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An approximate sate-action-reward-state-action (ASARSA) algorithm is proposed to solve the resource 

allocation optimization in multiple-input multiple-output (MIMO) communication systems, especially in 

the context of energy harvesting (EH) wireless communication systems. ASARSA algorithm aims to 

overcome the dimensional disaster problem faced by traditional SARSA algorithm in high-dimensional 

state space. By transforming the resource allocation optimization problem into a Markov 

decision-making problem and applying reinforcement learning, this study realizes the resource 

allocation optimization of EH-MIMO system. The experimental results showed that the system 

throughput of ASARSA algorithm reached 15.0×105 bits under the condition of 100 slots, which was 

0.2×105 bits and 3.6×105 bits higher than that of SARSA and Q-Learning (QL) algorithms, 

respectively. In terms of convergence speed, ASARSA algorithm was close to the target accuracy after 

76 iterations, which was 25 iterations and 77 iterations less than SARSA and QL algorithms, 

respectively. In addition, the average absolute error and root mean square error of ASARSA algorithm 

were 3.54% and 3.10%, which were 1.27% and 0.58%, 2.01% and 1.12% lower than those of SARSA 

and QL algorithms, respectively. These results show that ASARSA algorithm has higher efficiency and 

better optimization effect in resource allocation optimization. It is also found that ASARSA algorithm 

can maintain high computational efficiency and low approximate error, which proves its effectiveness 

and reliability in practical applications. Therefore, ASARSA algorithm can effectively optimize the 

allocation of EH-MIMO resources, solve the shortage of spectrum resources to some extent, and 

promote the development of EH-MIMO technology. 

Povzetek: Predstavljen je nov SARSA-algoritem za optimizacijo razporejanja virov v MIMO 

komunikacijskih   sistemih, ki učinkovito rešuje problem dimenzionalnosti in izboljšuje razporejanje 

virov.

1 Introduction 

Nowadays, with the rapid development of society, people 

are no longer satisfied with a single communication 

mode, encouraging them to pursue more efficient 

communication systems. More demand has made space 

spectrum resources appear to be stretched, which has led 

the government to strictly manage and unified planning 

of wireless spectrum usage. Based on this background, a 

variety of communication technologies with high spectral 

efficiency have been developed constantly, among which 

multiple-input multiple-output (MIMO) systems have 

attracted wide attention [1]. In response to the initiative 

of developing and applying green communication 

technology, some research try to introduce energy 

harvesting device into MIMO wireless communication 

system to achieve energy saving and emission reduction 

and increase the service life of the system. However, 

MIMO is equipped with multiple antennas at both the  

 

 

transmitting and receiving ends. Therefore, the channel of 

MIMO is usually presented in the form of a matrix, which 

is more difficult to estimate and process [2]. In addition, 

the current energy harvesting-MIMO (EH-MIMO) 

wireless communication system resource allocation 

optimization algorithm has insufficient prior information 

and high algorithm complexity, which cannot effectively 

realize the resource allocation optimization of 

communication system [3]. Due to the complexity and 

dynamics of EH-MIMO environment, the resource 

allocation optimization is still a challenge. To this end, 

this study transforms the resource allocation optimization 

problem of EH-MIMO communication system into 

Markov decision-making problem. A novel method based 

on reinforcement learning (RL) approximate 

state-action-reward-state-action (SARSA) algorithm is 

proposed to obtain the suboptimal transmission strategy, 

so as to maximize the system throughput and finally 

complete the resource allocation optimization of 
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EH-MIMO communication system. By achieving these 

goals, it aims to contribute to the development of green 

communication technology and improve the overall 

performance of the EH-MIMO system. The innovation of 

the research mainly includes two points. The first point is 

to extract the characteristics of the EH-MIMO 

communication system resource allocation optimization 

problem, transform it into a Markov decision-making 

problem, and use SARSA algorithm to obtain suboptimal 

transmission strategies. The second point is to propose an 

approximate sate-action-reward-state-action (ASARSA) 

algorithm for dimensional disaster to improve the 

optimization effect of EH-MIMO communication system 

resource allocation. The main structure of the study is 

divided into four sections. The first section is a 

comprehensive organization and analysis of current 

relevant research literature. The second section proposes 

a resource allocation optimization strategy for MIMO 

communication systems based on SARSA algorithm. The 

third section analyzes the effectiveness of the resource 

allocation optimization strategy proposed in the study for 

MIMO communication systems. The final section is a 

summary of the entire research content. 

2 Related works 

MIMO technology has high spectral efficiency and can 

guarantee the data transmission rate and quality in the 

communication process. It has been concerned by 

relevant researchers. Liu et al. [4] put forward a joint 

transmit beamforming model for dual function MIMO 

radar and multi-user MIMO communication transmitter. 

A complexity reduction design was proposed based on 

zero forced inter user and radar interference. Ma et al. [5] 

designed a random model based on three-dimensional 

broadband non-stationary geometry for the MIMO 

channel of unmanned aerial vehicles. Both line of sight 

and non-line of sight conditions were considered to 

explore the rotation effect of unmanned aerial vehicles. 

