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Cross-modal pedestrian re-identification (C-ReID) is a crucial task in computer vision, aiming to match 

pedestrian identities across different modalities of data. This paper proposes a reinforcement learning-

based framework, RLCMPRF, to tackle the challenges of modality variability, data diversity, annotation 

difficulties, and optimal strategy selection. RLCMPRF uses deep Q-network (DQN) reinforcement 

learning to dynamically select the best feature extraction and matching strategies, ensuring robustness 

against these challenges. We introduce a dual-stream network to process multimodal images, followed by 

a feature fusion layer for integration. The DQN-based strategy learning is complemented by a reward 

function designed to optimize matching accuracy, speed, and robustness. Experimental results 

demonstrate that RLCMPRF outperforms state-of-the-art methods based on deep learning, attention 

mechanisms, meta-learning, and generative adversarial networks. RLCMPRF achieves a success rate of 

82% and an average cumulative reward of 150, showing improvements in convergence speed and 

generalization ability across multiple datasets. 

Povzetek: Opisan je okvir za ponovno identifikacijo prehodov med modalnostmi, ki temelji na ojačitvenem 

učenju z več strategijami in uporablja globoko Q-mrežo (DQN).  RLCMPRF uporablja dvotokovno mrežo 

in DQN za dinamično izbiro strategij ekstrakcije in ujemanja značilnosti. 

 

 

1 Introduction 
With the acceleration of urbanization and the growth 

of social security needs, video surveillance systems play 

an increasingly important role in maintaining public safety 

[1]. Pedestrian Re-Identification (ReID), as a key research 

direction in the field of video surveillance, aims to 

recognize images or video clips of the same pedestrian 

from different camera views. This technique has a wide 

range of applications in various fields such as crowd 

management, crime prevention, and traffic monitoring [2]. 

Traditional pedestrian re-recognition mainly focuses 

on the unimodal (usually RGB visible light images) case, 

in which the system needs to process data from the same 

sensor type. However, in real-world application scenarios, 

single-modal data is often difficult to meet the 

requirements of high-precision recognition due to factors 

such as changes in ambient lighting conditions, the 

influence of occlusions, and differences in camera 

viewpoints [3]. Therefore, cross-modal pedestrian re-

recognition emerges, which involves the matching 

problem between different modal data, such as the 

matching between visible light images and infrared 

images. By introducing cross-modal information, the 

above limitations can be overcome to a certain extent, thus 

improving the accuracy and robustness of recognition [4]. 

Cross-modal pedestrian re-recognition is not only 

limited to matching between visible and non-visible 

images, but can also be extended to other forms of data  

 

fusion, such as matching between RGB images and depth 

maps, contour maps, and so on. In different application 

scenarios, such as nighttime surveillance, bad weather 

conditions or special environments, cross-modal 

pedestrian re-recognition can better cope with various 

complex situations, which provides the possibility of 

realizing all-weather and all-time effective surveillance 

[5]. However, cross-modal pedestrian re-recognition faces 

many challenges. The first is the inter-modal variability 

problem, the information collected by different types of 

sensors is inherently different, how to effectively extract 

and match this information is the key to the research. 

Second is the diversity of data, including the diversity of 

viewpoints, poses, and occlusions, which increases the 

difficulty of feature extraction and matching. In addition, 

the heavy workload and high cost of data labeling is also 

a major challenge for current research [6]. 

To address the above challenges, this study aims to 

explore a new solution - the use of Reinforcement 

Learning (RL) techniques for cross-modal pedestrian re-

identification. Reinforcement learning, as a machine 

learning method that enables an intelligent body to learn 

optimal behavioral strategies by interacting with its 

environment, excels in handling complex decision-

making problems. We believe that by applying 

reinforcement learning to cross-modal pedestrian re-

identification, the problems of inter-modal variability, 

data diversity, and labeling difficulties can be effectively 
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addressed to improve the overall performance of the 

system. 

The novelty of the RLCMPRF framework lies in its 

integration of reinforcement learning, multi-task learning 

and probabilistic graph models, which innovatively solves 

the limitations of existing SOTA algorithms. Its necessity 

lies in its ability to effectively deal with problems such as 

noise sensitivity, inefficient big data processing, 

inaccurate category recognition and poor robustness, 

providing a breakthrough solution for research in the field. 

2 Related work 

2.1 Existing pedestrian re-identification 

methods 

Pedestrian Re-Identification (ReID) is the process of 

detecting and recognizing the same individual under 

different camera viewpoints. In recent years, with the 

development of computer vision technology and deep 

learning, pedestrian re-recognition has become an active 

research field. Most of the early pedestrian re-recognition 

methods rely on hand-designed feature descriptors, such 

as SIFT (Scale-Invariant Feature Transform), HOG 

(Histogram of Oriented Gradients), etc [7, 8]. However, 

these methods are not effective when facing occlusion, 

illumination changes and perspective changes in complex 

environments. With the rise of deep learning techniques, 

Convolutional Neural Networks (CNNs) have been 

widely used in pedestrian re-recognition tasks due to their 

powerful feature extraction capabilities [9]. A method 

called Joint ReID and Attribute Recognition Network 

(JAN) has been proposed in the literature, which 

significantly improves the accuracy of the recognition by 

jointly training the pedestrian reidentification and attribute 

recognition tasks. Another work proposed in the literature 

introduces an attention mechanism that allows the model 

to focus on key regions in the pedestrian image, thus 

improving the robustness of the recognition.  

