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Mainstream network security models based on PSO and other algorithms have not been optimized for 

hybrid cloud environments, resulting in limitations in their application. To ensure network security in 

hybrid cloud environments, the study first introduces the Levy distribution, uses the Levy distribution to 

generate random numbers and redesign the position update formula. Then, the penalty parameters of 

SVM and the radial basis kernel function parameters of SVM are used as individuals to improve SMA. 

After iteration, the optimal position is the optimal solution of the two parameters. After determining the 

optimal parameters, an improved slime mould algorithm optimization algorithm is designed. Finally, the 

algorithm is applied to the encoded hybrid cloud workflow scheduling to propose a method based on the 

improved slime mould algorithm. The test results showed that when the number of tasks was 1000, the 

proposed algorithm took 13.7 hours to run, which was better than the traditional 18.2 hours and more 

than 50 hours of the particle swarm algorithm (P<0.05). Except for Guess passward attack, the 

detection rate of the proposed algorithm exceeded 91%, while that of other algorithms was between 

77% and 91%. For Guess passward attacks, the detection rate of the traditional slime mould algorithm 

was 8.93%, but the proposed algorithm increased to 11.54% (P<0.05). After applying this method, the 

task completion time in the hybrid cloud environment reduced by 61.9%, the resource utilization rate 

increased by 27.5%, and the incidence of network security events reduced by 87.9%. Based on the 

testing results, the proposed algorithm has considerable detection performance for network security 

issues in hybrid cloud environments. It can correctly identify the types of network attacks in network 

security monitoring and improves its application effectiveness in network security. 

Povzetek: Raziskava predstavlja izboljšan algoritem za razporejanje delovnih tokov v hibridnem 

oblaku, ki z Levy-optimiziranim Slime Mould algoritmom poveča varnost omrežij ter učinkovitost in 

zaznavo napadov. 

 

1 Introduction 
Hybrid cloud is a special cloud computing architecture 

that combines both public and private clouds, including 

scalability, high resource scale, and security [1]. It refers 

to a cloud computing model that combines two or more 

cloud computing deployment models (public cloud and 

private cloud). In this environment, enterprise 

organizations or institutions can deploy different types of 

applications, data, and services on public clouds and 

private cloud, and make dynamic adjustments and 

management if necessary. The hybrid cloud environment 

can combine the high availability, flexibility and cost-

effectiveness of the public cloud, as well as the data 

security of the private cloud. However, in workflow 

scheduling in a hybrid cloud environment, due to 

excessive computing resources and complex timing 

issues, it faces more complex network security issues 

than workflow scheduling in other environments [2]. The 

current main network security models lack customization 

and optimization for hybrid cloud environments, so there 

are limitations in their application in this environment. 

Therefore, a network security hybrid cloud workflow  

 

scheduling algorithm based on Slime Mould Algorithm 

(SMA) is proposed. SMA is a swarm intelligent 

optimization algorithm that simulates the shrinkage 

process of slime moulds when searching for food [3].  

Compared with traditional Particle Swarm Optimization 

(PSO) algorithms, this algorithm has higher adaptability, 

efficiency, and parallelism [4]. Firstly, to address the 

issue of uniform distribution falling into local optima, 

Levy distribution is introduced to generate random 

numbers and redesign the position update formula. Then, 

to determine the slow defects of SVM in the invasion 

detection, the penalty parameters and radial basis kernel 

function parameters of SVM are taken as the individuals 

to improve the SMA. After iteration, the optimal 

myxobacteria location is the optimal solution of these 

two parameters. After confirming the optimal 

parameters, an improved myxobacteria optimization 

algorithm is designed. Finally, the proposed algorithm is 

applied to the encoded hybrid cloud workflow scheduling 

to solve the too large matrix solution space. The 

algorithm is built to increase data security in a hybrid 

cloud environment and fill in the gap in network security 

issues. 
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This paper is divided into six sections. The second 

section is related works, which reviews recent literature 

and elaborates on the significance of this paper. The third 

section describes the principle and derivation process of 

the proposed scheme. The fourth section demonstrates 

the performance of the proposed method through 

experiments. The fifth section discusses and compares 

the experimental results. The sixth section is the results, 

which summarize the entire paper. 

This study makes substantial contributions to the 

research in this field in the following areas. First, the 

Levy flight model effectively addresses the local 

optimization in SMA, resulting in improved efficiency. 

Second, Support Vector Machine (SVM) integrated with 

Enhanced SMA for network security tasks. Lastly, the 

application of SMA in network security protection in 

hybrid cloud environments provides potential directions 

for the overall development of this field. 

2 Related works 
Cloud computing is an important evolution direction of 

Internet and data technology. Many scholars have also 

explored the security issues of cloud computing. 

Abroshan believed that current cloud computing required 

an encryption scheme that had a small impact on 

performance to improve the security of cloud data 

without impeding computing efficiency. An encryption 

algorithm based on the improved Blowfish algorithm and 

elliptic curve algorithm was proposed [5]. The evaluation 

results showed that the throughput, execution time, and 

memory consumption parameters of this algorithm were 

superior to traditional algorithms. To use the network 

intrusion detection model in cloud-based systems and 

identify known and unknown attacks, Vashishtha L K et 

al. introduced a hybrid intrusion detection model for 

cloud-based systems that could detect all types of attacks 

using signature-based detection and exception-based 

detection. The detection rates of the model on UNSW-

NB 15, CICIDS and NSL-KDD datasets were 92.7%, 

85.1% and 99.8%, respectively, outperforming some 

existing models [6]. The contemporary intrusion 

detection system deployed in the traditional Internet or 

network environment did not have scalability and 

adaptability. Therefore, RMB proposed an intrusion 

detection method based on cloud hybrid machine 

learning method. The results showed that this method 

reduced the confidence depth and mean square error of 

network detection error, which was more suitable for 

cloud environment [7]. Thabit et al. believed that existing 

encryption algorithms still had limitations. A new 

encryption technology was constructed [8]. The first 

layer of this technology was based on Shannon diffusion 

and confusion theory. The second layer combined the 

genetic structure of the central principles of molecular 

biology to simulate coding processes. Compared with 

existing technologies, this encryption algorithm had 

significant advantages in data security, password size, 

and execution time, and could effectively improve the 

security of cloud computing applications. However, this 

research was mainly based on a single cloud 

environment, lacking optimization for hybrid cloud 

environments. To effectively improve the security of 

cloud computing applications, David Vako defined a set 

of requirements for cognitive assistants based on existing 

cloud service providers and assistant solutions. These 

requirements were used to guide the development 

process. Compared with the established reference 

architecture, the cognitive assistant output had better 

security [9]. Due to the dynamics of the cloud 

environment, the complexity of resource virtualization, 

and the diversity of user requests, it is imperative to 

develop effective technologies to evaluate and analyze 

the performance of the cloud center. Debbi H et al. used 

probabilistic model testing as an effective framework for 

providing resources in the evaluation and performance 

analysis cloud. This framework could effectively 

measure and analyze the cloud performance [10]. 