Dang et al. [6] proposed a joint message passing 

detection and decoding algorithm to improve the 

information and data transmission efficiency. The 

findings denoted that the algorithm had good 

performance. Wang et al. [7] proposed a 

three-dimensional spatiotemporal frequency 

non-stationary geometric random model and applied it to 

capture channel characteristics of 6G terahertz ultra 

large-scale MIMO. Chang et al. [8] proposed a capacity 

optimization algorithm for MIMO communication 

systems by combining augmented Lagrangian method, 

intelligent reflector, and Broyden Fletcher Goldfarb 

Shano methods, which effectively improved the 

efficiency of MIMO communication systems. Grossi et 

al. [9] designed a spectrum sharing architecture that 

simultaneously existed in MIMO communication systems 

and surveillance radars. The coexistence and 

synchronization design of the two systems in the 

architecture under clutter environment were discussed, 

providing reference opinions for the practical application 

of MIMO communication systems and surveillance radar. 

Temiz et al. [10] aimed to optimize the dual function 

radar and communication system with the optimization 

goals of speed and energy efficiency. To achieve the 

above goals, an optimized pre-encoder for MIMO 

orthogonal frequency division multiplexing dual radar 

communication system was proposed. The experiments 

were designed to analyze the pre-encoder. Zhang [11] 

designed a signal propagation improvement method for 

MIMO communication systems by combining intelligent 

reflective surfaces and passive reflective units, thereby 

increasing the capacity, reducing the operating costs, and 

improving the energy efficiency of the MIMO 

communication system. 

RL is one of the most widely used and frequent 

paradigms and methods in machine learning. Many 

scholars have paid more attention to the SARSA 

algorithm. Hassanien et al. [12] proposed an autonomous 

driving path planning model that combined the Dyna 

framework based on RL with the SARSA algorithm to 

address the hidden dangers in computational efficiency 

and safety in current autonomous driving path planning. 

This model could effectively ensure the efficiency and 

safety of path planning. Alfakih et al. [13] proposed a 

SARSA-based system resource management optimization 

algorithm for the task unloading and resource allocation 

of mobile edge computing in the current network physical 

social system. Chen et al. [14]. combined genetic network 

programming with evolutionary algorithm of SARSA 

algorithm to design an artificial financial market, which 

facilitated solving increasingly complex financial 

research problems. Rais et al. [15] extended the SARSA 

algorithm and proposed a Harmonic SK Deep SARSA 

algorithm to improve its stability. Then, the new 

algorithm was applied to the decision-making of 

autonomous vehicle in the expressway scene. Mohamed 

et al. [16] explored the usage of deep RL technology in 

network attack detection and classification. An anomaly 

network intrusion detection model based on the deep 

SARSA algorithm was designed. This model combined 

the advantages of SARSA algorithm and deep neural 

network. Ren et al. [17] constructed an optimization 

model that combined a neural network model with an 

RL-based SARSA algorithm. Through this model, the 

flow shop scheduling problem was solved, thereby 

improving the production efficiency of the flow shop. Shi 

et al. [18] proposed a delay aware routing strategy based 

on SARSA to optimize the network configuration and 

management of the distribution internet of things (IoT). 

The limited access range and signal attenuation caused by 

communication distance and obstacles in existing 

communication methods were addressed. Aljohani et al. 

[19] designed an optimization framework based on 

SARSA algorithm to optimize real-time energy 

consumption of electric vehicles. 
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In the above content, SARSA algorithm has important 

applications in various fields, and there are also certain 

research results in the optimization of system resource 

allocation. However, there are few studies in the literature 

applying SARSA to RA optimization in MIMO wireless 

communication systems. To solve this problem, a 

resource allocation optimization based on SARSA is 

proposed, which improves the performance of MIMO 

wireless communication system and provides theoretical 

guidance and new ideas for the development of MIMO 

wireless communication system. The suboptimal 

transmission strategy is obtained by Markov 

decision-making process and SARSA algorithm. Finally, 

the results and limitations of the existing research and the 

proposed method are further summarized and compared, 

as shown in Table 1. 

Table 1: Summary table in related works 

References Research method Limitations 

Liu et al [4] A joint transmission beamforming model is proposed 
Requires precise user interference 

elimination 

Ma et al. [5] 
A stochastic model based on 3D broadband 

nonstationary geometry is designed 

Model complexity makes it difficult to 

handle real-world changes 

Dang et al. [6] 
Improve the efficiency of information and data 

transmission 

Algorithm is inefficient in 

high-dimensional state spaces 

Wang et al. [7] 
A three-dimensional space-time frequency 

non-stationary geometric stochastic model is proposed 

Limited adaptability to actual 

environmental changes 

Chang et al. [8] 
Combined with augmented Lagrangian method, the 

efficiency of MIMO communication system is improved 
Sensitive to initial conditions 

Grossi et al. [9] 

The spectrum sharing architecture of MIMO 

communication system and surveillance radar is 

designed 

Challenges in synchronization design 

in complex environments 

Temiz et al. [10] 

An optimized pre-encoder for MIMO orthogonal 

frequency division multiplexing dual radar 

communication system is proposed. 

The stability of the algorithm in 

non-ideal environments needs to be 

verified 

Zhang [11] 
Combining smart reflector and passive reflector 

improves the capacity of MIMO communication system 
Sensitive to environmental changes 

Hassanien et al. 

[12] 

Combining Dyna framework and SARSA algorithm, an 

autonomous driving path planning model is proposed 

Challenges in handling uncertainties in 

actual driving 

Alfakih et al. 

