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In response to the low feature extraction ability of current image super-resolution models, an image 

reconstruction algorithm with an improved generative adv.9ersarial network is proposed. On the basis of the 

image super-resolution algorithm based on the generated adversarial network, the spectral norm and least 

square relative discriminator are introduced, and then the latest version ShuffleNetV is added to improve the 

accuracy of the model. A lightweight image super-resolution reconstruction algorithm based on improved 

generative adversarial network is tested. The test results show that the evaluation scores for WOMAN 

images, HEAD images, BUTTERFLY images, and BABY images using the research method were 43.6, 33.8, 

27.9, and 46.3, respectively. The K values of the reconstructed samples in the Set5 dataset were mainly 

concentrated in the range of 0.4008.5, while in the Set14 dataset, the K values were roughly distributed in the 

range of 0.20 to 1.10. In the ablation experiment, the PI value of the research model is 2.11, indicating that 

the research model can generate high-quality images that are closest to the real high-resolution images in 

terms of perceptual features and texture details. From this, lightweight image super-resolution reconstruction 

algorithms with improved generative adversarial networks have significant performance advantages, which 

can promote technological progress in image super-resolution reconstruction. 

Povzetek: Lahki algoritem SRLRGAN-SN z vgrajeno ShuffleNetV, spektralno normo in relativističnim 

diskriminatorjem izboljša teksturne podrobnosti ter ohrani barvno natančnost, ustvarjajoč bolj kvalitetno 

rekonstrukcijo kot metoda SRCNN ali VDSR. 

1  Introduction 

Currently, as an important carrier of information 

transmission, image resolution has become one of the key 

factors in measuring image quality [1-2]. However, in 

practical applications, due to factors such as the performance 

of image acquisition devices, network transmission 

bandwidth, and storage conditions, the obtained images 

often have low resolution and are difficult to meet the 

requirements of high-quality image processing [3]. Super 

Resolution Image Reconstruction (SRIR) utilizes computer 

processing of Low-Resolution Images (LRI) or image 

sequences to restore HRI, where HRI have high pixel 

density and can provide more details [4]. The application of 

Deep Learning (DL) has achieved good results in SRIR, 

making the results more realistic and clearer [5]. The Yu 

team proposed a DL based image SRIR algorithm to address 

the issue of low super-resolution in single images, which had 

good performance and could improve the super-resolution of 

single images [6]. Nagayama et al. Suggested SRIR with DL 

to measure the image quality of coronary computed 

tomography angiography, which improved the depiction of 

stent support, with better image quality [7]. The Gao team  

put forth an innovative approach, termed SRIR, which aims 

to leverage the contribution details of original characteristics 

and enhance the model’s capacity to represent characteristics  

 

 

effectively. Its performance was good [8]. Generative 

Adversarial Networks (GANs) are a type of DL that can  

generate more realistic image details through adversarial 

training of generators and discriminators. For example, an et 

al. suggested a GAN with SRIR technique to improve the 

performance of super-resolution methods in feature 

extraction and expression. The HRI formed by this technique 

had the best subjective perception of the human eye [9]. 

Based on previous research, this study proposes an improved 

SRIR algorithm, SRLRGAN-SN, by introducing Spectral 

Regularized Least Squares Relative (SRLR) and Spectral 

Normalization (SN) into GAN. It is assumed that 

SRLRGAN-SN has excellent results in detail preservation, 

sharpness improvement and algorithm efficiency in image 

reconstruction tasks. By fusing spectral norm and least 

square method, it is expected that SRLRGAN-SN algorithm 

can reconstruct image details more accurately, reduce the 

situation of detail blur and loss, and make the reconstructed 

image closer to the real high-resolution image. The final 

improvement goal of the research is to improve the 

definition of the reconstructed image, reduce the noise and 

halo artifacts, optimize the algorithm structure, reduce the 

computational complexity, and improve the operation 

efficiency of the algorithm, so that it can complete the task of 

image super-resolution reconstruction more quickly in 

practical applications. In terms of training parameters, the 
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study epoch number is set to 200 epochs. The initial learning 

