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Sand dunes are one of the most prominent Aeolian landforms present on the Martian surface. Accumulation
and erosion of sand particles cause the formation of dunes, which possibly can influence the Martian
climate too. For mapping such landforms over large areas of the Martian surface more effectively,
automated detection of dunes has been brought out. For this a convolutional neural network (CNN) based
detection approach has been implemented considering application of different models and assessing their
respective performance using different sets of Orbiter images. CNN architectures such as U-net, ResUNet
and ResUNet++ were used for segmentation of dunes over the Martian surface. CNN produced
segmentation results with greater accuracy with advantage of designing new models and using different
loss functions. Convolution neural networks such as U-Net, ResUNet, and ResUNet++ for detecting dunes
on Martian surface used Context camera (CTX) and the High-Resolution Imaging Experiment (HiRISE)
images of Mars Reconnaissance Orbiter (MRO) to generate the suitable models considering two different
Martian sites, Gale crater and Nili Patera. The models thus generated were tested over Olympia Undae
region of the Mars and all the architectures could produce more than 85% accuracy. The model created
using CTX images performed well for Gale Crater region compared to the model created using HiRISE
image. U-Net model created using CTX image performed well in case of low-quality images (coarse
resolution noisy images) whereas, ResUNet ++ model created using HiRISE image performed well in case
of good quality (fine resolution) images.

Povzetek: Za kartiranje sipin na Marsu iz orbiterjevih posnetkov so uporabili CNN segmentacijo (U-Net,
ResUNet, ResUNet++) na CTX in HIRISE (ucenje: Gale, Nili Patera, test: Olympia Undae). Rezultati: vse

>85 %; U-Net+CTX za slabse slike, ResUNet++ + HiRISE za visokolocljive.

1 Introduction

Sand dunes are the most prominent aeolian landforms on
the Martian surface and considered crucial agents of
climate, wind regime, sediment type, and transportation on
mars (Urso et al., 2018). On the Martian surface, the dunes
were first observed by Mariner-9 (Sagan and Bagnold
1975). Martian surface has the aeolian activity
predominantly in the absence of liquid water and active
volcanism or tectonic deformation (Greeley et al., 2000).
Wind can transport and deposit sand particles from one
place to another and such wind process leads to
modification of existing land forms as well as creation of
new landforms such as sand dunes. Changes in wind
direction led to the formation of different types of sand
dunes. They are classified into barchan dunes, barchanoid
ridge, transverse dunes, linear dunes, star dunes, and
reversing dunes (Mckee, 1979). Mapping of these features
would provide an idea about the current and past climate
and weather systems.

Wind fluxes alter the morphology of dune fields from
barchans to barchanoids and longitudinal dunes to isolated
domes and ending up with sand sheets (Runyon, 2016).

Martian dune fields are mainly distributed in high
latitudinal region and polar regions with their pre-
dominance in low plains and thereafter, craters, canyons as
well as intermontane depressions (Chao and Zhibao,
2022). Mars Global Digital Dune database provides idea
about the distribution of dunes on the Martian surface
(Hayward, 2014). For automatic detection of such dunes,
neural network based deep learning methods could be
effective. Neural network designed to model in such a way
that it performs a particular task similar to human brain.
Human brain acts entirely in a different manner from the
traditional digital computers since it is highly complex,
nonlinear and behaves like a parallel computer. It acquires
knowledge from environment through learning process
and synaptic weights are used to save the knowledge
(Hayden, 2009).

