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Alzheimer's Disease (AD) is a neurological disorder marked by cognitive deterioration and neurological 

impairment that affects cognition, memory, and behavioral patterns. Alzheimer's is an incurable disease 

that predominantly impacts individuals over the age of 40. A patient's MRI (Magnetic Resonance 

Imaging) scan and cognitive assessment are manually analyzed to diagnose Alzheimer's disease. 

Recently, Artificial Intelligence (AI), particularly through Deep Learning, has pioneered innovative 

techniques for automated medical image identification. We devised a deep learning methodology for 

Alzheimer's disease identification utilizing Magnetic Resonance Imaging (MRI) data. The suggested 

method, termed Res+FSBILSTM, employs ResNet50 as a pre-trained model for feature extraction from 

MRIs, thereafter identifying Alzheimer's disease through a Fully-Stack Bidirectional Long-Short Term 

Memory deep learning model. The experimental results demonstrate that the suggested method surpasses 

state-of-the-art techniques across all evaluation metrics, rendering it a viable tool for medical 

professionals in identifying Alzheimer's disease using brain radiological images. Ultimately, we achieved 

results with an accuracy of 99.6%, an F1-score of 97.7%, an area under the curve of 99%, a recall of 

97.3%, and a precision of 99.6%.  

Povzetek:  Predstavljena je izboljšana metodo zgodnjega diagnosticiranja Alzheimerjeve bolezni z 

uporabo prenosa učenja prek ResNet50 in FSBi-LSTM. Sistem uporablja MRI slike za avtomatizirano 

identifikacijo bolezni in omogoča hitro prepoznavanje zgodnjih faz bolezni, kar omogoča učinkovitejše 

klinične diagnoze in obravnavo pacientov. 

1 Introduction 
The predominant kind of dementia necessitating 

extensive medical intervention is Alzheimer's disease 

(AD). For effective patient therapy to begin, an early and 

accurate assessment of the prognosis for AD is necessary 

[1]. The research found that there are 10 million new 

instances of dementia reported per year [2]. According to 

the World Health Organization (WHO), AD has overtaken 

cancer as the leading to death, with the quantity of AD By 

2050, there will be 152 million patients. AD is a chronic 

neurological brain illness that progressively damages 

brain tissue, leading to cognitive  

decline and memory loss, and ultimately hastening the loss 

of ability to carry out daily tasks [3]. A condition known 

as AD is brain-neurological degeneration [4]. It is 

classified as dementia, which is brain atrophy that impairs 

memory and results in loss of cognitive abilities related to 

behavior, social interaction, and reasoning. Protein 

fragments build up in the brain, which is the cause of it [5, 

6, 7]. The human brain develops plaques and tangles 

around the neurons, causing aberrant hippocampal and 

lobe shrinkage as well as enlarged ventricles [8]. It is a 

deadly illness that is incurable [9, 10], causing the patient 

to suffer for the rest of their life and their family great 

emotional, physical, and financial hardship. There are no  

 

known causes of AD, and there are no treatments or drugs 

that can effectively cure dementia. A pre-clinical stage of 

AD called mild cognitive impairment (MCI) is a 

transitional condition that occurs between normal aging 

and AD. Early detection of the risk and severity of AD is 

crucial [11,12]. Many researchers worldwide have 

developed a multitude of Machine Learning (ML) [13] 

and Deep Learning (DL) [14] algorithms throughout the 

years for the purpose of AD detection and classification. 

The DL algorithms have been used by numerous 

academics with impressive results still, there's space for 

development. In this set of DL models [15,16], and [17] 

that introduce a hybrid Convolutional Neural Network 

(CNN), a CNN model with slice selection, and a CNN 

model with histogram stretching. A CNN model with skull 

striping was presented by others [18] and in [19]. 

However, because CNN is a black-box, these deep models 

are predominantly biased towards categorization. Several 

researchers have created a variety of techniques and 

applications for automatic neuro-image segmentation in 

the literature on AD [20]. While there is little attention on 

CNN layers to visualize the classification process, these 

applications are useful tools for segmenting neuro-images. 

Each convolution layer's feature map shows the different 

filters that are applied to the image and gives an indication 

of the kinds of filters the model applies to the image to 

mailto:zahsad@basrahaoe.iq
mailto:lakizadeh@qom.ac.ir


150 Informatica 49 (2025) 149–164 ZS. Khallel et al. 

extract features [21]. In sequence analysis, the recurrent 

neural network (RNN) is a potent model. Since RNN uses 

a "state" vector in its hidden units, all historical 

information about the sequence is inherently contained in 

it[22]. Long short-term memory (LSTM), an enhanced 

version of RNN, can handle gradient explosion or gradient 

disappearance issues more successfully than RNN by 

controlling information flow across numerous gates[23]. 

Moreover, contextual information can be present in both 

directions for bidirectional LSTM (Bi-LSTM) [24]. In 

fact, by stacking the LSTM to examine the spatial 

information of feature maps from CNN layers as well, Bi-

LSTM may obtain more information without having to 

select the scanning direction. Therefore, we propose to use 

the fully stacked Bi-LSTM (FSBi-LSTM) instead of the 

traditional Bi-LSTM [25].In this paper, we create an 

innovative deep learning network that employs fully 

stacked bidirectional LSTM (FSBi-LSTM) and CNN 

layers of ReseNet50 [26] to diagnose AD using 

multimodal input. The goal of the proposed model is to 

produce a classification result that is accurate enough to 

identify AD at an earlier stage. The research study's 

primary contributions are: 
 

• Combining traditional image processing techniques 

like thresholding and morphological operations 

with modern deep learning approaches such as U-

Net provides a robust method for brain extraction. 

• By incorporating FSBiLSTM with ResNet50, you 

can leverage the power of ResNet50's strong 

feature extraction capabilities while benefiting 

from FSBiLSTM's ability to generalize from a few 

examples. 

• Improved generalization: ResNet50 is a powerful 

deep neural network architecture known for its 

ability to learn rich representations from images. 

By combining it with FSBiLSTM, which 

specializes in few-shot learning, you can 

potentially improve the generalization performance 

of ResNet50 on new, unseen classes with limited 

training data 

• Using ResNet50 for Spatial Learning: ResNet50 is 

an incredibly potent convolutional neural network 

(CNN) that is highly skilled at extracting detailed 

spatial characteristics from individual MRI slices. 

These characteristics are essential for detecting 

alterations linked to Alzheimer's disease because 

they capture minute details and patterns. 

The rest of the paper is arranged as follows: Section 2 

provides a summary of the relevant studies for the 

suggested model. Next, in Section 3, we provide a 

thorough explanation of our methodology. The 

experiment's results are described in Section 4. The 

dissection is provided in Section 5. Finally, Section 6 

contains a summary of our findings. 

2 Related work 
In recent years, various methods have been suggested 

to enhance the accuracy of image classification. We 

analyze various machine learning (ML) classification 

frameworks employed in neuroimaging, along with 

techniques based on a convolutional neural network. 