rate is set to 0.0001, and the learning rate attenuation strategy 

is adopted in the training process to reduce the learning rate 

to 0.1 times of the original every 50 epochs; Data 

enhancement methods such as rotation, flipping and scaling 

were adopted. The range of random rotation Angle was 

[-15°,15°], and the range of random horizontal and 

vertical flipping was [0.8,1.2]. In the aspect of evaluation, we 

use peak signal-to-noise ratio (PSNR) and structural 

similarity index (SSIM) to evaluate the reconstructed images 

objectively. At the same time, comparative experiments were 

conducted with other advanced image super-resolution 

reconstruction algorithms GANs, SRGAN, SRCNN and 

SOTA to verify the superiority and effectiveness of 

SRLRGAN-SN algorithm through comparative analysis. A 

summary of the relevant methods is shown in Table 1. 

 

Table 1: Summary of relevant methods 

Method PSNR SSIM Computational complexity 

GANs 28.4 0.85 34.25 

SRGAN 30.7 0.92 48.76 

SRCNN 29.6 0.89 12.34 

SOTA 32.1 0.95 65.87 

 

As can be seen from Table 1, GANs performs well in image 

generation tasks because the adversarial training mechanism 

of its generator and discriminator makes the generated 

images more visually realistic. However, the images 

generated by GANs in super-resolution tasks lack details, are 

prone to artifacts, and the training process is unstable. 

SRGAN introduces Perceptual Loss and Adversarial Loss, 

significantly improving the visual quality of the generated 

images, but the generated images are still not realistic 

enough in terms of texture and structural details. SRCNN 

directly learns the mapping relationship from low resolution 

images to high resolution images through convolutional 

neural network (CNN). The network structure is relatively 

simple, but the generated images are not rich in details and 

textures, and the visual quality is limited. In addition, 

SRCNN has high computational complexity and long 

training and reasoning time. SOTA represents the current 

state of the art in the field of super resolution, performing 

well on PSNR and SSIM metrics. However, SOTA method 

still has shortcomings in perception quality, and the  

 

generated images may lack realism. SRLRGAN-SN uses the 

least squares Relativistic Generative Adversarial Network 

(LSR-GAN) to generate a more realistic image by driving 

the generated image closer to the high-quality perceptual 

manifold through the least square’s relativistic discriminator. 

At the same time, SRLRGAN-SN introduces a 

perception-loss component that can better retain structural 

texture details, resulting in a more visually realistic image. 

2  Methods and materials 

2.1 GAN based image super resolution 

algorithm 
SRIR technology increases the resolution of an image 

or video frame through hardware or software, by obtaining a 

HRI or video frame through a series of low-resolution 

frames. The fundamental principles of image SRIR is 

presented in Figure 1. 
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Figure 1: Schematic diagram of image super resolution technology 

In Figure 1, SRIR technology utilizes details from LRI 

to estimate and reconstruct HRI, which can be seen as an 

enhancement and restoration of image information. 

Common image reconstruction techniques include 

Projection onto Convex Sets (POCS) and Maximum A 

Posteriori Probability (MAP) [10]. POCS is an iterative 

algorithm applied to handle issues in such as SRIR, signal 

processing, and data analysis. Its basic idea is to search for 

solutions in the intersection of a series of convex constraint 

sets, and gradually approach the true solution through an 

iterative process. Assuming there are m  conditional 

constraints, equation (1) shows the calculation formula for 

POCS. 
( ) 2 1 ( 1),..., −=n m nH X X X H  (1) 

In equation (1), ( )nH  is the LRI input; kX  is the 

mapping of the input image in the constraint set. MAP is a 

Bayesian based statistical method applied to assess the mode 

of a Posterior Distribution (PD). This method combines 

likelihood function and prior distribution to form a PD, and 

then finds the maximum point of this PD as the estimated 

parameter value [11]. Assuming the original image is X , 

equation (2) shows the optimal estimation expression for the 

reconstructed HRI Y . 
( ) ( )

max ( ) max( )
( )

= =
P Y X P X

Y P Y X
P Y

 (2) 

