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The advanced technology of artificial emotional intelligence has greatly contributed to multimodal emption 

recognition task. Emotion recognition has played a crucial role in many domains, like communication, e-

learning, mental healthcare, contextual awareness, and customer satisfaction. As real-time data continues to 

expand, addressing the problem of emotion recognition has become critical and complex. A key challenge 

lies in recognizing emotions from multimodal heterogeneous input sources, aligning extracted features, and 

developing robust emotion recognition models. In this study, we explore a cross-modal (audio and video 

modality) fusion mechanism for emotion recognition, effectively addressing the associated feature 

complexities. We have used 2D-CNN and 3D-CNN deep learning models for audio and video feature 

extractions and developed robust models for emotion recognition. This study emphasizes the importance of 

Compact Bilinear Gated Pooling (CBGP) cross-modal fusion mechanism and highlights the contribution of 

fusing the features from audio and video modalities for emotion recognition. It also discusses the working 

principle and comparison performance with other peer cross-modal fusion techniques such as FBP and CBP. 

The performance of advanced cross-modal fusion is compared to baseline traditional cross-modal fusion 

mechanisms including EF-LSTM, LF-LSTM, Graph-MFN, hybrid fusion and transformer model based fusion 

mechanisms such as, attention fusion and transformer fusion. This experiment is performed on benchmark 

datasets CMU-MOSEI and achieves an accuracy of 80.3%, F1-score of 79.2%, and MAE of 54.2%. 

Povzetek: Predstavljen je napredni mehanizem optimalne fuzije med modalnostmi za umetno prepoznavanje 

čustev na podlagi avdio-video posnetkov.  Študija uporablja 2D- in 3D-CNN za ekstrakcijo značilnosti, 

poudarja pomen CBGP fuzije in dosega odlične razultate na naboru podatkov CMU-MOSEI. 

 

1 Introduction 

Emotion recognition is being successfully used in many 

domains and applications. The adoption of this 

technology has grown rapidly in healthcare, e-learning 

and advertising [1]. Initially, emotion recognition was 

limited to with unimodal approaches, but it has now 

gained more popularity with the advancement of 

multimodal approaches and enhanced techniques. Its 

growing demand has expanded the scope for exploring 

various directions of research in emotion recognition. 

Multimodal data inherently contains rich information and 

has the potential to learn meaningful patterns from 

extracted features. In our study, we intend to achieve 

emotion recognition by combining features extracted 

from audio and video modalities and employing a fusion 

mechanism. This study explores the cross-modal fusion 

approach, where the term ‘cross modal fusion’ refers to 

integrating essential features from heterogeneous input 

sources, further this integration helps in training deep 

learning models and classifying emotions effectively. 

Advanced cross-modal fusion mechanisms are 

categorized in three types: Factorized bilinear pooling 

(FBP) [2], Compact bilinear pooling (CBP) [3], and 

Compact Bilinear Gated Pooling (CBGP) [4].  

Emotion recognition from audio and video modalities are 

very crucial because audio and video (collection of image 

frames) gives a wide range of information regarding, 

pitch, tone, image texture, facial movements, and facial 

expressions [5]. To train a model it is easy to extract 

features within the same modality and from another 

modality. This type of feature extraction leads to training 

a deep learning model to fine grained emotion 

classification tasks [6]. To work with different modalities, 

the most important and primary step is to extract the 

features from both the modalities. After preprocessing 

and cleaning the features, it is required to align those 

features, and combine only those features which have 

essential information and can help to train a deep learning 

model [7]. This study uses two different deep learning 

models, one is 2D-CNN [8] for audio modality and other 

is 3D-CNN [9] for video modality. As per the previous 

studies, this study aims to explore the advanced fusion 

mechanism such as Factorized bilinear pooling (FBP), 

Compact bilinear pooling (CBP), and Compact Bilinear 

Gated Pooling (CBGP). This study compares the 
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advanced fusion approaches with state-of-the-art fusion 

approaches such as early fusion, late fusion, and hybrid 

fusion, as well as transformer model based fusion 

techniques such as attention fusion and transformer 

fusion. 

The research contribution of the proposed work 

are as follows: 

• Highlights the limitations of traditional fusion 

mechanisms, such as high dimensionality, 

suboptimal interdependency modeling, and 

challenges in fine-grained emotion classification. 