Recent research has addressed various challenges in 

network performance and computer vision. Chydzinski 

and Adamczyk studied the burst ratio of packet losses in 

individual network flows, shedding light on network 

reliability and data loss patterns in communication 

systems [10]. On the other hand, Bassel et al. introduced 

PFA-GAN, a pose face augmentation method based on 

generative adversarial networks, contributing to 

advancements in face recognition and augmentation 

technology for improved model training in computer 

vision applications [11]. 

In addition to CNN-based approaches, some 

researchers have begun to explore the application of 

recurrent neural networks (RNNs) in pedestrian re-

recognition. The literature proposes a model based on 

Long Short-Term Memory Networks (LSTMs) for 

capturing the dynamics of pedestrians between frames, 

which is particularly effective for handling the task of 

pedestrian re-recognition in video sequences [12]. 

 

 

2.2 Challenges in cross-modal pedestrian 

re-identification 

Although deep learning techniques have achieved 

significant results in unimodal pedestrian re-recognition, 

unimodal methods still have limitations in practical 

applications due to the diversity of environmental factors, 

such as light changes and view angle changes. Cross-

modal pedestrian re-recognition aims to overcome these 

problems by integrating multiple different types of data 

sources, such as matching between RGB images and 

infrared images, RGB images and depth maps. Lighting 

variations are a major challenge for cross-modal 

pedestrian re-identification. The appearance of a 

pedestrian image can vary significantly between daytime 

and nighttime, or between indoor and outdoor 

environments. To cope with the effects of illumination 

variations, some researchers have proposed methods 

based on multimodal feature fusion. For example, a 

framework called Cross-Modality Person Re-ID Network 

(CM-ReIDNet) has been proposed in the literature, which 

realizes feature alignment between RGB images and 

infrared images by sharing encoders and decoders, thus 

improving the performance of cross-modal recognition 

[13]. Perspective change is also another common problem. 

When pedestrians are in different positions or postures, 

their appearance features change significantly. A method 

called Pose-Guided Person Re-identification Network 

(PReNet) has been proposed in the literature, which 

enhances the robustness of the model to changes in 

viewing angle by estimating the pedestrian's pose and 

using it as an additional input [14]. 

2.3 Application of reinforcement learning 

to pedestrian re-identification 

In recent years, reinforcement learning has begun to 

emerge in the field of pedestrian re-recognition as an 

effective decision-making tool. Unlike traditional 

supervised learning, reinforcement learning allows 

intelligences to learn optimal strategies through 

interaction with the environment, which provides new 

ideas for solving dynamic decision-making problems in 

pedestrian re-recognition. The literature proposes a 

reinforcement learning-based framework for pedestrian 

re-identification, which utilizes reinforcement learning to 

dynamically select the most effective feature extraction 

module and matching strategy. Experimental results show 

that this approach performs well in handling cross-domain 

pedestrian re-recognition tasks, especially when faced 

with the problem of domain transfer between different 

data sources [15]. The literature has designed a multi-stage 

reinforcement learning framework which first determines 

the optimal feature representation through reinforcement 

learning, and then uses a reinforcement learning strategy 

to guide the feature matching process in the second stage. 

This approach not only improves the accuracy of 

recognition, but also demonstrates good generalization 

ability [16]. 
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Table 1: Research status 

Algorithm 

Name 

Accura

cy 
Recall 

F1 

Score 

Run 

Time 

Memory 

Consumption 

Algorithm A 95.2% 93.5% 94.3% 0.5 s 2 GB 

Algorithm B 92.8% 91.0% 91.9% 0.8 s 3 GB 

Algorithm C 94.0% 92.2% 93.1% 0.7 s 2.5 GB 

Algorithm D 91.5% 90.0% 90.7% 1.0 s 4 GB 

Algorithm E 93.7% 92.5% 93.1% 0.6 s 2.2 GB 

As shown in Table 1, this study advances the field by 

addressing the limitations of SOTA, such as sensitivity to 

noise and poor generalization. The introduction of the 

RLCMPRF framework is justified by its novelty in 

employing multi-task learning and probabilistic models, 

enhancing accuracy and robustness, thereby highlighting 

its necessity for significant progress in the domain. 

3 Methodology 

3.1 Description of the problem 

Cross-Modal Person Re-Identification (C-ReID) 

refers to the matching of pedestrian identity between 

different modal data. The term "modality" refers to the 

mode of data acquisition or the presentation of data, and 

common modalities include but are not limited to RGB 

visible images, infrared images, depth maps, etc. The goal 

of Cross-Modal Person Re-Identification (C-ReID) is to 

match pedestrian identities between different modalities. 

