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Today, the most widely used visual markers, such as ArUco and AprilTag, rely on square pixel arrays. 

While these markers can deliver satisfactory detection and identification outcomes, they remain 

vulnerable to corner occlusion despite incorporating corrective codes. Conversely, line-based markers 

offer increased resilience against occlusions but are typically constrained in terms of codification 

capacities. The markers developed in this research leverage linear information to propose a pyramidal 

line-based structure that exhibits robustness to corner occlusion while providing enhanced coding 

capacities. Moreover, the projective invariance of the constituent lines enables the validation of a 

homography-less identification method that considerably reduces computation resources and processing 

time. We assembled an extensive test dataset of 169,713 images for evaluation, including rotation, 

distances, and different levels of occlusion. Experiments on this dataset show that the proposed marker 

significantly outperforms previous fiducial marker systems across multiple metrics, including execution 

time and detection performance under occlusion. It effectively identifies markers with up to 50% occlusion 

and achieves identification at a resolution of 1920×1080 in 17.20 ms. The developed marker generation 

and identification, as well as an extensive marker Database, are publicly available for tests at 

https://github.com/OILUproject/OILUtag 

Povzetek:  Predstavljen je izboljšan sistem vizualnih oznak, ki temelji na linijah in je odporen na delne 

zakritosti. Predlagana je piramidalna strukturaoznak, ki omogoča večjo kodirno zmogljivost in robustnost 

proti zakritju vogalov. Razvili so metodo identifikacije brez uporabe homografije, kar zmanjšuje računske 

zahteve in čas obdelave. 

1 Introduction 
Visual markers are artificial graphical codes representing 

numerical (or textual message) information that can be 

associated with objects to be uniquely identified. 

Computer vision applications use these tags to simplify 

the automatic perception of objects inside a scene and 

make their localization more precise. These are widely 

used in product labeling and tracking, robotics localization 

and mapping [1], camera calibration and pose estimation 

[2-3], augmented reality applications [4], automatic 

navigation [5] and medical positioning [6].  

Today, the most prevalent visual markers, such as April 

[7] and ArUco [8] Tags, utilize square pixel arrays. 

Although these markers often yield satisfactory detection 

and identification results, they remain susceptible to 

external corners occlusion despite the inclusion of error 

correction codes. In contrast, line-based markers offer 

greater resilience against occlusions but are often 

constrained in coding capacities [9]. Recently, Chahir et 

al. [10] introduced a novel line-based marker called the 

OILU marker, addressing codification limitations.  

 

 

 

This marker utilizes groups of pyramidal-shaped lines to 

create highly distinguishable 2D markers (Figure 1.a).  

While offering significant advantages in coding 

capabilities, the developed identification method, which 

relies on a time-consuming level set technique [11], slows 

down processing, particularly in scenarios where multiple 

markers are in the camera's field of view. The reported 

average processing time is approximately 40 ms per 

marker, making this solution unsuitable for constraining 

real-time applications.  In addition, the proposed scheme 

(marker design and identification method), does not solve 

the problem of external corners occlusion, for which most 

square markers remain ineffective. In fact, if just one 

corner of these markers is occulted, the detection fails. 

To overcome these challenges, we propose in this paper, a 

less computational identification method, based on 

cumulative histogram analysis that allows reducing 

processing times by almost half compared with the work 

of Chahir et al. [10]. However, as the method relies only 

on the external marker’s corners for localization, it also 

remains vulnerable to external corners occlusion. 

Moreover, as the identification scheme integrates  
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homography transform in its processing, computation 

performances decrease as the number of markers within 

the camera's field of view increases.  

To remedy these limitations, a revised marker design 

(Figure 1.b), as well as a dedicated homography-less 

identification approach, are proposed. The adopted 

identification scheme exploits the marker’s local 

properties to switch from a line-based representation to a 

more accurate and relatively fast dot-based one. 

Deep tests on real and synthetic images highlight the 

performance and robustness of the proposed solution 

against challenging conditions, with a particular focus on 

corners occlusion. Despite this, the homography transform 

remains applicable for pose estimation, where improved 

markers demonstrate superior performances compared to 

state-of-the-art markers 

In summary, the main contributions of this paper are: 

- The layout design of the OILU Tag has been 

enhanced to offer more robustness to occlusion 

and overlapping objects. 

- The proposal introduces a low computational 

homography-less identification method. The 

average execution time has been considerably 

reduced for both desktop and mobile 

architectures, making it suitable for constraining 

real-time applications.  

- A dedicated OILU Tag Generator as well as a 

huge database are made available for 

comparative tests with the well-known state-of-

the-art visual Tags.   

The remainder of this paper is organized as follows: 

Section 2 provides a quick literature review on well-

known fiducial markers. Section 3 briefly presents the 

OILU code basics and highlights its key strengths as being 

an efficient visual marker. Sections 4 describe our primary 

OILU marker identification scheme, followed in Section 

5 by the presentation of a revised marker design, as well 

as its validated homography-less identification approach. 

In section 6, extensive tests are conducted on real and 

synthetic images. Finally, section 7 concludes the paper 

with interesting perspective views. 