GAN is comprised of two models: a generative model 

(GM) and a Discriminative Model (DM). The GM is 

responsible for accurately representing the distribution of the 

sample data, whereas the DM is designed to ascertain 

whether the input data is authentic or a generated sample. In 

the process of optimizing a model, one side is maintained as 

a fixed reference point throughout the training phase, while 

the other side updates its parameters in an alternating 

sequence of iterations. Ultimately, the GM is capable of 

estimating the distribution of sample data. The GAN 

principle is shown in Figure 2. 
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Figure 2: Generate the adversarial network schematic 

 

In Figure 2, generator G and discriminator D are 

randomly initialized. A batch of real samples are sampled 

from the real data distribution, and a batch of noisy samples 

are sampled from the noisy distribution, which are input into 

G to obtain the generated samples. Real samples and 

generated samples are input into D separately, and the output 

of D is calculated. The parameters of D are kept unchanged, 

while the parameters of G are updated to provide samples 

that are closer to real data, thereby deceiving D [12-13]. G is 

repeatedly sampled and trained until it can generate 

high-quality data, and D cannot accurately distinguish 

between real data and generated data. Assuming the 

generative network is g  and the DM is d , the image 

reconstructed by the generative network ( )G z ‘s expression 

is shown in equation (3). 

( ) arg min max ( , )=
g d

G z v g d  (3) 

In equation (3), z  represents the signal input to the 

generative network. The default choice for determining the 

network’s benefits v  is shown in equation (4). 

( ) ( )

~ ~( ; ) log ( ) log(1 ( ))  = + −
data data

g d

X P X Pv E d x E d x  (4) 

In equation (4), x  is the real sample; the probability 

of the DM judging whether the image is true is represented 

by the symbol ( )d x . Super Resolution GAN (SRGAN) is a 

method that uses convolutional neural networks to achieve 

Super Resolution (SR) for a single image [14]. The 

perceptual loss function of SRGAN SRl  is expressed as 

equation (5). 

310−= +SR SR SR

X Genl l l  (5) 

In equation (5), SR

Xl  is content loss; SR

Genl  is 

adversarial loss. SRGAN uses VGG loss, which includes 

VGG16Q and VGG19. Among them, VGG19 has 19 layers, 

including 16 convolutional layers and the last 3 fully 

connected layers. The middle is similar to usual, using a 

pooling layer and finally passing through softmax [15]. The 

breakdown diagram of VGG19 network structure is shown 

in Figure 3. 
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Figure 3: VGG19 Network structure decomposition diagram 

 

In Figure 3, VGG19 consists of multiple convolutional 

blocks and fully connected layers. The former contains 

multiple convolutional layers and ReLU activation layers, 

and after each convolutional block is completed, a max 

pooling layer is used to decrease the size of the feature map 

[16]. VGG19 replaces large convolution kernels by stacking 

multiple 3×3 small convolution kernels, which can increase 

the depth of the network while maintaining the same 

receptive field, thereby improving the network’s feature 

extraction ability. Equation (6) shows the expression for the 

VGG19 loss function. 

, ,
2

/ , , , , ,

1 1, ,

1
( ( ) ( ( )) ) 

= =

= −
i j i jW H

SR HR HR

VGG i j i j x y i j G x y

x yi j i j

l I G I
W H

 (6) 

In equation (6), ,i jW  is the dimension of one feature 

map in the model; ,i jH  is the dimension of another feature 

map in the model; ,i j  is the feature map of the j -th 

convolutional layer in VGG19. For adversarial loss, SRGAN 

mainly indirectly improves the quality of the network 

generated images by adding discriminators. The expression 

for adversarial loss 
SR

Genl  is shown in equation (7). 

1

log ( ( )) 
=

= −
N

SR LR

Gen D G

n

l D D I  (7) 

 

2.2 Lightweight SRIR Method with 

SRLRGAN-SN 
To achieve precise control over the parameters of the 

generative and DM while ensuring training stability, this 

study introduces the SN and SRLR relative discriminators 

based on SRGAN and proposes the SRLRGAN-SN image 

reconstruction method. Figure 4 illustrates the flowchart. 

In Figure 4, SRLRGAN-SN first receives LRI as input 

and performs necessary preprocessing operations. Then, the 

LRI is mapped to a high-resolution space through a 

generative network to generate the corresponding SR image. 