The goal of cross-modal pedestrian re-identification is to 

establish a mechanism that enables the correct 

identification of travelers even in different modalities. 

Specifically, given a query collection

1 2  { , , , }mQ q q q=  , where each iq  represents a query 

image from a certain modality (e.g., RGB image). Also, 

given a gallery collection
1 2  { , , , }nG g g g=  , where 

each
jg  represents a gallery image from another modality 

(e.g., an IR image). The task of cross-modal pedestrian re-

recognition is to find the gallery image in G that 

corresponds to each query image in Q [17, 18]. 

In order to define the research object more clearly, we 

define the specific problem as follows: in the cross-modal 

pedestrian re-identification task, the modal variability 

problem is an important challenge, because different 

modalities are fundamentally different in terms of color 

space and other visual features, and how to extract 

consistent features from them becomes critical. The data 

diversity problem is also significant, even within the same 

modality, the pedestrian images will show large 

differences due to factors such as viewing angle, pose and 

occlusion, so robust feature extraction methods need to be 

designed. The data annotation problem is also worthy of 

attention, because in cross-modal pedestrian re-

identification, the matching of multi-modal data makes the 

annotation work complex and time-consuming, so how to 

reduce the annotation burden and improve the data 

utilization has become an urgent problem to be solved. In 

addition, the problem of matching strategy selection 

should not be neglected, because the optimal matching 

strategies may vary in different application scenarios, and 

how to dynamically select the optimal strategy according 

to the specific situation to adapt to the diverse input data 

is another challenge. Finally, the problem of model 

generalization ability is equally important, an ideal model 

should maintain high recognition accuracy in different 

datasets and practical application scenarios, how to 

improve the generalization ability of the model so that it 

can also perform well on unknown data is an important 

direction of current research [19, 20]. 

3.2 Cross-modal pedestrian re-

identification framework with 

reinforcement learning 

3.2.1 Overview of the framework 

In this study, a reinforcement learning-based Cross-

Modal Person Re-Identification Framework (RLCMPRF) 

is proposed. The framework aims to dynamically select 

the optimal feature extraction and matching strategies 
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through reinforcement learning techniques to cope with 

the problems of modal variability, data diversity, data 

annotation challenges, matching strategy selection, and 

model generalization capability in cross-modal pedestrian 

re-identification. The framework mainly consists of four 

main components [21, 22]. 

(1) Feature extraction module: responsible for 

extracting meaningful feature representations from images 

of different modalities. 

(2) Strategy Learning Module: Learning optimal 

feature matching strategies using reinforcement learning 

techniques. 

(3) Strategy Execution Module: executes the cross-

modal matching task based on the learned strategies. 

(4) Evaluation and feedback module: evaluates 

matching results and provides feedback to update the 

strategy learning module. 

3.2.2 Design of the feature extraction module 

The feature extraction module is the foundation of the 

whole framework, which extracts useful features from 

images of different modalities through deep learning 

techniques. We adopt a Two-Stream Network structure 

(Two-Stream Network) to process RGB images and non-

RGB images (e.g., infrared images or depth maps) 

separately and to facilitate inter-modal feature transfer by 

sharing certain high-level features. 

Specifically, our feature extraction network consists 

of two sub-networks: 

RGB Feature Extraction Network: for RGB images, 

this network usually contains multiple Convolutional 

Layers, Pooling Layers and Fully Connected Layers. 

Convolutional Layers are used to capture local features in 

the image, Pooling Layers are used to reduce the spatial 

dimensionality of the feature map, and Fully Connected 

Layers are used to generate the final feature vector as 

shown in Equation (1). 

 RGB( ) FC(Pool(Conv( )))f x x=  (1) 

Where x is the input RGB image and
RGB( )f x  is the 

output feature vector. 

Non-RGB Feature Extraction Networks: for non-

RGB images (e.g., infrared images or depth maps), we 

design specialized network structures to accommodate the 

characteristics of specific modalities. For example, when 

processing infrared images, we may use a smaller 

convolutional kernel to capture the details of the 

temperature distribution. While when processing depth 

maps, we need to focus on the extraction of distance 

information as shown in Equation (2). 

 Non-RGB( ) FC(Pool(Conv( )))f y y=  (2) 

Where y is the input non-RGB image and
Non-RGB( ) f y  

is the output feature vector. 

In order to enable the two sub-networks to share 

certain high-level features, we introduce a Feature Fusion 

Layer (FFL) at the top layer of the network, which fuses 

the output features of the two sub-networks to generate a 

unified feature representation, as shown in Equation (3). 

 RGB Non-RGB( , ) Fusion( ( ), ( ))f x y f x f y=  (3) 

Where ( ) ,  f x y  is the fused feature vector.  

3.2.3 Design of the feature fusion layer 

The feature fusion layer is designed to merge feature 

vectors from different modalities into a unified 

representation. We adopt a weighted average-based 

approach to feature fusion, which allows flexibility in 

adjusting the importance of features from different 

modalities, as shown in Equation (4). 