As a high-performance swarm intelligence 

optimization algorithm, SMA has been applied by some 

scholars. To improve the prediction accuracy of wind 

power, Lian et al. proposed a prediction model based on 

wavelet denoising and improved SMA optimized by 

SVM [11]. The wavelet denoising algorithm was taken to 

denoise wind power data. Then, the SVM was used as 

the prediction model. The test results showed that the 

proposed prediction model had high prediction accuracy. 

Jz et al. proposed a new technology based on SMA to 

optimize unknown variables in proton exchange 

membrane fuel cells. The results showed that this 

technology provided the best results in model recognition 

compared with other technologies [12]. Nassef and 

Handam applied SMA to the methane reforming 

hydrogen production process and used the algorithm to 

find the optimal parameter set for improving hydrogen 

production [13]. The optimized SMA was compared with 

particle swarm optimization and evolution strategy. The 

statistical results showed that the optimized SMA had the 

optimal mean value and standard deviation. Yildiz et al. 

compared various swarm optimization algorithms, 

including SMA, in the shape design of vehicle supports 

[14]. Based on the comparison results, a new optimizer 

combining swarm optimization schemes such as SMA 

was proposed. This study provided new optimization 

ideas for future vehicle design. 

The keywords, methods, and results of the above 

studies are summarized in Table 1. 
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Table 1: Summary table of literature reviews. 

Author Keywords Method Results 

Abroshan H [5] 
Cloud computing, encryption, 

and Blowfish algorithm 

A Hybrid Encryption Solution to Improve Cloud 
Computing Security using Symmetric and 

Asymmetric Cryptography Algorithm 

The throughput, execution time and 

memory consumption parameters are 

better than the conventional 
algorithm 

Vashishtha L K et 

al. [6] 

Cloud-based system, intrusion 

detection, and signature 

HIDM: A hybrid intrusion detection model for 

cloud-based systems 

The model detected 92.7% on 

UNSW-NB 15,85.1% on the 
CICIDS dataset and 99.8% on the 

NSL-KDD dataset, outperforming 

some existing models 

RM B et al. [7] 

Hybrid cloud, machine 

learning, and intrusion 
detection 

Hybrid machine intrusion detection in cloud 

based on learning approach: A metaheuristic 
assisted model 

This method reduces the detection 
error and mean square error in deep 

confidence networks, and is more 

suitable for the cloud environment 

Thabit F et al. [8] 

Encryption technology, 

confused theory, and hybrid 

clouds 

A new data security algorithm for the cloud 

computing based on genetics techniques and 

logical-mathematical functions 

The encryption algorithm has 

obvious advantages in data security, 

password size and execution time, 
and can effectively improve the 

security of cloud computing 

applications 

Dávid Vako et al. 

[9] 

Cloud computing, security and 

cognitive assistant 

Development and Implementation of a 
Cognitive Cloud Assistant for Optimal Cloud 

Service Provider Selection 

The output of this cognitive assistant 
has superior security compared to 

the established reference architecture 

Debbi H et al. [10] 
Cloud environment, 
probabilistic model, and 

resource allocation 

Modeling and Performance Analysis of 
Resource Provisioning in Cloud Computing 

using Probabilistic Model Checking 

Effectively measure and analyze 

cloud performance 

Lian L et al. [11] 
Misci algorithm, wavelet 

denoising, and SVM algorithm 

Wind power prediction based on wavelet 
denoising and improved slime mould algorithm 

optimized by support vector machine 

The prediction model has a high 

prediction accuracy 

Jz A et al. [12] 

Myxobacteria algorithm, 

proton exchange membrane, 
and model identification 

Balanced version of Slime Mould Algorithm: A 

study on PEM fuel cell system parameters 
identification 

This technique gives the best results 

relative to other models in model 
identification techniques 

Nassef A M et al. 

[13] 

Myxobacteria algorithm, 

hydrogen production process, 
and parameter set 

Parameter Estimation-Based on Slime Mould 

Algorithm of Photocatalytic Methane 
Reforming Process for Hydrogen Production 

The algorithm can be used to find 

the optimal parameter set for 
improving hydrogen production 

Yildiz B S et al. [14] 
Misci algorithm and vehicle 

design optimizer 

Conceptual comparison of the ecogeography-

based algorithm, equilibrium algorithm, marine 

predators’ algorithm, and slime mould algorithm 
for optimal product design 

A new optimizer is proposed to 
provide a new optimization idea for 

the future vehicle design 

 

In summary, current research has achieved some 

results in the field of network security in hybrid cloud 

environments, but there are still some shortcomings. 

Firstly, when dealing with network security threats, 

existing intelligent algorithms are prone to targeted 

attacks by exploiting algorithm logic vulnerabilities, 

lacking sufficient security protection measures. 

Secondly, the decision-making process of intelligent 

algorithms is often not transparent enough, which makes 

it difficult for users to understand and evaluate their 

behavior and decision-making basis in workflow 

scheduling. This may lead to users' concerns about 

network security and privacy protection. Therefore, a 

hybrid cloud workflow scheduling algorithm is proposed 

to ensure the network security in hybrid cloud 

environments. The introduced SMA provides new ideas 

to solve these problems. As a swarm intelligent 

optimization algorithm based on the behavior of natural 

myxobacteria, SMA has few parameters, strong 

optimization ability, and flexible fitness adjustment. In 

hybrid cloud workflow scheduling, SMA can effectively 

explore and utilize resources in complex and changing 

network environments by simulating the foraging 

behavior of myxobacteria. In addition, SMA's multiple 

exploration mechanisms give it strong global 

optimization capabilities, which help improve the 

system's ability to identify and respond to potential 

threats in network security hybrid cloud workflow 

scheduling, while maintaining high scheduling efficiency 

and resource utilization. Therefore, applying the SMA 

algorithm to network security hybrid cloud workflow 

scheduling is expected to make up for the shortcomings 

of existing intelligent algorithms to some extent and 

promote the development of this field. 