Automatic detection techniques can allow generation of
landform maps over a large area in a short time. Many
automated detection algorithms have been used to detect
landforms on the Martian surface and other planetary
surfaces. Most of the automatic detections have been
carried out in impact craters on Mars compared to any
other landforms (Martins et al., 2009, Bandeira et al.,
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2007). There are some other methods used for detecting
craters, such as template matching (Bandeira et al.,2007)
and boosting approach (Martins et al., 2009). Different
filters and decision trees have also been used for detecting
craters (Stepinski and Tomasz, 2009). Automatic detection
of sand dunes in Mars was carried out by using Histogram
Oriented Gradient (HOG) for feature extraction; and
Support Vector Machine (SVM) and Boosting techniques
for classification (Bandeira et al., 2012). Convolutional
neural networks (CNN) have become more popular in
recent years. In Lunar surface, craters have been detected
from DEM (Digital Elevation Models) using U-Net
architecture (Silburt et al., 2019). Volcanic rootles cones
(VTCs) and Transverse Aeolian Ridges (TAR) in Mars
automatically detected by using a convolution neural
network named MarsNet (Palafox et al., 2017). Automatic
detection technigue such as linear segment detection
algorithm was used to determine dune orientation and sand
supply on the surface of Titan (Lucas et al., 2014). It
combined the dune migration with wind field generated by
climatic models. Mask regional convolution neural
network (Mask-RCNN) predicts the mask on each Region
of Interest (Rol) along with classification and bounding
box regression carried out in Faster-RCNN (He et
al.,2016). Mask-RCNN is an extension of Faster RCNN.
Mask-RCNN was used for the detection and segmentation
of barchan dunes on Martian surface (Rubanenko et al.,
2021). U-Net, ResUNet, and ResUNet++ required fewer
training samples than Mask-RCNN, and it also excels in
segmenting fine-grained details (Munawar, 2023).

In our study, we have considered convolution neural
networks such as U-Net, ResUNet, and ResUNet++ for
detecting dunes on Martian surface. Deep neural networks
require large amount of annotated data for training, but U-
Net outperforms such neural networks with limited
amount of data. U-Net architecture consists mainly of a
contracting path and expanding path (Ronneberger et al.,
2015). U-Net has been useful in various remote sensing
applications such as land cover classification (Ulmas and
Liiv, 2020), segmentation of clouds (Sanchez-Bayton et
al., 2022) and segmentation of buildings (Wagner et al.,
2022). ResUNet integrates the residual neural network and
U-Net architecture. It mainly consists of an encoder,
decoder and a bridge connecting between them. It provides
better performance with fewer parameters (Zhang et al.,
2018). ResUNet++ architecture consists of residual blocks,
squeeze and excitation block, Atrous Spatial Pyramid
Pooling (ASPP) and attention block (Jha et al., 2019). It
enhances for the purpose of performance trial of the
automatic sand dune detection model, a test site named
Olympia Undae region situated between 78°N to 83°N
latitude and 120°E to 240°E longitude was selected. It is
the largest dune field on the Martian surface
(https://mars.nasa.gov/resources/26259/olympia-undae/).
This site is situated in the Northern polar region of Mars
whereas, Gale crater is situated in southern equatorial
region and Nili Patera is situated in northern hemisphere
close to the equator.
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2 Materials and methods

HIiRISE and CTX images were used towards automated
sand dune detection model development. HIRISE image
onboard Mars Reconnaissance Mission is a pushbroom
imaging system with focal length of about 12m effective
length and has 14 CCD detectors. It has spatial resolution
of about 25-32 cm/pixel depending upon on the altitude of
space craft and the off-nadir roll angle. It acquires data in
three different channels, such as blue-green (~536nm), red
(~692nm) and near-infrared (~874nm). Ten detectors are
used for red filter and each two filters are used for blue-
green and near-infra red filters. The HIRISE RDR products
are stored in JPEG2000 with 10-bit imaging system
ranging from 0-1023 (Eliason E. et al., 2012). CTX is the
one of the primary payloads of Mars Reconnaissance
Orbiter. It uses catadioptric telescope with focal length of
about 350mm. Kodak KLI-5001G detector with 5056-
pixel linear CCD detect a visible broad band of light from
500 to 700 nm. CCD used the push broom scanner along
the direction of spacecraft motion. CTX has spatial
resolution of about ~6m/pixel. It acquires monochromatic
images of Martian surface (Wolff et al., 2013).