• Addresses a critical gap to reduce the computational 

errors and improve the sustainability of audio-video 

emotion recognition systems. 

• Introduces a novel gating unit and cross-modal 

fusion approach using factorized bilinear pooling 

and compact bilinear pooling, addressing the 

inefficiencies in traditional fusion methods. This 

solution enhances feature interaction and reduces 

computational complexity. 

• Employs lightweight 2D-CNN and 3D-CNN 

architectures for audio and video modalities, 

respectively, avoiding the need for pruning and 

quantization while maintaining network simplicity.  

• This design minimizes computational overhead 

associated with insignificant weights and neurons. 

Validates the model’s accuracy and compares the 

performance of all three advanced cross-modal 

fusion mechanisms using the benchmark dataset 

CMU-MOSEI. 

• Validates the model’s accuracy and compares the 

performance with baseline, and traditional state-of-

the-art fusion approaches: early fusion, late fusion 

and hybrid fusion. 

• Comprehensive discussion with transformer model 

based fusion approaches: attention fusion and 

transformer fusion. 

• The proposed approach ensures scalability and 

sustainability, contributing to the development of 

more resource-efficient deep learning models for 

real-world applications. 

The rest of the paper is organized as follows: section 2 

reviews the literature on feature extraction and traditional 

fusion mechanism and highlights the related work and 

research gap. Section 3 introduces the advanced cross-

modal fusion approaches. Section 4 presents the training 

model and experimental setup, section 5 provides the 

result and discussion, and finally, Section 6 concludes the 

paper and suggests future scope. 

 

 

  

2    Literature review 

This section offers an overview of the features of audio-

video modalities, and the existing fusion mechanisms in 

multimodal emotion recognition, along with a detailed 

review. Table 1 summarizes the related work and some 

baseline cross-modal fusion mechanisms, particularly for 

emotion recognition in audio-video modalities using the 

CMU-MOSEI dataset.  

2.1 Feature extraction 

Before feature extraction, the raw input dataset is pre-

processed to ensure it is free from noise, missing values 

and other inconsistencies [10]. Feature extraction is a 

crucial part of feature engineering in any classification 

model, which yields critical information from the input 

data. Feature sets act as input vectors for a deep learning 

model, containing all the necessary information about the 

modalities that help the model learn patterns [11]. This 

section reviews the features and feature sets of audio and 

video modalities utilized in previous research studies. 

i. Audio features 

To effectively train deep learning models with audio 

features, feature extraction tools and libraries such as 

LibROSA [12], OpenSMILE [13], and pyAudioAnalysis 

[14] has proven indispensable. These tools are essential 

to process and extract the meaningful features, offering a 

robust foundation for building a deep learning model. The 

process begins with raw audio data undergoing a 

preprocessing step. After preprocessing, audio features 

are extracted using these tools and libraries. These 

features contain the information about acoustic properties 

[15] of audio utterances embedded within the video track. 

The extracted feature provides crucial information about 

various feature segments such as pitch, tone, energy, 

rhythm, and spectral attributes [16]. These properties 

capture many useful insights from raw audio data to train 

the deep learning model, which drives to classify the 

emotional state. Some most widely used extracted key 

features include:  

• Mel-Frequency Cepstral Coefficients (MFCCs) [17]: 

Derived from spectrograms to represent the audio signal 

in a form humans perceive.   

• Spectral features [18]: Attributes such as spectral 

centroid, roll-off, bandwidth that highlight energy 

distribution across frequencies.  

• Variations in pitch, frequencies, amplitude [19]: 

Capturing changes in voice that are indicative of different 

emotions.  

• Energy and intensity levels [19]: it represents the changes 

in signal strength, where low intensity often refers to ‘sad’ 

and high intensity correlates with ‘excitement or happy’ 

emotions. 
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Video features 

Extracting video features is an essential step to train a 

deep learning model for emotion recognition. This 

process takes multiple sub-steps like extracting frames 

from the video, setting the frames per second, and 

extracting per frame features. After extracting frames, 

it is required to preprocess the entire frames as per 

standards for emotion recognition.  

This preprocessing includes tasks such as frame 

sampling [20], facial feature alignment [21], discarding 

irrelevant frames and reducing variations. 

Previous studies have explored two broad approaches 

to extracting the features from frames: appearance-

based features and geometric-based features [22]. 

