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Accurate performance assessment of energy plants and high-power electrical systems is challenging due 

to the dynamic nature of parameters like energy output, voltage levels, and load factors. This study 

introduces the Energy Guard Ensemble Selector (EGES), a machine learning-based algorithm designed 

to enhance predictive accuracy and reliability in power electronics. EGES employs a dynamic model 

selection approach, leveraging classifiers such as Random Forest, Support Vector Machine, Gradient 

Boosting Machine, K-Nearest Neighbors, and Logistic Regression. By using KNN to evaluate real-time 

electrical conditions, EGES dynamically selects the most suitable model to predict key metrics such as 

energy output (MW), efficiency (%), fault rates, and transformer capacity (MVA). Experimental results 

show that EGES outperforms individual models with an accuracy of 93.5%, precision of 91.5%, recall of 

92.7%, and an F1-score of 92.1%, demonstrating its robustness in handling fluctuations in electrical 

parameters. EGES proves to be a reliable tool for improving predictive accuracy and functional 

dependability in high-power electrical systems. 

Povzetek: Razvit je nov dinamični algoritem za optimizacijo analize elektrarn z imenom Energy Guard 

Ensemble Selector (EGES). Z napredno izbiro modelov izboljšuje napovedi, kar povečuje zanesljivost 

energetskih sistemov. 

 

1 Introduction 

In the area of power electronics and energy systems, 

precise assessment of energy plants and high-power uses 

is critical for maintaining functional effectiveness, 

dependability, and sustainability [1]. These assessments 

not only tackle technical parameters such as energy output, 

effectiveness, failure rates, and transformer ratings, but 

also reflect the developing interplay between electronics, 

artificial intelligence, and the information society, 

governed by the fundamental rules of the information 

society [2]. Conventional performance assessment 

methods depend on static machine learning models, which 

frequently fail to adapt to the dynamic nature of electrical 

systems [3]. This constraint can lead to incorrect forecasts 

and ineffective choices, particularly in situations where 

electrical parameters such as voltage levels, power losses, 

and load factors change frequently [4]. 

Previous research in this area has primarily concentrated 

on static machine-learning models that forecast the 

efficiency of electrical systems using historical data. RF, 

Support Vector Machines (SVM), and Gradient Boosting 

Machines (GBM) are commonly utilized methods for 

energy output prediction, fault detection, and effectiveness 

optimization. Despite their widespread use, these models 

frequently treat data as uniformly distributed and fail to 

account for the inherent variability in transformer capacity 

(MVA), voltage levels (kV), and cooling techniques, that 

are critical for precise performance evaluation. 

Consequently, these models frequently struggle with 

inaccurate predictions in high-power uses [5]. 

The main disadvantage of these existing works is their 

incapacity to capture local fluctuations in electrical 

parameters, which have a major impact on plant efficiency. 

Static models are inflexible in handling the variability of 

transformer ratings, cooling systems, and load factors, 

which frequently results in inadequate predictions. 

Furthermore, numerous previous techniques use a one-

size-fits-all methodology, rendering them unsuitable for 

real-time assessments, where precise, situation-specific 

predictions are necessary for effective functions in high-

power electrical systems [6]. 

To tackle these drawbacks, the Energy Guard Ensemble 

Selector (EGES) has been implemented. EGES is a new 

machine learning algorithm developed especially for 

energy plants and high-power electrical uses. This 

approach uses a dynamic model selection procedure from 

a set of classifiers—RF, SVM, GBM, KNN, and LR—to 

enhance prediction accuracy in key performance metrics 

like energy output (MW), efficiency (%), and fault rate 

(%). Unlike conventional static models, EGES 

dynamically chooses the most suitable models using each 

test sample's local features, as defined by the KNN 

assessment. This technique allows EGES to adapt to the 

variability in key electrical parameters like voltage levels, 
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transformer ratings, and load factors, leading to more 

dependable and precise predictions. 

The EGES methodology is distinguished by its capability 

to dynamically adapt to the local characteristics of test 

data, rendering it ideal for the unpredictability of energy 

plants and high-power electrical systems. The algorithm 

uses a dynamic ensemble selection procedure to improve 

model selection using real-time circumstances. In 

situations where electrical parameters such as voltage 

levels or power losses fluctuate significantly, EGES 

chooses models that have historically performed 

effectively under comparable circumstances. The 

predictions from the chosen models are then integrated 

utilizing a majority voting method, guaranteeing that the 

final efficiency assessment is precise and resilient. 

The contributions of this work comprise the introduction 

of EGES as a resilient machine-learning mechanism to 

enhance prediction accuracy in energy plants and high-

power electrical applications. EGES dynamically adapts to 

local fluctuations in electrical parameters, resulting in 

substantially better forecasting abilities than conventional 

static models. Comprehensive experiments show that 

EGES surpasses previous models in terms of predictive 

accuracy, precision, recall, F1-score, and MCC, especially 

in important fields such as fault identification, 

effectiveness improvement, and operational cost decrease. 

This study aims to present a dynamic and flexible 

machine-learning framework that surpasses the 

restrictions of static models in forecasting plant 

performance in power electronics. The objective is to 

improve precision and dependability in important 

performance metrics by using an ensemble of classifiers 

that are chosen using local fluctuations in electrical 

parameters. 

EGES' novelty stems from its capacity to adjust to the 

dynamic and variable attributes of electrical systems. 

Despite conventional methods, that utilize static models 

that are susceptible to inefficiencies in varying 

circumstances, EGES dynamically chooses the most 

appropriate models for each test sample, enhancing 

predictions and enhancing plant efficiency. 