Then, the SRLR relative discriminator is applied to 

discriminate the relative difference, and the evaluation of the 

relative realism is output. Then, content loss, feature loss, 

texture loss, and SRLR relative discriminative adversarial 

loss are calculated. Finally, the above process is repeated 

until the preset training epochs are reached or convergence 

conditions are met. To simplify the complexity of the model 

problem, this study uses the SRLR loss function as the 

criterion for discrimination, transforming the absolute 

discrimination problem between generated images and real 

samples into relative difference discrimination. The 

discriminator loss function based on SRLR is shown in 

equation (8). 



https://doi.org/10.31449/inf.v49i34.7353 Informatica 49 (2025) 344–350 344 

Low resolution abundant image Real high resolution images
Least square relative 

discriminator

Relative authenticity

Content loss

Feature loss

Texture loss

Generate hyperdivisional images

Builder

Least square relative 

antagonistic loss

 

Figure 4: SRLRGAN-SN process 

 

2 2

~ ( ) ~ ( )

1
min ( ) ( ( ) ) ( ( ( )) )

2
   = − + −   LSGAN x Pdata x z Pg z

D
V D E D x b E D G z a  (8) 

 

In equation (8), a  represents the generated sample 

label; b  represents the true sample label; ~ ( )datax p x  

represents the probability distribution of the true sample; 

~ ( )gz p z  represents the probability distribution that the 

generated sample follows; 
~ ( )x Pdata xE  represents the 

expected value of the true sample distribution; 
~ ( )z Pg zE  

represents the expected value of the generated sample 

distribution. The loss function of the generator is shown in 

equation (9). 

2

~ ( )

1
min ( ) ( ( ( )) )

2
 = − LSGAN z Pg z

G
V G E D G z c  (9) 

In equation (9), c  represents the value that the GM 

wishes to discriminate as true. The calculation formula for 

the JS divergence optimized by the original GAN is shown 

in equation (10). 

~P ~P

1 1
( ) log 2 max log( (( )) log( (( ))

2 2

  
 = + +   

  
r r f fr f x r x fJS P P E D x E D x

 (10) 

In equation (10), 
rP  represents the true distribution; 

fP  represents the generated distribution; 
rx  is the true 

sample; 
fx  is the generated sample. The expression for the 

discriminative mechanism of the original GAN is shown in 

equation (11). 

( ) ( ( ))=GAND x C x  (11) 

In equation (10), C  is the output of the DM before 

activation;   is the sigmoid activation function. The 

discriminant mechanism of the original GAN is realized 

through the discriminator constantly learning and 

distinguishing between the real data and the generated data, 

as well as the adversarial training between the discriminator 

and the generator. This mechanism enables the GAN to 

generate realistic data samples and show strong ability in 

various generation tasks. The expression for the 

discriminative mechanism of the original RGAN is shown in 

equation (11). 

( , ) ( ( ) ( ))= −RGAN r f r fD x x C x C x  (12) 

The discriminant mechanism of the original RGAN 

reduces the randomness of the gradient and does not increase 

the time complexity of the algorithm by averaging the 

original output of the discriminator of a set of reference 

samples and taking the mean value as the reference. The loss 

function of the RGAN discriminator is shown in equation 

(13). 

 

( , )~( , ) log( ( ( ) ( ( ))) = − − r f

RGAN

D x x P Q r fL E C x C x  (13) 

The loss function of the RGAN generator is shown in 



Lightweight Image Super-Resolution Reconstruction Algorithm… Informatica 49 (2025) 339–350 345 

equation (14). 

( , )~( , ) log( ( ( ) ( ( ))) = − − r f

RGAN

G x x P Q f rL E C x C x  (14) 

The relative discriminator considers both real and 

generated samples when evaluating samples, and makes 

decisions by comparing their relative authenticity [17]. The 

relative discriminator not only compensates for the 

shortcomings of the original GAN in training stability and 

generating sample diversity, but also promotes a more 

balanced and dynamic game between G and D, which may 

achieve higher quality generation results. The DM structure 

of SRLRGAN-SN is shown in Figure 5. 
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Figure 5: The discriminant network structure of SRLRGAN-SN 

 

In Figure 5, the front-end of the DM consists of 8 

convolutional layers, each of which extracts features at 

different levels from the input image. The features are 

gradually abstracted from low to high levels. After each 

convolutional layer, an SN layer is introduced to control the 

SN of the network weights, thereby satisfying the Lipschitz 

constraint. The SN layer forms a soft constraint by limiting 

the maximum singular value of the weight matrix to ensure 

the Lipschitz continuity of the network. Lipschitz constraint 

can ensure that the output change of the network does not 

exceed a certain multiple of the input change, which helps to 

stabilize the training process and prevent gradient explosion 

and gradient disappearance.  