Appearance-based features: These features describe the 

visual characteristics as features of a picture within a 

specific frame, such as the face, facial expression, 

expression textures, sharpness, and facial movements 

[23]. These features provide pure cues and essential 

information for recognizing emotions. 

Geometric-based features: These features are determined 

based on the calculation of facial landmarks, jaw 

movements, eyebrow movements, expression 

coordinates, relative positions, distance, arcs, shape 

angles, texture angles, and other facial action parameters 

[24]. 

These features are extracted using machine learning 

algorithms [25]–[28], traditional feature extraction 

techniques [29]–[32], and currently deep neural network 

models [12], [33]–[35]. Python libraries and frameworks 

are now widely used for feature extraction processes, 

enabling the development of more robust models for 

emotion recognition.   

2.2 Feature fusion mechanism 

After extracting features from both the audio and video 

modalities, an integration process is required to combine 

them effectively. This process, known as information 

fusion or feature fusion, involves aligning the key features 

from each modality obtained during the feature extraction 

and fusing them into a unified representation [36]. The 

goal is to synchronize the features of both modalities to 

collaboratively recognize emotions with higher accuracy. 

In this fusion process, the integrated features are first used 

to train a deep learning model. The model is then 

validated to ensure its accuracy and reliability in emotion 

recognition.  

Early fusion 

Early fusion  [5] is one of the simplest and most 

fundamental mechanisms for multimodal fusion. In this 

fusion mechanism, features from different modalities are 

first aligned and integrated after extraction and then fed 

into a deep neural network model as input. This method 

combines audio and features into a single unifies feature 

vector, by applying the concatenation or elementwise 

operations such as addition, multiplication the, processed 

by a deep learning classification model for emotion 

recognition. 

Late fusion 

To address the limitations of early fusion, another basic 

fusion mechanism, late fusion [37], was introduced. A 

significant amount of research has shifted towards this 

fusion mechanism to develop more robust emotion 

classification models. In late fusion, each modality is 

first pre-processed, analyzed, and fed into a deep neural 

network model as input. The outputs from these 

classification models are then combined at a later stage. 

The advantage of this fusion mechanism lies in its 

ability to fuse features with low dimensionality and 

accurately classify emotions. 

Hybrid fusion 

Hybrid fusion [38] is hybridization of early and late 

fusion, integrating the feature properties of both fusion 

principles. It is considered superior to early and hybrid 

fusion in emotion classification. This fusion is 

particularly useful for addressing the challenges 

associated with the complexity of early and late fusion. 

Hybrid fusion can be applied in two phases; first, 

during the initial feature interaction, and second, after 

the model has been trained. However, this fusion 

technique fails to manage large parameters and 

complex features, where extracting and combining 

correlation based spatiotemporal feature information 

and identifying patterns are critical in multimodal 

emotion recognition. Hence, hybrid fusion needs 

further improvements to deal with complex multimodal 

datasets.   

Attention fusion 

Attention fusion [39] is a mechanism that focuses on 

fusing only the most relevant and crucial features after 

extracting all the features and generating feature maps 

from multimodal inputs. The advantage of this 

approach is to excel in handling both inter-modality and 

intra-modality interactions effectively. However, a 

major drawback of this fusion mechanism arises when 

feature alignment errors occur in spatiotemporal 

datasets or when sequence synchronization is lacking. 

Such issues lead to weak attention scores, increasing 

data complexity and computational burden [40]. There 

are two types of attention fusion mechanisms: self-

attention [41] and multi-head attention [13]. Self-

attention fusion sequentially captures interactions 

within a single modality, while multi-head attention 

focuses on every aspect of feature representation and 

captures interactions as output from multiple heads in 

parallel. 

Transformer fusion 

Transformer fusion [42] is an advanced approach of 

fusion mechanism that leverages pre-trained 

transformer models, which scales well on long 

sequencing data due to their ability to perform parallel 
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computations. This fusion approach is particularly 

suitable for text-based emotion recognition tasks and 

natural language processing (NLP) applications, as it 

processes all token embeddings simultaneously. 

However, transformer fusion is less efficient when 

applied with audio and video modalities together. This 

limitation arises from the tokenization-synchronization 

trade-off between audio and video frame intervals, and 

positional embedding segments can lead to a loss of 

critical information and feature correlations in these 

modalities. Furthermore, the process results in 

imbalanced classification, complex computations, and 

high memory usage, making it less ideal for fusing 

spatiotemporal features and datasets.  