The areas of utilization for EGES span across different 

high-power electrical systems, comprising power plants, 

substations, networks of transmission, and industrial-scale 

electrical systems. Its flexibility and dependability render 

it an ideal solution for situations where real-time 

performance assessment is vital, and conventional 

approaches may struggle to present precise outcomes. 

Research design: This study's research design 

concentrates on determining the efficacy of the proposed 

EGES algorithm in forecasting energy plant performance 

under variable conditions. The primary research questions 

guiding this evaluation are:  

• Does EGES outperform conventional models 

such as RF, SVM, GBM, KNN, and LR  

• How do dynamic model selection and KNN-

based local data adaptation enhance prediction accuracy in 

volatile high-power settings 

To answer these questions, the study uses EGES, which 

dynamically chooses the best-performing model for each 

test sample depending on localized data characteristics. 

The methodology focuses on KNN-based local data 

adaptation, with the selection of k (number of nearest 

neighbors) and the Euclidean distance function playing 

critical roles. Particularly, the parameter k is optimized to 

strike a balance between underfitting (too few neighbors) 

and overfitting (too many neighbors), while the Euclidean 

distance guarantees accurate detection of the most 

comparable instances in the feature space. These decisions 

have a direct influence on the model selection procedure 

because the effectiveness of each ensemble model is 

assessed within these localized areas, allowing EGES to 

respond dynamically to variable data distributions. This 

detailed consideration of KNN parameters emphasizes the 

flexibility and accuracy of the proposed method, 

demonstrating its efficacy in tackling difficulties in high-

power application settings. 

The paper is structured as follows: Section 2 provides an 

extensive examination of the previous literature on 

machine learning methods for evaluating energy plant 

efficiency. Section 3 describes the EGES methodology, 

incorporating the dynamic model choice and majority 

voting procedures. Section 4 provides the experimental 

setup and efficiency metrics, as well as the experiment 

outcomes, which compare EGES to previous models. 

Lastly, Section 5 concludes the paper by discussing the 

possible influence of EGES on power electronics and 

making recommendations for further study. 

 

2 Related works 

This section provides an extensive survey of the 

previous literature on machine learning methods for 

evaluating energy plant efficiency. The application of 

machine learning techniques in energy systems has been 

extensively researched. The capacity to precisely predict 

energy production is essential for effective grid 

management, particularly given the variable and 

intermittent nature of these renewable sources. 

Harrou et al. [7] presented a Long Short-Term Memory 

(LSTM)--based model for short-term prediction of 

photovoltaic solar power generation. The study highlights 

the significance of accurate power output prediction in 

optimizing energy grid management and market choices. 

Their LSTM method showed powerful predictive 

performance, particularly in dealing with dependencies in 

time series data, which is critical for enhancing the 

stability of PV systems under changing weather 

conditions. 

Ramesh et al. [8] investigated the utilization of an auto-

encoder-based neural network (AUTO-NN) integrated 
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with Restricted Boltzmann feature extraction in large PV 

plants. The model used previous meteorological data to 

forecast energy production stages, which substantially 

decreased prediction errors. This method emphasizes the 

growing interest in hybrid machine learning models which 

improve the accuracy of PV energy predictions by 

incorporating deep learning methods. 

Sun and You [9] examined the use of machine learning and 

data-driven methods to regulate smart power production 

mechanisms, with a concentration on the role of 

uncertainty. Their review proposed that machine learning 

methods enhance the adaptability, visibility, and total 

efficiency of power systems, tackling the difficulties of 

incorporating renewable energy into the grid. 

Markovics and Mayer [10] examined 24 machine-learning 

methods for day-ahead photovoltaic power prediction. 

Their research revealed that models like kernel ridge 

regression and multilayer perceptron outperformed 

conventional persistent techniques by up to 44.6% in 

prediction skills. The research highlighted the significance 

of choosing suitable predictors and fine-tuning 

hyperparameters to attain the best prediction precision. 

Vivas et al. [11] performed a comprehensive examination 

of statistical and machine-learning techniques for 

electrical power prediction, contrasting traditional 

statistical models with machine-learning methods. Their 

results revealed that machine learning methods, especially 

those accounting for external fluctuation, surpassed 

conventional approaches in terms of forecasting accuracy. 

Konstantinou et al. [12] extended the use of LSTM 

networks for PV power production prediction by 

demonstrating that deep learning models could efficiently 

forecast short-term power output, providing essential 

knowledge for grid management. Their findings 

emphasized the importance of utilizing recurrent neural 

networks (RNNs) for energy prediction operations, 

particularly when dealing with the non-linear nature of 

solar energy generation. 

Li et al. [13] used Support Vector Machines (SVM) and an 

enhanced Dragonfly Algorithm to predict short-term wind 

power. Their hybrid method outperformed conventional 

approaches in prediction accuracy, emphasizing the 

increasing tendency to integrate machine learning with 

optimization methods for renewable energy prediction. 

Similarly, Kisvari et al. [14] used Gated Recurrent Neural 

Networks (GRNN) to enhance wind power forecasting 

accuracy, tackling difficulties presented by the stochastic 

nature of wind. 

Current innovations in machine learning methods, like 

deep learning-based ensemble stacking, have also 

enhanced predicting performance. Khan et al. [15] 

presented an ensemble method for solar PV prediction that 

improved prediction accuracy by stacking multiple 

machine-learning models. Furthermore, Kuzlu et al. [16] 

used explainable artificial intelligence (XAI) techniques to 

acquire knowledge of solar PV power production 

prediction, providing an improved comprehension of the 

predictive systems' effectiveness and dependability. Table 

1 shows the summary table. 

