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Sand dunes are one of the most prominent Aeolian landforms present on the Martian surface. Accumulation 

and erosion of sand particles cause the formation of dunes, which possibly can influence the Martian 

climate too. For mapping such landforms over large areas of the Martian surface more effectively, 

automated detection of dunes has been brought out. For this a convolutional neural network (CNN) based 

detection approach has been implemented considering application of different models and assessing their 

respective performance using different sets of Orbiter images. CNN architectures such as U-net, ResUNet 

and ResUNet++ were used for segmentation of dunes over the Martian surface. CNN produced 

segmentation results with greater accuracy with advantage of designing new models and using different 

loss functions. Convolution neural networks such as U-Net, ResUNet, and ResUNet++ for detecting dunes 

on Martian surface used Context camera (CTX) and the High-Resolution Imaging Experiment (HiRISE) 

images of Mars Reconnaissance Orbiter (MRO) to generate the suitable models considering two different 

Martian sites, Gale crater and Nili Patera. The models thus generated were tested over Olympia Undae 

region of the Mars and all the architectures could produce more than 85% accuracy. The model created 

using CTX images performed well for Gale Crater region compared to the model created using HiRISE 

image. U-Net model created using CTX image performed well in case of low-quality images (coarse 

resolution noisy images) whereas, ResUNet ++ model created using HiRISE image performed well in case 

of good quality (fine resolution) images.  

Povzetek: Za kartiranje sipin na Marsu iz orbiterjevih posnetkov so uporabili CNN segmentacijo (U-Net, 

ResUNet, ResUNet++) na CTX in HiRISE (učenje: Gale, Nili Patera; test: Olympia Undae). Rezultati: vse 

>85 %; U-Net+CTX za slabše slike, ResUNet++ + HiRISE za visokoločljive. 

 
 

1   Introduction 
Sand dunes are the most prominent aeolian landforms on 

the Martian surface and considered crucial agents of 

climate, wind regime, sediment type, and transportation on 

mars (Urso et al., 2018). On the Martian surface, the dunes 

were first observed by Mariner-9 (Sagan and Bagnold 

1975). Martian surface has the aeolian activity 

predominantly in the absence of liquid water and active 

volcanism or tectonic deformation (Greeley et al., 2000). 

Wind can transport and deposit sand particles from one 

place to another and such wind process leads to 

modification of existing land forms as well as creation of 

new landforms such as sand dunes. Changes in wind 

direction led to the formation of different types of sand 

dunes. They are classified into barchan dunes, barchanoid 

ridge, transverse dunes, linear dunes, star dunes, and 

reversing dunes (Mckee, 1979). Mapping of these features 

would provide an idea about the current and past climate 

and weather systems. 

Wind fluxes alter the morphology of dune fields from 

barchans to barchanoids and longitudinal dunes to isolated 

domes and ending up with sand sheets (Runyon, 2016). 

Martian dune fields are mainly distributed in high 

latitudinal region and polar regions with their pre-

dominance in low plains and thereafter, craters, canyons as 

well as intermontane depressions (Chao and Zhibao, 

2022). Mars Global Digital Dune database provides idea 

about the distribution of dunes on the Martian surface 

(Hayward, 2014). For automatic detection of such dunes, 

neural network based deep learning methods could be 

effective. Neural network designed to model in such a way 

that it performs a particular task similar to human brain. 

Human brain acts entirely in a different manner from the 

traditional digital computers since it is highly complex, 

nonlinear and behaves like a parallel computer. It acquires 

knowledge from environment through learning process 

and synaptic weights are used to save the knowledge 

(Hayden, 2009). 