 

2 Related works 
There are many conceptions of visual markers in the 

literature (Figure 2). These can be clustered into three 

main categories: square-based, line-based, and dot-based 

tags. The first category regroups all QR-like tags that 

encode binary information in black/white cells arranged in 

square grid layouts. ARToolKit [12] is the oldest fiducial 

marker proposed for AR applications. It consists of a 

black-bordered square inside, which is embedded in a 

known image as a payload. Its limitation resides in the 

matching method that uses image correlation techniques 

to detect the embedded pattern. ARToolKitPlus and 

ARTag [13-14] are improved versions released to 

overcome these limitations. They use binary-coded 

patterns to encode the embedded identifier. Furthermore, 

the ARTag introduces additional information as an error-

correction payload. Based on ARTag’s idea, many 

efficient square markers were proposed, among them 

April Tag [7] and ArUco Tag [8], which became 

ubiquitous in the AR field. Both allow generating of user-

customized dictionaries using some heuristics to 

maximize some criterion such as inter-marker distance 

and the number of bit-transitions.  

Recently, a new square-like TopoTag was introduced by 

Yu et al. [15].  It offers a highly customizable marker 

shape. The fundamental structure of the marker consists of 

a black frame with black squares positioned on a white 

background. One notable advantage of TopoTag is its 

variable dictionary size. The authors claim that generating 

the dictionary is significantly faster compared to similar 

marker systems like April and ArUco Tags. Based on 

AprilTag, [16] proposed ChromaTag by using different 

colors to represent the internal bits to make the detection 

easier and speed up its decoding. Line-based markers 

apply some measurements on the basic forms like line-

thicknesses and angle sizes to encode the elementary 

information. Usually, markers in this approach are robust 

against bad acquiring conditions such as blurring and 

variation in lighting. They perform well in occlusion 

situations. Based on the classical linear bar code, Calvet et 

al. [17] proposed a circular version called CCTag, in 

which the lines have been substituted by circles with 

different thicknesses. 

Dot-based tags [18-19] enable the developing of 

projective invariants fiducial marker systems based on 

cross ratios computation. Even though these markers 

exhibit higher accuracy in camera calibration and pose  

 
  

(a) Classical OILU Marker embedding the decimal 

number 6789 
(b) Improved OILU Marker 

Figure 1: Classical OILU marker embedding the decimal number 6789 and improved OILU Marker 

identification and pose estimation under corners occlusion. 
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estimation, they offer a limited number of distinctively 

recognizable patterns [20]. 

OILU Tag [10] is a distinct type of fiducial marker based 

on the two initial categories. It distinguishes itself from 

other fiducial markers in two main aspects: firstly, humans 

and machines can read it. Secondly, it exclusively 

employs lines as primary patterns to encode the 

elementary information. Moreover, the OILU marker 

introduces a novel approach to layout design, ensuring 

user accessibility and ease of implementation. It can even 

be accurately reproduced by hand drawing, eliminating 

OILU Tag [10] is a distinct type of fiducial marker, based 

on the need for specialized tools or intricate encoding 

schemes, making it ideal for a wide range of applications. 

Table 1 presents well-known markers along with their 

features, such as shape and dictionary size. 

In summary, existing visual markers have significant 

limitations. Square-based markers, such as AprilTag and 

ArUco, are particularly susceptible to corner occlusion, 

resulting in poor performance even with minimal 

obstruction. While line-based markers are more resilient 

to occlusion, they are hindered by limited coding capacity 

and high computational requirements, especially when 

dealing with numerous markers in the field of view. 

Moreover, these markers often rely on complex 

homography transformations, reducing their efficiency. 

The new marker design overcomes these challenges with 

several key improvements. By utilizing lines as the 

primary pattern, OILU markers offer inherent redundancy, 

making them more resistant to occlusion and blurring 

compared to dot- or square-based markers. Additionally,  

   

(a) ARToolkitPlus (b) AprilTag (c) ArUco Tag 

  

 

(d) CCTag (e) Pi-Tag  

Figure 2: Examples of well-known visual markers. 

 
Table1: Main markers specifications 

Marker  Family Shape Scalabilit

y 

Key Findings Flexibility 

AprilTag [7] Qr-like Square Limited High dictionary size 

(5329); widely used in 

robotics and AR systems 
 

Low occlusion resilience; 

limited scalability; no 

flexibility 

ArUco [8] Qr-like Square Limited Moderate dictionary size 

(250); simple 

implementation  

Low occlusion resilience; 

limited scalability; no 

flexibility 

ARToolKit 

[12] 

Qr-like square Limited Developed the first 

generation of AR marker 

tracking tools 

lacks flexibility and high 

computational complexity 

CCTag [17] Bar-like Circular Limited Easy detection of circular 

shapes  

Very limited dictionary size 

(39); low occlusion resilience; 

no flexibility 

Pi-tag [18] Dot-like Square Limited Balanced dictionary size 

(300); efficient marker 

detection  

Low occlusion resilience; 

limited scalability; no 

flexibility 
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lines serve as effective separators between contrasting 

regions, improving marker detection and recognition. 

OILU's unique pyramidal line-based structure enhances 

occlusion resilience, ensuring reliable detection even in 

difficult conditions. The homography-less identification 

method reduces computational demands, making it more 

suitable for real-time applications. The shift from line-

based to dot-based representations also boosts detection 

accuracy and processing speed. These innovations 

position the OILU marker as a superior alternative to 

existing visual markers, striking a balance between 

robustness, efficiency, and practicality. 

