown in Table 2.
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Table 2: Comparison of the MAEs in mmHg for SBP and DBP estimation when using different channel separation al-
gorithms. We compare against the baseline of using no channel separation. We report results for experiments with and
without personalization in a leave-one-subject-out (LOSO) experiment.

General regressor [mmHg] Personalized regressor [mmHg]
Algorithm MAESBP MAEDBP MAEAVG MAESBP MAEDBP MAEAVG
Baseline 11.31±1.50 9.02±1.60 10.17±1.55 8.64±1.62 6.12±1.48 7.38±1.55
PCA 10.22±1.31 8.91±1.19 9.57±1.25 8.01±1.25 5.99±1.35 7.00±1.30
ICA 9.81±1.20 6.97±1.10 8.39±1.15 6.83±1.10 5.75±1.30 6.29±1.20

Physics (or.) 7.72±1.00 5.46±0.98 6.59±0.99 4.78±0.96 3.89±0.97 4.34±0.97
Physics (ref.) 6.94±1.02 5.03±0.96 6.06±1.01 4.00±0.94 2.88±0.99 3.39±1.00

GA-BP 6.89±0.95 4.91±0.98 5.90±0.97 3.48±1.02 2.61±0.90 3.05±0.96
GA-PD 7.02±1.03 4.97±0.97 6.00±1.00 4.01±0.98 3.03±0.96 3.52±0.97

4 Conclusion
Overall we showed that contact-free sensors leveraging the
information from the EM spectrum are an affordable un-
obtrusive alternative to wearables, and can achieve similar
performance in monitoring of important physiological pa-
rameters and states. While some limitations and challenges
remain, such as difficult uncontrolled conditions and pri-
vacy concerns, there is potential for implementing the pro-
posed methods in a single device, which could immensely
improve the speed, cost and comfort of physiological mon-
itoring both at home and in hospitals.
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