3 Network security hybrid cloud 

workflow scheduling based on 

optimized SMA 

3.1 Construction of optimized SMA based 

on levy flight 

Workflow Scheduling Problem is to allocate appropriate 

execution sequences and resources for each task in a 

specific workflow model to minimize the workflow 
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completion time or maximize the workflow throughput. 

How to scientifically and reasonably allocate resources 

for different types and quantities of tasks to achieve the 

best performance indicators has become the focus of 

workflow scheduling research. This technology has the 

potential to be applied in network security. The flowchart 

of a traditional SMA is shown in Figure 1. The SMA is a 

biomimetic algorithm that simulates the behavior of 

slime mould populations when searching for food as an 

optimization algorithm. This algorithm adjusts the weight 

based on the positive and negative feedback generated by 

slime moulds during the food search process, and 

calculates the propagation wave by simulating a 

biological oscillator to obtain the optimal result [15]. Due 

to its unique oscillation mode, the SMA has been widely 

used in engineering and other fields, and can achieve 

better optimization results than similar algorithms [16]. 

However, like other optimization algorithms, the SMA 

algorithm still has local optima. In the SMA, due to 

individuals only considering the current state and moving 

locally during the local search phase, it is possible for 

individuals to fall into local optima and cannot jump out 

[17]. To solve this problem, corresponding optimization 

methods are taken to make the algorithm have better 

convergence and robustness. 
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Figure 1: Flow chart of SMA. 

To further optimize SMA and effectively reduce its 

probability of falling into local optimization, an 

optimized SMA is proposed. Based on traditional SMA, 

the algorithm adds a Levy flight model. This is a random 

walk particle model based on Levy stable distribution, 

which can improve the convergence ability of the 

optimization algorithm. Its principle is to increase the 

algorithm's ability to cross over local optima by 

introducing random walks to jump out of local optima 

and increase the convergence to global optima. The 

distribution of this model follows a power-law formula, 

as shown in Formula (1) [18]. 
1

( ~)f x x
− −

                            (1) 

In Formula (1), ( )f x  is the Levy stable distribution. 

  represents a random number within (0,2]. Different 

from other common distributions, Levy stable 

distribution has a relatively heavy tail, showing a long 

tail phenomenon. This means that it can describe data 

sets with outliers and extreme events. Formula (2) is the 

calculation process of random numbers. 

1/
( ) ~

u
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                            (2) 

In Formula (2), u  and v  are parameters that 

conform to the standard Chint distribution.   is obtained 

from   and the standard gamma function. Assuming 

that the standard gamma function is G , Formula (3) is 

the calculation process. 
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Figure 2 is the iteration trajectory of the Levy flight 

model. In Figure 2, the figure shows the motion of one 

iteration in 250 iterations. The trajectory of each 

operation shows significant differences. Based on this 

feature, the Levy flight model can theoretically help 

swarm intelligence optimization algorithms further avoid 

the local optima. 
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Figure 2: Iterative trajectory of levy flight. 
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When SMA seeks the best path, it first needs to use a 

contraction formula to simulate the scenario where slime 

moulds approach food. It is assumed that ( 1)x t +  is the 

location of the slime mould population in the ( 1)t +  

generation, 
bx  is the single point location with the 

highest odor concentration currently. 
Ax  and 

Bx  are 

randomly selected slime mould locations, and W  

represents the slime mould weight. Formula (4) is a 

contraction process. 

 

( ( ) ( )),
( 1)

( ) ,

b A Bx vb Wx t x t r p
x t

vc x t r p

 + − 
+ = 

• 
       (4) 

 

vb  and vc  in Formula (4) are parameters, where the 

range of vb  values is vc  linearly reduced from 1 to 0. r  

is a judgment condition, while p  is a classification 

criterion. Formula (5) is the calculation of p . 

 

tanh ( )p S i DF= −                    (5) 

 

In Formula (5), ( )S i  is the fitness of slime mould at 

the current position. DF  represents the best fitness 

value given by the maximum number of iterations. The 

tanh is obtained from 
1( )

x x

x x

e e

e e

−
−

−

+

−
. Formula (6) is the 

value of vb . 

 

[ , ]vb a a= −                              (6) 

 

In Formula (6), a  is a number obtained based on the 

maximum number of iterations set by the SMA, as 

shown in Formula (7). 

 

arctan ( ( ) 1)
max

t
a h

t
= − +                (7) 

 

In Formula (7), maxt  is the maximum number of 

iterations of the algorithm. t  is the current number of 

iterations. In addition, it is necessary to define the slime 

mould weight in the slime mould shrinkage formula. 

Formula (8) is the mathematical definition. 

 

( ( ))

( )
1 log(1 ) ,

( )
1 log(1 ) ,

w smellindex i

BF s i
r specificcondition

BF wF

BF s i
r othercondition

BF wF

=

−
+ + −


− − +

 −

     (8) 

 

In Formula (8), BF  represents the optimal fitness of 

the iteration up to now, while wF  represents the worst 

fitness at this time. specificcondition  is the formula 

condition, representing the population with the slime 

mould fitness in the first half of the current position. 

othercondition  represents the population whose fitness 

is not in the top half. The base of the log is 10. Under the 

joint action of the above factors, SMA can form a search 

vector from any angle, making it easier for the algorithm 

to find the optimal solution. After detecting food, slime 

moulds will try to go to places with higher food 

concentration, that is, higher weight. According to this 

feature, Formula (9) is a mathematical expression for the 

location update of slime moulds. 

 

( ) ( ( ) ( )) ,

( ) ,

b A Bx t vb wx t x t r p
x

vcx t r p

+ − 
= 


          (9) 

 

After constructing the contraction mode of SMA, it 

can apply the Levy flight model to SMA to improve its 

convergence performance. During the search process, 

Levy flight can maximize the resource search efficiency, 

thereby increasing the efficiency of the algorithm. The 

Levy flight model is used to replace the traditional 

uniform distribution, so the location update rules of the 

SMA are changed in Formula (10). 