3 OILU markers basics  
OILU markers, as described in [10], are based on a set of 

four basic symbols {O, I, L, and U}, corresponding 

respectively to digits zero, one, two, and three (Figure 3  

 (a). The remaining decimal symbols, related to digits {4, 

5, 6, 7, 8, 9}, are obtained by successive counter-

clockwise rotations of the two symbols L and U. The 

important feature of these symbols is their ability to be 

concatenated in a pyramidal fashion, producing multi-

faceted numbers that can be exploited as visual markers 

(Figure 3 (b)). Each OILU symbol is coded in bi-nary 

according to Figure 3 (c). In the following, we will detail 

our improved identification approach based on cumulative 

histograms analysis. Compared to the level set method 

presented in [10], the adopted approach is relatively 

simple and computationally efficient. It operates on 

classical OILU markers and incorporates homography in 

its processing [21, 22]. 

 

4 Standard OILU markers detection 

and identification  
To facilitate detection, the visual OILU markers are 

designed with black-outlined segments on a white 

background (or inversely). The identification process 

follows the standard computer vision processes, which 

involves three key stages: pre-processing, code detection, 

and decoding. The complete process presented in Figure 4 

is as follows: 

4.1 Preprocessing  

The primary objective of the pre-processing stage is to 

enhance the quality of the captured images, ensuring they 

are optimized for subsequent stages. To achieve this, 

classical image processing filters can be applied [23], 

though modern cameras often capture high-resolution 

images. In real-time applications, there is a necessary 

trade-off between speed and accuracy. Downsampling the 

captured images enables quick noise filtering and reduces 

the execution time, especially in the subsequent stages.  

The output of this stage is an improved grayscale image 

(as shown in Figure 4 (b)). Its goal is to localize all 

possible quadrilaterals eligible to be square-OILU 

markers in the grayscale image. The process comprises 

three main steps: 

4.2 Eligible markers detection  

4.2.1 Image Thresholding  

The first step after obtaining the enhanced grayscale 

image is to binarize it, separating the objects in the image 

from the background. This makes the extraction of 

contours possible in the subsequent step. Several methods 

can be used for binarization [23]. The simplest method is 

direct thresholding, where a global threshold is applied; 

however, this method performs poorly on images with 

 

Figure 3: OILU Symbols representation. The whole symbols are incorporated in a square to delimit their area in a 

real-world scene 

(a) Decimal OILU Symbols representation 

 (b) Pyramidal OILU representation of the 

decimal number 1962 

(c) OILU Symbols binary codification based on 

the presence (1)/absence (0) of the composing 

segments {Seg1, Seg2, Seg3, Seg4} 
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multimodal histograms. The Canny method can be used, 

but it is time-consuming for real-time applications. For 

better performance, we utilize a local adaptive 

thresholding method, which is robust to varying lighting 

conditions and does not depend on a global threshold 

choice. Figure 4 (c) depicts the resulting binarized image. 

4.2.2 Contour extraction  

Given the square shape of the OILU Tag, we search for all 

potential quadrilateral shapes in the binarized image that 

could correspond to an OILU marker. To accomplish this, 

we first extract the contours of the image by tracing the 

transitions between black and white pixels, as described in 

[24]. Next, we approximate the obtained contours to the 

nearest polygonal shape using the Douglas-Peucker 

algorithm [25] (as shown in Figure 4 (d)). Only convex 

shapes with four corners are retained (Figure 4(e)). Some 

refinement steps are necessary to eliminate contours that 

are too small, too large, or too close to Each other [26]. 

4.2.3 Candidate markers determination and 

perspective adjustment  

Although we retain all convex quadrilaterals with four 

corners in the previous step, not all of them are regular 

squares. Some may be subject to 2D transformation 

constraints such as rotations or perspective distortions. To 

correct these irregularities, a homography is applied to the 

sub-image framed by the quadrilateral. Once corrected, 

each obtained sub-image is resampled to a canonical 

grayscale image of size 𝑊𝑐 ×  𝑊𝑐 using linear 

interpolation. The output of this step is a list of candidate 

square-shaped marker images (as depicted in Figure 4 (f)). 

4.3 Marker Identification  

Each candidate marker in the obtained list needs to be 

processed to confirm its content as an OILU marker and 

read its embedded identifier. As previously mentioned, 

each identifier digit is encoded in a separate layer using 

four segments that reflect the OILU symbolic. The 

challenging part is to identify the position of each layer, 

locate each segment within it, and extract its binary 

content, particularly in critical situations such as 

occlusions and noise. More formally, let K be an integer 

with N decimal digits, and M its corresponding OILU 

code. The segment-based binary codification of M is:  

𝑀 = {(𝑠0
𝑖 , 𝑠1

𝑖 , 𝑠2
𝑖 , 𝑠3

𝑖 , 𝑠4
𝑖 )}

𝑖=1

𝑁
, 𝑠𝑗

𝑖 ∈ {0,1} 𝑓𝑜𝑟 𝑗 = 1. .4 (1) 

The size of the embedded identifier (N), which 

corresponds to the number of layers, is unknown 

beforehand. Furthermore, no assumptions are made 

regarding the thickness of the segments, whether they are 

equal or not. When the segments are of equal width, the 

binary square image can be divided into a matrix of the 

same width and height as the segment width to isolate the 

segments easily. However, designing an OILU marker 

with different segment thicknesses and inter-layer space 

widths makes it more flexible and robust to a wide range 

of distortions, occlusions, and noise. In the subsequent 

paragraphs, we will consider this last case, which is more 

challenging. The decoding procedure, illustrated in Figure 

5, involves several steps: 