Machine learning techniques have been increasingly 

utilized in recent years for the early identification of 

Alzheimer's disease, particularly in multi-class and binary 

classification tasks. Yiming Ding et al. [27] Suggested 

doing a retrospective analysis of 2109 18F-FDG PET 

imaging tests that were gathered prospectively from 1002 

patients. The majority of patients had numerous scans, and 

the dates of the scans ranged from May 2005 to January 

2017. The researchers created and verified a deep learning 

algorithm, especially a convolutional neural network 

using InceptionV3 architecture. The model underwent 

training using 90% of the dataset and was subsequently 

evaluated using the remaining 10%, in addition to an 

independent test set. The model's performance was 

compared to that of radiologic readers. The model's 

performance was assessed by sensitivity, specificity, 

receiver operating characteristic (ROC), saliency map, 

and t-distributed stochastic neighbor embedding. The 

study's authors are C. Suh and colleagues [28]. Developed 

a deep learning technique employing a dataset of T1-

weighted brain MRI scans from consecutive patients 

diagnosed with Alzheimer's disease and moderate 

cognitive impairment. The researchers developed a two-

step system employing a convolutional neural network for 

brain parcellation, subsequently applying three 

classification techniques, including XGBoost, for disease 

prediction. The categorization experiments were 

performed with a 5-fold cross-validation method. The 

diagnostic efficacy of the XGBoost algorithm was 

evaluated against logistic regression and a linear SVM. 

The areas under the curve were calculated to differentiate 

between Alzheimer's disease and moderate cognitive 

impairment, as well as between mild cognitive impairment 

and healthy controls. Hina Nawaz et al. [29] proposed a 

pre-trained AlexNet model for the extraction of deep 

features in the detection of Alzheimer's disease stages. 

Transfer learning uses the initial layers of the pre-trained 

AlexNet model to extract deep features from the CNN. 

SVM, k-nearest Neighbor (KNN), and Random Forest 

(RF) are employed to classify the extracted deep features 

through machine learning techniques. The study is 

authored by Hadeer A. Helaly and colleagues.[30] . This 

investigation focuses on the prompt identification and 

classification of Alzheimer's disease through the 

application of an advanced machine learning method 

referred to as CNNs. The E2AD2C framework is designed 

to identify and categorize various stages of Alzheimer's 

disease at an early phase. Two primary methodologies are 

utilized for medical picture categorization and the 

identification of Alzheimer's disease. The preliminary 

method utilizes fundamental CNN architectures to analyze 

2D and 3D structural brain scans sourced from the ADNI 

dataset. This technique attains classification accuracies of 

93.61% and 95.17% for multi-class Alzheimer's Disease 

stage classifications. The alternative method involves 

employing transfer learning with the VGG19 pre-trained 

model, which has been optimized to achieve 97% 

accuracy in diagnosing multi-class Alzheimer's disease 
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stages. Resampling methods, including oversampling and 

downsampling, are utilized to address the problem of class 

imbalance in a dataset. Data augmentation techniques are 

employed to increase dataset size and alleviate overfitting 

concerns. Fazal Ur Rehman Faisal [31] concentrated on 

devising a deep learning technique for the extraction of 

Alzheimer's disease (AD) biomarkers from structural 

magnetic resonance imaging (sMRI) data. CNNs were 

employed and trained on sMRI brain pictures sourced 

from ADNI datasets to categorize images into Alzheimer's 

disease, mild cognitive impairment (MCI), and 

cognitively normal (CN) groups. Features from several 

layers were integrated to hierarchically convert MRI 

pictures into more concise high-level features, facilitating 

the classification process. The strategy sought to diminish 

the number of parameters to decrease computational 

complexity and improve efficiency. The proposed 

approach was evaluated against leading methodologies for 

AD classification, 

exhibiting enhanced performance for accuracy and 

area under the ROC curve. The convolution operation 

utilized in the proposed method was considered 

appropriate for Alzheimer's disease diagnosis, 

demonstrating its efficacy in appropriately classifying the 

brain picture. Y. F. Khan et al. [32] utilized a Stacked 

Deep Dense Neural Network (SDDNN) model, 

integrating Convolutional Neural Network (CNN) and 

Bidirectional Long Short-Term Memory (Bidirectional 

LSTM). The training utilized the DementiaBank clinical 

transcript dataset under two configurations: randomly 

initialized parameters and GloVe embedding. 

Hyperparameter optimization via GridSearch enhanced 

model performance, attaining 93.31% accuracy with 
GloVe embedding and fine-tuning. 

 Ahsan Bin Tufail et al. [33] utilized transfer and non-

transfer learning-based CNN architectures in both 2D and 

3D domains for binary and multiclass classification tasks. 

Custom 3D CNN architectures were created for binary 

classifications of AD/NC, AD/MCI, and NC/MCI, as well 

as for multiclass classification of AD/NC/MCI. Transfer 

learning utilizing the Xception architecture was employed 

for the classification of MCI and AD, as well as for the 

multiclass categorization of NC, MCI, and AD. A bespoke 

CNN architecture in the 2D domain was employed for the 

categorization of NC and MCI, as well as NC and AD 

classes. Evaluation utilized performance criteria such as 

CEN, RCI, GM, IBA, and MCC. Data augmentation 

methods, such as random zooming in and out, were 

employed to enhance dataset size for better generalization 

of deep learning algorithms. R. Tandon et al. [34] utilize 

deep learning methodologies for the segmentation and 

classification of Alzheimer’s Disease through brain 

imaging data. The suggested approach amalgamates 

segmentation models with classification frameworks to 

enhance diagnostic precision. The system attains 

remarkable performance utilizing datasets such as MRI 

scans, with classification accuracy reported to exceed 

90%.  

The study highlights the significance of precise 

segmentation in improving the diagnostic efficacy of deep 

learning models for Alzheimer's detection [35]. A 

proposed retrospective cohort study involving 532 

participants, employing Positron Emission Tomography 

(PET) and Magnetic Resonance Imaging (MRI) images, 

alongside cognitive evaluations. The authors developed a 

novel computational phenotyping method that utilizes 

Partial Volume Correction (PVC) and subsets of 

neuropsychological assessments in an impartial manner. 

The pipeline employs a Regional Spread Function (RSF) 

technique for PVC and a t-distributed Stochastic Neighbor 

Embedding (t-SNE) manifold. The objective was to 

develop a new method for analyzing variations in 

cognitive scores and PET characteristics to identify 

multiple phenotypes of Alzheimer's disease (AD) using 

hyperparametric analysis.[36] Ullah et al. (2023) 

introduced modifications to pre-trained deep learning 

models, including ResNet and DenseNet, aimed at 

enhancing brain tumor classification. Their approach 

enhanced accuracy and robustness through transfer 

learning and domain-specific fine-tuning, effectively 

addressing challenges such as overfitting in limited 

medical datasets. The research indicated that these 

improved models outperformed conventional methods, 

highlighting their appropriateness for clinical use.[37] 

Chegireddy and Srinagesh (2023) proposed a new deep-

learning approach for predicting pancreatic cancer by 

utilizing human MRI data, incorporating variants of Harris 

Hawks Optimization (HHO) with the VGG16 architecture 

model. Their approach employed HHO variants to 

optimize hyperparameters and enhance feature selection, 

improving the predictive performance of VGG16. The 

proposed method achieved high accuracy and robustness, 

outperforming traditional models and standard deep 

learning techniques. This study emphasizes the potential 

of integrating metaheuristic algorithms with deep learning 

frameworks to enhance diagnosis accuracy in medical 

imaging. 
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Table 1: Comparison of machine learning methods for alzheimer’s disease classification 

 
No. Method Dataset Used Accuracy (%) F1 

Score 
Key Features 

[27] Deep Learning on 18F-FDG PET (Ding 

et al.) 
Brain PET scans (N = 

1,002) 
92 - Predicts Alzheimer’s 

diagnosis with PET 

imaging using deep neural 
networks. 