 

( 1) ( ) ( ( ) ( ))b A Bx t x t vb wx t x t Levy+ = + −   (10) 

 

In Formula (10),   is a parameter whose value is 

fixed to 0.01.   is hadamard accumulation. In the 

optimized position update formula, Levy flight 

determines its random compensation. Under the new 

location update rule, Formula (11) is the new location 

update formula. 

 

( ) ( ( ) ( )) ,

( ) ,

b A Bx t vb wx t x t Levy r p
x

vcx t r p

+ −   
= 


   (11) 

 

The SMA is a swarm intelligence optimization 

algorithm. To apply it to network security tasks in a 

hybrid cloud environment, certain optimizations for 

network security projects need to be considered. In the 

field of network security, commonly used methods in 

both public and private cloud environments include 

random forest and SVM. In this study, SVM is chosen as 

the network security monitoring module. SVM is a 

widely used machine learning algorithm in network 

security. It maps data to a high-dimensional space and 

constructs an optimal hyper plane for binary or multi-

class classification tasks. There are several reasons for 

selecting SVM over other methods in this study. Firstly, 

SVM has better generalization performance compared 

with algorithms such as random forest, enabling it to 

output better results in cases of over fitting. Secondly, 

SVM is less affected by data dimensionality and can 

handle both high-dimensional and low-dimensional data, 

making it better for detecting intrusion data. In this study, 

a traditional SVM model is introduced and improved to 

meet the research objectives. 

To ensure that SVM can effectively handle data with 

different dimensions, an appropriate kernel function 
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needs to be defined. Polynomial and Gaussian kernels are 

excellent choices for handling nonlinear and normalized 

data. However, in the field of network security, the 

security model needs to constantly check for linear data. 

Therefore, a linear kernel is more suitable. Thus, a linear 

kernel is provided, as shown in Formula (12). 

 

1 2 1 2( , ) *j x x o x x= +                      (12) 

In Formula (12), o  is a designed constant. 
1x  and 

2x  are variables. After setting the SVM kernel function, 

its penalty parameter is used as an individual input into 

the SMA algorithm, and iterative optimization is carried 

out to obtain the optimal parameters. Taking into account 

the entire algorithm process, the proposed SMA 

flowchart is shown in Figure 3. 
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Figure 3: Flow chart of SMA combined with levy flight. 

In Figure 3, first, the population size, initial position, 

and maximum iteration value of the slime mould are 

initialized. Each individual parameter, fitness, and 

algorithm weight are calculated and iterated. In the 

running process of the algorithm, two random slime 

mould positions are generated first. Then, the iterative 

action is completed by continuously calculating the 

fitness value and arranging them according to the size. 

Finally, the algorithm updates the best location and the 

best fitness through the weight value. The elements that 

determine whether an algorithm iterates to achieve the 

optimal result include size, dimension, and number of 

iterations. When the iteration result meets the conditions, 

the algorithm outputs the final result. The Levy algorithm 

is only used to update the location formula in SMA, so it 

does not affect the complexity of the algorithm. 

The Levy distribution is introduced into the SMA 

algorithm to generate random numbers. Then, the 

position update formula is redesigned accordingly, which 

mainly affects the exploration behavior and search 

efficiency of the algorithm, rather than directly changing 

its temporal and spatial complexity. The property of the 

Levy distribution lies in combining large pace jumps and 

fine search with small steps, which helps the algorithm to 

explore the potential solutions more efficiently in the 

search space. The position update formula adjustment 

only uses these randomly generated Levy distribution 

values to guide the search direction, without adding 

additional storage requirements or calculation steps. 

Therefore, the space complexity of the algorithm is not 

improved. Moreover, although the change of exploration 

behavior may affect the number of iterations required for 

the algorithm to reach the convergence state, it belongs 

to the algorithm performance adjustment, rather than the 

essential change of time complexity. Therefore, this 

improved method will not affect the complexity of the 

SMA algorithm. 

Figure 4 displays a detailed pseudocode for the 

interaction between the SMA optimization and Levy 

flight. 
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Improved SAM algorithm

Initialize:positions   of   slime   mould   X;(i=1,2,….,n);

Counter    t=0

 Calculate  the  W  by  Eq.(3.5);

each individual

         update   p,vb,vc;

bestFitness     X;

Initialize:parameters        popsize,Max_iteraition;

t≤Max_iteraition     W hile   do

  Calculate the fitness of all slime mould;

update bestFitness  X

    update positions by Eq.(3.12);

For  

End While

Retur n 

  End For

 t=t+1;

 

Figure 4: An improved pseudocode of the SMA algorithm. 

In the network security scenario, compared with its 

classifier, SVM has higher adaptability, which can be 

well handled by both high-dimensional data and low-

dimensional data. It is a very suitable machine learning 

method to detect intrusion data with small samples, 

nonlinear, and high latitude characteristics. However, in 

the invasion detection, how to select the parameters of 

SVM to achieve better results still needs to be solved. 

When SVM does not have effective selection parameters, 

the intrusion detection accuracy will be greatly affected, 

thus affecting the detection results and providing wrong 

information. 

Faced with parameter selection of SVM in invasion 

detection, the penalty parameters and radial basis kernel 

function parameters of VM are taken as individuals of 

myxobacteria, and the invasion detection rate is used as 

the objective function to obtain the optimal SVM 

parameters through the mutual cooperation between 

myxobacteria. The stepwise algorithm is designed as 

follows: 

Step1: Set the parameters of the model algorithm, the 

size of myxobacteria species, the maximum number of 

iterations, and the initial position of myxobacteria; 

Step2: Produce a random set of initial myxobacteria. 

Each slime mould site includes penalty parameters and 

radial basis kernel function parameters; 

Step3: Calculate the fitness value of all individuals, 

sort it according to the size of the value, and record it. 