 1 RGB 2 Non-RGB( , ) ( ) ( )f x y w f x w f y=  +    (4) 

Where 1w  and
2w  are weight coefficients to adjust 

the relative importance of different modal features. These 

weights can be dynamically adjusted by the strategy 

learning module in the reinforcement learning process. 

3.3 Enhanced learning algorithm 

In the cross-modal pedestrian re-identification task, 

we choose Deep Reinforcement Learning (DRL) as the 

main tool for problem solving. Specifically, we use Deep 

Q-Network (DQN) as the base algorithm because it 

performs well in dealing with large-scale state spaces and 

continuous action spaces.DQN approximates the Q-

function through a deep neural network that predicts the 

value of each action in a given state, thus guiding the 

intelligent to choose the optimal action. 

State Space (SS) defines the state of the environment 

that an intelligent body can observe at each moment. In 

the cross-modal pedestrian re-recognition task, the State 

Space includes (1) Feature representation: feature vectors 

f (x, y) from different modalities, where x denotes the 

query image and y denotes the gallery image. (2) Matching 

history: results of previous attempted matches by the 

intelligent body, including successful matches and failed 

matches. (3) Environment information: other external 

factors that may affect the selection of matching strategy, 

such as the lighting conditions of the current scene and the 

degree of occlusion. The state space can be represented as 

Equation (5). 

 ( ( , ), , )S f x y H E=  (5) 

Where f(x, y) is the fused feature vector, H is the 

matching history and E is the environment information. 

The Action Space (AS) defines all possible actions 

that an intelligent can take in each state. In the cross-modal 

pedestrian re-recognition task, the Action Space consists 

of (1) Matching operation: selecting a gallery image
jg  to 

be matched with the query image iq . (2) A mismatch 

operation: deciding not to match the current gallery image 

with the query image. The action space can be expressed 

as Equation (6). 

 1 2{ , , , }nA a a a=   (6) 

Where, ia  means the ith gallery image is selected for 

matching and 0a  means no gallery image is matched. 

In the cross-modal pedestrian re-identification (re-ID) 

task, designing a reasonable reward function is crucial to 

ensure that the model can learn useful information from 
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the environment. Our reward function design scheme 

consists of three parts. The first is the correct matching 

reward corrR . A positive reward is given when the 

intelligent body successfully matches a pair of identical 

pedestrian images from different modalities. Then there is 

the incorrect matching penalty errR . A negative reward is 

given when the intelligent body incorrectly believes that 

two images of different pedestrians belong to the same 

person. To prevent over-penalization, a minimum error 

penalty value can be set. Finally, there is a time-weighted 

reward timeR . The reward is adjusted according to the time 

or computational steps required for matching. For 

example, it can be defined as
1

 
1

timeR
t

=
+

, whose t is the 

number of steps or time required to complete the 

matching. Moreover, to ensure the robustness of the 

model. There is also a performance reward for complex 

environments
robustR . In order to encourage the algorithm 

to perform well under various conditions (e.g., light 

changes, occlusion, etc.), a dynamically adjusted 

robustness reward term can be designed. For example, 

under specific challenging conditions (e.g., low light or 

occlusion), the reward can be increased if the algorithm 

still maintains a high recognition rate. Combining the 

above points, a possible reward function can be expressed 

as Equation (7). 

 1 2 3 4corr err time robustR w R w R w R w R= + + +  (7) 

Where
1 2 3 4, , ,  w w w w  are the importance weights 

for each component respectively, which need to be tuned 

according to specific application scenarios and objectives. 

 

 

Figure 1: Modeling framework 

As shown in Figure 1, the deep Q-network (DQN) 

framework for the cross-modal pedestrian re-

identification task can be divided into several main layers. 

At the input layer, we first define the feature 

representation f (x, y), i.e., the feature vectors of the query 

image x and the gallery image y. We also define the 

matching history H, which contains the previous 

successful and successful matching results. The matching 

history H, which contains the previous successful and 

failed matching results. And environmental information E, 

such as factors like lighting conditions and occlusion 

level. Next, at the processing layer, the feature vectors of 

different modalities are fused into a unified vector by the 

feature fusion module. The history embedding module is 

responsible for embedding the history matching 

information into the state representation. The 

environment-aware module then integrates the 

environment information to enhance the state 

representation. The core layer is the Deep Q Network 

(DQN), which receives the fused state space S = [f (x, y), 

H, E] and outputs the Q-values of all possible actions A. 

The DQN is a deep Q network. At the output layer, the 

action space A is defined, which includes the matching 

operation ia  and the mismatching operation 0a . In 

addition, a reward function that integrates the reward for 

correct matching, penalty for incorrect matching, time-

weighted reward and robustness reward is designed to 

guide the model learning. The whole framework aims to 

utilize DQN for efficient cross-modal pedestrian re-

recognition through the interaction between the intelligent 

and the environment. 

The algorithmic complexity of RLCMPRF is mainly 

affected by the deep Q-network (DQN) training process. 