[28] 3D T1-Weighted Images (Suh et al.) ADNI dataset 89.5 0.88 Brain segmentation and 

classification using 3D 

CNNs. 
[29] Deep Feature Real-Time Detection 

(Hina et al.) 
Proprietary 87 - Stage detection with real-

time deep feature-based 

processing. 
[30] Early Detection via CNN (Helaly et al.) ADNI 93.2 0.91 Focus on early diagnosis 

using convolutional 

networks. 
[31] Whole Brain MRI (Faisal & Kwon) OASIS and ADNI 94.5 0.92 Automated detection 

leveraging MRI-based deep 

learning. 
[32] Stacked Dense NN on Audio Data 

(Khan et al.) 
Proprietary 85.6 0.84 Predicts dementia using 

audio transcript data with 

stacked neural networks. 
[33] 2D/3D CNN with PET Neuroimaging 

(Ahsan et al.) 
ADNI and OASIS 92.8 0.89 PET neuroimaging-based 

early-stage categorization 
in 2D and 3D domains. 

[34] Deep Learning for AD (Buvaneswari et 

al.) 

ANDI 95 - the study demonstrates that 

combining SegNet for 
feature extraction with 

ResNet-101 for 

classification can 
effectively identify 

Alzheimer's disease with 

high accuracy and 
sensitivity. 

[35] Manifold Learning on PET 

(Campanioni et al.) 

Proprietary 91.3 - Epigenetic phenotyping 

using PET imaging and 

manifold learning. 

[36] DBNs with IoT Detection (Alqahtani et 

al.) 

Proprietary 90.5 0.87 Combines deep belief 

networks with IoT for 

detection and classification. 

[37] Ensemble Learning with Synthetic Data 
(Mujahid et al.) 

Proprietary 93.8 0.90 Ensemble approach using 
synthetic data 

augmentation for robust 

predictions. 

 

 

3    Methodology   

 
Figure 1: The overall framework of the proposed method. 
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Figure 2: some samples from the OASIS dataset. 

 

The proposed framework is illustrated in   Figure. 1, we 

apply CNN of Resnet50 to extract     the basic features 

datasets that we used from OASIS organization, FSBI-

LSTM then is used instead of FC (fully connected layer) 

to high       level semantic, contextual understanding, more.    

 

3.1. The datasets  
Numerous datasets for Alzheimer's disease 

classification are accessible online. Numerous AD 

datasets are unsuitable for this research due to their CSV 

format. Organizations such as OASIS provide their data 

sets for educational and research purposes. However, the 

samples     in        data      sets      are     presented       in a 

three-dimensional image format.  OASIS     is     a project  

that grants researchers and the scientific leveraging of 

semantic information and capturing the contextual 

dependencies finally, for classifying the disease diagnosis 

the concatenated learned features are passed to SoftMax 

in the following description of the proposed techniques for 

community access to an extensive collection of 

neuroimaging data. The objective of OASIS is to advocate 

for open science and enhance the progression of research 

in neuroimaging and neuroscience. In this dataset, we 

utilized four classifications: Non-Demented, Mild 

Dementia, Moderate Dementia, and Very Mild Dementia, 

as illustrated in Figure 2. 

 

 

 

Table 2: Clears the distribution of OASIS datasets. 

 

3.2. Data processing 
The initial preprocessing step in our system is skull-

stripping, an essential procedure that eliminates non-brain 

tissues and structures from MRI images to separate the 

cerebral region. This method is extensively employed in 

neuroimaging research and clinical applications to 

improve the emphasis on brain tissues, hence enabling 

more precise analysis and segmentation. Several methods 

are available for skull-stripping, ranging from simple 

thresholding techniques to advanced deep learning 

models. In our approach, we combine the traditional 

image processing techniques with a deep learning-based 

U-Net model to achieve robust and accurate results. 

Thresholding is initially employed as a straightforward yet 

efficient technique that transforms a grayscale image into 

a binary image by juxtaposing pixel intensity values 

against a specified threshold. Pixels with intensities 

beyond the threshold are designated as foreground (brain 

tissue), and those below are categorized as background 

(non-brain tissue). This approach is most efficacious when 

a distinct intensity differentiation exists between cerebral 

and non-cerebral areas. Morphological techniques, like 

erosion and dilation, are subsequently employed to 

enhance the binary image, so increasing the segmentation 

of the brain region by smoothing borders and removing 

minor aberrations or noise. The extracted brain region is 

further refined for segmentation through the successive 

application  of erosion, dilation, and opening processes. A 

pre-trained         or      custom-trained U-Net    model     is 

subsequently utilized to boost segmentation, capitalizing 

on its capacity to understand complex patterns and 

features for improved precision in isolating the brain from 

adjacent structures. 

 

Classes NO. of images Gender Age range 

Non-Demented (NOD) 

Mild Dementia (MD) 

Moderate Dementia (MOD)  

Very Mild Dementia (VMD) 

100 

5002 

488 

102 

F/M 

F/M 

F/M 

F/M 

55-85 years 

62-85 years 

63-85 years 

65-88 years 
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Figure 3: Extracting the brain section for images in the OASIS dataset 

 

Our method for effective skull-stripping commences with 

noise reduction by Gaussian blur on the grayscale image, 

subsequently employing Otsu’s thresholding technique to 

dynamically ascertain the appropriate threshold value and 

transform the blurred image into binary format. 

Morphological opening is subsequently applied to the 

binary picture utilizing a preset kernel, followed by 

dilation to enlarge the region of interest (ROI). Contours 

are detected in the dilated image utilizing the 

`cv2.findContours()` function, and the contour with the 

greatest area is designated as the principal ROI. A mask is 

generated to correspond with the image dimensions and 

delineate the chosen contour, therefore isolating the ROI 

from the original image. The retrieved ROI is further 

modified with a U-Net model, which improves 

segmentation and yields effective skull-stripping 

outcomes. Our method achieves precise and robust skull-

stripping by integrating Gaussian blurring, Otsu’s 

thresholding, and morphological operations with the 

segmentation capabilities of U-Net, thereby combining the 

simplicity and efficiency of traditional techniques with the 

sophistication of deep learning for optimal performance 

across various MRI datasets. Figure 3 illustrates the 

effectiveness of our skull-stripping approach, showing 

MRI images before and after processing. 