The individual extreme value and the group extreme 

value are determined according to its value; 

Step4: Calculate the weight through the 

myxobacteria weight formula; 

Step5: Update the optimal location and optimal 

fitness of myxobacteria to produce new myxobacteria; 

Step6: Update the individual location and other 

parameters according to the new location update rule 

formula; 

Step7: If the number of iterations reaches the 

threshold set by Step1, the value obtained by the iteration 

is the optimal position of myxobacteria. If the iteration 

conditions are not met, the process returns to Step3; 

Step8: Output the optimal individual fitness value 

and the optimal location of myxobacteria; 

Step9: After the end of the cycle, the optimal 

parameter penalty parameters and radial basis kernel 

function parameters of SVM are extracted. Finally, the 

data is detected. 

3.2 Network security workflow and coding 

scheme in a hybrid cloud environment 

Workflow scheduling and network security are closely 

related. Workflow scheduling refers to a series of 

scheduling strategies developed in a distributed 

computing environment to optimize task execution 

processes, aiming to improve task execution efficiency 

and system resource utilization. Network security refers 

to the activity of protecting computer networks from 

illegal intrusion, espionage, and sabotage. Network 

security tasks can also be the goal of workflow 

scheduling. Efficient scheduling method can improve the 

efficiency of network security model to identify and 

eliminate threats, so as to improve the security of the 

system. Workflow models in a hybrid cloud environment 

mainly rely on virtual machine models and task models, 

and the workflow model is also based on these two 

models [19]. The main reason for adopting the virtual 

machine model is that in network security scheduling 

tasks involving workflow, service providers typically use 

virtual machines to represent computing resources, and 

each virtual machine has uniqueness. Virtual machines 

are divided into two categories in coding, including 

public cloud virtual machines and private cloud virtual 

machines [20-22]. Task model is used to represent task 
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scheduling, which includes task number, number of 

operation instructions, space size for storing tasks, and 

depth of tasks in workflow in detail [23-24]. Generally 

speaking, in Figure 5, the depth of task 1 is 1, and the 

task 6 is 3. The depth of other tasks is 2. 

Depth

1

2 3 4 5

6

One

Two

Three
 

Figure 5: Depth of the task model. 

Workflow scheduling is actually a combinatorial 

optimization problem, and swarm intelligence 

optimization algorithms generally use continuous 

numerical optimization. Due to this optimization, the 

iteration of swarm intelligence algorithms only calculates 

real numbers, so a reasonable coding and conversion 

scheme must be adopted. A binary matrix is used to 

represent the decoding scheme here. Binary encoding has 

a shorter length, which can improve the search efficiency 

while reducing storage space. This makes the logical 

computations of the algorithm more convenient and 

reduces implementation difficulty. The binary matrix is 

represented by Formula (13). 
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In Formula (12), Y  is a binary matrix, m  is a virtual 

machine number, and n  means tasks number. When 

, 1a bY = , task a  is assigned to virtual machine b . In 

addition, the situation indicates that task a  is not 

assigned to the virtual machine b . In addition, due to the 

exclusive nature of each task after decomposition, the 

solution Y  also needs to satisfy Formula (14). 
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=                              (14) 

 

Task exclusivity refers to the nature of a task that 

can only run on one virtual machine. After meeting this 

constraint, the preliminary work of coding conversion is 

completed. Because the workflow scheduling model in 

the hybrid cloud environment mainly deals with discrete 

optimization problems, it is also necessary to discretize 

the matrix solution. S-type function is selected for 

discretization, which can limit the function value 

obtained by SMA to the identifiable interval. In addition, 

the workflow scheduling model needs to use a 

transformation function to confirm the value of the 

scheduling solution matrix. Formula (15) is a conversion 

function. 

 

1 , ( ) 0.5
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s y
V y
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                   (15) 

 

In Formula (15), ( )V y  represents the conversion 

function, and ( )s y  represents the value of an S-type 

function. So far, the coding scheme has integrated 

conventional workflow scheduling issues and SMA. 

However, it should be noted that a large portion of 

workflow task scheduling for network security occurs in 

a hybrid cloud environment. Therefore, coding is also 

required for this environment. According to a hybrid 

cloud environment, a task can only be executed on at 

most one virtual machine. It can be considered that the 

number of tasks participating in scheduling is equal to 

the number of virtual machines. At this time, public 

cloud resources are infinite. Under these conditions, the 

matrix representing the task scheduling scheme must be a 

0-1 binary matrix. When the task amount is n , this 

matrix is a *n n  matrix. On this basis, a three-

chromosome encoding method is proposed, as shown in 

Formula (16). 

( _ , _ , _ )Scheduler task order vm order vm type= (16) 

In Formula (16), Scheduler  represents a scheduling 

scheme. _task order  is the scheduling order of the task, 

and each value in this array represents the number of 

different tasks. _vm order  represents the mapping 

relationship between each task and its corresponding 

virtual machine, and the values in this array represent the 

number of the virtual machine. _vm type  represents the 

model of each virtual machine. The encoding method of 

binary matrices can bring high temporal and spatial 

complexity. Using this one-to-one three-chromosome 

encoding method can effectively reduce complexity. 

Figure 6 shows the schematic diagram and task 

scheduling scheme of trisomy coding. Figure 6 (a) is an 

individual solution of the coding scheme in a hybrid 

cloud environment. Figure 6 (b) is a schematic diagram 

of task scheduling. Each task corresponds to a virtual 

machine one by one, and different virtual machines in a 

workflow may belong to the same type. 

1 3 2 4 0

0 0 1 2 1

0 1 2 3 4task_order

vm_order

vm_type

(a) Individual solution

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Tasks

virtual machine

virtual 

machine type

(b) Scheduling scheme  

Figure 6: Coding scheme and workflow task scheduling. 
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In Figure 6, because the workflow task scheduling 

scheme is expressed by a matrix, it inevitably faces 

excessive solution space problems. Therefore, after 

coding the workflow scheduling model, the SMA is 

embedded in workflow scheduling. First, an initial 

population that conforms to the workflow execution 

sequence is initialized. Then, their fitness values are 

calculated and the best value is determined. After 

continuous contraction and iteration, the global optimal 

mutation and optimal individual are found. The added 

SMA can effectively solve the excessive matrix solution 

space in workflow scheduling models through swarm 

intelligence optimization, making scheduling work more 

efficient. Currently, network security is a key issue faced 

by many fields and industries, and they adopt different 

workflow models based on their respective work content 

and processes. For network security-oriented hybrid 

cloud workflow scheduling models, the ability to run 

normally under multiple hybrid cloud workflow models 

is also required. These four most important workflow 

models are used to adapt the proposed workflow 

scheduling model, as shown in Figure 7. 