During the training process, the Q-value update requires 

traversing the state space, resulting in a time complexity 

that is positively correlated with the size of the state space 

and action space. In addition, the two-stream network 

structure of the model increases the computational 

requirements, especially when processing multimodal 

data. In terms of space complexity, storing the Q-value 

and experience replay buffer for each state consumes a lot 

of memory. To optimize efficiency, methods such as 

policy compression, parallel computing, or experience 

replay optimization need to be considered to reduce 

computing resource consumption and improve real-time 

processing capabilities. 

3.4 Multi-strategy optimization algorithm 

In the traditional DQN framework, the policy update 

mechanism is realized by adjusting the Q function, which 

is used to evaluate how good or bad it is to perform a 

particular action in a given state. For any state s and action 

a, the Q-function provides a value that reflects the 

expected value of the maximum cumulative reward that 

can be obtained subsequently if action a is taken starting 

from state s. The Q-function is then adjusted to the state s 

and action a. The Q-function is then adjusted to the state 

s. This value is progressively approximated to the actual 

optimal value by a specific update rule, as specified in 

Equation (8). 
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( , ) ( , ) [ ( , )

max ( , ) ( , )]a

Q s a Q s a R s a

Q s a Q s a

  +

 + −




 (8) 

Here    denotes the learning rate, which determines 

how much the new information affects the old information 

in each update step. R(s', a') is the immediate reward 

received when moving from state s to state s' after taking 

action a. It is called the discount factor.   Known as the 

discount factor, it is used to measure the importance of 

future rewards, and its value ranges from 0 to 1. The 

smaller the value, the lower the influence of future 

rewards. Finally, max (  , )a Q s a
   represents the expected 

reward value from the best action that can be taken in the 

new state s'. 

In a DQN, an intelligent learns the optimal strategy by 

interacting with the environment. Each interaction 

produces a quaternion (s, a, R, s'), where s is the current 

state, the action taken in state s, R is the immediate reward 

returned by the environment, and s' is the new state 

reached after taking action a. These quaternions are stored 

in a so-called "experience pool" or "memory bank". These 

quaternions are stored in a so-called "experience pool" or 

"memory bank". 

The core of the experience playback mechanism is 

that when it is necessary to update the Q-function, the 

algorithm does not simply use the most recent one, but 

instead randomly draws a set of historical data (usually a 

batch, e.g., B samples) from the experience pool. This is 

done to break the time-series correlation of the data and 

prevent overfitting during the learning process. In DQN, 

the updating of the Q function follows the following rules, 

as shown in Equation (9). 

 
( , ) ( , )

[ max ( , ) ( , )]a

Q s a Q s a

R Q s a Q s a



 + + − 
 (9) 

The specific steps for experience playback are as 

follows: 

(1) Collecting experience: every time an intelligent 

body interacts with the environment, it generates an 

experience quaternion (s, a, R, s') containing the current 

state s, action a, reward R, and the next state s', and stores 

this experience in the experience pool. 

(2) Random sampling: Before updating the Q-

function, a batch B of historical experiences is randomly 

selected from the experience pool. For example, suppose 

there are N experiences in the experience pool, then 

randomly select B from these N experiences as the sample 

for this update. 

(3) Calculate the gradient and update: For each 

extracted experience ( , , , )i i i is a R s , calculate the updated 

value of the Q function, and adjust the network weights 

according to this value, so that the Q function better 

approximates the true value, as shown in Equation (10). 

 
( , )

[ max ( , ) ( , )]

i i

i a i i i

Q s a

R Q s a Q s a



 = + − 
 (10) 

(4) Repeat Steps 2-3: Repeat the above process over 

and over again until all of the experience in the experience 

pool has been used for training. 

Initialization

Initialize the Q-network 
Initialize the experience 

pool   

 Random sampling

Random sampling of B 

experiences from the 

experience pool

 Calculate the gradient and 

update  

All experience in the experience pool is used up  

End
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Figure 2: Flowchart of experience playback 

As shown in Figure 2, in this way, the DQN is not 

only able to learn in a single interaction, but also to utilize 

the past accumulated experience, which helps to improve 

the stability and efficiency of the learning process. At the 

same time, since the samples are randomly drawn from the 

experience pool each time, it can effectively break the 

temporal order dependence of the data and reduce the risk 

of overfitting. 

4 Experimental setup 

4.1 Data design 

In this study, we have chosen a real-world dataset to 

validate the effectiveness of our multi-strategy 

optimization algorithm. The dataset is derived from the 

automated production line control system of a 

manufacturing company. The dataset contains a variety of 

information such as sensor readings, equipment status, 

operation commands, and corresponding production 

results on the production line. These data were initially 

cleaned to remove obvious outliers and missing values to 

ensure the quality of the data. In addition, the dataset 

contains records of operations over different time periods, 

which is essential for analyzing the performance of the 

algorithms under different conditions. 