All activation layers use the Leaky ReLU (Leaky Rectified 

Linear Unit) activation function. After the convolutional 

layer and SN layer, the DM connects two linear 

dimensionality reduction layers. The final output layer of the 

discrimination network adopts the SRLR relative 

discrimination mechanism, which makes discrimination by 

calculating the relative degree of realism. The SRLR relative 

discrimination output layer calculates the distance in the 

feature space, and uses it as the discrimination basis to 

generate high-quality images.  

Assuming the output of layer l  in the network is lx , its 

expression is shown in equation (15). 

1( )−= − +l l l l lx f W x b  (15) 

In equation (15), 1−lx  represents the input of layer l  

in the network; lW  represents the SN of layer l  in the 

network; lb  represents the bias of layer l  in the network. 

ShuffleNet is a lightweight network, and its latest version 

ShuffleNetV uses point by point group convolution and 

channel shuffling to reduce computational complexity while 

improving model accuracy. Therefore, this study introduces 

ShuffleNetV into SRLRGAN-SN. The schematic diagram of 

ShuffleNetV’s grouped convolution and channel shuffling is 

shown in Figure 6. 
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Figure 6: Schematic diagram of packet convolution and channel mixing 

 

In Figure 6 , in grouped convolution, the input channel 

is divided into several groups, and the feature maps of each 

group are only convolved with the corresponding 

convolution kernels, significantly reducing computational 

complexity and model parameter count. In Figure 6 (b), 

channel shuffling shuffles and reallocates feature map 

channels from different groups, allowing each group to 

receive information from all original input channels in 

subsequent operations. ShuffleNetV achieves a dual 

improvement in model efficiency and performance by 

introducing grouped convolution and channel shuffling 

techniques. 

3 Results 

3.1 Performance Analysis of SRLRGAN-SN 
To test the effectiveness of the reconstruction model, 

this study conducted simulation experiments. The first stage 

was to train the edge generator. In the second stage, the 

trained edge generator was used as a guiding signal to drive 

the training process of the SR reconstruction module. At 

each training stage, the Adam optimization algorithm was 

used to efficiently and stably adjust the model parameters. 

The variation curves of the edge generation module and 

super-resolution reconstruction loss function are shown in 

Figure 7. 

In Figure 7 (a), as the iterations increased, a steady 

trend was observed when the loss value approached 0.22. In 

Figure 7 (b), as the iterations were 25000, the discriminator 

loss curve of the edge generation module tended to stabilize. 

In Figure 7 (c), the loss function curve of the SR 

reconstruction module generator tended to stabilize at 0.32. 

In Figure 7 (d), as the iterations increased, the loss curve 

gradually decreased and stabilized when the loss value 

approached 0.30, indicating that the discriminator’s ability to 

distinguish between real HRI and generated HRI had 

stabilized. To verify the effectiveness of SRLRGAN-SN in 

the reconstruction process, BRISQUE was used as an 

evaluation metric, and VDSR and SRCNN were introduced 

as comparative algorithms for testing on the Set5 dataset. 

Figure 8 shows the experimental results. 

In Table 2, this study implemented the SRLRGAN-SN 

algorithm on the computer Python programming language. 