 

Table 1: Summary table 

 

Related Work Methodology/Model Used Key 

Metrics/Findings 

Limitations EGES 

Advantages 

Oskouei et al. 

(2021) [7] 

Decentralized robust-

stochastic model 

92.9% curtailment 

reduction, 16.33% 

cost savings 

High 

complexity, 

limited 

adaptability 

EGES provides 

real-time 

adaptation with 

KNN-based local 

processing and 

dynamic model 

selection. 

Ramesh et al. 

(2023) [8] 

AUTO-encoder NN using 

RBM feature extraction 

Attained important 

enhancements in error 

metrics (for example, 

RMSE: 58.72%) 

High RMSE; 

Computational 

intricacy with 

RBM 

EGES balances 

accuracy and 

computational 

effectiveness 

with streamlined 

feature selection 

Sun & You 

(2021) [9] 

ML & Data-Driven Control 

(DDC) 

Highlighted 

advantages in 

flexibility and system 

adaptability 

Absence of 

hybrid 

ensemble 

usage for 

improved 

precision 

EGES utilizes a 

hybrid ensemble 

for higher 

prediction 

accuracy 
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Markovics & 

Mayer (2022) 

[10] 

Kernel Ridge Regression, 

MLP 

Up to 44.6% predict 

skill over persistence; 

Hyperparameter 

tuning crucial 

Reliance on 

predictor set; 

Prone to 

overfitting 

EGES has 

superior predictor 

incorporation and 

ensemble variety 

Vivas et al. 

(2020) [11] 

Comparative evaluation of 

statistical/ML techniques 

Noted decreased 

errors with hybrid 

techniques; ML 

techniques better in 

accuracy 

Time horizon 

and feature 

variability 

difficulties 

EGES uses an 

ensemble that 

adapts to diverse 

input data types 

Konstantinou et 

al. (2021) [12] 

Stacked LSTM network Attained low RMSE 

and stability in short-

term predictions 

Computational 

expense of 

deep networks 

EGES attains 

superior 

computational 

effectiveness by 

incorporating 

lightweight 

models 

Li et al. (2020) 

[13] 

SVM using enhanced 

Dragonfly Algorithm 

Enhanced accuracy 

compared to baseline 

models 

Constrained 

adaptability to 

novel data 

without 

retraining 

EGES's ensemble 

can adapt quicker 

because of 

modular updates 

Kisvari et al. 

(2021) [14] 

GRU model GRU surpassed 

LSTM in predictive 

accuracy and training 

time 

Noise 

sensitivity and 

model tuning 

necessities 

EGES is intended 

to be robust 

against data noise 

Khan et al. 

(2022) [15] 

Stacked ensemble (ANN, 

LSTM) incorporated with 

XGBoost 

High accuracy and 

stability across 

diverse case studies 

High 

computational 

request; Deep 

models are 

resource-

intensive 

EGES improves 

efficiency using a 

scalable 

ensemble 

architecture 

Kuzlu et al. 

(2020) [16] 

XAI tools (LIME, SHAP, 

ELI5) for solar PV 

prediction 

Improved model 

transparency and 

important parameter 

insights 

AI models 

absence of 

transparency, 

limiting trust 

EGES improves 

explainability 

and parameter 

understanding, 

enhancing user 

trust 

These previous machine learning techniques for evaluating 

energy plant efficiency have a research gap in dealing with 

the dynamic and complicated nature of functional data 

under a variety of energy plant circumstances. These static 

designs absent flexibility, leading to lower predictive 

precision and functional ineffectiveness. The presented 

EGES fills this research gap by dynamically choosing the 

most appropriate models for each test sample depending 

on the local data environment utilizing k-nearest 

neighbors, thereby enhancing prediction accuracy. 

 

3 Methodology 

This section describes the methodology used to assess 

energy plant efficiency with machine learning models.  

 

 

 

 

 

 

The procedure starts with dataset collection and 

preprocessing, followed by the creation of the EGES, 

which dynamically chooses models using local data 

properties. Each model in the ensemble is analyzed in 

terms of its role in enhancing prediction accuracy. 

 

3.1 Dataset 

The dataset used in this study was gathered to assess the 

efficacy and productivity of energy plants in high-power 

uses. Between January 2023 and August 2024, it was 

collected from a variety of energy production facilities in 

different areas, comprising a thermal power plant, a 

chemical plant, a hydroelectric plant, and a nuclear power 
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station. Figure 1 illustrates these various types of energy 

production systems. 

 

 
 

Figure 1: Different types of power plants 

 

Data collection was simplified by direct tracking systems 

installed at each plant, which tracked functional metrics, 

power storage effectiveness, and environmental influence 

data daily. The research also looked into the use of Pumped 

Hydroelectric Storage (PHS) as a versatile energy storage 

method for all plant types. PHS enables surplus electricity 

to be utilized to pump water into elevated reservoirs, and 

the stored power is then released to produce electricity 

when demand rises. This approach enables long-term, 

massive energy storage for conventional and renewable 

power sources, guaranteeing grid stability and improving 

plant effectiveness. Figure 2 shows PHS. 

 
 

Figure 2: Pumped hydroelectric storage 

 

The main goal of this data gathering was to use machine 

learning models to evaluate the plants' productivity, cost-

efficiency, power storage capacities, and ecological 

sustainability. Each record in the dataset represents an 

individual plant's performance indicators, including 

important operational characteristics. The dataset contains 

17 features that are important for assessing energy plants, 

with a particular emphasis on features that influence 

energy outcome, functional effectiveness, environmental 

influence, and expense. These features present an 

extensive view of the factors impacting plant efficiency 

and are critical for creating predictive models to categorize 

plants as having "Good" or "Poor" efficiency. 