Automatic detection techniques can allow generation of 

landform maps over a large area in a short time. Many 

automated detection algorithms have been used to detect 

landforms on the Martian surface and other planetary 

surfaces. Most of the automatic detections have been 

carried out in impact craters on Mars compared to any 

other landforms (Martins et al., 2009, Bandeira et al., 
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2007). There are some other methods used for detecting 

craters, such as template matching (Bandeira et al.,2007) 

and boosting approach (Martins et al., 2009). Different 

filters and decision trees have also been used for detecting 

craters (Stepinski and Tomasz, 2009). Automatic detection 

of sand dunes in Mars was carried out by using Histogram 

Oriented Gradient (HOG) for feature extraction; and 

Support Vector Machine (SVM) and Boosting techniques 

for classification (Bandeira et al., 2012). Convolutional 

neural networks (CNN) have become more popular in 

recent years. In Lunar surface, craters have been detected 

from DEM (Digital Elevation Models) using U-Net 

architecture (Silburt et al., 2019). Volcanic rootles cones 

(VTCs) and Transverse Aeolian Ridges (TAR) in Mars 

automatically detected by using a convolution neural 

network named MarsNet (Palafox et al., 2017). Automatic 

detection technique such as linear segment detection 

algorithm was used to determine dune orientation and sand 

supply on the surface of Titan (Lucas et al., 2014). It 

combined the dune migration with wind field generated by 

climatic models. Mask regional convolution neural 

network (Mask-RCNN) predicts the mask on each Region 

of Interest (RoI) along with classification and bounding 

box regression carried out in Faster-RCNN (He et 

al.,2016). Mask-RCNN is an extension of Faster RCNN. 

Mask-RCNN was used for the detection and segmentation 

of barchan dunes on Martian surface (Rubanenko et al., 

2021). U-Net, ResUNet, and ResUNet++ required fewer 

training samples than Mask-RCNN, and it also excels in 

segmenting fine-grained details (Munawar, 2023).  

In our study, we have considered convolution neural 

networks such as U-Net, ResUNet, and ResUNet++ for 

detecting dunes on Martian surface. Deep neural networks 

require large amount of annotated data for training, but U-

Net outperforms such neural networks with limited 

amount of data. U-Net architecture consists mainly of a 

contracting path and expanding path (Ronneberger et al., 

2015). U-Net has been useful in various remote sensing 

applications such as land cover classification (Ulmas and 

Liiv, 2020), segmentation of clouds (Sánchez-Bayton et 

al., 2022) and segmentation of buildings (Wagner et al., 

2022). ResUNet integrates the residual neural network and 

U-Net architecture. It mainly consists of an encoder, 

decoder and a bridge connecting between them. It provides 

better performance with fewer parameters (Zhang et al., 

2018). ResUNet++ architecture consists of residual blocks, 

squeeze and excitation block, Atrous Spatial Pyramid 

Pooling (ASPP) and attention block (Jha et al., 2019). It 

enhances for the purpose of performance trial of the 

automatic sand dune detection model, a test site named 

Olympia Undae region situated between 78°N to 83°N 

latitude and 120°E to 240°E longitude was selected. It is 

the largest dune field on the Martian surface 

(https://mars.nasa.gov/resources/26259/olympia-undae/). 

This site is situated in the Northern polar region of Mars 

whereas, Gale crater is situated in southern equatorial 

region and Nili Patera is situated in northern hemisphere 

close to the equator.  

2  Materials and methods 
HiRISE and CTX images were used towards automated 

sand dune detection model development. HiRISE image 

onboard Mars Reconnaissance Mission is a pushbroom 

imaging system with focal length of about 12m effective 

length and has 14 CCD detectors. It has spatial resolution 

of about 25-32 cm/pixel depending upon on the altitude of 

space craft and the off-nadir roll angle. It acquires data in 

three different channels, such as blue-green (~536nm), red 

(~692nm) and near-infrared (~874nm). Ten detectors are 

used for red filter and each two filters are used for blue-

green and near-infra red filters. The HiRISE RDR products 

are stored in JPEG2000 with 10-bit imaging system 

ranging from 0-1023 (Eliason E. et al., 2012). CTX is the 

one of the primary payloads of Mars Reconnaissance 

Orbiter. It uses catadioptric telescope with focal length of 

about 350mm. Kodak KLI-5001G detector with 5056-

pixel linear CCD detect a visible broad band of light from 

500 to 700 nm. CCD used the push broom scanner along 

the direction of spacecraft motion. CTX has spatial 

resolution of about ~6m/pixel. It acquires monochromatic 

images of Martian surface (Wolff et al., 2013). 