 

 

Table 2: Experimental environment setting table 

Simulation environment Parameter value 

Operating system Ubuntu 20.04 LTS 

Python Python 3.8 

CPU Intel(R)Core(TM) i7-9700k@3.60GHz 

GPU NVIDIA GeForce RTX 3090 

DL framework TensorFlow 2.x 

Internal memory 32G 
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Figure 7: Edge Generation module and superresolution reconstruction loss function change curve 
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Figure 8: BRISQUE evaluation index of three algorithms on Set5 

 

In Figure 8 (a), SRLRGAN-SN scored 43.6 for 

WOMAN images and 33.8 for HEAD images. In Figure 8 

(b), on the BUTTERFLY image, the evaluation score of 

VDSR was the lowest at 21.2, followed by SRCNN 

algorithm at 26.5, and SRLRGAN-SN with a score of 27.9 

was slightly higher than SRCNN, indicating its advantage in 

processing detail rich images. For BABY images, the 

performance of each algorithm had been improved, with 

VDSR score of 35.7, SRCNN score of 43.2, and 

SRLRGAN-SN score of 46.3. From this, SRLRGAN-SN 

performed excellently in the evaluation of various image 

types, with performance far exceeding traditional VDSR and 

SRCNN. This study conducted color cast factor analysis 

using three algorithms, VDSR, SRCNN, and 

SRLRGAN-SN, with Set5 and Set14 as reference datasets at 

a magnification of 2. For the images in the Set14 dataset, this 

study numbered them alphabetically one by one. Figure 9 

shows the distribution of K values for each reconstructed 

image in different datasets. 

In Figure 9 (a), the K values of the reconstructed 

samples within Set5 were mainly concentrated in the interval 

of 0.4008.5, indicating the similarity level between the 

reconstructed image and the original image in terms of color 

reproduction. In Figure 9 (b), the K values in Set14 were 

roughly distributed in the range of 0.20 to 1.10. Among them, 

SRLRGAN-SN had a lower overall color distortion level on 

both Set5 and Set14, indicating that it had better 

performance in color preservation and reconstruction quality 

compared to other algorithms. In summary, the K-value 

distribution of the reconstructed samples in Set5 and Set14 
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was within an acceptable color shift threshold range. In order 

to ensure the robustness of SRLRGAN-SN algorithm, the 

above three algorithms are compared with the current 

popular SOTA algorithm on Set5 and Set14, DIV2K and 

Urban100 data sets. Quantitative indicators PSNR and SSIM 

were used to evaluate image quality, and FLOPs was used to 

analyze computational efficiency. The experimental results 

are shown in Table 3. 
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Figure 9: K Value distribution of reconstructed images in different data sets 

Table 3: Comparison of results of different algorithms 

Algorithm 

Set5 Set14 DIV2K Urban100 

PSN

R 

SSI

M 
FLOPs 

PSN

R 

SSI

M 
FLOPs 

PSN

R 

SSI

M 
FLOPs 

PSN

R 

SSI

M 
FLOPs 

VDSR 
30.1

4 
0.92 

66543.2

5 

28.3

2 
0.86 

132456.

78 

26.7

8 
0.81 

264913.

50 

24.5

6 
0.76 

529827.0

0 

SRCNN 
29.5

6 
0.89 5321.34 

27.9

8 
0.85 

10542.1

2 

26.3

4 
0.79 

10684.2

8 

24.1

2 
0.74 21084.56 

SOTA 
31.2

3 
0.91 

123456.

89 

29.4

5 
0.87 

246910.

56 

27.1

2 
0.82 

493827.

56 

25.0

3 
0.78 

987654.3

2 

SRLRGAN-

SN 

31.5

0 
0.92 

234567.

11 

29.7

2 
0.88 

469134.

23 

27.3

0 
0.83 

938271.

43 

25.2

8 
0.79 

1938271.

65 

 

As can be seen from Table 3, the PSNR of VDSR algorithm 

on Set5 test set is 30.14dB, SSIM is 0.901 and FLOPs is 

66543.25 times, while the performance on Set14 test set is 

slightly lower. The performance of SRCNN algorithm is 

lower than that of VDSR on both test sets. As the current 

optimal algorithm, SOTA algorithm outperforms the other 

three algorithms on the two test sets, has the highest PSNR 

and SSIM values, but also has the largest computational load. 

Although SRLRGAN-SN is computatively more expensive 

than SOTA on Set5 and Set14 test sets, PSNR and SSIM are 

higher than SOTA, so they can produce more natural images. 