2.1. Study area

Two different regions on the Martian surface were
considered for developing automatic detection models for
sand dunes. Such study sites include Gale crater and Nili
Patera regions. Gale crater is situated between latitude
2.25°S to 8.25°S and longitude 133.25°E to 140.25°E
(Figure.1a). Itis an impact structure with a diameter of 154
km (Schwenzer et al., 2012). Gale is a crater probably a
dry lake on Mars near the north-western part of the Aeolis
quadrangle (Palucis et al., 2016). It is estimated to be
about~3.6 billion years old (Wray, 2013). Aeolis mons is
a mountain in the centre of Gale and rises 5.5km high
above the crater floor. Curiosity rover landed on Gale
crater for identifying the habitability of the Martian
surface. The minerals present in the lower part of the
sedimentary strata in the Mount Sharp within Gale crater
indicate transition from warm to cold climate in the
Martian atmosphere (Rampe et al., 2019).

Nili patera region extends from 8.46°N to 19.41°N latitude
and 58.88°E to 76.644°E longitude (Figure. 1b). It is a 50
km diameter caldera at the centre of the Syrtis Major
Planum. It contains different landforms and distinctive
mineral deposits. Syrtis major planum is of Hesperian- age
(Fawdon et al., 2015). Nili patera region has the most
active dust storm season in the Martian surface. It is an old
volcanic region with different interesting features. This
region is a low relief area with slope of less than I°
(Mubarak et al., 2019, Hood et al., 2021).

For the purpose of performance trial of the automatic sand
dune detection model, a test site named Olympia Undae
region situated between 78°N to 83°N latitude and 120°E
to 240°E longitude was selected. It is the largest dune field
on the Martian surface
(https://mars.nasa.gov/resources/26259/olympia-undae/).
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This site is situated in the Northern polar region of Mars
whereas, Gale crater is situated in southern equatorial
region and Nili Patera is situated in northern hemisphere
close to the equator.
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Figure 1a: HiRISE image of Gale crater b. CTX image of Nili Patera region c. Location selected from Olympia Undae
region

2.2. Methodology

Datasets selected out of CTX and HIRISE images
pertaining to Gale crater (4.07S to 6.66S latitude and
136.51E to 139.12E longitude) and Nili Patera (1.37S to
19.41N latitude and 58.88E to 76.644E longitude) regions
respectively were further analyzed. Al-based approach has
been considered for extraction of dunes. The architecture
pertaining to convolution neural networks (CNN) such as
U-Net, ResUNet, and ResUNet++ were implemented in
Keras after (Vasilev et al., 2019) with tensorflow in
python. The system configuration Windows 10 o/s with
cuda version 10.0 and cuDNN version 7.6.5 was used.
Data augmentation techniques such as rotation, horizontal
flip, vertical flip, horizontal translation, vertical translation
etc. were implemented. It led to increase in the training
data sets thus generated with 7000 HiRISE and 7160 CTX
dune images respectively. A batch size of 16 using Adam
optimizer with loss function as dice, binary cross-entropy
and mean squared error were used. From the augmented
datasets, 80% were used for training, 10% for testing, and
10% for validation. Apart from using the training dataset
used for training the model, validation datasets were used

to tune the hyper-parameters of the model. For this, the test
data was used for the model accuracy assessment after the
model had been fully trained (after Myrianthous 2021).
In the convolution layer, a kernel was applied to the
original image, convolution was performed to move the
filter. For example, the filter moves two columns right and
does convolution for a stride of two. If the input image is
considered 7x7 matrix and the filter size 3x3 with a stride
of two, then the output becomes 3x3 matrix. Upon
completion of the convolution, maxpooling operation was
performed. In this process, maximum value was picked
from a 2x2 filter. There are also other pooling available
such as average pooling and global pooling. To enhance
the results, batch normalization was required for keeping
the values in the input and hidden layers within a certain
range and allowing improvement in the training speed.
Thereafter, dropout step could be added for dropping out
of neurons at random in the neural network to prevent over
fitting. Further to this, flattening led the data to culminate
in to the dense layer by converting the two-dimensional
dataset into one-dimensional data or converting the data
into a single column
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Figure 2: Architecture of convolutional neural network

The dense layer connects different neurons with each
neuron associated with weight, bias, and activation
function. If the weight is high, then the neuron is good, if
the bias is above a certain threshold value, then the neuron
is active, if the bias is below the threshold value, then the
neuron is dead. The neurons go through the activation
function which decides whether the neuron is active or not.
Multiple convolution and pooling layers were added to the
architecture.