Figure 3 clearly demonstrates that the brain extraction 

approach we employed is highly effective on the OASIS 

Foundation dataset since non-brain regions were entirely 

eliminated from the images, yielding great results in our 

data analysis. To mitigate the issue of overfitting, we 

utilized augmentation approaches. Overfitting, a prevalent 

issue in machine learning and statistical modeling, 

transpires when a model gets excessively tailored to the 

training data, leading to inadequate generalization of 

novel data. Augmented processing entails enhancing the 

training data by incorporating changes, such the addition 

of noise, the application of modifications, or the 

generation of synthetic samples. Augmented processing, 

through the diversification of the training set, exposes the 

model to a wider array of patterns and variances, hence 

mitigating the danger of overfitting. 

This strategy enables the model to acquire a greater 

level of resilience and generalizable representations, 

improving its performance on unseen data, we applied 

various augmentation strategies tailored to our specific 

dataset, such as random rotation in the range [10, -10], 

both vertical and horizontal shifting in the range 

 (-0.1, 0.1), flips vertical and horizontal randomly, and 

shear of the original images in the range (-0.1, 0.1). The 

additional data substantially improved the training 

process, resulting in a more efficient and dependable 

model with higher generalization abilities, so increasing 

its capacity to manage unseen input  

and ultimately reduce the effects of overfitting. The tables 

below show the number of images after the augmentation 

of our OASIS datasets. A pre-processing operation is also 

applied to improve the ability of the proposed model to 

elevate the quality of the data and extract relevant features 

such as image rescaling, image normalization, and skull 

stripping as mentioned before. 

 

Table3: Number of OASIS images after the augmentation. 

 

3.3 Feature learning (feature extraction) 
In this research, we have resorted to building a model 

based on both CNN and RNN The combination of CNNs 

and RNNs has been successfully applied to a variety of 

classification tasks, such as video classification, sentiment 

analysis, and medical image analysis. By leveraging the 

strengths of both spatial feature extraction and sequential 

modeling, the CNN-RNN approach can often outperform 

models that only use one type of neural network 

architecture. ResNet-50 has been effectively utilized 

across multiple domains, notably in medical imaging, 

namely for the interpretation of MRI (Magnetic 

Resonance Imaging) pictures. ResNet-50, an abbreviation 

Classes NO. of images  

Non-Demented  

Mild Dementia  

Moderate Dementia   

Very Mild Dementia  

990 

34216 

4598 

1002 
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for Residual Network-50, is a convolutional neural 

network (CNN) architecture that has achieved 

considerable acclaim and efficacy in the domain of 

computer vision. It was presented by Kaiming He, 

Xiangyu Zhang, Shaoqing Ren, and Jian Sun in their 

foundational paper "Deep Residual Learning for Image 

Recognition" [26] The creation of ResNet-50 was driven 

by the understanding that deeper convolutional neural 

networks (CNNs) often encounter the vanishing gradient 

problem, which hinders their training efficacy.  

The vanishing gradient problem arises when gradients 

transmitted across the network diminish swiftly, 

obstructing preceding layers from updating their weights 

and acquiring significant representations. ResNet-50 

tackles this difficulty by an innovative architectural design 

grounded in the principle of residual learning. 

The fundamental principle behind residual learning is the 

incorporation of skip connections or shortcuts, which 

allow the network to learn residual functions instead of 

directly fitting the intended underlying mapping. The 

inclusion of skip connections allows for the direct 

propagation of gradients throughout the network, hence 

addressing the issue of vanishing gradients.  

ResNet-50 consists of 50 layers, categorizing it as a 

network of significant depth. The architecture comprises a 

series of residual blocks, each containing several 

convolutional layers. The residual blocks are organized in 

a stratified configuration to form the complete architecture 

of ResNet-50. The network utilizes a combination of 1x1, 

3x3, and occasionally 1x1 convolutional filters, along with 

batch normalization and rectified linear unit (ReLU) 

activations, to extract and transform visual input at 

different levels of abstraction. ResNet-50 is notable for its 

ability to achieve state-of-the-art accuracy on numerous 

challenging benchmark datasets, including ImageNet, 

which contains millions of annotated images. The intricate 

architecture of ResNet-50 allows it to proficiently capture 

and represent complicated patterns and hierarchical 

structures, yielding outstanding performance in 

applications such as image classification, object detection, 

and image segmentation. Furthermore, the architecture of 

ResNet-50 has influenced subsequent developments in 

CNN design.  

 

3.4. Alzheimer's disease detection     
In convolutional neural networks (CNNs), the standard 

approach employs fully connected (FC) layers for high-

level analysis. Nonetheless, completely connected (FC) 

layers are ineffective in acquiring comprehensive spatial 

information from feature maps, as they connect all 

neurons indiscriminately, disregarding spatial 

correlations. In this paper, we have presented an enhanced 

version of the LSTM (Long Short-Term Memory) 

framework, termed FSBi-LSTM, to address this issue. 

LSTM, an acronym for Long Short-Term Memory, is a 

specialized type of recurrent neural network (RNN) that is 

proficient in handling sequences and retaining long-term 

dependencies. In traditional recurrent neural networks 

(RNNs), the output of a cell at a given time step is 

determined by the input at that time step and the output of 

the prior cell. The output is denoted as "ht" and is 

calculated using the specified formula 

 

ℎ𝑡 = f (𝑈𝑥𝑡  + 𝑊ℎ𝑡−1)                 (1) 

In this context, xt denotes the input at the present time 

step, U signifies the weight matrix linking the input layer 

to the hidden layer, and W represents the weight matrix 

connecting the output of the preceding cell to the current 

cell.  

The function f(·) typically represents the hyperbolic 

tangent (tanh) function, which constricts input values to a 

range between -1 and 1. The purpose of employing this 

activation function is to introduce non-linearity into the 

network, allowing it to model complex relationships 

between inputs and outputs. Conventional RNNs have two 

major issues known as "gradient explosion" and "gradient 

disappearance." These problems arise due to the gradients 

either diminishing or escalating during the training phase. 

The gradient measures the slope of the loss function 

relative to the network's parameters and is utilized to 

adjust the network's weights during training. When the 

gradients decrease to an insignificant level, the network 

faces difficulties in its learning process and may finally 

converge to suboptimal solutions. Conversely, if the 

gradients become very large, the network's weights may 

experience substantial updates, leading to instability and 

protracted convergence. The Long Short-Term Memory 

(LSTM) architecture was developed to tackle these 

difficulties.  

The LSTM model integrates gates as shown in figure 4 

and a cell state to control the flow of information inside 

the network. The present cell state in an LSTM is denoted 

as "ct". Its principal job is to retain and convey 

information over different temporal intervals.  

The Long Short-Term Memory (LSTM) model employs 

three fundamental gates: the input gate, the forget gate, 

and the output gate. Each gate is depicted as a fully 

connected (FC) layer, consisting of a set of trainable 

weights. These gates control information transmission by 

selectively allowing or blocking particular components of 

the cell state and output.  

 

𝑖𝑡 = σ (𝑊𝑥𝑖𝑥𝑡 + 𝑊hiℎt−1 + 𝑏i)                 (2) 

The input gate controls the degree of integration of new 

input information into the cell state. The calculation of the 

input gate activation relies on the present input xt and the 

preceding output ht−1. The weights Wxi and Whi, along with 

the bias bi, are utilized to compute the activation of the 

input gate. The sigmoid function σ is employed in this 

computation. This activation is then applied to the new 

candidate values, which signify potential alterations to the 

cell state.  