2.1. Study area 

Two different regions on the Martian surface were 

considered for developing automatic detection models for 

sand dunes. Such study sites include Gale crater and Nili 

Patera regions. Gale crater is situated between latitude 

2.25°S to 8.25°S and longitude 133.25°E to 140.25°E 

(Figure.1a). It is an impact structure with a diameter of 154 

km (Schwenzer et al., 2012). Gale is a crater probably a 

dry lake on Mars near the north-western part of the Aeolis 

quadrangle (Palucis et al., 2016). It is estimated to be 

about~3.6 billion years old (Wray, 2013). Aeolis mons is 

a mountain in the centre of Gale and rises 5.5km high 

above the crater floor. Curiosity rover landed on Gale 

crater for identifying the habitability of the Martian 

surface. The minerals present in the lower part of the 

sedimentary strata in the Mount Sharp within Gale crater 

indicate transition from warm to cold climate in the 

Martian atmosphere (Rampe et al., 2019).   

Nili patera region extends from 8.46°N to 19.41°N latitude 

and 58.88°E to 76.644°E longitude (Figure. 1b). It is a 50 

km diameter caldera at the centre of the Syrtis Major 

Planum. It contains different landforms and distinctive 

mineral deposits. Syrtis major planum is of Hesperian- age 

(Fawdon et al., 2015). Nili patera region has the most 

active dust storm season in the Martian surface. It is an old 

volcanic region with different interesting features. This 

region is a low relief area with slope of less than 1 ̊

(Mubarak et al., 2019, Hood et al., 2021). 

For the purpose of performance trial of the automatic sand 

dune detection model, a test site named Olympia Undae 

region situated between 78°N to 83°N latitude and 120°E 

to 240°E longitude was selected. It is the largest dune field 

on the Martian surface 

(https://mars.nasa.gov/resources/26259/olympia-undae/). 
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This site is situated in the Northern polar region of Mars 

whereas, Gale crater is situated in southern equatorial 

region and Nili Patera is situated in northern hemisphere 

close to the equator. 

 

 

 

Figure 1a: HiRISE image of Gale crater b. CTX image of Nili Patera region c. Location selected from Olympia Undae 

region 

2.2. Methodology 

Datasets selected out of CTX and HiRISE images 

pertaining to Gale crater (4.07S to 6.66S latitude and 

136.51E to 139.12E longitude) and Nili Patera (1.37S to 

19.41N latitude and 58.88E to 76.644E longitude) regions 

respectively were further analyzed. AI-based approach has 

been considered for extraction of dunes. The architecture 

pertaining to convolution neural networks (CNN) such as 

U-Net, ResUNet, and ResUNet++ were implemented in 

Keras after (Vasilev et al., 2019) with tensorflow in 

python. The system configuration Windows 10 o/s with 

cuda version 10.0 and cuDNN version 7.6.5 was used. 

Data augmentation techniques such as rotation, horizontal 

flip, vertical flip, horizontal translation, vertical translation 

etc. were implemented. It led to increase in the training 

data sets thus generated with 7000 HiRISE and 7160 CTX 

dune images respectively. A batch size of 16 using Adam 

optimizer with loss function as dice, binary cross-entropy 

and mean squared error were used. From the augmented 

datasets, 80% were used for training, 10% for testing, and 

10% for validation. Apart from using the training dataset 

used for training the model, validation datasets were used 

to tune the hyper-parameters of the model. For this, the test 

data was used for the model accuracy assessment after the 

model had been fully trained (after  Myrianthous 2021). 

In the convolution layer, a kernel was applied to the 

original image, convolution was performed to move the 

filter. For example, the filter moves two columns right and 

does convolution for a stride of two. If the input image is 

considered 7x7 matrix and the filter size 3x3 with a stride 

of two, then the output becomes 3x3 matrix. Upon 

completion of the convolution, maxpooling operation was 

performed. In this process, maximum value was picked 

from a 2x2 filter. There are also other pooling available 

such as average pooling and global pooling. To enhance 

the results, batch normalization was required for keeping 

the values in the input and hidden layers within a certain 

range and allowing improvement in the training speed. 