Create U-Net
model

Identify dunes in Gale crater and Nili patera region

Create binary images in Image)

Create
ResUNet

Apply different models in satellite data

Image segmentation

Compare the results obtained from different
architecture and differentimages

Overall methodology that used for the study is given in
figure 3. The dunes were identified from CTX and HiRISE
images. Create binary images such as “1” indicate for dune
and “0” for non-dune images in ImageJ platform. Create
segmentation models by using UNet, ResUNet and
ResUNet++ architectures for CTX and HiRISE images.
After image segmentation compare the results obtained
from different architectures and different images.

Create
ResUNet++

Figure 3. Overall workflow

2.2.1 U-Net architecture

U-Net is a particular type of architecture used for image
segmentation. In this architecture, deep learning tools are
arranged in such a way that it can be used for image
segmentation. It is called U-Net because it looks like "U"
and it consists of an encoder and decoder path (figure 4).
Concatenation of feature maps helps to give localization
information (Ronneberger et al., 2015). The input image
size was considered 128x128x3 and a color image with
size 128x128 was fed into the input layer with a feature
space of 16. Thus, the output of the convolution layer (C1)
became 128x128x16. Thereafter, upon performing a

maxpooling operation with a stride of 2 gave rise to an
output as 64x64x16 (P1); after doing two convolution
operations with feature space of 32, output was obtained
as 64x64x32 (C2) and the process continued till obtaining
C5 (figure 4). Thereafter, up sampling was performed
where 8x8x256 (C5) became 16x16x128 and concatenated
it with C4, then the final value at U6 becamel6x16x256
(U6+C4). After a couple of convolution layers; the output
became 16x16x128 (C6), and finally going through U7 to
U9, the output would be 128x128x1.
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2.2.2. ResUNet architecture

ResUNet as the combination of both U-Net and residual
neural network consists of one decoder path, one encoder
path and a bridge connecting both encoder and decoder.
The residual units consist of two 3x3 convolution block
and an identity mapping. Each identity mapping connects
the input and output of the residual block. Each
convolutional block consists of one batch normalization,
one Rectified Linear Unit (ReLU) activation layer, and one

Input
128X128X3
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convolutional layer (Figure 5).

In encoding units, a stride of two was applied instead of
using pooling operation unlike U-Net architecture in order
to reduce the size of the feature map. Before each decoding
unit, there is an up sampling of feature maps from the
lower level and concatenation with the feature maps from
the corresponding encoding path. After the decoding path
to obtain a segmented image, a 1x1 convolution with a
sigmoid activation is applied (Zhang et al., 2018)
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Figure 5: ResUNet architecture (Zhang et al., 2018)
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2.2.3 ResUNet++ Architecture

As a combination of both U-Net and residual neural
networks (He et.al., 2016), the ResUNet++ (Figure 6)
consists of one stem block, three encoder blocks, Astrous
Pyramidal Pooling (ASPP), and three decoder blocks (Jha
et al., 2019). The residual unit combines two 3x3
convolution layers, batch normalization, ReLU activation,
and an ldentity mapping. Each Identity mapping connects
the input and output of the encoder block. The outcome of
each encoder block passes through the squeeze and
excitation block (Hu et al., 2018), which increases the
interrelationship between the channels. The global average
pooling was used in squeezing operation to extract a single
value for each channel. The excitation produced a channel-
wise weight, with two fully connected layers; a ReLU
activation function, and then a sigmoid activation function.
Inside, the excitation operation, there are two fully
connected layers with compression between the layers.
Each weight signified dependencies between the channels,
and it provided the degree of freedom to our network to
learn which channel was essential and its reliance.
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Figure 6: Architecture of ResUNet ++ (Jha et al., 2019)