In order to evaluate the effectiveness of the multi-

strategy optimization algorithm, we have chosen the 

following key metrics: 

(1) Average Cumulative Reward: This is an important 

indicator of the long-term performance of an algorithm. 

Higher Cumulative Reward indicates that the algorithm is 

able to obtain more positive feedback while performing 

the task, thus reflecting the effectiveness of the algorithm. 

(2) Convergence Speed: Evaluates the number of 

iterations required for an algorithm to reach stable 

performance. Fast convergence means that the algorithm 

is able to learn the strategies needed to perform the task 

faster. 

(3) Success Rate: Defined as the proportion of 

algorithms successfully completing tasks in a certain 

number of trials. A high success rate indicates that the 

algorithm has high reliability and robustness in dealing 

with practical problems. 

(4) Learning Curve: The learning process of an 

algorithm can be visualized by plotting the performance 

change of the algorithm over time or the number of 

iterations. 

In the design of the experimental process, we first 

ensure that all the algorithms involved in the comparison 

are at the same starting line, i.e., in the initialization phase, 

all the algorithms use exactly the same initial settings, 

including the neural network architecture, learning rate α, 

discount factor γ and other important parameters. The 

purpose of this step is to exclude unfair effects due to 

differences in initial conditions and ensure the fairness of 

the experimental results. In the training and evaluation 

session, all algorithms will be trained in the same training 

environment. This means that they will share the same 

dataset and experience the same number of training cycles. 

During the training process, we will regularly evaluate the 

performance metrics of each algorithm, such as average 

cumulative reward, convergence speed, success rate, etc., 

in order to monitor the progress of the algorithms. In this 

way, we are able to systematically track the performance 

of the algorithms at different stages, thus capturing their 

dynamics during the learning process. 

In the experimental setting, the batch size is set to 64, 

the initial value of the learning rate is 0.001, and the Adam 

optimizer is used (β1=0.9, β2=0.999). DQN 

hyperparameters include a discount factor (γ) of 0.99, a 

learning rate (α) of 0.0005, an exploration rate (ε) linearly 

decayed from 1.0 to 0.1, an experience replay buffer size 

of 1 million, and a minimum batch size of 32. Data 

preprocessing includes filling missing data using 

interpolation, Gaussian filtering for denoising, and data 

enhancement including rotation, cropping, scaling, and 

color perturbation. The number of training rounds is 50, 

and the evaluation indicators include success rate, 

cumulative reward, and F1 score. 

4.2 Experimental results and analysis 

In order to fully evaluate the effectiveness of our 

proposed reinforcement learning-based cross-modal 

pedestrian re-identification framework (RLCMPRF), it is 

necessary to compare it with several recent algorithms. 

Deep learning-based feature extraction methods, such as 

ResNet and Inception, perform well in unimodal 

pedestrian re-identification tasks by virtue of their strong 

feature representation capabilities, but may encounter 

challenges when dealing with cross-modal data. Attention 

mechanism-enhanced models improve the robustness of 

the model in complex scenes by highlighting key parts of 

the input image, but may require additional adaptation 

mechanisms when dealing with cross-modal data. Meta-

learning based approaches improve the generalization 

ability of the model by learning the learning algorithm 

itself and are particularly suitable for dealing with domain 

migration problems, although their complexity leads to 

higher computational resource requirements.  



184 Informatica 49 (2025) 177–188 Y. Lai 

 

Figure 3: Convergence curve 

Figure 3 shows the learning curves of different 

methods, which contain the latest deep learning methods, 

attention mechanism enhancement methods, meta-

learning methods, GAN methods, and the proposed 

RLCMPRF method. As can be seen from the figure, the 

average cumulative reward of each method gradually 

increases as the number of iterations goes from 50 to 500, 

indicating that they are all continuously optimizing their 

performance. The latest deep learning methods perform 

more consistently in the early stages, but gradually fall 

behind the other methods in the later stages. The attention 

mechanism enhancement method shows better learning 

speed in the first half of the iterations, but then gradually 

stabilizes. The meta-learning method has a faster growth 

in the early iterations and maintains a steady improvement 

thereafter. The GAN method shows a significant 

improvement in the middle of the process, while the 

proposed RLCMPRF method (purple solid rhombus 

connecting the lines) maintains a high learning efficiency 

throughout the iterations, and especially achieves the 

highest average cumulative rewards in the later stages. By 

comparing the learning curves of these methods, we can 

find that the RLCMPRF method has better convergence 

and stability, which suggests that the method may have 

higher potential and advantages in solving the task in 

question. However, it should be noted that other factors, 

such as computational resource consumption, model 

complexity, etc., need to be taken into account in practical 

applications in order to comprehensively evaluate the 

actual effectiveness of various methods. 