Thereafter, dropout step could be added for dropping out 

of neurons at random in the neural network to prevent over 

fitting. Further to this, flattening led the data to culminate 

in to the dense layer by converting the two-dimensional 

dataset into one-dimensional data or converting the data 

into a single column

https://gmyrianthous.medium.com/?source=post_page-----a44bed52a0e1--------------------------------
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Figure 2: Architecture of convolutional neural network 

The dense layer connects different neurons with each 

neuron associated with weight, bias, and activation 

function. If the weight is high, then the neuron is good, if 

the bias is above a certain threshold value, then the neuron 

is active, if the bias is below the threshold value, then the 

neuron is dead. The neurons go through the activation 

function which decides whether the neuron is active or not. 

Multiple convolution and pooling layers were added to the 

architecture. 

Overall methodology that used for the study is given in 

figure 3. The dunes were identified from CTX and HiRISE 

images. Create binary images such as “1” indicate for dune 

and “0” for non-dune images in ImageJ platform. Create 

segmentation models by using UNet, ResUNet and 

ResUNet++ architectures for CTX and HiRISE images. 

After image segmentation compare the results obtained 

from different architectures and different images. 

Figure 3. Overall workflow 
2.2.1 U-Net architecture 
U-Net is a particular type of architecture used for image 

segmentation. In this architecture, deep learning tools are 

arranged in such a way that it can be used for image 

segmentation. It is called U-Net because it looks like "U" 

and it consists of an encoder and decoder path (figure 4). 

Concatenation of feature maps helps to give localization 

information (Ronneberger et al., 2015). The input image 

size was considered 128x128x3 and a color image with 

size 128x128 was fed into the input layer with a feature 

space of 16. Thus, the output of the convolution layer (C1) 

became 128x128x16. Thereafter, upon performing a 

maxpooling operation with a stride of 2 gave rise to an 

output as 64x64x16 (P1); after doing two convolution 

operations with feature space of 32, output was obtained 

as 64x64x32 (C2) and the process continued till obtaining 

C5 (figure 4). Thereafter, up sampling was performed 

where 8x8x256 (C5) became 16x16x128 and concatenated 

it with C4, then the final value at U6 became16x16x256 

(U6+C4). After a couple of convolution layers; the output 

became 16x16x128 (C6), and finally going through U7 to 

U9, the output would be 128x128x1. 
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2.2.2. ResUNet architecture 
ResUNet as the combination of both U-Net and residual 

neural network consists of one decoder path, one encoder 

path and a bridge connecting both encoder and decoder. 

The residual units consist of two 3x3 convolution block 

and an identity mapping. Each identity mapping connects 

the input and output of the residual block. Each 

convolutional block consists of one batch normalization, 

one Rectified Linear Unit (ReLU) activation layer, and one 

convolutional layer (Figure 5).  

In encoding units, a stride of two was applied instead of 

using pooling operation unlike U-Net architecture in order 

to reduce the size of the feature map. Before each decoding 

unit, there is an up sampling of feature maps from the 

lower level and concatenation with the feature maps from 

the corresponding encoding path. After the decoding path 

to obtain a segmented image, a 1x1 convolution with a 

sigmoid activation is applied (Zhang et al., 2018)

Figure 4: Architecture of U-Net (Ronneberger et al., 2015) 

 

Figure 5: ResUNet architecture (Zhang et al., 2018) 

 

2.2.3 ResUNet++ Architecture 
As a combination of both U-Net and residual neural 

networks (He et.al., 2016), the ResUNet++ (Figure 6) 

consists of one stem block, three encoder blocks, Astrous 

Pyramidal Pooling (ASPP), and three decoder blocks (Jha 

et al., 2019). The residual unit combines two 3x3 

convolution layers, batch normalization, ReLU activation, 

and an Identity mapping. Each Identity mapping connects 

the input and output of the encoder block. The outcome of 

each encoder block passes through the squeeze and 

excitation block (Hu et al., 2018), which increases the 

interrelationship between the channels. The global average 

pooling was used in squeezing operation to extract a single 

value for each channel. The excitation produced a channel-

wise weight, with two fully connected layers; a ReLU 

activation function, and then a sigmoid activation function. 

Inside, the excitation operation, there are two fully 

connected layers with compression between the layers. 