 

3.1.1 Attribute description 

Plant_ID: A distinct identifier allocated to each energy 

plant for monitoring and detection reasons. 

Energy output (MW): The total quantity of energy 

produced by the plant, calculated in megawatts (MW). 

This is a key metric of plant efficiency and production 

capability. 

Efficiency (%): The percentage effectiveness of the plant, 

which measures how well it transforms fuel into energy. 

Higher effectiveness is related to reduced fuel utilization 

and improved efficiency. 

Temperature (°C): The plant's operating temperature is 

calculated in degrees Celsius. The temperature has a 

significant impact on the plant's effectiveness and upkeep 

requirements. 

Operating hours (hrs/day): The number of hours per day 

that the plant is functional. This indicates the plant's usage 

and the length of time it contributes to the energy grid. 

Maintenance frequency (times/year): The frequency 

with which the plant needs upkeep, expressed in terms of 

times per year. Regular upkeep is essential for 

guaranteeing the plant's lifespan and reducing failures. 
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Fault rate (%): The percentage of functional errors or 

breakdowns in the plant. A higher fault rate suggests 

possible dependability problems. 

Emission level (CO2 tons/year): The quantity of carbon 

dioxide produced by the plant annually, calculated in tons. 

Smaller emission rates are essential for ecological 

compliance and sustainability objectives. 

Fuel type: The plant's fuel type, which could be gas, coal, 

nuclear, or solar. Various fuel kinds have differing effects 

on emissions, cost, and efficiency. 

Power loss (%): The percentage of power lost during the 

manufacturing or transmission procedure. This indicates 

ineffectiveness in energy transmission; smaller power loss 

is preferable. 

Downtime (hrs/year): The total quantity of hours per year 

when the plant is not functional because of maintenance or 

other problems. Reducing downtime is critical for 

optimizing plant efficiency. 

Cost_per_MW ($): The cost of producing one megawatt 

of energy in US dollars. This metric measures the financial 

effectiveness of the plant's functions. 

Voltage level (kV): The plant's operational voltage is 

calculated in kilovolts. Voltage levels influence the 

transmission effectiveness and distribution of energy. 

Load factor (%): The ratio between actual production of 

energy and maximal potential production. Larger load 

factors represent a more effective use of the plant's 

capabilities. 

Transformer rating (MVA): The rating of the plant's 

transformer, calculated in megavolt-amperes (MVA), 

showing its ability to manage electrical loads. 

Cooling method: The plant's cooling system, which can 

be air or water-based. Cooling techniques are crucial for 

sustaining functional effectiveness and avoiding 

overheating. 

Plant performance: The machine learning model's target 

label, which classifies plant performance as Good or Poor 

using a mixture of effectiveness, emissions, fault rates, and 

other features. 

A sample of 10 records from the dataset is presented below 

to demonstrate the data's structure and values. These 

records emphasize the differences in energy generation, 

fuel type, fault rates, and other performance-associated 

metrics across various plants. 

 

Table 2: Sample dataset 

Plant_ID, Energy_Output (MW), Efficiency (%), 

Temperature (°C), Operating_Hours (hrs/day), 

Maintenance_Frequency (times/year), Fault_Rate 

(%), Emission_Level (CO2 tons/year), Fuel_Type, 

Power_Loss (%), Downtime (hrs/year), 

Cost_per_MW ($), Voltage_Level (kV), 

Load_Factor (%), Transformer_Rating (MVA), 

Cooling_Method, Plant_Performance 

1, 600, 95, 85, 30, 5, 3, 200, Gas, 2.2, 60, 80,000, 130, 

85, 170, Air, Good 

2, 550, 88, 90, 32, 7, 6, 300, Coal, 3.5, 90, 85,000, 130, 

88, 170, Water, Poor 

3, 620, 80, 80, 28, 4, 2.5, 90, Nuclear, 1.8, 40, 85,000, 

140, 80, 180, Air, Good 

4, 580, 92, 95, 31, 6, 5, 280, Gas, 3.5, 70, 98,000, 125, 

92, 150, Air, Poor 

5, 610, 98, 82, 29, 3, 2.8, 80, Solar, 1.5, 50, 82,000, 150, 

97, 170, Water, Good 

6, 570, 85, 95, 33, 8, 7, 350, Coal, 5.0, 110, 90,000, 135, 

85, 165, Water, Poor 

7, 595, 93, 88, 30, 5, 3.5, 220, Gas, 2.5, 70, 99,000, 120, 

93, 155, Air, Good 

8, 555, 90, 92, 32, 7, 5.5, 320, Coal, 4.0, 80, 96,000, 

130, 90, 160, Air, Poor 

9, 630, 97, 83, 29, 4, 2.7, 95, Nuclear, 2.0, 45, 84,000, 

140, 99, 175, Air, Good 

10, 560, 86, 98, 31, 6, 6, 310, Coal, 4.8, 85, 93,000, 125, 

87, 150, Water, Poor 

Table 2 , shows in Sample dataset. This dataset is intended 

to assist machine learning systems by enabling for detailed 

evaluation of energy plant efficiency across a variety of 

functional and ecological metrics. The dataset's 

comprehensive features make it easier to train and validate 

predictive models capable of classifying plant efficiency 

and suggesting possible regions for improvement. 