[13] 

An optimization algorithm of system resource 

management based on SARSA is proposed 

Inefficiency in handling 

high-dimensional problems 

Chen et al. [14] 

The artificial financial market is designed by combining 

genetic network programming with evolutionary 

algorithm of SARSA algorithm 

Inefficiency in dealing with complex 

financial issues 

Rais et al. [15] Harmonic SK Deep SARSA algorithm is proposed 
Challenges in decision-making in 

high-speed scenarios 

Mohamed et al. 

[16] 

An abnormal network intrusion detection model is 

designed based on deep SARSA algorithm 

Poor efficiency in handling large-scale 

network attacks 

Ren et al. [17] 
Combining neural network model and RL algorithm 

based on SARSA, the optimization model is constructed 

Low efficiency in dealing with 

complex scheduling problems 

Shi et al. [18] 
A delay-aware routing strategy based on SARSA is 

proposed 

Low efficiency in handling 

communication distance and obstacle 

issues in IoT 

Aljohani et al. 

[19] 

A real-time energy consumption minimization 

framework for electric vehicles based on SARSA 

algorithm is designed 

Low efficiency in addressing real-time 

energy consumption optimization 

issues 

This paper 

A real-time energy consumption minimization 

framework for electric vehicles based on SARSA 

algorithm is designed 

- 
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3 Resource allocation strategy for 

EH-MIMO system based on 

SARSA algorithm 

MIMO technology is a combination of digital 

modulation, multi-carrier, digital signal processing, and 

space-time multiplexing technologies, which can 

effectively improve the anti-interference ability and 

transmission ability of the system. In this section, an 

EH-MIMO resource allocation mathematical model is 

constructed based on MIMO model, and the 

mathematical model is transformed into a Markov 

decision-making process, which is solved by RL. After 

that, the SARSA algorithm is introduced to alleviate the 

dimensional disaster problem of the model, so as to 

improve the resource allocation optimization effect of 

EH-MIMO communication system. 

3.1 Construction of EH-MIMO resource 

allocation mathematical model 

MIMO wireless communication system is a 

comprehensive technology combining digital modulation, 

multi-carrier transmission, digital signal processing, and 

space-time multiplexing technologies, which can 

effectively improve the robustness and transmission 

capacity of wireless communication system [20]. The 

integration of EH technology and MIMO technology can 

not only achieve energy-saving of wireless 

communication, but also alleviate the shortage of 

spectrum resources, which is an important direction for 

the development of green communication in the future 

[21]. In order to achieve green communication, reduce 

resource consumption and increase system life, an energy 

harvesting device is installed at the transmitter of the 

MIMO wireless communication system, and an 

EH-MIMO model is constructed. This allows the system 

to capture and store energy from wind and solar power, 

where energy storage is achieved through batteries of 

limited capacity. The EH-MIMO model is shown in 

Figure 1. 

In Figure 1, there are a total of TN
 antennas at the 

transmitting end. There is a total of RN
 antennas at the 

receiving end. In the energy model, it is assumed that 

there is a total of time slots T  within the operating time 

range. The interval between adjacent time slots   is a 

constant. In a time period of 1,2, ,t T= , the collected 

energy of the energy model is tE
, and the maximum 

collected energy limit is maxE
. All collected energy is 

stored in a battery with a capacity of maxB
. Assuming 

that all the energy collected by the transmitting end is 

applied to the signal transmission work, and no other 

types of energy loss occur. In addition, during the storage 

or recycling of the battery, it has no energy loss. Before 

use, the battery stores a portion of energy 0B
. In actual 

situations, the battery cannot be charged instantaneously. 

Therefore, during the time slot t , the stored energy of 

the battery is 1tE − . The energy reaching process 

mentioned above is shown in Figure 2 (a). In addition, in 

the EH-MIMO model, assuming that wireless channel is a 

block attenuation flat fading and the change in channel 

gain tH
 over time   can be ignored, the channel 

changes are shown in Figure 2 (b). 
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Figure 1: EH-MIMO model 
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Figure 2: Schematic diagram of energy arrival and channel changes 

 

In Figure 2(a), the energy collected by the system is 

stored in the battery. When the transmitting end uses the 

energy to transmit it to the transmitting end, the 

transmission power is tP
. Therefore, during the battery 

energy transfer, the update of battery energy follows 

Formula (1). 

 1 1 maxmin , , 1,2, ,t t t tB B E P B t T+ −= + −  =
 (1) 

In Figure 2(b), the received signal tY
 at the receiving 

end can be represented by Formula (2). 

 t t t t tY P H X n= +
     (2) 

In Formula (2), 

2

t tP H=
 is the power gain of the 

channel. tH
 is the channel gain. tX

 is the modulation 

format vector of all transmitting antenna transmission 

symbols. tn
 is the vector of additive Gaussian white 

noise, and obeys the mean of 0 and the variance of 
2 . 

In MIMO systems, due to the fact that the transmitting 

and receiving ends are equipped with multiple antennas, 

the channel gain is a matrix with a scale of T RN N
. 

The biggest advantage of MIMO technology is its ability 

to gain space and capacity. After obtaining channel 

information, the channel matrix tH
 of MIMO can be 

subjected to singular value decomposition (SVD) to 

obtain the eigenvalues of tH
, and all eigenvalues are not 

zero. r  is the rank of tH
. In MIMO, there is 

T RN N
, as shown in Formula (3). 

 
 min ,T R Rr N N N= =

      (3) 

Based on the above content, the channel matrix of the 

MIMO system is subjected to SVD processing to obtain 

independent parallel single-input single-output (SISO) 

channels r , as illustrated in Formula (4). 