Each weight signified dependencies between the channels, 

and it provided the degree of freedom to our network to 

learn which channel was essential and its reliance.  
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Figure 6: Architecture of ResUNet ++ (Jha et al., 2019) 

 
ASPP acts as a bridge between encoder and decoder blocks 

with 3x3 convolution layers. Different rates are applied to 

the input feature maps and all these outputs fuse together. 

ASPP helps detect the object with different scales, 

improving accuracy (Chen et al., 2016). The output from 

the ASPP goes through attention unit which gives a subset 

of the input units by providing concentration to particular 

parts in the neural network (Vaswani et al., 2017). As 

inputs go through the dense layer and pass through the 

softmax layer, the outputs with different weights are 

obtained, followed by multiplication of these weights with 

the input vectors. Upon providing these outputs to another 

dense layer and the sigmoid activation function, 

segmented images are obtained. 

Upon comparing the segmentation results of dunes 

obtained from U-Net, ResUNet and ResUNet++ by using 

HRSC and CTX images, different loss functions were 

applied. The best loss functions were chosen for each 

architecture and hyperparameter optimization was done to 

obtain the best results. All these models were applied and 

tested in Olympia Undae region in the north polar region 

of the Mars. 

 

3  Results and discussion 

3.1 Dune segmentation using CTX images 

For training the data,7160 training data were used which 

contained some noise data too. After applying different 

architectures such as U-Net, ResUNet and ResUNet++ for 

the segmentation of dunes, different loss functions and 

different hyper parameters such as number of epochs, 

learning rate, optimizer, batch size etc. were considered for 

selecting the best. 
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Figure 7: Dune field in i) Olympia Undae, ii) Nili Patera and iii) Gale Crater at three location A, B and C. Figure a. 

gray scale image b. ground truth image c. U-Net segmented image d. ResUNet segmented image e. ResUNet++ 

segmented image for model developed by CTX image 

 

Mean squared error was used as loss function for ResUNet 

and ResUNet++ whereas, binary cross entropy loss was 

used for U-Net architecture. Segmented results were 

obtained from the three models developed using CTX 

image and the ground truth images. Results of 

segmentation are shown in Figure 7 for Olympia Undae, 

Nili Patera and Gale Crater respectively. 

The models developed using CTX and HiRISE images 

were applied over Olympia Undae which is a dune field in 

the north polar region (Sánchez-Bayton, 2022), Gale 

Crater and Nili Patera. Confusion matrix elements such as 

TN (True Negative), TP (True Positive), FN (False 

Negative) and FP(False Positive) were obtained from 

manually digitized binary image as ground truth and the 

model predicted images. 

Figure 7 explains the dune field in three locations in 

Olimpia Undae, Nili Patera and Gale Crater region. In each 

image, a and b show the grayscale image and ground truth 

image, as well as c, d, and e, shows the segmented images 

of UNet, ResUNet and ResUNet++ architecture, 

respectively. In Olimpia Undae, the segmented results of 

UNet more resembles to the ground truth image. The 

ResUNet and ResUNet++ show false positive results, such 

as some of the no-dune regions classified as dunes. In Nili 

Patera region segmented results of UNet and ResUNet++ 

produce similar results with ground truth images. 

However, the ResUNet shows false negative results, such 

as some of the dune areas being misclassified as no-dune 

areas. In the Gale Crater region, all three architectures 

classified the dune pixel as a no-dune pixel.  

Accuracy assessment after dune segmentation was arrived 

at through confusion matrix involving inferences on 

accuracy parameters such as Jaccard index, Precision, 

Recall, F1 scores and Accuracy. Jaccard index, also known 

as the Intersection over union (IoU), is a standard index for 

the segmentation results. It is the ratio of the Intersection 

of pixels between predicted image and mask image to the 

total number of pixels. The precision is the number of 

selected items that are relevant, and it is the ratio of the 

true positive to the sum of true positive and true negative. 

Recall is the number of relevant items that are selected, and 

it is the ratio of the true positive to the sum of true positive 

and false negative. F1 score is also known as the dice loss, 

which is the harmonic mean of precision and recall. 

Accuracy is the ratio of correctly classified pixel to the 

total number of pixels (Borg et al., 2020). 