 

3.2 Energy guard ensemble selector 

The EGES algorithm is intended to dynamically choose 

the most efficient model from a collection of machine 

learning algorithms using the local properties of each test 

instance. The procedure starts with the encoding of 

categorical features from the training dataset, such as 

Fuel_Type, Cooling_Method, and Plant_Performance. 

This is accomplished by label encoding, in which each 

distinct category is assigned a distinctive integer utilizing 

Eq. (1). 

 

Encoded Value = f(Category) (1) 

 

For instance, Fuel_Type may be encoded as Gas → 1, Coal 

→ 2, Nuclear → 3, and Solar → 4. After preparing the 

data, the next step is to train numerous models on the 

encoded training dataset, including RF, SVM, GBM, 

KNN, and Logistic Regression. Each model learns to 

detect trends in the data that correspond to the target 

feature, Plant_Performance. The training stage, as shown 

in Eq. (2), is crucial for creating a strong ensemble able to 

create precise forecasts. 

 

Train (M, 𝑥𝑡𝑟𝑎𝑖𝑛) (2) 

 

Where M denotes the classification methods (RF, SVM, 

GBM, KNN, and LR) and 𝑥𝑡𝑟𝑎𝑖𝑛  is the encoded training 

data. Each model M is trained on x_train to learn trends 

related to the target feature, Plant_Performance. 
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After the models have been trained, the algorithm 

determines the chosen parameters, that comprise the 

number of nearest neighbors k and the Euclidean distance 

function d. The formula is used to compute the Euclidean 

distance between the test sample (𝑥𝑡𝑒𝑠𝑡) and the training 

sample (𝑥𝑖). 

 

d (𝑥𝑡𝑒𝑠𝑡 ,𝑥𝑖) =  √∑ (𝑥𝑡𝑒𝑠𝑡,𝑗 − 𝑥𝑖,𝑗)2𝑛
𝑗=1  (3) 

  

Where n represents the number of attributes. This 

calculation enables the algorithm to find the k nearest 

neighbors, creating a local region that represents the 

features of comparable instances. 

After defining the local region, the next step is to evaluate 

the model's effectiveness. For each model M_i in the 

ensemble, the algorithm evaluates its accuracy on the k 

nearest neighbors utilizing the following formula: 

 

Accuracy (𝑀𝑖) =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

 

Where TP, TN, FP, and FN denote true positives, true 

negatives, false positives, and false negatives, 

correspondingly. This assessment presents insight into 

how well each model executes in the setting of the local 

data. The accuracy scores are stored for comparison, 

allowing the algorithm to detect which model executes 

superior for the particular test sample. 

After the assessment, the algorithm chooses the model 

with the highest accuracy score as the best performer. In 

cases where numerous models achieve the same top score, 

a tie-breaking solution can be used, considering factors 

like model complexity or prior efficiency. The selected 

model is considered the most appropriate for predicting the 

present test sample. 

Lastly, the chosen model is used to forecast the label for 

the test sample, deciding whether its efficiency is 

categorized as "Good" or "Poor." The prediction could be 

formalized as follows: 

 

�̂� = 𝑀𝑏𝑒𝑠𝑡(𝑥𝑡𝑒𝑠𝑡) (5) 

 

where �̂� is the predicted label and 𝑀𝑏𝑒𝑠𝑡  is the top-

performing model. The outcome is then outputted as the 

final prediction. 

The algorithm follows this procedure for every test sample 

in the dataset, guaranteeing that each one is evaluated 

individually corresponding to its particular features. This 

adaptive chosen technique enhances the overall prediction 

accuracy, allowing more customized and efficient 

evaluations of plant performance. The repeated 

evaluations for all test samples can be described as: 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

= {�̂�1, �̂�2, … , �̂�𝑚}     𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥𝑡𝑒𝑠𝑡,𝑗  ∈  𝐷𝑡𝑒𝑠𝑡  
(6) 

 

Here, m denotes the total number of test samples. These 

equations and procedures form the basis of EGES, 

providing a dependable framework for predictive 

modeling in evaluating energy plant performance.  

The EGES algorithm scales with bigger datasets and 

higher feature dimensionality by employing a KNN 

method, which decreases computational burden by 

selecting only the closest samples for model selection. 

However, as the dataset grows in size and dimensionality, 

computing pairwise distances and training numerous 

models becomes more time-consuming. Despite this, 

EGES remains effective by restricting the search space; 

however, performance may suffer in massive, real-time 

energy applications because of the increased 

computational load. 

 

 

 

 

Algorithm 1 outlines the suggested EGES algorithm. 

Algorithm 1: EGES 

Input : x_train, x_test, M = {RF, SVM, GBM, 

KNN, LR}, k, Euclidean Distance d 

Output : Predicted label for x_test 

Step 1 : Encode categorical features in x_train: 

• Fuel_Type: Encode (Gas = 0, 

Coal = 1, Nuclear = 2, Solar = 3) 

• Cooling_Method: Encode (Air 

= 0, Water = 1) 

• Plant_Performance: Encode 

(Poor = 0, Good = 1) 

Step 2 : Train models RF, SVM, GBM, KNN, LR 

on x_train 

Step 3 : Set parameters: k, d 

Step 4 : For each test sample x_test: 

Step 5 :       Local Region Definition 

      For each sample xi in x_train: 

• Calculate Euclidean distance d 

(x_test, xi) 

      Choose k nearest neighbors from 

x_train using the smallest Euclidean 

distances 

Step 6 :       Model Performance Assessment 

(utilizing accuracy) 

      For each model Mᵢ ∈ {RF, SVM, 

GBM, KNN, LR}: 

            Assess the accuracy of Mᵢ on the 

k nearest neighbors 

            Store accuracy score of Mᵢ 

Step 7 :       Model Selection 

      Choose the best-performing model 

with the maximum accuracy score. 