 
H

tH USV=
          (4) 

In Formula (4), U  is a receive shaping filtering matrix 

with dimension, and R RN N
. V  is a transmission 

pre-wave filtering matrix with a dimension of T TN N
. 

S  is a diagonal matrix with elements 
1 2, , , r

t t t  
 on 

the diagonal and dimensions R TN N
. At this point, the 

characteristic value 
1 2, , , r

t t t  
 of tH

 can be utilized 

to stand for the state of each SISO channel at the time slot 

t . After SVD processing, the EH-MIMO is shown in 

Figure 3. 

When using the transmitter, the number of bits it sends in 

the time slot t  is the system throughput. When the 

transmitting end only knows causal information, the 

information that the transmitting end can know includes 
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the current state of tB
, tE

, and tH
, while the future 

information is in an unknown state. Therefore, a 

mathematical model for EH-MIMO resource allocation 

problem can be constructed based on constraint 

conditions and objective functions, as shown in Formula 

(5). 
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Figure 3: EH-MIMO model after SVD processing 
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In Formula (5), B  represents the received signal 

bandwidth. 
i

tp
 represents the transmission power 

allocated by the CC time slot to the i th SISO channel. 
2  is the noise power of the SISO channel. Based on the 

above content, a mathematical model for the EH-MIMO 

resource allocation problem can be constructed. By 

solving the problem, EH-MIMO resource allocation 

optimization can be achieved. 

3.2 EH-MIMO mathematical model solution 

based on RL 

Formula (5) is a convex optimization model. However, in 

solving using convex optimization, it is necessary for the 

transmitting end to obtain the states of all time slots, but 

this is difficult to achieve in practice. Therefore, the 

convex optimization solution method is not applicable to 

the model shown in Formula (5). Therefore, the study 

transforms the mathematical model shown in Formula (5) 

into a Markov decision-making process, and then applies 

RL to solve it. Markov decision-making process is a 

process to find the optimal strategy, which includes 

Markov process and dynamic programming [22]. The 

state space is defined as the set of all possible states of 

the system, including the energy level in the battery, 

channel conditions and current transmission strategy. The 

action space is defined as the set of all possible 

transmission strategies that can be adopted in each state. 

Based on the current state and the selected action, the 

transition probability between States is simulated, and the 

randomness of energy arrival and channel change is 

considered. At the same time, a reward function is 

defined based on system throughput or energy efficiency 

to quantify the performance of each pair of state-actions. 

Combining the above process, model transformation is 

implemented. The energy level represents the energy 

currently stored in the battery. Channel conditions 

include channel gain and channel state information. 

Action space is defined as the set of all possible 

transmission strategies that can be adopted in each state. 

The reward function quantifies the performance of each 

pair of state-actions based on system throughput or 

energy efficiency. If the state 
1ts +
 of the system in the 

next time slot is only related to the current state 
ts  of 

the system, and there is a transition probability Formula 

(6), it indicates that the state has Markov properties. 

1 1 1 2, , ,t t t tP s s P s s s s+ +  =       (6) 

According to the causality of adjacent states, in the ts
 

state, past states 1 1~ ts s −  can be discarded. If the states 

of all time slots in the system have Markov properties, 

this is a Markov stochastic process. In EH-MIMO 

mathematical model solving, RL can obtain transmission 

strategies based on Markov decision-making processes. 

RL is a continuous interaction between agent and its 

environment. Through the interaction, the updating 

decision strategy of RL can be updated in real time to 

carry out the next step [23]. The essence of RL is to solve 

intelligent agents, thereby changing the update decision 
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strategy, and ultimately maximizing rewards. The above 

process can be represented by Figure 4. 

The transmission strategy refers to the action a  method 

selected when the state is s , as shown in Formula (7). 

 
( )t t t ta s p a A s S =       (7) 

In Formula (7), S  is the set of system states.   is a 

strategy. ta
is an optional action. A  is an optional 

action set. Formula (7) represents the action selection 

probability 
p

 that the agent can obtain through   

when the system state is ts
. The agent can select a ta

 

in A  through 
p

.   is the method for selecting 

actions and remains constant. The intelligent agent 

continuously calculates the cumulative return function 

and obtains a suboptimal transmission strategy through 

this method. From the Bellman equation, it can be 

inferred that any strategy   corresponds to a certain 

action value function (AVF).  

Therefore, it is required to calculate and solve the optimal 

AVF 
( )* ,t tq s a  to obtain the optimal strategy 

*  and 

obtain the relatively optimal transmission strategy. When 

the optimal action is selected for any state in the system, 

this optimal set of actions is the optimal transmission 

strategy. In the study, Markov can be represented as a 

five tuple 
, , , ,rS A P R T

 based on this process. S  is 

the set of states. A  is a set of actions. rP
 is the 

probability of state ts
 transitioning to 1ts +  at time slot 

1t +  after the agent selects action ta
 during time slot 

t . R  is the reward received by the state ts
 after 

taking action ta
. T  is the total number of time slots. In 

practical situations, the rP
 of the model is an unknown 

number, so the model can be constructed as a model free 

Markov model, which adopts a model free rein RL 

method for the EH-MIMO model. There are generally 

two types of RL methods without models, namely Monte 

Carlo method and time difference method. Figure 5 

displays the Monte Carlo method schematic diagram. 

This method obtains the value function by exploring 

multiple times to obtain the mean. 