 

Error estimation of segmented images 

Probability of error was also used for examining the 

performance of the model using following equations:  

Probability of False negative: ρFN=
FN

(FN+TP)
 

Probability of False positive: ρFP =
FP

(FP+TN)
 

Global error: ρerror=ρN x ρFP + ρP x ρFN 

 

             

i) ii) iii) 
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Here FN represents the false negative pixel which signifies 

classification of dune pixels as non-dunes, FP is the false 

positive pixel which signifies classification of non-dune 

pixels as dunes, TP represents the true positive pixel which 

signifies classification of dune pixels as dune and TN 

represents true negative pixels, where non-dune pixels are 

classified as non- dune. ρN and ρP are probability of 

occurrence of negative and positive cells (Bandiera et al., 

2012). 

U-Net gave the best precision and accuracy compared to 

ResUNet and ResUNet++ architecture in case of Olympia 

Undae and Nili Patera regions (Table 1). ResUNet++ has 

the highest Recall, F1 score and Jaccard for these two 

regions as compared to Gale crater. 

 

 

 

Table 1: Accuracy and error evaluated for the dune segmentation models created using CTX images 

Study 

region 

Method Precision Recall F1-

score 

Jaccard Accuracy ρFN ρFP ρerror 

Olipmia 

Undae 

 

U-Net 0.80 0.62 0.68 0.52 0.93 0.38 0.03 0.22 

ResUNet 0.56 0.93 0.68 0.52 0.88 0.08 0.13 0.17 

ResUNet++ 0.58 0.95 0.71 0.56 0.89 0.05 0.12 0.14 

Gale 

Crater 

 

U-Net 0.79 0.27 0.37 0.24 0.84 0.73 0.02 0.20 

ResUNet 0.69 0.21 0.29 0.17 0.82 0.79 0.03 0.19 

ResUNet++ 0.85 0.19 0.30 0.18 0.84 0.81 0.01 0.16 

Nili 

Patera 

 

U-Net 0.85 0.75 0.78 0.65 0.95 0.25 0.03 0.18 

ResUNet 0.69 0.86 0.76 0.62 0.93 0.14 0.08 0.17 

ResUNet++ 0.69  0.88 0.77 0.63 0.93 0.13 0.07 0.16 

 
 

Figure 8: Accuracy assessment of results obtained from UNet, ResUNet and ResUNet++ models developed from CTX 

image in Olimpia Undae, Gale crater and Nili Patera region  

 

ResUNet++ showed low error varying from 14.2% to 

16.1% for all the regions compared to U-Net and ResUNet. 

U-Net showed the highest false negative error and lowest 

false positive error, whereas ResUNet++ showed the 

lowest false negative error and ResUNet had the largest 

false positive error for Olympia Undae and Nili Patera 

regions (Table 1.) 

It was observed that (figure 8) UNet shows highest 

accuracy as compared to ResUNet and ResUNet++ in 

Olimpia Undae and Nili Patera region. ResUNet shows 

lowest accuracy in all the study area except Nili Patera 

region. From  

 

the accuracy assessment, it is clear that the performance of 

the model affects the surface properties of the location as 

well.  

 

3.2 Dune segmentation using HiRISE images 

For training the model, 7000 HIRISE images were used. 

Dice was opted as the best loss function for ResUNet 

architecture, whereas mean squared error was used for U-

Net and ResUNet++. The results obtained from these 

models are shown in figure 9 for Olympia Undae, Gale 

Crater and Nili Patera. 
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Figure 9: Segmentation results on i) Olympia Undae ii) Nili Patera and iii) Gale crater at three location A, B and C. 

Figure a. gray scale image b. ground truth image c. U-Net segmented image d. ResUNet segmented image e. 

ResUNet++ segmented image for model developed by HiRISE image 

 

Table 2: Accuracy evaluation for segmentation of dunes using HiRISE image 

Study region Method Precision Recall  F1-

score 

Jaccard Accuracy ρFN ρFP ρerror 

OlympiaUndae U-Net 0.84 0.53 0.62 0.47 0.92 0.47 0.02 0.22 

ResUNet 0.79 0.80 0.77 0.63 0.94 0.20 0.04 0.17 

ResUNet++ 0.71 0.87 0.78 0.64 0.93 0.13 0.06 0.17 

Gale crater U-Net 0.46 0.70 0.55 0.39 0.79 0.30 0.19 0.33 

ResUNet 0.86 0.27 0.36 0.24 0.85 0.73 0.02 0.18 

ResUNet++ 0.90 0.20 0.31 0.19 0.84 0.80 0.01 0.16 

Nili Patera U-Net 0.74 0.69 0.71 0.57 0.93 0.31 0.04 0.22 

ResUNet 0.89 0.66 0.73 0.60 0.95 0.34 0.02 0.18 

ResUNet++ 0.80 0.77 0.78 0.65 0.95 0.23 0.03 0.19 

 