 

Figure 4: OILU Marker Detection process. (a) Input image acquiring. (b) input image processed and grayscale 

converted. (c) Binarized image. (d) Contours extracted. (e) Eligible markers extracted. (f) Perspective correction 

using homography. (g) Markers decoded. 
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4.3.1  Binarization  

OILU tags exhibit bimodal histogram characteristics, 

making Otsu's thresholding method [27] the ideal choice 

for generating binarized images. This method determines 

the optimal threshold value to distinguish between the 

predominantly white background and the typically black 

OILU segments. In the resulting binarized image (Figure 

4(c)), pixels within the segments (i.e., the region of 

interest or ROI) are assigned a value of ‘1’ while all other 

pixels are assigned a value of ‘0’.  

4.3.2 Layers extraction and black segments 

localization 

The binary image is first divided into four triangles or 

sectors, denoted as T1, T2, T3, and T4. Each triangle Ti  

 comprises a set of alternating black and white bands that 

contain the encoded segments. A black band indicates a 

binary one '1', while a white band could represent zero '0' 

or multiple consecutive zeros '0' (as illustrated in Figure 

5). To locate the segments within the image, we utilize a 

useful property of the OILU marker that states ‘each layer 

contains at least one black segment’. Therefore, 

combining all the triangles by performing a bitwise-OR 

operation between their contents yields a template triangle  

T (2) containing the exact number of black segments equal 

to the number of digits N in the encoded identifier (as 

depicted in Figure 5). 

𝑇 =  𝑇1 +  𝑇2 +  𝑇3 + 𝑇4 (2) 

The merged triangle T plays the role of a template guide 

that allows delimiting all the black/white segments in each 

layer by analyzing its horizontal and vertical cumulative  

 

Figure 5: Decoding process: Each layer in a given OILU marker contains at least one black segment. Performing a 

bitwise-or operator on the four triangles (sectors) constituting the OILU -marker results in a merged template that 

contains a black segment on each layer. The merged template allows delimiting each black/white segment in each 

individual triangle. 
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histograms (respectively HCH and VCH). The horizontal 

histogram HCH is the sum projection of pixel values along 

all rows inside the triangle T. 

𝐻𝐶𝐻𝑗 = ∑ T(𝑗, 𝑘)

𝑤𝑐

𝑘=1

; 𝑗 = 1. . 𝑊𝑐/2 (3) 

It allows localizing the black segments by following the 

black-white transitions. Indeed, black segments coincide 

with high ridges (peaks) in the HCH, while white ones 

constitute low valleys. To handle occlusion situations and 

to be robust against noise, a percentage threshold 𝜔1 =
2/3 regarding the whole line is set up to decide whether a 

horizontal-histogram value is black or white. 

𝐻𝐶𝐻𝑗 ≥ (w𝑐 − 2 ∗ 𝑗) ∗ 𝜔1 ⇒ 𝑇(𝑗)

≡ 𝑏𝑙𝑎𝑐𝑘 𝑙𝑖𝑛𝑒 
(4) 

It is worth noting to mention that 𝜔1 is dependent on the 

row position; outer rows correspond to high values of 𝜔1 

and vice-versa. The VCH is the vertical projection of T 

over all columns; it allows the detection of the number of 

black bands, confirming the horizontal histogram analysis 

results. 

𝑉𝐶𝐻𝑗 = ∑ T(𝑘, j)

𝑤𝑐/2

𝑘=1

; 𝑗 = 1. . 𝑤𝑐 (5) 

The clustering of many adjacent black (respectively white) 

rows in the HCH constitutes a black (respectively white) 

segment, provided that the number of rows exceeds a 

threshold 𝜔2 = 25%. After creating the merged template 

and locating its segments, we utilize it to determine the 

position of each segment within the four triangles. 

4.3.3 Marker validation 

To confirm that the embedded data is an OILU code, we 

only need to verify that the marker satisfies the following 

criteria, which serve as an OILU signature: 

• The strict alternation of bands: the merged 

triangle T comprises alternating black-white 

segments. The most outer (starting) band is black, 

and the most inner (ending) is white. The number 

of all bands is always even. 

 

 

• Each black band in a triangle must correspond to 

a black band in the merged triangle. 

• Each segment must be connected (no small 

fragments). 

4.3.4 Marker decoding 

To decode the content of the validated marker, we follow 

the reverse process of the encoding procedure (as shown 

in Figure 5, decoding step), which involves the following 

steps: 

We affect the value “1” for each black segment and “0” 

for each white one, starting from the most outer segment 

to the most inner. Each triangle (Ti) i=1..4 is composed of 

N+1 segments: 

Ti = {𝑠𝑖
𝑘}

𝑘=0

𝑁
, 𝑠𝑖

𝑘 ∈ {0,1} 𝑓𝑜𝑟 𝑖 = 1. .4 (6) 

Next, we concatenate the binary values inside each 

triangle Ti to form a binary string: 

𝑠𝑡𝑟𝑖 = 𝑠0
𝑖 𝑠1

𝑖 . . 𝑠𝑁−1
𝑖 𝑠𝑁

𝑖 , 𝑓𝑜𝑟 𝑖 = 1. .4 (7) 

After that, we arrange the four binary strings vertically to 

form a decoding matrix (Table 2) starting with the left 

triangle and going counterclockwise (left, bottom, right, 

then upper). Each line of the decoding matrix 

represents a digit in the identifier whose decimal value can 

be obtained from the OILU codification table (Figure 3-

c). These aforementioned steps are repeated for all eligible 

markers, and only the validated markers that have their 

IDs and Cartesian coordinates within the original image 

are retained after the detection process. 