        
 𝑓𝑡 = σ (𝑊xf 𝑥t + 𝑊hf ℎt−1 + 𝑏f)                 (3) 

                         . 

The forget gate determines the fraction of the previous cell 

state to retain and transmit to the current time step. The 

activation of the forget gate is determined by the current 

input xt and the previous output ht−1, utilizing weights 
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Wxf and Whf. The activation is employed to modify the 

previous cell state, allowing the LSTM to discard or 

dismiss superfluous input.  

 

𝑜𝑡= σ (𝑊xo𝑥t + 𝑊hoℎt−1 + 𝑏o)           (4) 

 

The output gate controls the degree to which the 

present cell state is disclosed as the output ht. The present 

input xt and the preceding output ht−1 are taken into 

account, and their weights are employed to compute the 

activation of the output gate. The activation is multiplied 

by the modified cell state to yield the final output ot. 

By employing these gates, LSTM effectively 

alleviates the problems of gradient explosion and gradient 

vanishing typically faced by traditional RNNs. The gates 

facilitate the network's regulation of information flow, 

selectively retain or eliminate data from the cell state, and 

control the output of information. LSTMs can capture 

long-range dependencies in sequential data, enhancing 

their robustness and efficiency for various applications, 

such as language modeling, speech recognition, and 

machine translation. 

Candidate Memory Cell (g): 𝑔𝑡=tanh (𝑤𝑔⋅[ℎ𝑡−1, 𝑥𝑡]+ 𝑏𝑔) 

  Cell State Update: 𝑐𝑡=𝑓𝑡⋅𝑐𝑡−1+𝑖𝑡⋅𝑔𝑡      

  Hidden State Output: ℎ𝑡=𝑜𝑡⋅tanh (𝑐𝑡) 

Ct Is the cell state memory at the specified timestamp, (t), 

gt  represents the candidate for cell state at timestamp(t). 

 

The Bi-LSTM idea necessitates that each training 

sequence be processed in both forward and backward 

orientations utilizing two distinct LSTMs, which are 

interconnected at the output layer. The configuration 

provides the essential details to incorporate both 

forthcoming and historical contextual data within the 

output layer.  

     Forward LSTM equations: 

     Input Gate (𝑖𝑡
𝑓
): 

                                𝑖𝑡
𝑓

= 𝜎(𝑤𝑖
𝑓
[ ℎ𝑡−1

𝑓
, 𝑥𝑡]+𝑏𝑖

𝑓
)                   (5) 

           Forget Gate (𝑓𝑡
𝑓
): 

                                   𝑓𝑡
𝑓
=𝜎(𝑤𝑓

𝑓
[ℎ𝑡−1

𝑓
, 𝑥𝑡]+𝑏𝑖

𝑓
 )                       (6) 

          Output Gate (𝑜𝑡
𝑓) ):  

                                  𝑜𝑡
𝑓
= 𝜎(𝑤𝑜

𝑓
[ℎ𝑡−1

𝑓
, 𝑥𝑡]+𝑏𝑜

𝑓
 )                       (7) 

          Candidate Memory Cell (𝑔𝑡
𝑓
):  

                                𝑔𝑡
𝑓
= tanh(𝑤𝑔

𝑓
[ℎ𝑡−1

𝑓 , 𝑥𝑡] + 𝑏𝑔
𝑓
 )              (8) 

           Cell State Update (𝑐𝑡
𝑓
 ):  

                                     𝑐𝑡
𝑓
=𝑓𝑡

𝑓
.𝑐𝑡−1

𝑓
+𝑖𝑡

𝑓
. 𝑔𝑡

𝑓
                                 (9) 

           Hidden State Output (ℎ𝑡
𝑓
):  

                                ℎ𝑡
𝑓
=𝑜𝑡

𝑓
.tanh(𝑐𝑡

𝑓
)                                  (10) 

 

 

 

 

 

 

Backward LSTM equations: 

Input Gate (𝑖𝑡
𝑏):  

                          𝑖𝑡
𝑏 = 𝜎(𝑤𝑖

𝑏[ ℎ𝑡−1
𝑏
, 𝑥𝑡]+𝑏𝑖

𝑏)                    (11) 

Forget Gate (𝑓𝑡
𝑓
):  

                 𝑓𝑡
𝑏=𝜎(𝑤𝑓

𝑏[ℎ𝑡+1
𝑏
, 𝑥𝑡]+𝑏𝑓

𝑏 )                         (12) 

 

 

Output Gate (ot
(b)):  

              𝑜𝑡
𝑏= 𝜎(𝑤𝑜

𝑏[ℎ𝑡+1
𝑏
, 𝑥𝑡]+𝑏𝑜

𝑏 )                        (13) 

 

Candidate Memory Cell (𝑔𝑡
𝑏):  

         𝑔𝑡
𝑏=tanh(𝑤𝑔

𝑏[ℎ𝑡+1
𝑏 , 𝑥𝑡] + 𝑏𝑔

𝑏 )                         (14) 

 

Cell State Update (𝑐𝑡
𝑏):  

                       𝑐𝑡
𝑏=𝑓𝑡

𝑏.𝑐𝑡+1
𝑏 +𝑖𝑡

𝑏. 𝑔𝑡
𝑏                                       (15) 

 

Hidden State Output (ℎ𝑡
𝑏): 

                         ℎ𝑡
𝑏=𝑜𝑡

𝑏.tanh(𝑐𝑡
𝑏)                                   (16 

 

In these equations, xt is the input at time step t, ℎ𝑡−1
𝑓

 

andℎ𝑡+1
𝑏  are the hidden states from the previous and next 

time steps for the forward and backward LSTMs 

 

respectively.𝑤𝑖
𝑓
 , 𝑤𝑓

𝑓
, 𝑤𝑜

𝑓
, and 𝑤𝑔

𝑓
are weights 

matrices for the input, forget, output, and candidate 

memory cells for the forward LSTM, respectively.  𝑤𝑖
𝑏 ,𝑤𝑓

𝑏

, 𝑤𝑜
𝑏 , and 𝑤𝑔

𝑏  are weights matrices for the input, forget, 

output, and candidate memory cells for the backward 

LSTM, respectively. 𝑏𝑖
𝑏,𝑏𝑓

𝑏, 𝑏𝑜
𝑏, and 𝑏𝑔

𝑏  are bias vectors 

for the forward LSTM. 𝑏𝑖
𝑏,𝑏𝑓

𝑏, 𝑏𝑜
𝑏, and 𝑏𝑔

𝑏are bias vectors 

for the backward LSTM. σ represents the sigmoid 

activation function. tanh is the hyperbolic tangent 

activation function. These equations delineate the flow of 

information in both the forward and backward directions 

of the BiLSTM, enabling the network to capture 

relationships from both historical and prospective 

contexts. 

FSBi-LSTM denotes Fully Connected Stacked Bi-

directional Long Short-Term Memory. The architecture is 

an advanced iteration of the Bi-directional LSTM (Bi-

LSTM) that integrates novel features to boost its ability to 

capture long-term dependencies and derive significant 

representations from sequential input. 