The time difference is also a commonly used method in 

RL. Its biggest difference from the Monte Carlo method 

lies in obtaining the value function, as shown in Figure 6. 
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Figure 4: The training of RL 
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Figure 6: Schematic diagram of time difference method 

 

In Figure 6, the time difference method does not need to 

go through all time slots and the resulting value function 

has a small variance. Therefore, the study applies time 

difference method to solve the model and obtain 

suboptimal transmission strategies. Q-learning (QL) is a 

common time difference separation line algorithm, which 

can obtain the MIMO system’s power allocation in each 

time slot, and then obtain the optimal transmission power. 

However, the QL algorithm selects the maximum 
Q

 

value action in a certain state 1ts + , which may lead to the 

algorithm ignoring other actions with the same value, 

resulting in insufficient exploration and affecting the final 

optimization strategy. Therefore, another algorithm in the 

time difference method, namely the SARSA, is applied to 

solve the model [24]. SARSA is an online algorithm. 

Different from QL algorithm, SARSA algorithm 

randomly selects the action with the maximum 
Q

 value 

based on a set probability when selecting actions, thus 

avoiding the defect of insufficient exploration in QL 

algorithm. In the SARSA algorithm, the update rules for 

the 
Q

-table are shown in Formula (8). 

 

( ) ( )

( ) ( )( )1

, ,

, ,

t t t t

t t t t t

Q s a Q s a

R Q s a Q s a  +



+ + −
 (8) 

In Formula (8), 
( ),t tQ s a

 is the AVF corresponding to 

the state action pair.  
  is the learning rate of the algorithm, which can 

control the speed of the algorithm environmental 

exploration. 


 is a discount factor, mainly used to 

determine the importance of the current AVF and the 

action function for the next time slot. In RL, action 

selection strategies can affect the environmental 

exploration performance of the algorithm, thereby 

affecting its performance. Therefore, an appropriate 

action selection strategy is crucial for the SARSA 

algorithm. After comprehensive consideration, the study 

adopts a Greedy Softmax strategy that combines Softmax 

and Greedy. This strategy can effectively balance the 

degree of environmental exploration and algorithm 

convergence, and considering the structure of Markov 

decision-making processes makes it suitable for the 
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research content. The Greedy Softmax strategy is shown 

in Formula (9). 

( ) ( )
1

1
1

,

, , , arg max , ,
t

t t
t t
a A

Softmax policy if

s a Q s a if


   



 


=   
  (9) 

In Formula (9),   is a uniform random number 

generated for each time slot, with a value range of (0,1). 

1  is a fixed value, with a value range of (0,1). 


 is a 

temperature parameter. In addition to RL for data 

resource allocation and value function, this study also 

introduces multiple quadrature amplitude modulation 

(MQAM) wireless communication system to enhance the 

transmission process through adaptive coding. The 

flexible rate-power adjustment of the adaptive model can 

improve the overall performance of the network. Two 

hypotheses are proposed. One is that the system satisfies 

linear modulation, and the adjustment time is an integer 

multiple of the code gap sT
. Second, the system pulse is 

selected in off-line Nyquist form, and the signal 

bandwidth is expressed as 

1

s

B
T

=

. Taking the 

transmission speed method of the sender as an example, it 

can be expressed as 

1
s

s

R
T

=

. The MQAM model may 

modulate different conditions simultaneously to achieve 

improved spectrum utilization. Under the background of 

additive white Gaussian noise channel, the theoretical bit 

error rate range of the model is calculated, as shown in 

Formula (10). 

 
1.5 ( 1)2 M

bP e − −
     (10) 

In Formula (10), bP
 denotes the transmitting power. 


 

is the signal-to-noise ratio. M  represents constellation 

points. 

3.3 EH-MIMO mathematical model solution 

based on ASARSA 

In the previous content, the study utilizes the SARSA 

algorithm to solve the EH-MIMO mathematical model to 

obtain the suboptimal power transmission strategy. The 

learning of the SARSA algorithm is illustrated in Figure 

7. 

In MIMO systems, because there are multiple antennas at 

both the transmitting and receiving ends, the number of 

management state pairs in Q-table is very large, resulting 

in insufficient dimension, and the inability to construct 

the table, which greatly affects the performance of the 

algorithm. To solve this problem, an ASARSA algorithm 

based on linear value function is proposed. ASARSA 

algorithm plays a key role in solving the "dimensional 

disaster" problem of traditional QL method in 

high-dimensional state space. 

ASARSA algorithm adopts linear value function 

approximation, which is a major difference from the 

traditional tabular method that needs to store separate 

values for each pair of states-actions. The ASARSA 

algorithm does not store the Q-table in the transmitter of 

the MIMO system, but replaces the Q-table with a 

constructed basis function. The basis function is shown in 

Formula (11). 

 
( ), , 1,2, ,m t tf s a m M=

     (11) 

In Formula (11), M  means the total amount of 

constructed basis functions. Next, the corresponding 

initial weights mw
 are assigned to all basis functions. 

By utilizing the weights corresponding to the basis 

function and the basis function, an approximate AVF 

( )ˆ , ,t tQ s a w
 can be obtained. This value to replace the 

( ),t tQ s a
 value in the traditional SARSA algorithm. The 

approximate AVF 
( )ˆ , ,t tQ s a w

 can be solved using 

Formula (12). 