Step 8 :       Prediction 

      Utilize the chosen model to predict 

the label for x_test 
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      Output the forecasted label for x_test 

(Poor or Good) 

Step 9 : Repeat for all test samples. 

 

3.2.1 RF 

RF is an ensemble learning technique that constructs 

numerous decision trees and then combines their 

predictions to enhance classification accuracy. RF operates 

by training each tree on a randomly selected subset of the 

data and attributes, decreasing variability and preventing 

overfitting. RF was selected for EGES because of its 

capacity to handle large datasets and nonlinear correlations 

between features. In this research, RF helps the model 

ensemble by providing excellent predictive abilities, 

especially when dealing with intricate relationships 

between variables like temperature, fault rates, and the 

production of energy. 

 

 

 

3.2.2 SVM 

The SVM is an effective classifier that seeks to identify the 

best hyperplane that divides various classes in the dataset. 

SVM performs well in high-dimensional spaces and is 

useful for both linear and nonlinear classification 

activities. In EGES, SVM aids in differentiating between 

"good" and "poor" operating plants by evaluating the 

complicated relationship between plant effectiveness, 

functioning hours, and downtime. The model is especially 

helpful in situations where the classes are not linearly 

separable, utilizing kernel functions for enhanced 

efficiency. 

 

3.2.3 GBM 

GBM is another ensemble technique that constructs 

models sequentially, with each model attempting to right 

the flaws of the previous one. GBM is well-known for its 

high forecasting accuracy, particularly in situations 

involving intricate relationships between features. In the 

setting of this research, GBM improves EGES efficiency 

by concentrating on decreasing error in forecasting plant 

efficiency using variables such as emission stages, service 

frequency, and fault rates. GBM contributes to the 

ensemble through its capability to decrease bias and 

enhance generalization. 

 

3.2.4 KNN 

KNN is a non-parametric algorithm that categorizes data 

points according to the majority class of their nearest 

neighbors. KNN is especially efficient when local data 

points exhibit comparable trends, rendering it an ideal 

candidate for EGES. By assessing the local neighborhood 

of each test sample, KNN aids in the identification of 

comparable plants using features such as fuel type, power 

loss, and downtime, enhancing the model's capacity to 

forecast plant efficiency in particular situations. KNN's 

ease and efficiency in local region classification render it a 

useful member of the ensemble. 

3.2.5 LR 

LR is a linear model utilized to perform binary 

classification tasks. It forecasts the likelihood of an event 

happening, like whether a plant will execute "good" or 

"poor." In EGES, LR is used to manage cases where the 

correlation between variables is linear. For instance, LR is 

effective at detecting efficiency patterns using energy 

results and cost per megawatt. Despite its simplicity, LR 

contributes to the ensemble by presenting baseline 

predictions that could be improved by more complicated 

models such as RF and GBM. 

The EGES dynamically chooses models using local data 

features, thereby improving prediction accuracy for energy 

plant efficiency classification. EGES enhances prediction 

dependability by utilizing a various set of machine 

learning models, each customized to various data trends, 

guaranteeing that the most effective model is used for each 

test case.  

 

Model selection procedure 

EGES' model selection process dynamically compares the 

accuracy scores of numerous classifiers (RF, SVM, GBM, 

KNN, and LR) for each test sample. If multiple models 

produce similar accuracy scores, a tie-breaking strategy is 

used to determine the best model. The tie-breaking 

procedure adheres to a predefined criterion hierarchy: first, 

the model with the smallest computational complexity 

(especially simpler models to decrease overfitting risks) is 

selected. If there is still a tie, the model with the best 

historical performance on comparable datasets is chosen. 

In cases where the models have comparable performance 

records, the model with the shortest runtime is chosen to 

maximize effectiveness for real-time predictions. This 

structured tie-breaking guarantees that the final model 

selection is not only the most precise but also the best fit 

for operational limitations, thus enhancing the overall 

prediction procedure. 

 

Model interpretability and computational complexity 

The EGES algorithm is highly efficient, but 

computationally complex because of the dynamic 

selection procedure, especially in calculating the 

Euclidean distances for k-nearest neighbors, which scales 

with O (n.m), where n is the number of training samples 

and m is the feature count. This complexity emphasizes the 

trade-off between accuracy and possibility in real-time, 

massive applications. EGES also integrates model 

interpretability through feature importance assessment 

using ensemble models such as Random Forest and GBM. 

Such interpretability is essential for energy sector 

stakeholders because it allows for transparency and 

comprehension of decisions, especially those involving 

key features such as Fuel_Type and Cooling_Method, 

which have a direct impact on predictions. This balance of 
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computational effectiveness and interpretability 

distinguishes EGES as a useful yet insightful tool for 

evaluating energy efficiency. 

Figure 3 displays the flow diagram of the EGES algorithm. 

 
Figure 3: Flow diagram of EGES algorithm 

 

4 Experimental results and 

discussions 

This section provides the experimental findings of the 

suggested EGES algorithm and compares its efficacy to 

five well-known machine learning classifiers: RF, SVM, 

GBM, KNN, and Logistic Regression. The EGES 

algorithm was written in Java and implemented with the 

Weka machine learning tool, which makes use of Weka's 

library of classifiers and distance functions to train and 

evaluate models efficiently. Weka was selected because of 

its comprehensive assistance for a broad range of machine 

learning algorithms and its capacity to manage intricate 

data preprocessing, model evaluation, and performance 

measurement tasks seamlessly. 