 Essential elements of FSBi-LSTM: Stacked LSTM. The 

architecture utilizes a succession of vertically stacked 

LSTM layers. This allows the network to enhance its 

comprehension of data interconnections by employing the 

output of the prior layer as input for the following layer.  

Bi-directional LSTM: Each LSTM layer is constructed to 

be bi-directional, indicating that it processes the input 

sequence in both forward and backward directions. This 

enables the model to understand context from both ends of 

the sequence, leading to a more thorough understanding of 

temporal connections. 

A fully connected layer is added subsequent to the Bi-

LSTM layers. This layer's objective is to consolidate the 

outputs of all LSTM cells and generate a cohesive 

representation. This allows the model to identify common 
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attributes over the entire sequence, thus encapsulating the 

complete "trait" information of the subject.  

FSBi-LSTM computes the forward hidden sequence  ℎ⃗ s 

and backward hidden sequence ℎ⃖⃗s , which is expressed as: 

 

             ℎ𝑡
𝑠⃗⃗⃗⃗ = H (𝑤𝑥ℎ𝑠⃗⃗⃗⃗ 𝑥𝑡  ℎ𝑡

⃗⃗  ⃗+𝑤ℎℎ𝑠⃗⃗⃗⃗ ℎ𝑡−1
𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  +𝑏ℎ𝑠

⃗⃗ ⃗⃗  ⃗)                 (17) 

 

 

           ℎ𝑡
𝑠⃖⃗⃗⃗⃗= H (𝑤𝑥ℎ𝑠⃖⃗ ⃗⃗⃗ ℎ⃖⃗𝑡+𝑤ℎℎ𝑠⃖⃗ ⃗⃗⃗ℎ𝑡−1

𝑠⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗+𝑏ℎ𝑠
⃖⃗ ⃗⃗ ⃗⃗ )                       (18) 

where𝑤𝑥ℎ𝑠⃗⃗⃗⃗  is the forward calculation of 𝑤𝑥, 𝑤ℎℎ𝑠⃗⃗⃗⃗ h is 

forward calculation of 𝑤ℎ, 𝑏ℎ𝑠
⃗⃗ ⃗⃗  ⃗

  is a parameter of forward 

calculation in function H (·), and 𝑤𝑥ℎ𝑠⃖⃗ ⃗⃗⃗ , 𝑤ℎℎ𝑠⃖⃗ ⃗⃗⃗  and 𝑏ℎ𝑠
⃖⃗ ⃗⃗ ⃗⃗

 are 

parameters of backward calculations in H (·), and finally 

[25] the output denoted as 

 

          𝑦𝑠𝑡= h(𝑤ℎ⃗⃗ 𝑦ℎ⃗
 
𝑡+𝑤ℎ ⃖⃗⃗⃗𝑦ℎ⃗⃖𝑡+𝑏𝑦                                                  (19)

 

 

 
Figure 4: LSTM unit with three gates. 

 

 
Figure 5: Step-by-step flowchart provide a clearer visualization of the framework 

 

4  Experiments and results 

4.1 Evaluation measures 
The experiments were on a Google Colab hosted Jupiter 

Notebook service in subscription mode with runtime type 

Python 3 and hardware accelerator T4GPU Tesla T4 is a 

GPU card based on the Turing architecture and targeted at 

deep learning model inference acceleration with system 

RAM 52 GB, the model training was conducted over 20 

epochs with a batch size of 32, ensuring an efficient 

balance between computational efficiency and 

convergence stability. The Adam optimizer was utilized 

for optimization, chosen for its adaptive learning rate and 

capability to handle sparse gradients, which facilitated 

faster convergence and improved performance during 

training. the evolution of model was conducted utilizing 

the validation which is part of the dataset, using several 

measures ensures a model is resilient from all angles 
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Successful model training depends on an extensive 

understanding of these results, for example, high accuracy 

(over 90%) does not necessarily indicate an excellent 

model other factors include loss and f1-score, etc. We used 

many measures to evaluate the performance of our model. 
 

4.1.1 Accuracy  
Accuracy is the measure of the total of correct predictions 

out of all accurate ones, and it is calculated using the 

following formulas: 

Accuracy =(TP + TN) / (TP + FN + FP + TN)         (20) 

 

 

TP, TN, FN, and FP represent True Positive, True 

Negative, and False Positive values, respectively. 

 

4.1.2 Precision 

Precision is the measure of the proportion of correct 

positive forecasts to the sum of all positive predictions, as 

determined by the following equation: 

       Precision = TP / (TP + FP)                                    (21) 

 

4.1.3 Recall 

The recall is commonly known as the sensitivity score 

or the true positive rate. This is the proportion of 

correct positive predictions to the total number of correct 

positive outcomes. The recall is determined using the 

following equation : 
                   Recall =TP/(TP + FN)                               (22) 

 

4.1.4 F1-score 

An ideal classification model has precision and recall 

values of 1.0. The F1 score represents the harmonic mean  

 

 

of precision and recall. The F1 score graph is distinctive 

in that it displays an individual line for each class 

designation. The F1 score is computed using the following 

formula: 

  F1 =2∗ (Precision∗ Recall)/(Precision + Recall)     (23)  

 

4.1.5 Loss of function 

Loss functions measure the mathematical difference 

between predicted and actual values. In this study, we 

employed a categorical cross-entropy algorithm for loss. 

 

𝐿𝑜𝑠𝑠 =  𝑦 – �̅�                                                         (24)  

 

𝐿𝐶𝐸 =  − ∑ (𝐿𝑖 log 𝑝𝑖)𝑘
𝑛=0                                     (25) 

 

 

4.1.6. Area under curve 

AUC, also known as Area Under the ROC Curve, is a 

quantitative measure utilized to assess the effectiveness of 

classification models. A single numerical value quantifies 

the model's capacity to differentiate between positive and 

negative classes. 

 

 

 

4.1.7. Confusion matrix 

A confusion matrix is a technique for evaluating the 

performance of classification models. It displays the 

actual and expected categories in a tabular style. The four 

primary metrics obtained from it are False Positives (FP),  

True Positives (TP), True Negatives (TN), and False 

Negatives (FN). From these numbers, one can compute 

metrics like as accuracy, precision, recall, and F1-score. It 

aids in comprehending the varieties of faults committed by 

the model and their distribution among various groups. 

 

4.2 Comparison with base models 
 In this section, we compared the proposed model with 

some base models such as VGG16, Inception, and 

DanseNet169. The related results using the OASIS dataset 

are shown in Table 3 and corresponding Figure 5. The 

Loss values for the proposed, DenseNet169, VGG16, and 

Inception methods obtained 0.05, 0.093, 0.0525, and 

0.098, respectively. Indicating that the model is exhibiting 

strong performance on the training data by effectively 

reducing the disparity between predicted and actual 

values. Based on the accuracy measure ACC, the values 

99.6%, 98%, 99.6%, and 97.9% are obtained for the 

proposed, DenseNet169, VGG16, and Inception methods, 

respectively. 