4.4 Processing time required for standard 

OILU markers identification  

The identification scheme described in section 4 has been 

implemented and tested on a typical Laptop equipped with 

a 2.4 GHz Intel Core i7 processor with 16 GB RAM, 

running Windows 10. The processing time can be divided 

into three main steps: (1) finding marker candidates 

(including image processing, contours extraction and 

eligible squares determination), (2) perspective correction 

of all candidates, and (3) markers validation. The 

execution of the first step can be affected by the size S of  

Table 2: OILU decoding matrix. Each column corresponds to one triangle in which each segment is coded in binary 

(si
j
=1 means the segment is detected as being black) 

T1 T2 T3 T4 Lookup Figure 3 (c) 

𝑠0
1 𝑠0

2 𝑠0
3 𝑠0

4 digit0 (must equal 1111) 

𝑠1
1 𝑠1

2 𝑠1
3 𝑠1

4 digit1 

⋮ ⋮ ⋮ ⋮ ⋮ 

𝑠𝑁−1
1  𝑠𝑁−1

2  𝑠𝑁−1
3  𝑠𝑁−1

4  digit N-1 

𝑠𝑁
1  𝑠𝑁

2  𝑠𝑁
3  𝑠𝑁

4  digit N 
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 the input image and the complexity of its texture in terms 

of contained contours, while the processing of the second  

 and the third steps only depends on the marker canonical 

size 𝑤𝑐 × 𝑤𝑐. Table 3 resumes the average execution time 

of each step taken for multiple input images of size 𝑆 =
 640 × 480 and canonical size of 256 × 256 pixels. 

Figure 6 shows the evolution of the average extraction 

time in function of the image size and its best distribution 

fit which seems to be a polynomial distribution (with R2 

goodness-of-fit = 0.986). As observed, the detection time 

increases significantly, reaching up to one second, when 

the input image has a high resolution. 

While the adopted scheme reduces processing times by 

nearly half compared to the approach by Chahir et al. [10], 

it still depends on the external corners of the markers for 

localization, rendering it susceptible to occlusion. 

Additionally, the integration of homography 

transformations in the identification process leads to 

reduced computational performance as image resolution 

increases or as more markers appear within the camera's 

field of view.  

In the following, an improved OILU marker system design 

is proposed (Figure 7). It involves enclosing the embedded 

identifier within two nested square-like quadrilaterals, 

enabling efficient marker detection even when the external 

marker’s corners are occluded. The developed 

identification method considers OILU numbers as groups 

of locally parallel segments, treating them separately 

without the need for a homography transform, thereby 

reducing computation resources and minimizing 

processing time. 

 
Figure 7: Groups of locally parallel segments. 

 

 

  

Table 3: Average processing time. 

Architecture Step 

Proposed method 
(Chahir et al., 2021) 

method 

Average time per step 

Image (640x480) 

Total time 

/candidate 
Total time /candidate 

Typical laptop 

1 17.33 ms 

19 ms 40 ms 2 1.24 ms  

3 0.43 ms  

Typical Android 

smartphone 

1 22.08 ms 

25.06 ms Not reported 2 1.87 ms 

3 1.10 ms 
Step 1 : Finding Marker Candidate – Step 2 : Perspective corrections – Step 3 : Marker validation 

 

Figure 6: Evolution of the average detection time of the OILU code in function of the input-image size with its 

polynomial distribution fit. 

Gp1 Gp2 

Gp3 Gp4 
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5 Improved OILU markers system 

design 

Common, well-known problems with state-of-the-art 

markers include detection failures when their corners are 

occluded, and lack of size adaptation to the camera's field 

of view (FOV), especially when the camera is in motion. 

This is evident, for example, when an autonomous drone 

attempts a landing based on its on-board camera. These 

issues have been addressed in various works [2-28-29]. An 

interesting approach presented in [2] involves designing 

fractal markers composed of imbricated quadrilaterals. In 

addition, being multi-scale markers, the latter are robust to 

partial occlusions. This inherent structure is characteristic 

of OILU markers, which are made up of nested square 

symbols, allowing their structure to be customized to 

overcome the above-mentioned problems. Hence, the 

adopted structure (Figure 8) is as follows:  

- Two imbricated inner/outer square like –

quadrilaterals as marker delimiters. 

- A group of disconnected segments to embed the 

marker identifier

This arrangement simplifies marker detection, even in 

complex backgrounds, by focusing on identifying nested, 

similar square-like quadrilaterals within a filmed scene. 

This specific pattern streamlines OILU marker detection 

while filtering out non-OILU quadrilaterals. Furthermore, 

the nested structure enhances the markers' resilience to 

partial occlusion, which typically affects the outer 

quadrilateral. Since these imbricated quadrilaterals share a 

similar structure, any partial occlusion of the outer 

quadrilateral can be approximated and reconstructed 

through uniform rescaling. This advantageous feature is 

extensively leveraged in the experimental section to 

improve marker detection and pose estimation, even under 

occlusion. 