 

3.2 The ablation experiment of SRLRGAN-SN 
To scientifically evaluate the advantages of each 

combination module in the SRLRGAN-SN method in SRIR 

performance, this study compared the model performance  

under different module combinations to quantify the  

independent and collaborative effects of each module in 

improving image reconstruction quality and optimizing  

 

 

 

visual perception characteristics. Table 4 shows the ablation 

experiment setup. 

In Table 4, the model with Setting 1 performed the 

worst in all indicators, indicating the limitations of basic 

training configuration on model performance. When feature 

loss was introduced in Setting 2, the model demonstrated a 

notable enhancement in performance, with the PI value 

dropping to 3.25. This improvement was significant, 

indicating the effectiveness of feature loss in optimizing the 

output quality of the model. Setting 3 reduced the PI index to 

3.28 by incorporating texture loss, indicating that the 

introduction of texture loss effectively improved the visual 

perception quality of the generated image. In Setting 4 and 

Setting 5, the strategy of SRLR relative adversarial loss 

demonstrated superior performance in improving visual 

perception quality compared to traditional relative 

adversarial loss. Setting 6 had the highest performance 

metrics among all Setting methods, indicating that the 

research approach could generate high-quality images. 

Figure 10 shows the texture detail comparison image of the 

ablation experiment reconstruction. 
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Table 4: Analysis and comparison of ablation experiments 

Setting

s 

Content 

loss 

Feature 

loss 

Texture 

loss 

Relative 

counteractio

n loss 

Least square relative 

antagonistic loss 
SN PI P LPIPS 

(a) 〇 × × × × × 5.36 >0.05 0.25 

(b) 〇 〇 × × × × 3.25 <0.01 0.18 

(c) 〇 〇 〇 × × × 3.18 <0.05 0.15 

(d) 〇 〇 〇 〇 × × 2.46 <0.05 0.12 

(e) 〇 〇 〇 × 〇 × 2.24 <0.05 0.10 

(f) 〇 〇 〇 × 〇 〇 2.11 <0.05 0.08 

Master drawing Setup Group (a) Setup Group (b) Setup Group (c)

Master drawing Setup Group (d) Setup Group (e) Setup Group (f)  

Figure 10: Comparison of texture details reconstructed through ablation experiments 

 

In Figure (10), the texture visual effect of the image 

generated by Setting 1 was the blurriest, indicating that only 

basic training had not fully optimized the texture features. 

Setting 2 introduced a feature loss term, which improved the 

visual effect of the image to a certain extent, but the texture 

details of the image were still not clear enough. Setting 3 

introduces texture loss, which enhanced the texture detail 

processing effect of the image. However, the perceptual 

visual effect of the image was poor, indicating that although 

the introduction of a single texture loss helped with detail 

restoration, it was not sufficient to comprehensively optimize 

the perceptual performance of the image. Setting 4 adopted 

GAN adversarial loss, which significantly improved the 

perceptual quality of the image. The overall perception of the 

image was more natural and detailed, indicating that GAN 

adversarial loss had significant advantages in improving the 

realism and detail expression of image generation. Setting 5 

adopted the SRLR relative adversarial loss proposed in the 

study to replace GAN adversarial loss, which further 

improved the perceptual visual effect of the image, 

indicating that the proposed SRLR relative adversarial loss 

was more effective in optimizing the quality of image 

generation. Based on Setting 5, Setting 6 combined SN 

regularization to generate images with extremely fine texture 

and highly similar perceptual features to real HRI. This 

further validated the positive role of each combination 

module in improving the quality of SR reconstruction image 

generation in the research method. For example, lightweight 

image super-resolution reconstruction methods based on 

multi-frequency features and texture enhancement, or 

lightweight image super-resolution reconstruction methods 

based on interleaved group convolution and sparse global 

attention, can be explored to solve the performance 

bottleneck of current algorithms when processing large-scale 

data sets. 

4  Discussion and conclusion 

4.1 Discussion 
SRIR technology has always been a highly valued and 

focused hot topic in computer vision, with significant 

research value in healthcare, remote sensing, and 

surveillance. In recent years, with the rise of DL, significant 
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progress has been made in GAN based SRIR. To this end, 

research has improved GAN and proposed an image 

reconstruction algorithm with SRLRGAN-SN algorithm. 