 The F1 score in a multi-class classification model is a 

crucial indicator for precisely evaluating the model's 

performance and its efficacy in classifying cases across all 

classes. Although accuracy is a significant metric, it does 

not provide a comprehensive overview. The F1 score 

provides a more thorough assessment of the model's 

performance. A high F1 score often indicates that the 

model is producing precise predictions across several 

classes. A high F1 score may signify varying implications 

depending on the particular challenge and circumstance. 

The results indicate that the proposed model achieves the 

highest F1 score relative to other techniques. 

The Area Under the Curve (AUC) statistic is extensively 

utilized in the assessment of binary classification model 

performance. In multi-class classification, the AUC metric 

is generally calculated using a pairwise comparison 

method (one-vs-all), indicating that the AUC value 

reflects the model's efficacy in differentiating between two 

distinct classes. It offers a singular metric that 

encapsulates the model's overall discriminative capability 

across all classes; a high AUC signifies an exceptional 

ability to predict the probabilities of the correct class 

relative to other classes. The results in Table 3 indicate 

that the suggested model achieves the second highest 

AUC score relative to other techniques. 

The Recall measure refers typically to a performance 

metric used in machine learning tasks. In medical research 

or diagnostic systems recall plays a vital role in identifying 

potential diseases. It helps in minimizing false negatives 

of the model. A high recall assists in ensuring that no 

important medical information is overlooked during the 

diagnosis. Also, in a situation where the dataset is 

imbalanced, which can lead to a biased model performing 

poorly on the minority class, high recall ensures that the 
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model doesn’t miss relevant instances from the minority 

class.  The results in Table 3 indicate that the suggested  

model achieves the second highest Recall score among the 

evaluated techniques. 

The precision measure realizes the model's ability to make 

a reliable prediction, especially when dealing with 

imbalanced datasets. The results in Table 3 indicate that 

the suggested model exhibits superior Precision values 

relative to alternative techniques. 

 

 

 

 
Figure 5: Comparison of the proposed ReS+FSBILSTM model with some base models using OASIS dataset. 

 

 

 

Table 4: Evaluation of the proposed Res+FSBi-LSTM model against several baseline models utilizing the OASIS dataset 

 

We have conducted statistical significance tests to 

compare our model's performance against other methods. 

To compare our model's performance metrics accuracy,  

F1 score, and AUC with those of other models on the 

same test sets table 5 presents the results of pairwise t-tests 

comparing FSBi-LSTM with DenseNet196, Inception, 

and VGG16 with the area under the curve for 20 epochs 

In terms of AUC, ReS+FSBILSTM vs DenseNet t—t-

statistic is obtained at 15.19 (large positive value) and p-

value 4.41×10−12 (extremely small), which means 

ReS+FSBILSTM significantly outperforms DenseNet, 

ReS+FSBILSTM vs Inception t-statistic achieved 11.76 

(large positive value) and p-value 3.66×10−10 (extremely  

 

small) ReS+FSBILSTM significantly outperforms 

Inception in terms of AUC, and finally ReS+FSBILSTM 

vs VGG16 is obtained t-statistic 0.073 (near zero), p-value 

0.94 (much greater than 0.05) There is no significant 

difference in AUC between ReS+FSBILSTM and 

VGG16. ReS+FSBILSTM significantly outperforms 

DenseNet and Inception. However, there is no significant 

difference between ReS+FSBILSTM and VGG16. This 

implies that both methods are equally good in terms of 

AUC, based on this analysis. 

 

 

 

Methods ACC F1-

score 

AUC Recall Precision Loss 

ReS+FSBILSTM 

99.60% 97.7% 99% 97.3% 99.60% 

0.05 

DenseNet 

98% 85.40% 95.00% 91% 98% 

0.093 

VGG16 

99.30% 95.80% 99.30% 99% 99.60% 

0.052 

Inception 

97.90% 84% 99% 96.9% 97.90% 

0.098 
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Table 5: presents the results of pairwise t-tests comparing 

FSBi-LSTM with DenseNet196, Inception, and VGG16 

with the area under the curve for 20 epochs 

 

Table 6:  presents the results of pairwise t-tests 

comparing FSBi-LSTM with DenseNet196, Inception, 

and VGG16 with the accuracy for 20 epochs 

 

Table 7: presents the results of pairwise t-tests comparing 

FSBi-LSTM with DenseNet196, Inception, and VGG16 

with the f1-score for 20 epochs 

 

 

   In terms of accuracy, ReS+FSBILSTM demonstrates 

significantly superior performance compared to 

DenseNet196, Inception, and VGG16. The comparison 

with DenseNet196 yields a t-statistic of 10.78 and a p-

value of 2.79×10−9, indicating a highly significant 

difference in favor of ReS+FSBILSTM. Likewise, 

ReS+FSBILSTM surpasses Inception with a t-statistic of 

10.54 and a p-value of 3.94×10−9, indicating a significant 

performance superiority. The comparison with VGG16 

demonstrates a substantial disparity, evidenced by a t-

statistic of 41.35 and a p-value of 2.69×10−19, 

highlighting pronounced statistical significance. The 

results demonstrate that ReS+FSBILSTM markedly 

outperforms all three techniques in accuracy, as indicated 

by the notably high t-statistics and minimal p-values. 

The findings indicate that the f1-score of 

ReS+FSBILSTM is markedly superior to that of 

DenseNet196, Inception, and VGG16. The comparison 

with DenseNet196 results in a t-statistic of 23.55 and a p-

value of 1.60×10−15, signifying a substantial performance 

disparity. The t-statistic for Inception is 13.99, 

accompanied by a p-value of 1.87×10−11, indicating a 

significant disparity. Likewise, ReS+FSBILSTM 

surpasses vgg16, exhibiting a t-statistic of 13.75 and a p-

value of 2.52×10−11. The results indicate that 

ReS+FSBILSTM substantially outperforms all other 

approaches in f1-score, evidenced by highly significant p-

values and notable performance benefits as represented in 

the huge t-statistics. 

The confusion matrix offers a comprehensive 

evaluation of the model's efficacy on the test dataset. The 

model has high precision and recall for the Non-Demented 

and Moderate Dementia categories, with no 

misclassification among unrelated classes. The Non-

Demented class attained 192 genuine positives, with 

merely five occurrences incorrectly classified as Mild 

Dementia, whereas the Moderate Dementia category 

scored 895 true positives with minimal misclassification. 

The matrix indicates a degree of overlap between Mild 

Dementia and Moderate Dementia, possibly attributable to 

the similarity of characteristics between these illnesses, 

resulting in 129 cases of Mild Dementia being erroneously 

categorized as Moderate Dementia.  

Additionally, a slight bias toward the dominant Mild 

Dementia class is observed, as it constitutes the majority 

of the dataset, with 6,658 correctly classified instances and 

limited misclassifications across other classes. These 

findings highlight the need for addressing class imbalance 

and enhancing feature extraction to improve the 

distinction between closely related dementia categories, 

particularly between Mild and Moderate Dementia. 

 

 

 

Table 8: Comparison of the proposed Res+FSBILSTM model with state-of-the-art methods using MRI dataset. 