   

(a) 𝐼𝑑1 = 0000 (b) 𝐼𝑑2 = 6819  (c) 𝐼𝑑3 = 2372 

Figure 8: Example of OILU markers with fixed inner and outer squares embedding different identifiers. 

Embedded symbols are drawn with disconnected segments (without corners) to distinguish them from the 

inner/outer quadrilaterals. 

 

Figure 9: OILU markers detection within complex backgrounds. 

  

(a) Computed railway interlines ratios 
(b) Real OILU markers identification based on 

cross ratios computation 

Figure 10:  Analysis of Railway Interline Ratios and OILU Marker Identification 
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5.1 Candidate marker’s location 

As mentioned, OILU markers are composed of two 

imbricated square-like quadrilaterals.  

Such composition eases markers’ location tasks even 

within a complex background (Figure 9). For more 

selectivity, the fixed inner/outer quadrilateral’s surface 

ratio is used to eliminate surrounding non-OILU 

quadrilaterals. 

5.2 Marker identification 

 A deep evaluation of the perspective distortion levels 

within the adopted markers shows that these are more 

significant between the different groups of parallel 

segments (Gp1, Gp2, Gp3 and Gp4) than within the same 

group (Figure 7). Indeed, parallel lines in the same group 

remain locally parallel, even if the marker is acquired in 

perspective. In another way, each group of lines can be 

considered as railway ties (Figure 10 (a)) for which 

computed Euclidean length ratios remain invariant to 

perspective changes [30]. The challenge here is exploiting 

such ratios to generate the related embedded sub-codes 

without homography. 

The adopted approach involves crossing the composing 

groups of lines (Gpi) with a virtual line centred on the 

middle of the marker (Figure 10 (b)). Crossed lines 

sections are then used to locate the corresponding cross 

points and generate associated sub-codes. The quantity of 

retained cross-point sets within each group can range from 

one to multiple, depending on the desired level of 

resilience against distortions, particularly occlusion. For 

example, a single set per group is adequate for marker 

identification when markers are fully visible. However, in 

scenarios where parts of the marker are obscured, multiple 

sets from various regions are required to confirm the most 

common ones. Notably, identification may fail even with 

multiple selected regions in case of significant occlusion. 

Deep tests in the experimental section will show the 

accuracy and limits of this approach. Globally, the 

adopted OILU marker code generation process is as 

follows: First, for each group Gpi (i= 1 to 4), the following 

metrics are computed: 
Group’s metrics computation                                 

- the number (N) of cross points,  
- the (N -1) inter-dots Euclidian distances {dj, j=1 to N 

-1},  

- the group band width Wi =  ∑ 𝑑𝑗
𝑁−1
𝑗=1  , 

- the average dots spacing Ai = Wi /S, with S the number 
of code symbols, 

the ratios Rj = round (dj /Ai). 

Cross points positions are estimated according to their 

computed ratios Rj and marker’s format (number of 

embedded symbols). In case of a four symbols marker, the 

possible configurations to be tested are as follows:  

Cross points position estimation 
Rj = round (dj/Ai)   // with Ai, the average cross points 

spacing of Gpi 
if Rj = 1 the corresponding points are 

adjacent               // case (a) 
  else if  Rj = 2  related points are separated by one 

empty space        // case (b) 
     else if  Rj = 3  related points are separated by two 

empty spaces       // case (c) 
  else  related points are separated by three empty 

spaces                  // case (d) 
end  

The basic example (Figure 11) illustrates where a group's 

number of cross points equals three (two inner/outer 

boundary points and one symbol cross point). The number 

of inter-cross points Euclidean distances is equal to two 

(𝑑1, 𝑑2). Computed metrics are: 𝑊𝑖 =  𝑑1 + 𝑑2;  𝐴𝑖 =
𝑊𝑖/4; 𝑅1 =  𝑟𝑜𝑢𝑛𝑑 (𝑑1/𝐴𝑖). Therefore, the presented 

red symbol cross point will be in one of the four cases 

{(𝑎), (𝑏), (𝑐) 𝑜𝑟 (𝑑)}, according to 𝑅1 value, equal to 1, 2, 

3 or 4. 

A second illustrative example (Figure 12) shows three 

views of a real marker (embedding decimal number 0389). 

Developed identification method, calculates 

corresponding cross points coordinates and metrics for 

each group of segments. It is worth mentioning that since 

processing is carried out separately on each group of cross 

 

Figure 11: Cross points position estimation, (*) Colored bands delimit the  

cross-point variation intervals. 
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points, perspective distortions have no impact on the 

computed ratios and, consequently on the related 

embedded codes, making homography transformation 

unnecessary for marker identification. In the following, 

deep tests on real OILU markers are performed to evaluate 

the correctness and robustness of this approach against 

leading.  

 

 

6 Experiments 
Tests are carried out on a huge database of synthetic and 

real markers, with nearly 5000 markers available in three 

groups of different sizes: small (5 𝑐𝑚 × 5 𝑐𝑚), medium 

(10 𝑐𝑚 × 10 𝑐𝑚), and large (15 𝑐𝑚 × 15 𝑐𝑚). Printed 

markers are placed on a rotating support using different 

types of cameras. Specifically, we employ a high-

resolution Logitech camera (Figure 13). Deeper tests with 

many markers, displayed on a Surface Pro X tablet are also 

performed to assess the performance of our method under 

various distortion conditions (Figure 13 (b)). In our tests, 

we compared the performance of our developed marker 

with two well-known markers, ArUco and AprilTag. We 

gathered data for each tag family: 36h12 and 16h3 for 

ArUco and 25h9 and 36h10 for AprilTag. 