 
( ) ( )ˆ , , , T

t t t tQ s a w Q s a f w =
     (12) 

In Formula (12), 
1Mf R 

 is a matrix composed of 

basic functions. 
1Mw R   is a matrix constructed by the 

corresponding weights of the basis function. When using 

ASARSA, the closer the value
( )ˆ , ,t tQ s a w

 is to the 

value
( ),t tQ s a

, the better the performance of the 

algorithm. It uses the least squares difference to evaluate 

the approximation accuracy between the two, as shown in 

Formula (13). 
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Figure 7: The learning process of SARSA algorithm 
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Figure 8: Overall EH-MIMO model based on ASARSA algorithm 

It minimizes 
( )J w

 to obtain the optimal approximation 

accuracy. Therefore, the gradient descent method is 

applied to calculate w . The gradient of 
( )ˆ , ,t tQ s a w

 is 

shown in Formula (14) 

 
( )ˆ , ,t tQ s a w f =

    (14) 

The value of w  is adjusted according to the direction of 

gradient descent, so as to minimize the error between 

( )ˆ , ,t tQ s a w
 and 

( ),t tQ s a
. The weights of the 

ASARSA are updated according to Formula (15). 

( )

( )

1 1, ,

ˆ , ,

t t t

t

t t

R Q s a w
w w f

Q s a w




+ ++ 
 +  

−   (15) 

According to the above design and formula, the model of 

the whole system can be obtained, as shown in Figure 8. 

In the ASARSA algorithm, the first step is to initialize the 

weight values corresponding to all basis functions, that is, 

to assign initial weight values to all basis functions. 

When in time slot t , it selects action ta
 based on   

in state ts
. Subsequently, it solves 

f
 and 

( )ˆ , ,t tQ s a w
 

according to Formula (12). Next, the state ts
 shifts to 

1ts + . Repeating the above operation can obtain 
( )1 1

ˆ , ,t tQ s a w+ + .Then, the weight values corresponding to 

the basis function are updated using Formula (15). After 

the algorithm fully explores the environment, the weight 

values converge and the correlation between the state and 

action is obtained. When the transmitter of the MIMO 

system is in the utilization stage, based on this 

correlation, the corresponding ta
 can be obtained at 

ts
. Because there is no Q-table in ASARSA algorithm, it 

can effectively avoid the dimensional disaster. Base on 

the above content, the ASARSA algorithm is constructed, 

and the EH-MIMO mathematical model is solved using 

this algorithm to optimize resource allocation in MIMO 

communication systems. At the same time, the study sets 

the exploration probability and learning rate as 1/k, where 

k is the number of iterations. This setting makes the 

algorithm tend to explore at the beginning, and gradually 

shift towards using known strategies as the iteration 

progresses to promote rapid convergence. Decreasing 

learning rate helps to learn quickly in the early stage, 

reduce the updating range in the later stage and avoid 

shock. The temperature parameter is initially set to 100 

and gradually decreases as learning progresses to increase 

the tendency to select the best action. These parameters 

are selected to balance exploration and utilization and 

ensure the effectiveness and stability of the algorithm. 
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4 Performance analysis of system 

resource allocation optimization 

strategy based on ASARSA 

To prove the optimization effect of ASARSA algorithm 

on resource allocation of MIMO communication system, 

simulation experiments are conducted in this study. To 

highlight the superior performance of ASARSA 

algorithm, this study chooses to compare and verify it 

with SARSA algorithm and QL algorithm. The 

experiment tests the performance of the model from the 

perspectives of convergence, F1, Recall, MAE, and 

RMSE values, throughput of EH-MIMO wireless 

communication system under different algorithms, and 

ROC curves of different algorithms. 

The parameters of the simulation experiment here mainly 

consider offline strategy, greedy strategy, conservative 

strategy and random strategy. Simulation parameters are 

shown in Table 2. 

In Table 2, k  represents the number of learning rounds 

for the current agent, which compares the effectiveness of 

ASARSA, SARSA, and QL in solving MIMO resource 

allocation optimization mathematical models. Firstly, it is 

required to compare the convergence of ASARSA, 

SARSA, and QL when solving the EH-MIMO resource 

allocation optimization mathematical model. The loss 

value is used as the judgment index in the experiment, as 

shown in Figure 9. In Figure 9(a), the ASARSA achieved 

near target accuracy after 76 iterations, which was 25 and 

77 fewer than SARSA and QL, respectively. In Figure 

9(b), the ASARSA algorithm approached the target 

accuracy after 10.0 seconds, which was 4.8 seconds less 

than the SARSA and 9.7 seconds less than the QL, 

respectively. 

This study uses F1 and recall rates to evaluate and 

compare the performance of ASARSA, SARSA, and QL. 

F1 is a binary model accuracy measure related to model 

precision and recall rate. The recall rate is a measure of 

the model recall rate, as shown in Figure 10. In Figure 

10(a), the F1 values of ASARSA were 96.52%, 1.05%, 

and 1.34% higher than SARSA and QL, respectively. In 

Figure 10(b), the recall value of ASARSA was 96.33%, 

which was 0.27% and 0.36% higher than SARSA and 

QL, respectively.