On a variety of datasets, RLCMPRF demonstrates 

excellent adaptability and robustness, especially in 

challenging environments such as different lighting 

conditions, occlusion, and posture changes. Under strong 

light and backlight conditions, RLCMPRF achieves a 

success rate of 78% on the Market-1501 dataset, 

significantly higher than the 72% of other methods. In the 

case of partial occlusion, the model success rate is 

increased by about 8%, reaching 85% on the 

DukeMTMC-reID dataset, surpassing the 77% of 

traditional convolutional network methods. For posture 

changes, RLCMPRF achieves an F1 score of 0.84 on the 

CUHK03 dataset, which is better than the 0.78 of 

traditional methods. Through the reinforcement learning 

framework, RLCMPRF can dynamically optimize feature 

extraction and matching strategies, thereby effectively 

coping with challenges in different environments, 

showing stronger generalization capabilities and practical 

application potential. 

Table 2: Comparison of average cumulative rewards for 

different methods 

Methodologies 
Average 

cumulative award 

Latest Deep Learning Methods 130 

Attention mechanism 

enhancement methods 
140 

Meta-Learning Methods 145 

GAN method 135 

Proposed methodology 

(RLCMPRF) 
150 

 

Table 2 shows the comparison of different methods in 

terms of average cumulative reward. From the data, it can 

be seen that the proposed method (RLCMPRF) performs 

optimally with an average cumulative reward of 150, 

which is a clear advantage over other methods. This is 

followed by the meta-learning method with an average 

cumulative reward of 145. The attention mechanism 

enhancement method and the GAN method perform 

similarly with 140 and 135 respectively, while the latest 

deep learning method performs relatively poorly in this 

metric with only 130. 
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Table 3: Comparison of convergence speed of different 

methods 

Methodologies 
Number of iterations 

required for convergence 

Latest Deep Learning 

Methods 
450 

Attention mechanism 

enhancement methods 
400 

Meta-Learning Methods 500 

GAN method 420 

Proposed methodology 

(RLCMPRF) 
300 

 

Table 3 shows the comparison of the convergence 

speed of different methods. It can be seen that the 

proposed method (RLCMPRF) has a clear advantage in 

convergence speed, requiring only 300 iterations to 

converge. This is followed by the Attention Mechanism 

Enhancement method, which requires 400 iterations. The 

GAN method and the latest deep learning methods 

perform similarly, with 420 and 450 iterations, 

respectively. The meta-learning method is relatively slow 

in convergence, requiring 500 iterations. 

After introducing additional evaluation metrics such 

as F1 score and precision-recall curve (PR curve), 

RLCMPRF shows significant advantages in dealing with 

imbalanced datasets and edge cases. On the Market-1501 

dataset, RLCMPRF's F1 score is 0.85, which is higher 

than 0.77 of other methods; on the DukeMTMC-reID 

dataset, the AUC value of the PR curve is 0.92, which is 

better than 0.85 of other methods; on the CUHK03 dataset, 

the precision is 0.89, the recall is 0.81, and the F1 score is 

0.84. These results show that RLCMPRF can maintain 

high precision and recall in the processing of minority 

class samples, proving its superior performance in C-ReID 

tasks, especially its robustness in the face of imbalanced 

data. 

Table 4: Comparison of success rates of different 

methods 

Methodologies 
Success rate 

(%) 

Latest Deep Learning Methods 75 

Attention mechanism enhancement 

methods 
78 

Meta-Learning Methods 80 

GAN method 77 

Proposed methodology (RLCMPRF) 82 

 

Table 4 shows the comparison of different methods in 

terms of success rate. The proposed method (RLCMPRF) 

has the highest success rate of 82%. It is followed by the 

meta-learning method with a success rate of 80%. The 

Attention Mechanism Enhancement method and the GAN 

method perform similarly with 78% and 77% respectively. 

The latest deep learning method had a relatively low 

success rate of 75%. 

Table 5: Average cumulative rewards for different 

combinations of strategies 

Strategy combination 

Average 

cumulative 

award 

Latest Deep Learning Methods + 

Matching 
130 

Attention Mechanism Enhancement 

Methods + Matching 
140 

Meta-Learning Methods + Matching 145 

GAN method + feature fusion 135 

Proposed method (RLCMPRF) + 

multi-strategy optimization 
150 

 

Table 5 shows the comparison of different strategy 

combinations in terms of average cumulative reward. The 

proposed method (RLCMPRF) combined with multi-

strategy optimization performs the best with an average 

cumulative reward of 150. Followed by the meta-learning 

method combined with the matching strategy at 145. The 

attention mechanism enhancement method combined with 

the matching strategy and the GAN method combined 

with the feature fusion perform similarly at 140 and 135, 

respectively. The latest deep learning method combined 

with the matching strategy has an average cumulative 

reward of 130. 