Codes for the developed marker (generation/detection) 

and the OILU database (images and videos) are publicly 

available for download at the following link: 

https://github.com/OILUproject/OILUtag. 

6.1 Marker to camera distance impact 

Initially, we evaluate the impact of the marker-to-camera 

distance on the performances of marker detection. The 

camera was positioned in front of the marker at different 

distances d, ranging from 0.2m to 4 m. Obtained 

identification results are presented in Table 4.  Compared 

with the ArUco and April Tags results, the proposed 

marker performs less well when using a fixed-focus 

camera (Logitech in our case). As distance increases, 

adjacent parallel lines expand, forming a uniform area that 

prevents accurate identification. This problem can be 

solved using an autofocus camera, such as a smartphone. 

Note that after a certain distance (superior than 3.5 m), 

marker identification became dependent on the camera 

resolution. The higher the resolution, the better the 

identification and vice versa. 

 

Figure 12: Computed cross points metrics and related embedded codes. 

https://github.com/oiluproject/oilutag
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(a) A high-resolution front camera is used to 

record video sequences at various distances 

ranging from 0.2 to 4 meters 

 
(b) A Surface Pro X tablet serves as a display 

platform to validate the identification scheme 

across a large database of markers 

Figure 13: The experiment setup involves a rotating plate with embedded markers, which is controlled by a 

stepper motor to accurately capture the markers in a perspective view.  

 

 

   

(a) Failing identification case  

(β =10) 

(b) Successful marker 

identification (β = 20) 

(c) Successful marker 

identification (β =40) 

Figure 14: Snapshots of a live video showing different perspective views of a real marker embedding the 

value 2758 

6.2 Robustness to viewing angle 

The second test concerned robustness to viewing angle ‘β’. 

Markers were placed 1 m away from the camera and 

acquired with varying viewing angles β ∈ [10°: 90°]. The 

obtained results show that all the codes examined are 

indeed detected at angles greater than 15° (Figure 14). 

Beyond this angle, the proximity of neighbouring parallel 

lines increases, forming a homogeneous region that 

prevents accurate identification. 

6.3 Robustness to occlusion 

In these tests, we use a set of 50 unique OILU markers, 

each marked by a varying number of opaque circles 

ranging from 1 to 9 (Figure 15). By adjusting the size of 

these circles across seven different sizes, we generated a 

total of 3150 test images. The same process is adopted with 

the well-known April and ArUco Tags. Generated 

database is evaluated using dedicated exploitation codes. 

Obtained comparative tests (presented in Table 5) confirm 

that the suggested marker, characterized by its consistent 

line-based pyramidal structure, outperforms standard 

markers in handling difficult occlusion distortions. 

Identification fails if the occlusion rate exceeds 70% or 

both inner and outer quadrilaterals are partially occluded. 

Examples of snapshots from an available live video 

(Figure 16) show occulted markers identification cases in 

perspective view.  

Table 4: Robustness to distance. 

Cameras Distance (m) 
ArUco April OILU 

𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 

Logitech 

Camera 

2   ×   ×  × × 
3     ×     
4 × ×  ×   ×   

Marker dimension : 𝑇1 (5cm×5cm) – 𝑇2(10cm×10cm) – 𝑇3 (15cm×15cm) 
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(a) 10% occluded (b) 20% occluded (c) 30% occluded 

   

(d) 40% occluded (e) 50% occluded (f) 60% occluded 

Figure 15: Occlusion tests using a set of 3150 synthetic markers. Opaque variable size circles 

are used for occlusion. 

The tests shown in Figure 17 demonstrate the advantages 

of the OILU marker structure compared to the commonly 

used ArUco and AprilTag markers for pose estimation. 

While this task is relatively simple with is no occlusion (as 

shown in Figure 17 (a)), it becomes much more 

challenging when part of the marker is blocked. Markers 

like ArUco and AprilTag often struggle to maintain 

accuracy in these situations. 

OILU markers, however, show strong resilience to partial 

occlusion, as illustrated in Figures 17 (b), (c), and (d). The 

design of OILU markers is particularly effective because, 

even if the outer quadrilateral is partially blocked, the pose 

can still be estimated using the inner quadrilateral.  

 

 

 

This feature makes OILU markers well-suited for 

environments where markers may not always be fully 

visible. However, OILU markers also exhibit certain 

limitations. When both the inner and outer quadrilaterals 

are occluded  

 

simultaneously, referred to as severe occlusion, pose 

estimation is no longer possible. Despite this, OILU 

markers significantly improve occlusion handling 

compared to ArUco and AprilTag markers, making them a 

more reliable choice in many real-world applications.  

Table 5: Robustness to occlusion. 