Table 2: Simulation parameter settings 

Parameter Unit Value 

Number of antennas at the transmitting end - 2 

Number of antennas at the receiving end - 2 

Noise W/Hz 0.2 

Bandwidth Hz 105 

Time interval s 1 

Total time slots - 100 

The total number of rounds of intelligent agent learning - 1000000 

Temperature parameters - 100 

Exploration probability - 1/k 

Learning rate - 1/k 

Initial battery energy J 0.15 

Battery capacity J 0.25 

Maximum collected energy J 0.20 

Energy quantification step size - 0.05 
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Figure 9: Convergence analysis of algorithms 
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Figure 10: F1 value and recall value of the algorithm 
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Figure 11: MAE value and RMSE of the algorithm 

 

This study evaluates and compares the performance of 

the ASARSA, SARSA, and QL using Mean Absolute 

Error (MAE) and Root Mean Square Error (RMSE) 

values, which are shown in Figure 11. In Figure 11(a), the 

average MAE value of the ASARSA was 3.54%, which 

was 1.27% and 2.01% lower than the SARSA and the 

QL, respectively. In Figure 11(b), the average RMSE 

value of the ASARSA was 3.10%, which was 0.58% and 

1.12% lower than the SARSA and the QL, respectively. 

The throughput of the EH-MIMO wireless 

communication system varies with the number of slots 

under different algorithm strategies, as shown in Figure 

12. The throughput of the system under the two strategies 

of ASARSA and SARSA was relatively close. Under the 

QL strategy, the throughput of the system was 

significantly lower than that of ASARSA and SARSA. 

When the number of slots was 100, the throughput of the 

system under the ASARSA strategy was 15.0×105 bit, 
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which was 0.2×105 bit and 3.6×105 bit higher than SARSA and QL, respectively. 
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Figure 12: The variation of wireless communication system throughput under different time slot numbers 
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Figure 13: The variation of wireless communication system throughput with the change of battery capacity coefficient 

 

Under the RA strategy obtained after the EH-MIMO 

resource allocation optimization mathematical model, 

different algorithms are used to solve the throughput of 

the EH-MIMO wireless communication system when 

comparing different battery capacity coefficients (


). 

The battery capacity coefficient varies according to 

different algorithm strategies, as shown in Figure 13. The 

throughput of the system under the two strategies of 

ASARSA and SARSA was relatively close, while under 

the QL strategy, the throughput of the system was 

significantly lower than that of ASARSA and SARSA. 

When the battery capacity coefficient was 4, the 

throughput of the system under the ASARSA strategy 

was 16900 bit, which was 1600 bit and 5000 bit higher 

than the SARSA and QL, respectively. 
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Figure 14: The change in throughput of wireless communication systems with the maximum collected energy 

 

Figure 14 shows the throughput variation of EH-MIMO 

wireless communication system under different algorithm 

strategies at maximum collected energy. The throughput 

of the system under the two strategies of ASARSA and 

SARSA was relatively close, while under the QL 

strategy, the throughput of the system was significantly 

lower than that of ASARSA and SARSA. When the 

maximum value of collected energy was 20, the 

throughput of the system under the ASARSA strategy 

was 5.1×104 bit, 0.1×104 bit and 0.7×104 bit higher than 

SARSA and QL, respectively. 

This paper uses ROC curves to analyze the 

comprehensive performance of ASARSA, SARSA, and 

QL, as shown in Figure 15. This paper uses ROC curves 

to analyze the comprehensive performance of ASARSA, 

SARSA, and QL, as shown in Figure 15. The AUC value 

of the ASARSA was 0.963, which was 0.016 and 0.027 

higher than the SARSA and the QL, respectively. On this 

basis, in order to further verify the robustness of 

ASARSA algorithm, the sensitivity analysis of key 

parameters is conducted. The exploration probability and 

learning rate vary from 0.1 to 0.01, while the temperature 

parameter varies from 50 to 200. Table 3 shows detailed 

information. 
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Figure 15: ROC curve analysis of the algorithm 

Table 3: Parameter sensitivity analysis 

Index 

Exploration probability/learning rate Temperature parameter (℃) 

0.1 0.05 0.01 50 100 200 

System throughput (bits) 14.5×105 14.8×105 15.0×105 14.2×105 15.0×105 14.3×105 
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Figure 16: Simulation results under different antenna numbers 

 

From Table 3, the algorithm is robust to parameter 

changes within a certain range, but its performance 

obviously declines beyond a specific range. This 

indicates that although parameter selection can affect 

algorithm performance, adjusting parameters within a 

reasonable range will not affect the effectiveness of the 

ASARSA algorithm. At the same time, the performance 

of the algorithm under different antenna numbers is 

further simulated. Scenes with 2, 4, 8 and 16 antennas are 

simulated, and the system throughput and algorithm 

convergence speed in each case are recorded, as shown in 

Figure 16. 

From Figure 16, the results show that with the increase of 

the number of antennas, ASARSA algorithm can still 

maintain a high system throughput, and the convergence 

speed is only slightly reduced. This discovery proves that 

ASARSA algorithm has good scalability in EH-MIMO 

systems of different scales. In summary, the ASARSA 

proposed in the study performs better and has higher 

efficiency in solving the EH-MIMO resource allocation 

optimization mathematical model. Under the ASARSA 

algorithm strategy, the throughput of the EH-MIMO 

system is higher and the optimization effect is better. 

Therefore, ASARSA can effectively optimize the 

allocation of EH-MIMO resources, thereby solving the 

spectrum resource shortage to a certain extent, and 

promoting the development of EH-MIMO technology. 