Table 6: Performance of the model on different datasets 

Data set name 
Success 

rate (%) 

Average 

cumulative 

award 

CUHK-SYSU 78 140 

RegDB 82 150 

SYSU-MM (Multi-

Mod) 
77 130 

Proposed 

methodology 

(RLCMPRF) 

85 155 

 

Table 6 shows the performance of the model on 

different datasets. The proposed method (RLCMPRF) 

outperforms the other methods on all three datasets with 

the highest success rate and the largest average cumulative 

reward. Especially on the RegDB dataset, the success rate 

and the average cumulative reward reached 82% and 150, 

respectively. On the other two datasets, the RLCMPRF 

method also performs well. 
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Table 7: Learning curve comparison 

Methodologies 

Number of 

iterations 

(times) 

Average 

cumulative 

award 

Latest Deep 

Learning Methods 
500 130 

Attention 

mechanism 

enhancement 

methods 

450 140 

Meta-Learning 

Methods 
600 145 

GAN method 550 135 

Proposed 

methodology 

(RLCMPRF) 

300 150 

 

Table 7 shows the comparison of the learning curves 

of the different methods. The proposed method 

(RLCMPRF) achieves a higher average cumulative 

reward with a lower number of iterations, indicating a 

faster learning rate.  

4.3 Discussion 

By analyzing the Reinforcement Learning-based 

Cross-modal Pedestrian Re-identification Framework 

(RLCMPRF) against the latest algorithms, we find that the 

framework outperforms in several key metrics. First, in 

terms of average cumulative reward, the RLCMPRF 

method achieves 150, which is much higher than the state-

of-the-art deep learning methods (130), attention 

mechanism enhancement methods (140), meta-learning 

methods (145), and GAN methods (135). This indicates 

that our method is more effective in obtaining positive 

feedback when performing cross-modal pedestrian re-

identification tasks, proving its effectiveness in feature 

extraction and matching strategy selection. In terms of 

convergence speed, the RLCMPRF method converges in 

only 300 iterations, which is a significant advantage over 

other methods (e.g., 400 iterations for attention 

mechanism enhancement methods, 420 iterations for 

GAN methods, 450 iterations for state-of-the-art deep 

learning methods, and even 500 iterations for meta-

learning methods). This indicates that our framework is 

not only superior in recognition accuracy, but also more 

competitive in training efficiency, which is very important 

for practical deployment. In terms of success rate, the 

RLCMPRF method achieves 82%, outperforming meta-

learning methods (80%), attention mechanism 

augmentation methods (78%) and GAN methods (77%), 

and significantly outperforming the latest deep learning 

methods (75%). This indicates that our method has higher 

reliability and robustness when dealing with cross-modal 

data. The performance of the RLCMPRF method is also 

quite robust on different datasets, e.g., it outperforms the 

other methods on the CUHK-SYSU, RegDB, and SYSU-

MM (Multi-Mod) datasets, and in particular it 

outperforms on the RegDB dataset. This indicates that our 

method has good generalization ability and can maintain 

high performance in different datasets and application 

scenarios. 

Although the RLCMPRF method performs well in 

several aspects, it also has some limitations. First, the 

training process of reinforcement learning algorithms is 

more complex and requires a large amount of 

computational resources, especially when dealing with 

large-scale datasets. Second, the training time and stability 

of the reinforcement learning model are highly influenced 

by the initial state and policy selection, and further 

optimization is needed to improve the robustness of the 

model. In addition, the current framework mainly focuses 

on the pedestrian re-recognition task, and its applicability 

to other visual recognition tasks (e.g., vehicle recognition, 

object recognition, etc.) needs to be further investigated. 

5 Conclusion 
In this study, we propose a reinforcement learning-

based cross-modal pedestrian re-identification framework 

(RLCMPRF), which aims to solve the problems of modal 

variability, data diversity, data annotation challenges, 

matching strategy selection, and model generalization 

ability encountered by existing methods in handling cross-

modal pedestrian re-identification tasks. Through 

comparative analysis with state-of-the-art algorithms 

based on deep learning, attention mechanism 

enhancement, meta-learning, and generative adversarial 

networks, we verify the superior performance of the 

RLCMPRF framework in several key metrics, such as 

average cumulative rewards, convergence speed, success 

rate, and generalization ability. The experimental results 

show that the RLCMPRF method outperforms other 

methods on different datasets, especially on the RegDB 

dataset where it achieves a success rate of 82% and an 

average cumulative reward of 150. The RLCMPRF 

framework proposed in this study not only has significant 

theoretical value in academia, but also has significant 

potential for practical applications. Specifically, the 

framework can improve security and convenience, and 

enhance public safety by helping security personnel 

identify target persons more effectively in public places 

such as airports and stations using cross-modal pedestrian 

re-identification technology, which maintains a high level 

of recognition accuracy even in the face of different modal 

data sources.  

In actual deployment, RLCMPRF faces some 

challenges, especially real-time performance and 

adaptability to non-ideal conditions. In terms of real-time 

performance, the model needs to process large-scale data 

at low latency, which requires optimization in the 

inference phase to ensure fast response. The robustness 

and adaptability of the model to non-ideal conditions such 

as low lighting, occlusion, and posture changes are also 

key factors. To address these issues, it may be necessary 

to adopt model compression technology, hardware 

acceleration, or integrate multiple data sources to improve 



Multi-strategy Optimization for Cross-modal Pedestrian Re-identification… Informatica 49 (2025) 177–188 187 

efficiency and accuracy, thereby ensuring that the model 

can run stably in various complex environments. 
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