 

(a)Sipht (b) Inspiral  

(c) Montage (d) Epigenomics  

Figure 7: Different workflow structures. 

In Figure 7, they are Sipht inphysics, Inspiral and 

Montage in astronomy, and Epigenomic in biology. 

4 Testing of network security hybrid 

cloud workflow scheduling 

algorithm for SMA 
The proposed algorithm has two main improvements, 

namely, improvements for SMA and improvements in 

coding for network security workflow scheduling in a 

hybrid cloud environment. Therefore, this test mainly 

tests the performance of the improved SMA algorithm 

and the performance of the hybrid cloud workflow 

scheduling model, It mainly includes: (1) using four 

benchmark test functions to test the effectiveness of the 

improved SMA algorithm; (2) Optimizing dataset 

scheduling for four workflows: Sipht model, Inspiral 

model, Montage model and Epigenomic model, and 

testing the completion time and completion cost of the 

improved SMA algorithm in different datasets and in 

different numbers of tasks. When the completion time 

and cost value are smaller, the algorithm performance is 

better; (3) Testing the convergence curves of the 

improved SMA algorithm on four workflow datasets: 

Sipht model, Inspiral model, Montage model, and 

Epigenomic model, and analyzing the convergence of the 

improved SMA algorithm; (4) Explaining the correlation 

between this study and network security scenarios, and 

evaluating the actual protection capability of the research 

method against network attacks. All experiments are 

implemented in MATLAB R2018b with OS Windows 10 

and CPU of 64-bit Intel (R) Core (TM) i5-8300H and 

32GB memory. In the proposed improved SMA and 

original SMA, the parameters are set as follows. The 

population is 50, the maximum number of iterations is 

1,000, and the initial fitness weight of each individual is 

1. To avoid the influence of the initial position, the initial 

position of SMA and improved SMA is fixed in the 

experiment. The experiment of each function is repeated 

30 times. Because network security workflow scheduling 

in a hybrid cloud environment mostly relies on virtual 

machines, experiments need to first configure virtual 

machines. Table 2 shows the configuration of virtual 

machines. This test includes several representative virtual 

machine types. The bandwidth cost of each virtual 

machine is 0.02 Gbps, while the storage cost is 0.001per 

second. In actual testing, different workflow scheduling 

models are applied to each virtual machine and their 

average performance is calculated. 

Table 2: Virtual machine configuration. 

Type Vcpu amount Process capability (MIPS) Memory (GB) Cost ($/hour) 

C6g.medium 1 4,400 2 0.034 

C6g.Large 4 17,600 8 0.136 

a1. large 2 8,800 4 0.051 

c5d.xlarge 16 70,400 32 0.768 

t3a.xlarge 4 17,600 16 0.1504 

 

Firstly, to test the differences between the proposed 

improved SMA and traditional SMA, four benchmark 

testing functions are used to compare their performance. 

Two of the functions are unimodal and two are 

multimodal. Figure 8 shows the test results of unimodal 

function. Figure 8 (a) shows the test results under 

unimodal function f1, and Figure 8 (b) shows the test 

results under unimodal function f2. The average fitness, 

that is, standard deviation convergence rate, is used to 

evaluate algorithm performance under different 
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functions. For objective evaluation, in addition to the 

proposed algorithm, traditional SMA, PSO, and 

Grasshopper Optimization Algorithm (GOA) are also 

been used in testing as comparators. GOA simulates 

behaviors such as foraging and clustering, combining 

random search and local search strategies to continuously 

search for the global optimal solution. PSO is the most 

basic swarm intelligence optimization algorithm that 

utilizes velocity and position adjustment methods 

between particles to find the global optimal solution. 

From an image perspective, the standard deviation 

convergence of the proposed algorithm is the fastest 

under different functions, and there is a significant gap 

between this algorithm and others. Under the unimodal 

function, the standard deviation of GOA and PSO 

decreases very slowly, and the variance after 

convergence is also much higher than that of SMA. 

Under function f1, both the proposed algorithm and 

traditional SMA have a minimum standard deviation of 

less than 10-300. However, the proposed algorithm has 

already met this standard at the 400th iteration, while 

traditional SMA is later than the 400th iteration. Under 

function f2, the standard deviation of all algorithms 

decreases more slowly. When the number of iterations 

reaches 500, the standard deviation of the proposed 

algorithm is lower than that of the other algorithms 

(P<0.05). 
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Figure 8: Test results under unimodal function. 

The above algorithm performance in multimodal 

functions has also been tested in Figure 9. Figure 9 (a) 

shows the performance of each algorithm under the 

multimodal function mf1, and Figure 9 (b) shows the 

performance of each algorithm under the multimodal 

function mf2. Under multimodal functions, the standard 

deviation reduction ability of all functions is stronger 

than that under unimodal functions. However, from the 

image, the decline speed and amplitude of the traditional 

SMA and the proposed algorithm are much higher 

(P<0.05). In addition, the performance of traditional 

SMA and the proposed algorithm in multimodal 

functions is closer to that in unimodal functions. This is 

because SMA is easier to handle multimodal functions, 

resulting in faster optimal solutions and higher difficulty 

in optimization, which may be difficult for Levy flight to 

further optimize. 
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Figure 9: Test results under multimodal function. 

Because the target of network security hybrid cloud 

task scheduling is network attacks, its operation and 

response speed are extremely important. Therefore, this 

test records the running time of each algorithm used for 

comparison under the same environment. Figure 10 

shows the results. Figure 10 (a), Figure 10 (b), and 

Figure 10 (c) show running speed when the number of 

tasks is 50, 100, and 1,000. Table 3 shows the detailed 

numerical comparison case for each workflow model. 
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Table 3: The detailed numerical comparison of each workflow model. 