Figure 9 explains the dune field in three locations in 

Olimpia Undae, Nili Patera and Gale Crater region. In each 

image, a and b show the grayscale image and ground truth 

image, as well as c, d, and e, shows the segmented images 

of UNet, ResUNet and ResUNet++ architecture, 

respectively. ResUNet++ produce better segmentation 

results in all three locations in Olimpia Undae region 

whereas, UNet classifies dune pixels as no-dune pixels in 

this region. In the Nili Patera region, ResUNet 

segmentation results resemble the ground truth image, 

whereas UNet and ResUNet++ models classify no-dunes 

as dunes. In Gale Crater region, the dunes were not 

properly segmented. UNet classified some of the no-dune 

pixels as dunes as well as ResUNet and ResUNet++ 

classified some of the dune pixels as no-dune pixels. 

ResUNet and ResUNet++ architecture showed the highest 

accuracy for all the regions. ResUNet++ exhibited the 

highest recall, F1-score and Jaccard compared to U-Net 

and ResUNet architecture for Olympia Undae and Nili 

Patera regions (Table 2). 

ResUNet++ shows low error of about 16.6% and 15.5 % 

for Olympia Undae and Gale crater regions as compared 

to other models (Table 2.). U-Net showed the highest error 

for all three regions. 
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Figure 10: Accuracy assessment of results obtained from UNet, ResUNet and ResUNet++ models developed from 

HiRISE image in Olimpia Undae, Gale crater and Nili Patera region 

 

It was observed that (figure 10) ResUNet shows the 

highest accuracy as compared to UNet and ResUNet++ in 

the Olimpia Undae and Nili Patera region. UNet shows the 

lowest accuracy in all the study areas except the Nili Patera 

region. All the architectures produce satisfactory results 

except UNet in Gale Crater, as it is one of the most wind-

active regions on Mars.  

 

3.3 Synthesis of dune segmentation achieved 

For dune detection using AI, the data were trained in 

NVIDIA GeForce 940MX GPUs. To avoid overfitting, 

early stopping was used in the keras callbacks. In the early 

stopping process, the training process was stopped when 

the validation dataset started to decay, which meant 

validation loss started to increase or accuracy decreased. 

Most of the models reached a plateau at nearly the 

10thepoch.  

The best results were saved for each epoch and Adam 

optimizer was used for all the architectures. This is one of 

such studies, probably the first, for dune segmentation over 

the Martian surface using U-Net, ResUNet and 

ResUNet++ utilizing CTX and HiRISE data. 

From the analysis it was clear that ResUNet++ had the 

high Recall/completeness in Olympia Undae and Nili 

Patera regions for model created by both HiRISE and CTX 

images as compared to U-Net and ResUNet models. 

Completeness of the model is denoted by Recall which is 

a measure of correctly classified positive samples by the 

model. Recall doesn’t consider the negative samples 

classified as positive. Precision denotes the true detection 

among all the detection. U-Net showed the lowest false 

positive rate for both CTX and HiRISE based 

segmentation for all the study regions. U-Net exhibited 

high F1-score and Jaccard index for the segmentation 

model created using CTX image for Gale crater and Nili 

Patera regions, whereas ResUNet++ had high F1-score and 

Jaccard index for the segmentation model created using 

HiRISE image for Olympia Undae and Nili Patera regions. 

Jaccard index and F1 score was helpful in assessing quality 

of the model. ResUNet++ model produced the best quality 

dune segmented image for model created using HiRISE 

image for Olympia Undae and Nili Patera regions. UNet 

produced high quality segmented images for model created 

using CTX image for Gale Crater and Nili Patera regions. 