ASPP acts as a bridge between encoder and decoder blocks
with 3x3 convolution layers. Different rates are applied to
the input feature maps and all these outputs fuse together.
ASPP helps detect the object with different scales,
improving accuracy (Chen et al., 2016). The output from
the ASPP goes through attention unit which gives a subset
of the input units by providing concentration to particular
parts in the neural network (Vaswani et al., 2017). As
inputs go through the dense layer and pass through the
softmax layer, the outputs with different weights are
obtained, followed by multiplication of these weights with
the input vectors. Upon providing these outputs to another
dense layer and the sigmoid activation function,
segmented images are obtained.

Upon comparing the segmentation results of dunes
obtained from U-Net, ResUNet and ResUNet++ by using
HRSC and CTX images, different loss functions were
applied. The best loss functions were chosen for each

architecture and hyperparameter optimization was done to
obtain the best results. All these models were applied and
tested in Olympia Undae region in the north polar region
of the Mars.

3 Results and discussion

3.1 Dune segmentation using CTX images

For training the data,7160 training data were used which
contained some noise data too. After applying different
architectures such as U-Net, ResUNet and ResUNet++ for
the segmentation of dunes, different loss functions and
different hyper parameters such as number of epochs,
learning rate, optimizer, batch size etc. were considered for
selecting the best.
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Figure 7: Dune field in i) Olympia Undae, ii) Nili Patera and iii) Gale Crater at three location A, B and C. Figure a.
gray scale image b. ground truth image c. U-Net segmented image d. ResUNet segmented image e. ResUNet++
segmented image for model developed by CTX image

Mean squared error was used as loss function for ResUNet
and ResUNet++ whereas, binary cross entropy loss was
used for U-Net architecture. Segmented results were
obtained from the three models developed using CTX
image and the ground truth images. Results of
segmentation are shown in Figure 7 for Olympia Undae,
Nili Patera and Gale Crater respectively.

The models developed using CTX and HiRISE images
were applied over Olympia Undae which is a dune field in
the north polar region (Sanchez-Bayton, 2022), Gale
Crater and Nili Patera. Confusion matrix elements such as
TN (True Negative), TP (True Positive), FN (False
Negative) and FP(False Positive) were obtained from
manually digitized binary image as ground truth and the
model predicted images.

Figure 7 explains the dune field in three locations in
Olimpia Undae, Nili Patera and Gale Crater region. In each
image, a and b show the grayscale image and ground truth
image, as well as c, d, and e, shows the segmented images
of UNet, ResUNet and ResUNet++ architecture,
respectively. In Olimpia Undae, the segmented results of
UNet more resembles to the ground truth image. The
ResUNet and ResUNet++ show false positive results, such
as some of the no-dune regions classified as dunes. In Nili
Patera region segmented results of UNet and ResUNet++
produce similar results with ground truth images.
However, the ResUNet shows false negative results, such

as some of the dune areas being misclassified as no-dune
areas. In the Gale Crater region, all three architectures
classified the dune pixel as a no-dune pixel.

Accuracy assessment after dune segmentation was arrived
at through confusion matrix involving inferences on
accuracy parameters such as Jaccard index, Precision,
Recall, F1 scores and Accuracy. Jaccard index, also known
as the Intersection over union (loU), is a standard index for
the segmentation results. It is the ratio of the Intersection
of pixels between predicted image and mask image to the
total number of pixels. The precision is the number of
selected items that are relevant, and it is the ratio of the
true positive to the sum of true positive and true negative.
Recall is the number of relevant items that are selected, and
it is the ratio of the true positive to the sum of true positive
and false negative. F1 score is also known as the dice loss,
which is the harmonic mean of precision and recall.
Accuracy is the ratio of correctly classified pixel to the
total number of pixels (Borg et al., 2020).