Each workflow model PSO GOA SMA Proposed algorithm 

Sipht 

50 tasks 0.043 0.04 0.04 0.041 

100 tasks 0.042 0.049 0.043 0.042 

1,000 tasks 1.81 0.93 0.92 0.89 

Inspiral 

50 tasks 0.062 0.039 0.041 0.042 

100 tasks 0.131 0.073 0.072 0.021 

1,000 tasks 4.58 2.23 2.22 1.53 

Montage 

50 tasks 0.031 0.03 0.03 0.03 

100 tasks 0.028 0.027 0.031 0.028 

1,000 tasks 0.83 0.79 0.84 0.78 

Epigenomic 

50 tasks 0.323 0.284 0.279 0.278 

100 tasks 1.52 1.07 0.98 0.852 

1,000 tasks 51.2 21 182 13.7 

 

To enhance the comprehensiveness of the testing, 

different hybrid cloud workflow models are added as the 

second independent variable in the testing of this link. By 

comparison, PSO runs at the slowest speed in most cases, 

and its differences from other algorithms increase as the 

number of tasks increases in the Epigenomic model. In 

these three models except Epigenomic, the gap among 

these algorithms is relatively insignificant. In the 

Epigenomic model, the advantages of the proposed 

algorithm become more apparent as the number of tasks 

increases. When the number of tasks is 1,000, the 

running time of the proposed algorithm is 13.7 hours. 

Traditional SMA is second only to the proposed 

algorithm and takes 18.2 hours. The operation time of 

PSO under this condition exceeds 50 hours. The running 

time difference of the improved algorithm is significantly 

different, (P<0.05). 
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Figure 10: Algorithm speed in different environments. 
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In the previous testing steps, the convergence of the 

proposed improved SMA is analyzed. However, to 

confirm the performance of the proposed algorithm as a 

whole in network security hybrid cloud workflow 

scheduling, it needs a conduct convergence testing in 

task scheduling scenarios. Figure 11 shows the test 

results. Figure 11 (a) shows the convergence under 

Epigenomics workflow, and Figure 11 (b) shows the 

convergence under Montage. Under Epigenomics 

workflow, the fitness value of PSO converges to about 

30, which is much higher than other three algorithms. 

The performances of GOA, SMA, and the proposed 

algorithm are similar under the Epigenomics workflow 

model, but the proposed algorithm has the best fitness 

after convergence, as low as 4.1. This value is not only 

the best among the centralized algorithms used in the 

experiment, but also sufficient to complete scheduling 

tasks in actual work according to the actual data of the 

corresponding workflow model. Under the Montage 

workflow, the convergence differences between these 

four algorithms are significant. The proposed algorithm 

is the best, and its fitness is as low as 0.198 after 

convergence (P<0.05). In network security work, 

algorithms with faster convergence speed help to detect 

and determine factors that affect security more quickly. 
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Figure 11: Convergence of the algorithm in task 

scheduling under different model. 

After testing the proposed optimization strategy of 

the SMA, the network security performance of the 

proposed workflow scheduling model in a hybrid cloud 

environment is evaluated. The proposed algorithm 

addresses the task scheduling in the field of network 

security in a hybrid cloud. Therefore, the actual defense 

capability against network attacks needs to be assessed as 

a performance metric. The KDD Cup 99 dataset is used 

as a data source for this experiment. The intrusion 

detection dataset consists of three parts: all dataset, 10% 

dataset, and dataset with intrusion mark. 10% of the 

dataset contains the training dataset (with attack markers) 

and the test dataset (without attack markers), with a total 

of about 500,000 records. The test dataset contains more 

intrusion behaviors (38), the trained dataset is less (23), 

and the main intrusion categories are Probe, Dos and 

R2L. Training samples and test samples are selected 

from 10% dataset and dataset containing intrusion 

records. 8,000 pieces of normal behavior and 8,000 data 

with intrusion behavior are extracted from 10% dataset 

as training set, and 4,000 pieces of normal behavior and 

4,000 intrusion behavior data are extracted from the latter 

dataset as test set. After iterative training using KDD 

network attack dataset, each algorithm is used in network 

attack simulation testing in Table 4. Table 2 shows the 

detection rate of several algorithms under four common 

attack methods. These attack methods mainly include 

Normal, Satan, Smurf, and Guess password. Under 

attacks other than Guess password, the detection rates of 

the proposed algorithms all exceed 91%, while the 

detection efficiency of other algorithms typically ranges 

from 77% to 91%. The detection of Guess password 

attacks is difficult, and traditional PSO and GOA cannot 

effectively monitor them. The traditional SMA has the 

detection ability for Guess Pass, with a detection rate of 

8.93. The proposed algorithm further enhances the 

detection rate of SMA against this attack method, 

reaching 11.54%, and a P-value of less than 0.05, with 

statistically significant differences. The detection rate of 

the proposed algorithm is significantly lower than that of 

other Guess password attack types. This may be due to 

the fact that the Guess password attack features do not 

fully match the characteristics of the detection model 

used. To improve the detection rate of such attacks, the 

behavior patterns and characteristics of Guess password 

attacks are deeply analyzed, and more targeted features 

are extracted for model training to improve the model's 

generalization ability and detection performance. 

Identifying the types of network attacks correctly is a 

prerequisite for ensuring network security. The proposed 

method can effectively improve the security of cloud 

computing applications and enhance the potential of 

network security task scheduling. This improves the 

efficiency of data processing in network intrusion 

detection and significantly improves the accuracy of 

network attacks. This further improves the ability of the 

improved method to correctly identify the types of 

network attacks in network security monitoring, and 

improves its application effectiveness in network 

security. 
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Table 4: The response of algorithms to network attacks. 

Attack type 
Detection rate (%) 

PSO GOA SMA Proposed algorithm TC3PoP 

Normal 78.99 83.72 88.57 91.93 90.08 

satan 80.07 87.31 91.55 96.57 92.17 

Smurf 77.69 81.14 87.93 90.69 89.00 

Guess passward 0 0 8.93 11.54 9.14 

 

Finally, to verify the real-world applicability of the 

network security hybrid cloud workflow scheduling 

strategy based on the improved SMA algorithm, a 

specific experimental environment is constructed. The 

environment combines private clouds, public clouds, and 

local data centers, simulating complex hybrid cloud 

scenarios. Inside the hybrid cloud, an advanced network 

security protection system, including firewalls, intrusion 

detection systems, and data encryption measures, is 

configured to ensure the security of the experimental 

environment. Meanwhile, a workflow scheduling system 

based on the improved SMA algorithm is developed and 

seamlessly integrated into a hybrid cloud environment. 