As a whole, U-Net produced the better segmentation 

results from model created using CTX images. Whereas in 

case of models created using HiRISE images, ResUNet++ 

produced better results. 

Accuracy obtained from U-Net, ResUNet and ResUNet++ 

models derived both from CTX and HiRISE image was 

high (more than 85%) for Olympia Undae and Nili Patera 

as compared to the results obtained from deep learning 

(82.01%) by (Azzaoui,.et al.,2019).  

Even minor features were delineated using ResUNet++ 

model developed using HiRISE images but in other 

models, the minor features turned out to be grouped. Some 

small dune features were not detected in U-Net 

architecture whereas, such features were detected in 

ResUNet and ResUNet++. The U-Net model could 

segment the linear dune features more accurately 

compared to small barchans and barchanoid dunes. 

ResUNet and ResUNet++ models could segment all the 

features with high accuracy.  
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3.4 Comparison of proposed and existing 

methods
Table 3: Comparison of proposed and existing methods with suitable 

metrics

Matrics UNet, ResUNet, ResUNet++ Other architecture 

Dice coefficient Higher value Segnet, FCN have lower accuracy 

but DeepLabv3+ and PSPNet have 

higher accuracy 

IoU ResUNet++ has higher IoU value 

followed by ResUNet and UNet 

DeepLabv3+ performs better than 

U-Net and ResUNet 

Precision ResUnet++ has higher precision  DeepLabv3+ and PSPNet have 

same precision as ResUNet 

Recall Higher recall value SegNet and FCN have lower recall 

value as well as SegNet and FCN 

have same recall value as ResUnet 

F1 Score ResUNet++ has higher F1 score 

value followed by ResUNet and 

UNet 

SegNet and FCN have lower F1 

score value. 

The comparison of proposed segmentation architectures, 

such as UNet, ResUNet, and ResUNet++, with existing 

architectures like SegNet, FCN, DeepLabv3+, and PSPNet 

has been shown in Table 3. The results obtained from 

different architectures (UNet, ResUNet, and ResUNet++) 

that were used in this study were compared with the results 

obtained from other existing architectures (Zhao P. et.al., 

2025, Lu A. et.al., 2024, Gupta D., 2023). UNet, ResUNet 

and ResUNet++ shows better results as compared to other 

models. DeepLabv3+ and PSP Net show significantly 

reliable results. 

 

4  Conclusion 
Different convolutional neural network architectures such 

as U-Net, ResUNet and ResUNet++ were used for the 

segmentation of dunes over the Martian surface. Different 

batch sizes, optimizers and loss functions were analyzed to 

select the best combination. A batch size of sixteen, Adam 

optimizer, and loss functions such as binary cross-entropy, 

dice loss and mean squared error were used. 

After analyzing all the architectures, it was found that 

these architectures could produce satisfactory results of 

about 80% accuracy. The model created using CTX 

images performed well for Gale Crater region compared to 

the model created using HiRISE image. U-Net model 

created using CTX image performed well in case of low-

quality images (coarse resolution noisy images) whereas, 

ResUNet ++ model created using HiRISE image 

performed well in case of good quality (fine resolution) 

images. The model created using CTX image showed low 

probability of error compared to the model created using 

HiRISE image. Therefore, model complexity and 

overfitting are related to each other. If the model is very 

complex, it affects the overfitting of the model. Due to this, 

the model fits in the noise in the data rather than the 

feature. 

The wind direction affects the orientation of dunes 

dominantly found on the Martian surface as a result of 

prominent aeolian activity. The temporal changes of such 

dune landforms over large areas can be analyzed by the 

automatic segmentation technique. Thus, we can obtain 

greater insights about the wind patterns prevalent over the 

regions of study. For analyzing dune migration rate over a 

period of time, we need to detect dune and non-dune 

features. AI based models generated in this study has 

potential of automated detection of the above features and 

help in understanding the dune migration phenomenon. 

Availability of dataset was the main problem that was 

faced during this study. High resolution HiRISE image has 

less coverage as it is not covering all the dune field regions 

in Martian surface. Even though CTX has larger coverage 

as compared to HiRISE data, it is not covering all the dune 

fields in Martian surface. Less number of training data set 

also affect the model accuracy.  
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