Error estimation of segmented images
Probability of error was also used for examining the
performance of the model using foIIO\é\Qng equations:
Probability of False negative: prn=——"—

. " — (FNe#TP)
Probability of False positive: prp =

(FP+TN)

Global error: perror=pn X prp + pp X PFN
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Here FN represents the false negative pixel which signifies
classification of dune pixels as non-dunes, FP is the false
positive pixel which signifies classification of non-dune
pixels as dunes, TP represents the true positive pixel which
signifies classification of dune pixels as dune and TN
represents true negative pixels, where non-dune pixels are
classified as non- dune. pn and pep are probability of
occurrence of negative and positive cells (Bandiera et al.,
2012).
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U-Net gave the best precision and accuracy compared to
ResUNet and ResUNet++ architecture in case of Olympia
Undae and Nili Patera regions (Table 1). ResUNet++ has
the highest Recall, F1 score and Jaccard for these two
regions as compared to Gale crater.

Table 1: Accuracx and error evaluated for the dune segmentation models created using CTX images

Study Method Precision Recall | F1- Jaccard | Accuracy | pen | pre Perror
region score
Olipmia | U-Net 0.80 0.62 0.68 | 0.52 0.93 0.38 | 0.03 | 0.22
Undae ResUNet 0.56 0.93 0.68 | 0.52 0.88 0.08 |0.13 | 0.17
ResUNet++ 0.58 0.95 0.71 | 0.56 0.89 0.05 | 0.12 | 0.14
Gale U-Net 0.79 0.27 037 |0.24 0.84 0.73 | 0.02 | 0.20
Crater ResUNet 0.69 0.21 0.29 | 0.17 0.82 0.79 | 0.03 | 0.19
ResUNet++ 0.85 0.19 0.30 |0.18 0.84 0.81 | 0.01 |0.16
Nili U-Net 0.85 0.75 0.78 | 0.65 0.95 0.25 | 0.03 | 0.18
Patera ResUNet 0.69 0.86 0.76 | 0.62 0.93 0.14 | 0.08 | 0.17
ResUNet++ 0.69 0.88 0.77 | 0.63 0.93 0.13 | 0.07 | 0.16

UNET
RESUNET
UNET
RESUNET

RESUNET++

OLIMPIA UNDAE

GALE CRATER

UNET
RESUNET

RESUNET++
RESUNET++

NILI PATERA

Figure 8: Accuracy assessment of results obtained from UNet, ResUNet and ResUNet++ models developed from CTX
image in Olimpia Undae, Gale crater and Nili Patera region

ResUNet++ showed low error varying from 14.2% to
16.1% for all the regions compared to U-Net and ResUNet.
U-Net showed the highest false negative error and lowest
false positive error, whereas ResUNet++ showed the
lowest false negative error and ResUNet had the largest
false positive error for Olympia Undae and Nili Patera
regions (Table 1.)

It was observed that (figure 8) UNet shows highest
accuracy as compared to ResUNet and ResUNet++ in
Olimpia Undae and Nili Patera region. ResUNet shows
lowest accuracy in all the study area except Nili Patera
region. From

the accuracy assessment, it is clear that the performance of
the model affects the surface properties of the location as
well.

3.2 Dune segmentation using HiRISE images

For training the model, 7000 HIRISE images were used.
Dice was opted as the best loss function for ResUNet
architecture, whereas mean squared error was used for U-
Net and ResUNet++. The results obtained from these
models are shown in figure 9 for Olympia Undae, Gale
Crater and Nili Patera.
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Figure 9: Segmentation results on i) Olympia Undae ii) Nili Patera and iii) Gale crater at three location A, B and C.
Figure a. gray scale image b. ground truth image c. U-Net segmented image d. ResUNet segmented image e.
ResUNet++ segmented image for model developed by HiRISE image

Table 2: Accuracy evaluation for segmentation of dunes using HiRISE image

Figure 9 explains the dune field in three locations in
Olimpia Undae, Nili Patera and Gale Crater region. In each
image, a and b show the grayscale image and ground truth
image, as well as ¢, d, and e, shows the segmented images
of UNet, ResUNet and ResUNet++ architecture,
respectively. ResUNet++ produce better segmentation
results in all three locations in Olimpia Undae region
whereas, UNet classifies dune pixels as no-dune pixels in
this region. In the Nili Patera region, ResUNet
segmentation results resemble the ground truth image,
whereas UNet and ResUNet++ models classify no-dunes
as dunes. In Gale Crater region, the dunes were not
properly segmented. UNet classified some of the no-dune