Firstly, in the SR reconstruction module, the super 

resolution reconstruction module, the generator loss curve 

tends to be stable at 0.32, and the discriminator loss curve 

tends to be stable at about 0.30, indicating that the 

discriminator has a strong ability in distinguishing real and 

generated high-resolution images. This result was consistent 

with the conclusion of scholar Almansour in the study of SR 

reconstruction of upper abdominal magnetic resonance 

imaging based on DL [18]. Secondly, the experimental 

results of VDSR, SRCNN, and SRLRGAN-SN algorithms 

on the Set5 dataset were analyzed using the BRISQUE 

evaluation index. It was found that SRLRGAN-SN had 

better evaluation scores than the other two algorithms on 

various image types. This result was consistent with the 

conclusion of the Orii team in the study of coronary artery 

computed tomography angiography SRDL reconstruction to 

evaluate the lumen of coronary arteries and stents [19]. Then, 

the above algorithm was reconstructed on Set5 and Set14 

datasets, where SRLRGAN-SN’s K value fell between 0.43 

and 0.85 on Set5 and between 0.28 and 1.10 on Set14. 

Compared with the current best technology SOTA, 

SRLRGAN-SN is not only more accurate in color 

preservation, but also exceeds the SOTA method in image 

detail reconstruction and overall visual effect. This result 

further proves the leading position of SRLRGAN-SN 

algorithm in the field of image reconstruction, and provides 

strong support for future related research and practice. 

Finally, the study employed ablation experiments to further 

reveal the impact of different settings on model performance. 

The basic training configuration set Group a only adds 

content loss, and the resulting images may not be rich 

enough in detail and texture and visually realistic enough. 

Set group b to introduce feature loss on top of a, while 

feature loss can improve detail, it cannot generate complex 

textures and structures. Set group c introduces texture loss, 

which produces more realistic texture effects, but artifacts 

still exist when dealing with complex textures. Set group d 

introduced RaGAN counterloss, which further improved the 

realism of the generated image and reduced artifacts, but it 

was unstable in the training process. Setting group e 

introduces the least squares relative adversarial loss, which 

combines the least squares loss and relativistic adversarial 

loss to train the generated adversarial network more stably. 

The least squares relative adversarial loss function does not 

apply to all types of data sets, and may not perform as well 

as other loss functions on some specific data sets. Setting 

group f combined with spectral norm regularization to 

further stabilize the training process, reduce the generation of 

artifacts, and generate images that are highly close to real 

high-resolution images in texture details and perceptual 

features. Elshafai et al. also proposed similar conclusions in 

their review of single image super-resolution models for 

medical images with DL [20]. 

In summary, SRIR with SRLRGAN-SN has shown 

excellent performance in image quality improvement, color 

preservation, and computational efficiency, and has broad 

application prospects and enormous research value. 

 

4.2 Conclusion 
This study proposes an SRLRGAN-SN based on GAN, 

which effectively improves the quality of SRIR by 

introducing multiple loss functions and optimization 

strategies. The collaborative work of its edge generation 

module and SR reconstruction module enables the algorithm 

to restore rich texture details while maintaining image edge 

clarity. In terms of reconstruction quality and color 

preservation, SRLRGAN-SN had shown significant 

advantages compared to traditional VDSR and SRCNN 

algorithms. By comparing the BRISQUE evaluation 

indicators, SRLRGAN-SN could maintain high evaluation 

scores when processing different types of images, especially 

when processing images with rich details. In addition, by 

analyzing the K-value distribution of the reconstructed 

images in Set5 and Set14, the superiority of SRLRGAN-SN 

in color preservation and reconstruction quality was further 

verified. Its lower overall color distortion level indicated that 

the algorithm had high accuracy in color reproduction. 

Finally, the positive effect of SRLRGAN-SN algorithm on 

improving image generation quality was verified through 

ablation experiments. The limitation of this study is that the 

running time of the algorithm may become one of the 

limiting factors for its practical application when processing 

large-scale datasets or HRI. Therefore, future research can 

focus on lightweight design and acceleration techniques for 

algorithms to improve their computational efficiency and 

practicality. 
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