To guarantee a balanced dataset for training and 

assessment, the Synthetic Minority Over-sampling 

Technique (SMOTE) was used to correct class imbalances 

by efficiently augmenting minority class samples. EGES 

classifier hyperparameters were improved utilizing grid 

search and 5-fold cross-validation. RF was tuned for 100 

trees and max depth 15, SVM for RBF kernel and 𝐶=1.0, 

GBM for learning rate 0.1, 100 estimators and depth 3, 

KNN for k=5 with Euclidean distance, and LR for L2 

penalty with liblinear solver. These tactics guaranteed 

consistent performance across test cases. 

EGES' effectiveness was evaluated using numerous 

important metrics, including accuracy, precision, recall, 

F1-score, and MCC. These metrics offer an extensive 

comprehension of the classification models' efficiency, 

providing insights into both predictability and 

dependability. 

Accuracy: This metric calculates the percentage of correct 

results for all cases evaluated. It is a basic indicator of a 

classifier's overall efficacy, which includes both true 
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positives and true negatives. The formula for accuracy is 

shown in Eq. (4). 

Precision: Precision is the percentage of true positives 

among those that were predicted to be positive. It is 

especially important in situations where the cost of false 

positives is high. Precision is determined as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(7) 

 

 

High precision means that when the classifier forecasts a 

positive class, it is likely to be correct. 

Recall: Recall, also known as sensitivity or true positive 

rate, is a measure of how many actual positives the 

classifier accurately detects. It is critical in circumstances 

where losing a positive case is costly. The recall is 

provided by: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(8) 

 

 

A high recall indicates that the classifier accurately 

identifies the majority of the actual positive cases. 

F1-score: The F1-score balances precision and recall, 

which is especially helpful when the dataset is imbalanced. 

The harmonic mean of precision and recall is calculated as 

follows: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(9) 

 

 

A high F1 score signifies that the classifier performs well 

in terms of precision and recall. 

MCC: MCC is a more extensive metric that takes into 

account all four categories (TP, TN, FP, and FN). It is 

particularly helpful when dealing with imbalanced 

datasets. It is calculated using the following formula: 

𝑀𝐶𝐶

=  
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

             

 

 

(10) 

 

   An MCC value near 1 denotes a strong positive 

correlation between predicted and actual classifications.  

The performance metrics chosen for EGES, such as 

accuracy, precision, recall, F1-score, and MCC, are 

essential in assessing energy plant efficiency. Accuracy 

measures overall correctness, whereas precision and recall 

help to reduce costly false positives and negatives. The F1-

score balances these metrics, resulting in a comprehensive 

evaluation. MCC provides a balanced measure that takes 

into account all types of prediction errors, making it 

particularly helpful for imbalanced datasets. While these 

metrics are focused on classification, considering 

economic effects could improve the assessment by 

reflecting the operational expenses and effectiveness 

losses related to inaccurate predictions. 

Table 3, displays the comparative performance of EGES 

against RF, SVM, GBM, KNN, and LR: 

 

Table 3: Performance metrics comparison 

Classifi

er 

Accura

cy (%) 

Precisio

n (%) 

Reca

ll 

(%) 

F1-

scor

e 

(%) 

MC

C 

(%) 

RF 88.5 88.2 89.5 88.8 85.5 

SVM 89.0 86.5 87.7 87.1 83.0 

GBM 91.2 89.0 88.5 89.7 87.0 

KNN 88.5 87.0 86.2 86.6 81.5 

LR 87.8 85.3 86.7 86.0 81.0 

EGES 93.5 91.5 92.7 92.1 90.0 

 

The EGES algorithm surpasses all other classifiers on all 

performance metrics. EGES, in particular, attained the 

highest accuracy of 93.5%, which is substantially higher 

than GBM, the closest competitor, who attained 91.2%. 

This increase in accuracy shows the efficacy of EGES in 

correctly categorizing test samples using the local region 

determined by the nearest neighbors and leveraging model 

selection depending on accuracy evaluation. 
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Figure 4: Accuracy comparison 

 

Figure 4 shows a line chart comparing the accuracy of 

EGES to the other classifiers. The chart emphasizes EGES' 

better efficiency, demonstrating its position as the most 

precise model. EGES uses k-nearest neighbor selection 

and model accuracy evaluation to improve its predictions 

and surpass conventional machine learning models such as 

RF, SVM, and GBM. This demonstrates EGES' superiority 

in determining the most effective prediction model, 

resulting in the highest accuracy. 

In terms of precision, EGES also outperforms the 

competition with a score of 91.5%, as demonstrated in 

Table 2 and Figure 5. Precision is critical for reducing false 

positives, and EGES's higher precision score suggests that 

it makes fewer erroneous positive predictions than other 

models. This precision benefit comes from the EGES 

algorithm's dynamic selection of the best-performing 

model for each test sample, which enables it to achieve 

more precise classification results. 

 
Figure 5: Precision comparison 

 

Figure 5 shows a line chart with the precision values for 

the classifiers, demonstrating EGES' superiority once 

again. Its capability to provide high precision, particularly 

when compared to models such as SVM and LR, shows 

the strength of EGES' ensemble method. This confirms 

that the dynamic selection of classifiers using accuracy 

results in not only higher precision but also more 

dependable predictions in general. 