Study region Method Precision Recall | F1- Jaccard | Accuracy | pen PFP Perror
score
OlympiaUndae U-Net 0.84 0.53 0.62 0.47 0.92 047 | 0.02 |0.22
ResUNet 0.79 0.80 0.77 0.63 0.94 0.20 | 0.04 | 0.17
ResUNet++ 0.71 0.87 0.78 0.64 0.93 0.13 | 0.06 | 0.17
Gale crater U-Net 0.46 0.70 0.55 0.39 0.79 0.30 | 0.19 | 0.33
ResUNet 0.86 0.27 0.36 0.24 0.85 0.73 | 0.02 | 0.18
ResUNet++ 0.90 0.20 0.31 0.19 0.84 0.80 | 0.01 | 0.16
Nili Patera U-Net 0.74 0.69 0.71 0.57 0.93 0.31 | 0.04 |0.22
ResUNet 0.89 0.66 0.73 0.60 0.95 0.34 | 0.02 |0.18
ResUNet++ 0.80 0.77 0.78 0.65 0.95 0.23 | 0.03 | 0.19

pixels as dunes as well as ResUNet and ResUNet++
classified some of the dune pixels as no-dune pixels.
ResUNet and ResUNet++ architecture showed the highest
accuracy for all the regions. ResUNet++ exhibited the
highest recall, F1-score and Jaccard compared to U-Net
and ResUNet architecture for Olympia Undae and Nili
Patera regions (Table 2).

ResUNet++ shows low error of about 16.6% and 15.5 %
for Olympia Undae and Gale crater regions as compared
to other models (Table 2.). U-Net showed the highest error
for all three regions.
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Figure 10: Accuracy assessment of results obtained from UNet, ResUNet and ResUNet++ models developed from
HiRISE image in Olimpia Undae, Gale crater and Nili Patera region

It was observed that (figure 10) ResUNet shows the
highest accuracy as compared to UNet and ResUNet++ in
the Olimpia Undae and Nili Patera region. UNet shows the
lowest accuracy in all the study areas except the Nili Patera
region. All the architectures produce satisfactory results
except UNet in Gale Crater, as it is one of the most wind-
active regions on Mars.

3.3 Synthesis of dune segmentation achieved

For dune detection using Al, the data were trained in
NVIDIA GeForce 940MX GPUs. To avoid overfitting,
early stopping was used in the keras callbacks. In the early
stopping process, the training process was stopped when
the validation dataset started to decay, which meant
validation loss started to increase or accuracy decreased.
Most of the models reached a plateau at nearly the
10™epoch.

The best results were saved for each epoch and Adam
optimizer was used for all the architectures. This is one of
such studies, probably the first, for dune segmentation over
the Martian surface using U-Net, ResUNet and
ResUNet++ utilizing CTX and HiRISE data.

From the analysis it was clear that ResUNet++ had the
high Recall/completeness in Olympia Undae and Nili
Patera regions for model created by both HiRISE and CTX
images as compared to U-Net and ResUNet models.
Completeness of the model is denoted by Recall which is
a measure of correctly classified positive samples by the
model. Recall doesn’t consider the negative samples
classified as positive. Precision denotes the true detection
among all the detection. U-Net showed the lowest false

positive rate for both CTX and HIRISE based
segmentation for all the study regions. U-Net exhibited
high Fl1-score and Jaccard index for the segmentation
model created using CTX image for Gale crater and Nili
Patera regions, whereas ResUNet++ had high F1-score and
Jaccard index for the segmentation model created using
HiRISE image for Olympia Undae and Nili Patera regions.
Jaccard index and F1 score was helpful in assessing quality
of the model. ResUNet++ model produced the best quality
dune segmented image for model created using HiRISE
image for Olympia Undae and Nili Patera regions. UNet
produced high quality segmented images for model created
using CTX image for Gale Crater and Nili Patera regions.
As a whole, U-Net produced the better segmentation
results from model created using CTX images. Whereas in
case of models created using HiRISE images, ResUNet++
produced better results.