Occlusion 

(%) 

Accuracy of the identification (in %) 

OILU Tag ArUco (36h12) ArUco (16h3) April (25h9) April (36h10) 

10% 100 % 72.67 % 100 % 100 % 100 % 

20% 100 % 11.78% 100 % 23.17% 14.22 % 

30% 100 % 10.44 % 100 % 17.87 10.89 % 

40% 100 % 8.44 % 25.33 % 09.33 % 08.88 % 

50% 100 % 1.56 % 17.78 % 04.53 % 01.78 % 

60% 100 % 1.56 % 13.83 % 00.00 % 00.00 % 
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(a) 15% corner occlusion (b) 30% corners occlusion (c) 40% corners occlusion 

   

(d) 50% corners occlusion 
(e) 40% middle segments 

occlusion 
(f) 50% middle segments occlusion 

Figure 16: Snapshots of live demo showing occlusion tests with real markers acquired in perspective view. 

 

 

 

 

(a) Occluded ArUco marker pose estimation failure (b) Occluded ArUco marker pose estimation failure 

 

 

(c) Occluded April marker pose estimation failure 
(d) OILU Marker identification and pose estimation is 

possible even under occlusion 

Figure 17: Snapshots from video comparing pose estimation using ArUco, April, and OILU Markers. 
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To further evaluate the robustness of the proposed OILU 

marker under occlusion, we conducted tests on real images 

with varying levels of occlusion and angular rotations. 

Figure 18 illustrates sample results for the OILU marker 

with 40% occlusion, where the marker was rotated at 

angles between 10° and 60°. Despite the challenging 

conditions, the OILU marker maintained detectable 

performance across all tested angles, showcasing its 

superior occlusion resilience. The images clearly 

demonstrate that the marker remains identifiable even at 

larger angles like 50° and 60°, where visibility is further 

reduced due to both occlusion and perspective distortion. 

Additionally, quantitative results presented in the angular 

error graph illustrated in Figure 19, confirm the impact of 

increasing occlusion levels (10%–50%) on pose estimation 

accuracy. Angular error tends to increase as occlusion 

levels rise, particularly beyond 30%. However, the 

proposed OILU marker still performs reliably. These 

results highlight the OILU marker's robustness in handling 

substantial occlusions and diverse viewing angles, 

demonstrating its reliability for pose estimation tasks in 

challenging real-world environments. The combination of 

visual examples and quantitative analysis emphasizes the 

marker's superior performance, particularly when other 

markers fail to deliver consistent results. 

 

  

(a) 10° (b) 20° 

  

(c) 30° (d) 40° 

  

(e) 50° (f) 60° 

Figure 18:Pose estimation of OILU marker under 40% occlusion at different angles. 



76 Informatica 49 (2025) 61–80 A.  Bengueddoudj et al. 

 

Figure 19: Effect of Occlusion (10%–50%) on Angular Error at Various Rotation Angles. 

6.4 Execution time performance evaluation 

The identification method described in Section 5.2 has 

been implemented and compared with the available ArUco 

[7] and April [8] tools using a laptop equipped with a 2.4 

GHz Intel Core i7 processor with 16 GB RAM running on 

Linux. Reported processing times (Table 6) show that the 

proposed OILU system requires less processing time than 

the ArUco and April systems at all processed image 

resolutions. The gap between the different approaches is 

more important when dealing with multiple markers 

within the camera front of view (see Figure 20). 

Such results confirm that the improved OILU solution 

outperforms state-of-the-art solutions in terms of rapid 

identification. The remaining challenge is developing a 

full hardware solution embedding the OILU marker 

identification process within a single System-on-Chip 

(SoC) device [31], ensuring fluid identification for highly 

constrained SLAM applications.
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Table 6: Processing times with one marker (ms). 

Image Resolution OILU Tag ArUco (36h12) ArUco (16h3) April (25h9) April (36h10) 

Low Resolution 

(640x480) 
6,89 12,91 12,29 12,92 14,95 

Medium Resolution 

(800x600) 
8,51 12,98 12,99 13,60 15,44 

High Resolution 

(1920x1080) 
17,20 21,13 18,14 18,88 22,15 
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7 Conclusion 
An improved OILU marker system design is proposed for 

an accurate detection and identification scheme. Two 

approaches have been validated. The first one (based on 

cumulative histogram analysis) includes homography to 

process standard OILU markers. A second homography-

less identification scheme is proposed to further improve 

marker detection and identification performances. The last 

involves enclosing the embedded identifier within two 

nested square-like quadrilaterals, allowing robust marker 

detection and identification even under challenging 

occlusion distortions. 

Compared with the main state-of-the-art markers, the 

proposed approach presents approximately similar 

detection and identification results but with fewer 

computational resources and, consequently, less 

processing time. The suggested marker design, 

characterized by its consistent line-based pyramidal 

structure, surpasses standard markers in handling difficult 

occlusion distortions. Particular attention is paid to the 

possibility of identifying and estimating the pose of these 

markers, even if the external marker’s corners are 

occluded. 

At this stage, the developed marker does not integrate a 

corrector code. An improved OILU marker design, 

including a CRC code, is under development. It allows 

retaining or rejecting marker identifiers without 

significantly affecting the marker’s codification capacities. 

Overall, the primary aim of this work is to underscore the 

potential benefits of employing uniform line-based 2D 

markers as a viable alternative to established state-of-the-

art markers. Future work will extend the application of 

OILU markers to visual simultaneous localization and 

mapping (SLAM) projects, where markers are used to 

embed various environmental and orientation information 

exploited by uncrewed aerial vehicles (UAV) for accurate 

navigation and landing. 
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