The research method is applied to the benchmark test 

cases in the hybrid cloud environment to record the task 

completion time and resource utilization during the task 

execution, monitor the incidence of network security 

events in the hybrid cloud environment, and evaluate the 

impact of the scheduling method on network security. 

The results before and after application are shown in 

Table 5. 

Table 5: Results obtained before and after the application of the proposed method. 

Evaluation indicators Task completion time (s) Resource utilization rate (%) Security event rate (%) 

Before the 
application 

1 25.3 76.2 30.2 

2 26.7 69.7 28,7 

3 24.8 65.4 25,4 

Average 25.6 70.4 30.2 

Post application  

1 11.1 86.9 2.8 

2 9.8 90.4 4.9 

3 8.3 92.1 3.2 

Average 9.7 89.8 3.6 

 

From Table 5, after applying the proposed method, 

the task completion time, resource utilization, and 

network security event rate in task execution have all 

been significantly improved in the hybrid cloud 

environment. After applying the research method, the 

average task completion time reduces by 61.9%, the 

resource utilization rate increases by 27.5%, and the 

incidence of network security events decreases by 87.9%. 

The results show that the research method can effectively 

improve the scheduling efficiency of network security 

hybrid cloud workflow, reduce the occurrence 

probability of security events, and have strong 

applicability in the real world. 

5 Discussion 
According to the test results of the unimodal function, 

the proposed algorithm converges the fastest under 

different functions, and has a significant gap compared 

with other algorithms (P<0.05). Under the unimodal 

function, the convergence rate and variance of GOA and 

PSO are much lower than the proposed algorithm and 

traditional SMA (P <0.05). With the specific function f1, 

the standard deviation of the proposed algorithm at the 

400th iteration is already below 10-300, which is earlier 

than the traditional SMA. Under the function f2, the 

standard variance of the proposed algorithm remains 

lower after 500 iterations (P<0.05). The proposed 

algorithm shows the same features when tests in the 

multimodal function environment, indicating that it 

outperforms some mainstream swarm optimization 

algorithms. This conclusion is consistent with the results 

of obtained by Huiling Chen et al [25] in the SMA. This 

is because SMA can handle different scenarios due to its 

diverse convergence mechanisms. In this experiment, 

SMA outperforms the other group optimization 

algorithms. However, the convergence ability of the 

proposed algorithm is better than the conventional SMA 

algorithm. Therefore, its optimization path is effective. 

Under 1,000 tasks, the proposed algorithm takes the 

shortest running time of 13.7 hours, which is 

significantly better than the 18.2 hours of the traditional 

SMA and the 50 hours of the PSO, and the running time 

difference between the improved SMA algorithm and the 

comparison algorithm is statistically significant (P<0.05). 

This is the same conclusion that Ophir Nave and [26] 

apply SMA to workflow scheduling tasks. This is 

because in the proposed algorithm, Levy flight can 

maximize resource search efficiency, enhance the 

exploration ability of search individuals in the global 

space, and thus solve local optimal problems. 

In the field of SMA algorithm optimization, some 

previous studies have used Levy flight to optimize SMA. 

Another team presented an SMA debate based on 
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oppositional learning. It utilizes adversarial learning to 

improve convergence speed and employs Levy flight to 

optimize the search capability for SMA [27]. The results 

of this study show that after adopting the method, the 

task completion time of hybrid cloud environment 

shortens by 61.9%, the resource utilization rate increases 

by 27.5%, and the incidence of network security events 

reduces by 87.9%. This is similar to the conclusion 

reached by Ling Zheng et al [28] in their study on SMA. 

This is because the improved SMA algorithm can 

effectively solve the large solution space problem of 

matrix optimization in the workflow scheduling model 

through swarm intelligence optimization, making the 

scheduling process more efficient. This improves the 

efficiency of the algorithm without compromising its 

complexity. Furthermore, based on the SVM, the 

proposed algorithm is specifically tailored to network 

security workflow scheduling in a hybrid cloud 

environment. The results show that under most attacks, 

the detection rate of the proposed algorithm exceeds 

91%, which is better than other algorithms. For Guess 

passward attack, the detection effect of the traditional 

algorithm is not good, but the proposed algorithm 

significantly improves the detection rate to 11.54% 

(P<0.05), which has a statistical difference. The Levy 

flight model further optimizes the SMA and applies it to 

hybrid cloud workflow scheduling encoding. This study 

solves the large solution space in the matrix, improves 

data security in the hybrid cloud environment, and fills 

the gap in the field of network security. 

6 Conclusions 
A network security monitoring algorithm based on 

hybrid cloud workflow scheduling and SMA is proposed 

to address the data being vulnerable to network attacks in 

the current hybrid cloud environment. This algorithm 

optimizes traditional SMA and applies it to workflow 

scheduling for network security in a hybrid cloud 

environment. The improved SMA algorithm proposed in 

this study effectively improves the probability of 

jumping out of the local optimum in the search process, 

and can find the optimal solution faster, and the 

convergence rate is faster than other comparison 

algorithms. Moreover, the WorkflowSim simulation 

platform is extended with four different datasets, and the 

effectiveness and feasibility of the proposed algorithm 

are verified from the convergence, cost, and fitness 

value. These help to improve the system's ability to 

identify and respond to potential threats in the network 

security hybrid cloud workflow scheduling, while 

maintaining high scheduling efficiency and resource 

utilization. 

Although this study demonstrates the potential for 

optimization, there are still some limitations that need to 

be addressed. First of all, the study improves the Levy 

flight only for the uniform distribution in the formula, 

without considering other methods to improve the 

probability of escaping local optima. Next, 

Improvements can be made from other aspects to expand 

the application. Then, in intrusion detection, classifier 

parameter optimization always exists. How to find the 

optimal parameter to improve the detection rate and false 

alarm rate of intrusion detection needs to be further 

explored. Finally, in the scheduling model, the 

scheduling mechanism is simplified. Therefore, there 

may be deviations from the expected results when 

applying the model to practical processes. In future work, 

more research should be conducted on the scheduling 

mechanism of cloud computing platforms to form a 

scheduling model that is more in line with reality. 
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