When assessing recall, EGES continues to surpass the 

other models, with a score of 92.7%, as shown in Figure 6. 

The recall is critical for detecting all pertinent instances of 

the target class, and a higher recall score signifies that 

EGES correctly detects a greater proportion of true 

positives than other models. This makes EGES especially 

appropriate for applications where detecting positive 

instances is critical. 
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Figure 6: Recall Comparison 

Figure 6 depicts the recall comparison among the 

classifiers, with EGES emerging as the leader. This 

demonstrates EGES's ability to identify pertinent instances 

and ensure extensive coverage of the target attribute. The 

integration of k-nearest neighbor selection and the 

utilization of accuracy for model assessment allows EGES 

to attain higher recall than models like RF and KNN. 

In terms of the F1-score, which balances precision and 

recall, EGES has the highest score (92.1%). As illustrated 

in Figure 7, this result shows that EGES strikes an 

excellent balance between precision and recall, operating 

well in both dimensions. The F1-score comparison 

validates EGES' resilience in guaranteeing high 

classification effectiveness while reducing faults. 

 
Figure 7: F1-score Comparison 

 

Figure 7 shows a line chart comparing F1 scores, with 

EGES once again outperforming the other classification 

methods. The balance between precision and recall shows 

the algorithm's capacity to improve prediction 

performance without sacrificing one metric for the other. 

Lastly, the Matthews Correlation Coefficient (MCC) is 

calculated, which provides a more dependable measure of 

classification efficiency, particularly in the presence of 

imbalanced data. EGES has the highest MCC score of 

90.0%, as illustrated in Figure 8. The higher MCC score 

suggests that EGES presents a more balanced and accurate 

classification, taking into account both true and false 

positives and negatives. 
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Figure 8: MCC Comparison 

 

Figure 8 shows EGES' superiority in terms of MCC, 

cementing its position as the best-performing model in this 

study. The MCC score highlights EGES's ability to deal 

with imbalanced datasets and provide dependable 

classification outcomes across different metrics. 

Overall, the experimental findings clearly show that the 

EGES algorithm outperforms other classifiers. EGES 

consistently surpasses conventional machine learning 

models like RF, SVM, GBM, KNN, and LR on all 

performance metrics, including accuracy, precision, recall, 

F1-score, and MCC. The use of k-nearest neighbor 

selection, accuracy-based model assessment, and dynamic 

model selection improves EGES's resilience and accuracy 

in forecasting plant performance. These findings justify 

the use of EGES as an efficient and dependable 

classification algorithm, especially in applications 

requiring accurate and precise predictions. 

 

Error analysis 
EGES error analysis shows that poor performance is most 

common when data is sparse or plant types are highly 

imbalanced, with certain classes underrepresented. These 

errors are most evident when the model is unable to 

differentiate between closely related plant performance 

categories, particularly in situations where the feature set 

lacks enough variation or the KNN model's chosen k is not 

optimized. Furthermore, performance degradation occurs 

when certain parameter settings, like the distance function 

or the number of neighbors (k), do not correspond to the 

underlying data distribution. Evaluating these error-prone 

cases reveals important information about potential model 

constraints, emphasizing the significance of modifying 

hyperparameters and guaranteeing balanced, 

comprehensive data for more reliable predictions. 

 

Discussion 
The experimental findings show that EGES surpasses 

conventional models like RF, SVM, GBM, KNN, and LR 

in all important metrics, with the highest accuracy 

(93.5%), precision (91.5%), recall (92.7%), F1-score 

(92.1%), and MCC (90.0%). EGES outperforms the state-

of-the-art (SOTA) techniques reviewed due to its dynamic 

model selection strategy and k-nearest neighbor (KNN)-

based local data adaptation, which allow it to tailor 

predictions to the unique characteristics of each test 

sample. Unlike conventional models, which depend on 

global patterns learned during training, EGES dynamically 

assesses and chooses the most efficient model depending 

on localized accuracy, guaranteeing reliable predictions 

even in intricate, high-power application settings. 

Furthermore, KNN-driven local region formation reduces 

overgeneralization by concentrating on data subsets with 

similar characteristics, which improves precision and 

adaptability. This design contrasts with the static nature of 

traditional SOTA techniques, which frequently fail with 

the fluctuating parameters found in energy plant 

performance evaluations. By tackling these difficulties and 

offering high accuracy under dynamic conditions, EGES 

shows its novelty and practicality for energy system 

predictive modeling. 

 

5 Conclusion  

The EGES algorithm implemented in this study 

outperformed conventional models like RF, SVM, GBM, 

KNN, and LR in terms of plant performance classification 

and prediction. By its dynamic model selection and k-

nearest neighbor method, EGES consistently attained 

higher accuracy, precision, recall, F1-score, and MCC 

across all assessments, as executed in Java and Weka. Its 
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resilient efficiency demonstrates the algorithm's 

possibility for wider use beyond plant performance, 

implying that future research could include adapting EGES 

to other areas like healthcare, finance, or e-commerce, 

where accurate classification is required. Future work on 

EGES could concentrate on tackling dataset imbalance, 

especially in terms of "Good" versus "Poor" performance 

labels, by incorporating methods like SMOTE (Synthetic 

Minority Over-sampling Technique) to improve model 

resilience. Furthermore, integrating deep learning 

techniques like neural networks or reinforcement learning 

methods could enhance EGES' flexibility in dynamic and 

fluctuating settings. These sophisticated methods could 

allow EGES to effectively manage intricate, non-linear 

relationships and learn from real-time data feedback, 

possibly boosting scalability and accuracy in real-world 

energy applications. 
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