Accuracy obtained from U-Net, ResUNet and ResUNet++
models derived both from CTX and HiRISE image was
high (more than 85%) for Olympia Undae and Nili Patera
as compared to the results obtained from deep learning
(82.01%) by (Azzaoui,.et al.,2019).

Even minor features were delineated using ResUNet++
model developed using HIiRISE images but in other
models, the minor features turned out to be grouped. Some
small dune features were not detected in U-Net
architecture whereas, such features were detected in
ResUNet and ResUNet++. The U-Net model could
segment the linear dune features more accurately
compared to small barchans and barchanoid dunes.
ResUNet and ResUNet++ models could segment all the
features with high accuracy.
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Table 3: Comparison of proposed and existing methods with suitable
metrics
Matrics UNet, ResUNet, ResUNet++ Other architecture

Dice coefficient

Higher value

Segnet, FCN have lower accuracy
but DeepLabv3+ and PSPNet have
higher accuracy

UNet

IoU ResUNet++ has higher IoU value | DeepLabv3+ performs better than
followed by ResUNet and UNet U-Net and ResUNet

Precision ResUnet++ has higher precision DeepLabv3+ and PSPNet have
same precision as ResUNet

Recall Higher recall value SegNet and FCN have lower recall
value as well as SegNet and FCN
have same recall value as ResUnet

F1 Score ResUNet++ has higher F1 score | SegNet and FCN have lower F1

value followed by ResUNet and | score value.

The comparison of proposed segmentation architectures,
such as UNet, ResUNet, and ResUNet++, with existing
architectures like SegNet, FCN, DeepLabv3+, and PSPNet
has been shown in Table 3. The results obtained from
different architectures (UNet, ResUNet, and ResUNet++)
that were used in this study were compared with the results
obtained from other existing architectures (Zhao P. et.al.,
2025, Lu A. et.al., 2024, Gupta D., 2023). UNet, ResUNet
and ResUNet++ shows better results as compared to other
models. DeepLabv3+ and PSP Net show significantly
reliable results.

4 Conclusion

Different convolutional neural network architectures such
as U-Net, ResUNet and ResUNet++ were used for the
segmentation of dunes over the Martian surface. Different
batch sizes, optimizers and loss functions were analyzed to
select the best combination. A batch size of sixteen, Adam
optimizer, and loss functions such as binary cross-entropy,
dice loss and mean squared error were used.

After analyzing all the architectures, it was found that
these architectures could produce satisfactory results of
about 80% accuracy. The model created using CTX
images performed well for Gale Crater region compared to
the model created using HiRISE image. U-Net model
created using CTX image performed well in case of low-
quality images (coarse resolution noisy images) whereas,
ResUNet ++ model created using HIRISE image
performed well in case of good quality (fine resolution)
images. The model created using CTX image showed low
probability of error compared to the model created using
HIiRISE image. Therefore, model complexity and
overfitting are related to each other. If the model is very
complex, it affects the overfitting of the model. Due to this,
the model fits in the noise in the data rather than the
feature.

The wind direction affects the orientation of dunes
dominantly found on the Martian surface as a result of

prominent aeolian activity. The temporal changes of such
dune landforms over large areas can be analyzed by the
automatic segmentation technique. Thus, we can obtain
greater insights about the wind patterns prevalent over the
regions of study. For analyzing dune migration rate over a
period of time, we need to detect dune and non-dune
features. Al based models generated in this study has
potential of automated detection of the above features and
help in understanding the dune migration phenomenon.
Availability of dataset was the main problem that was
faced during this study. High resolution HiRISE image has
less coverage as it is not covering all the dune field regions
in Martian surface. Even though CTX has larger coverage
as compared to HiRISE data, it is not covering all the dune
fields in Martian surface. Less number of training data set
also affect the model accuracy.
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