 

Method 1 Method 2 t-statistic p-value 

ReS+FSBILSTM  DensNet19

6 

15.19050438 4.41E-12 

ReS+FSBILSTM  Inception 11.7573442 3.66E-10 

ReS+FSBILSTM  Vgg16 0.073432834 0.942229262 

Method 1 Method 2 t-statistic p-value 

ReS+FSBILSTM  DensNet196 23.54977478 1.60E-15 

ReS+FSBILSTM  Inception 13.98856186 1.87E-11 

ReS+FSBILSTM  vgg16 13.74847329 2.52E-11 

Method 1 Method 2 t-statistic p-value 

ReS+FSBILSTM  DensNet196 10.7768 2.79E-09 

ReS+FSBILSTM  Inception 10.54124 3.94E-09 

ReS+FSBILSTM  Vgg16 41.35215 2.69E-19 

Methods ACC  F1-

score 

Recall Precision AUC 

DBN-MOA [36] 97.46 93.187 95.789 94.621 - 

VGG16-EfficientNet-B2[37] 97.07 97.16 97.27 96.91 99.59 

VGG16-SVM-with-Aug [38] 98.67 95.39 91.2 100.00 - 

CNN+LSTM [39] 98.50 - 98.00 94.80 - 

Res+FSBILSTM (proposed) 99.66 97.7 97.4 97.45 99.6 
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Figure 6: Performance evaluation using confusion matrix for dementia classification 

 

 
 

Figure 7: Comparison of the proposed ReS+FSBILSTM model with other methods using the OASIS dataset. 

 

5   Discussion 
We chose those studies from the literature that 

considered multiclass datasets for comparison with the 

proposed method. DBN-MOA [38] is a Deep Belief 

Network (DBN) trained with the Mayfly Optimization 

Algorithm (MOA). The VGG16+EfficientNet-B2 model 

[39] is a combination of VGG16 and EfficientNet-B2 pre-

trained model. VGG16-SVM-with-Aug [40] uses transfer 

learning and augmentation techniques to detect 

Alzheimer’s disease. The CNN+LSTM  [41] method is a 

combination of CNN with LSTMN. Considering the 

results on Table 4 and corresponding Fig. 6 show that the 

proposed method can outperform other methods in all 
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criteria such that we can suggest it as a reliable tool for 

Alzheimer’s disease diagnosis. 

Our method employs ResNet50 combined with 

FSBiLSTM for MRI classification, leveraging advanced 

preprocessing via skull stripping using thresholding, 

morphological operations, and U-Net models. Compared 

to other SOTA methods, such as DBNs used in IoT-based 

detection (Alqahtani et al., 2023), ensemble learning with 

synthetic techniques (Mujahid et al., 2023), and deep 

learning-based classification (Sorour et al., 2024; Balaji et 

al., 2023), our approach demonstrates superior accuracy in 

MRI image classification due to robust feature extraction 

and temporal modeling of FSBiLSTM. However, slight 

trade-offs in sensitivity were observed when evaluated 

against ensemble methods (Mujahid et al., 2023), which 

excel at reducing overfitting with adaptive sampling 

techniques. 

Architectural improvements, such as FSBiLSTM’s ability 

to capture spatial and temporal dependencies, significantly 

improved generalization in MRI-based Alzheimer’s 

detection. Preprocessing techniques like skull stripping 

ensured cleaner input data, reducing noise and enhancing 

classifier performance. Conversely, the ensemble 

approaches developed by Mujahid et al. employed 

oversampling techniques that marginally surpassed our 

method in 

detecting the minority class. DBNs by Alqahtani et al. 

achieved commendable efficiency in IoT integration but 

lacked MRI-specific enhancements, limiting their 

effectiveness in image-based classification tasks. For 

clinical use, the higher accuracy of our method ensures 

more reliable Alzheimer’s diagnosis, particularly in early-

stage detection where subtle changes in MRI images are 

critical. The sensitivity trade-off highlights a need for 

future enhancements in minority class detection, ensuring 

that cases with subtle features are not overlooked. 

Practical application also benefits from the efficient 

preprocessing pipeline, making the approach scalable for 

large-scale diagnostic workflows in hospitals. 

The proposed method’s architectural and data processing 

enhancements translate into significant practical benefits 

for Alzheimer’s diagnosis. It not only improves accuracy 

and generalizability but also addresses operational 

and ethical challenges, making it a highly viable tool for 

real-world clinical applications. 

In summary, the proposed method’s superior performance 

can be attributed to a synergy of architectural 

improvements, optimized training,  

and effective data handling techniques, making it a 

promising tool for Alzheimer’s disease diagnosis.

Table 9: Comparison of methods for alzheimer's disease diagnosis using MRI images 

 

  

Model Architectural 

Improvements or Data 

Processing Techniques 

Strengths Limitations 

DBN-MOA Deep Belief Network with 

Mayfly Optimization 

Algorithm for improved 

convergence. 

Effective optimization with 

MOA; robust for certain 

datasets. 

Limited feature extraction capability 

compared to modern CNN-based models. 

VGG16+EfficientNet-

B2 

Combination of VGG16 

and EfficientNet-B2 pre-
trained models for robust 

feature extraction. 

Combines strengths of two pre-

trained models, robust for 
general imaging tasks. 

Generic architecture may miss domain-specific 

nuances in Alzheimer's diagnosis. 

VGG16-SVM-with-Aug Transfer learning with 

augmentation techniques; 
simple architecture for 

binary classification. 

Utilizes transfer learning and 

augmentation; good for binary 
classification. 

Struggles with multiclass datasets and lacks 

adaptability for complex progressions. 

CNN+LSTM Combines CNN for spatial 

features and LSTM for 

temporal patterns in 
sequential data. 

Captures both spatial and 

temporal features; suited for 

sequential data. 

Computationally intensive; may not outperform 

specialized Alzheimer focused methods. 

Proposed Method Combines ResNet50 for 

feature extraction with 

FSBILSTM for 
classification. Skull 

stripping preprocessing via 

threshold and 
morphological operations, 

implemented with U-Net. 

Excels in feature extraction, 

multiclass handling, and 

optimization; designed for 
Alzheimer's MRI. 

Requires high computational resources to fine-

tune effectively. 
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6  Conclusion  
In this paper, we proposed a method for skull stripping 

gathering both of thresholding and morphological 

Operations with U-net Our method effectively handles 

diverse medical imaging modalities, including MRI, and 

PET scans, this distinguishes it from other methods that 

treat only a specific type accurately and as for anther types 

may be treated with moderate accuracy or not dealt with 

at all, it achieved high accurate comparing with others 

method extracting the brain from human skull we also 

proposed model combined between the CNN layers of 

Resnet50 to features extraction after skull stripping and 

pre-processing operation then used  FSBILSTM for do the 

classification the input MRI images from two reliable 

datasets OASIS to the four classes, the various The 

matrices utilized to assess the efficacy of the proposed 

model indicate a high accuracy of 99.6%, an F1-score of 

97.7%, and an AUC of 99.6%. We will incorporate 

additional pre-trained architectural models and refine 

various transfer learning models to get more reliable and 

favorable outcomes in the future. 
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