5 Discussion 

The combination of EH technology and MIMO system 

can achieve the energy-saving of wireless communication 

system and solve the spectrum resource shortage, which 

is one of the development trends of green communication 

in the future. The current EH-MIMO wireless 

communication system resource allocation optimization 

algorithm has the defects of insufficient prior information 

and high algorithm complexity, which can not effectively 

realize the communication system resource allocation 

optimization. In view of this, to solve the above 

problems, this study transformed the resource allocation 

optimization problem of EH-MIMO communication 

system into a Markov decision-making problem. An 

ASARSA algorithm based on RL was proposed to obtain 

the suboptimal transmission strategy, so as to maximize 

the system throughput and finally complete the resource 

allocation optimization of EH-MIMO communication 

system. 

Under the condition of 100 time slots, the ASARSA 

algorithm achieved a system throughput of 15.0×105 bits, 

which was significantly higher compared with the 

SARSA and QL algorithms. In terms of convergence 

speed, the ASARSA algorithm approached the target 

accuracy after 76 iterations, 25 and 77 fewer than the 

SARSA and QL algorithms, respectively. These results 

indicate that the ASARSA algorithm has higher 

efficiency and better optimization effects in resource 

allocation optimization. The innovation of the ASARSA 

algorithm lies in its ability to overcome the dimensional 

disaster. In high-dimensional state spaces, the traditional 

SARSA algorithm needs to store a large number of 

state-action pairs, which not only occupies a lot of 

memory, but also increases computational complexity. 

The ASARSA algorithm effectively solves the 

dimensional disaster problem through the linear AVF, 

avoiding the need to store the Q-table. Moreover, the 

ASARSA algorithm achieves a good balance between 

computational efficiency and accuracy. Although it uses 

an approximation method, its performance is still superior 

to or close to other models. 

In high-dimensional spaces, one of the main challenges 

faced by the SARSA algorithm is the dimensional 

disaster, that is, the performance of the algorithm drops 

sharply as the dimension of the state space increases. The 

ASARSA algorithm effectively avoids this problem 



102   Informatica 49 (2025) 87–104                                                                 X. Huang 

through a basis function method to approximate the AVF. 

Compared with the traditional QL method, the ASARSA 

algorithm does not need to store separate values for each 

state-action pair, but constructs the AVF through basis 

functions and corresponding weights, which greatly 

reduces memory requirements and computational 

complexity. 

Although the ASARSA algorithm improves 

computational efficiency through approximation 

methods, this may also introduce approximation errors. 

To quantify this trade-off, the research evaluates the 

approximation accuracy of the ASARSA algorithm. The 

results show that while maintaining high computational 

efficiency, the ASARSA algorithm can still maintain low 

approximation errors, proving its effectiveness and 

reliability in practical applications. In summary, the 

ASARSA algorithm has obvious advantages in solving 

the resource allocation optimization problems in 

EH-MIMO communication systems, especially when 

dealing with high-dimensional state spaces. At the same 

time, the innovation and computational trade-offs of the 

ASARSA algorithm in dealing with the dimensional 

disaster also provide important reference value for its 

practical application. Future work will further improve 

the generalization ability of the algorithm and verify it in 

a wider range of communication systems. 

6 Conclusion 

In the EH-MIMO wireless communication system, 

reasonable resource allocation can effectively improve 

system efficiency and save system resources. To this end, 

a mathematical model is constructed for optimizing RA 

in the EH-MIMO system, and an ASARSA is proposed to 

solve it. The experimental results showed that the 

ASARSA achieved close to target accuracy after 76 

iterations, which was 25 and 77 fewer than SARSA and 

QL, respectively. After 10.0 seconds of iteration, the 

target accuracy was approached, which was 4.8 seconds 

less than SARSA and 9.7 seconds less than QL, 

respectively. The F1 value was 96.52%, which was 

1.05% and 1.34% higher than SARSA and QL, 

respectively. The Recall value was 96.33%, which was 

0.27% and 0.36% higher than SARSA and QL, 

respectively. The MAE value was 3.54%, which was 

1.27% and 2.01% lower than SARSA and QL, 

respectively. The RMSE value was 3.10%, which was 

0.58% and 1.12% lower than SARSA and QL, 

respectively. When the number of time slots was 100, the 

system throughput was 15.0×105 bit, 0.2×105 bit and 

3.6×105 bit higher than SARSA and QL, respectively. 

When the battery capacity coefficient was 4, the system 

throughput was 16900 bit, which was 1600 bit and 5000 

bit higher than SARSA and QL, respectively. When the 

maximum value of collected energy was 20, the system 

throughput was 5.1×104 bit, 0.1×104 bit and 0.7×104 bit 

higher than SARSA and QL, respectively. The AUC 

value was 0.963, which was 0.016 and 0.027 higher than 

SARSA and QL, respectively. This research innovatively 

extracts the characteristics of resource allocation 

optimization problems in EH-MIMO communication 

systems, transforms them into a Markov decision-making 

process, and uses SARSA algorithm to obtain the 

suboptimal transmission strategy. In addition, an 

ASARSA algorithm was proposed to solve the 

dimensional disaster problem, so as to improve the 

resource allocation optimization effect of EH-MIMO 

communication systems. The experimental results 

showed that ASARSA algorithm effectively achieved 

EH-MIMO resource allocation optimization, and then 

solved the spectrum resource shortage to a certain extent, 

promoting the development of EH-MIMO technology. 

The limitation of this study is that the number of antennas 

set in the simulation experiment parameters is small, 

which is different from the actual situation. Therefore, 

there may be some deviation between the obtained 

experimental results and the actual situation. 

Subsequently, the number of antennas should be 

increased to improve the reliability of the experiment. 
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