 

Table 1:  Summary of audio-video based traditional fusion and other fusion’s related work. 

Fusion Feature 

extraction 

model 

Modality Datasets Remarks 

Early fusion 

[43] 

LSTM Audio-video CMU-

MOSEI 

Sensitive to noise and misalignment 

between audio and video signals 

Late fusion [43] LSTM Audio-video CMU-

MOSEI 

High computational cost; less effective in 

modeling complex interactions between 

modalities 

Hybrid fusion 

[44] 

VGG-net Audio-video IIT-R SIER Increased model complexity; risk of 

overfitting with limited data 

Multimodal 

Factorization 

Model (MFM) 

[43] 

Bayesian 

network 

Audio-video CMU-

MOSEI 

Computationally expensive; less scalable 

for large datasets 

Graph-MFN (G- 

MFN) [45] 

LSTM Audio-video CMU-

MOSEI 

Limited scalability 

Multiplicative  

fusion (M3ER) 

[46] 

LSTM Audio-video IEMOCAP, 

CMU-

MOSEI 

Prone to overfitting 

Cross-Attention 

fusion [39] 

Attention & 

concatenation 

Audio-video RAVDESS Requires large amounts of data for 

effective attention training; sensitive to 

missing modality information 

Transformer 

fusion [42] 

Transformer-

based pre-

trained model 

Audio-video MELD, 

IEMOCAP, 

CMU-

MOSEI 

High memory consumption; needs 

extensive pretraining and large datasets 

Multimodal 

fusion [47] 

CNN Audio-video AVEC2017 Limited ability to capture temporal 

relationships; 

Model level 

fusion [48] 

2-layer LSTM Audio-video RECOLA fine-tuning requires careful parameter 

tuning. 

Tensor fusion 

network TFN  

[49] 

Three-fold 

Cartesian 

product 

Audio-video CMU-

MOSEI 

Tensor-based fusion can be 

computationally prohibitive; sensitive to 

missing or noisy data. 

Multimodal 

Dynamic 

Fusion Network 

[50] 

Bi-directional 

gated recurrent 

unit (BiGRU) 

Audio-video IEMOCAP, 

MELD 

Complex training process; BiGRUs can 

suffer from vanishing gradient problems 

with long sequences. 

 

2.3 Research gap 

Problem: Through a comprehensive review of the literature, 

we have gained crucial insights into audio and video feature 

extraction, various traditional cross-modal feature fusions 

(such as early, late hybrid, attention, and transformer 

fusion), and deep learning models, along with their 

comparative performances on benchmark multimodal 

datasets. Traditional fusion faces challenges with high 

dimensionality in large datasets, fails to optimize the 

interdependencies of features, and struggles with fine-

grained emotion classification. However, a critical research 

gap still needs to be addressed to improve further, 

specifically to reduce the computational error in traditional 

fusion mechanisms for audio-video based emotion 

recognition systems and enhance their sustainability.  

Solution: To address this gap, we propose a gating unit, and 

advanced cross-modal fusion mechanism (factorized 
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bilinear pooling and compact bilinear pooling) as an 

alternative to traditional methods. This approach employs 

2D CNN and 3D CNN simple deep neural network 

architectures to avoid pruning and quantizing the mode 

while managing insignificant weights and neurons. This 

solution can optimize the computational efficiency while 

maintaining high performance, contributing to the 

development of more sustainable and scalable emotion 

recognition systems. 

3 Material and methods  
In this section, we first describe the cross-modal fusion 

mechanism and its architecture. Next, we introduce three 

advanced cross-modal fusion mechanisms and its 

algorithm to enhance audio-video based emotion 

recognition from audio and video modality. Finally, we 

discuss the comparative performance of these techniques 

against state-of-the-art fusion mechanisms.    

3.1 Cross-modal fusion mechanism 

Cross-modal fusion is an effective technique for emotion 

recognition that involves extracting meaningful and 

essential features from two or more heterogeneous input 

sources or modalities using feature extraction processes, 

integrating these features, and subsequently training a 

deep learning model. This technique has contributed to 

many applications including emotion recognition and has 

continually evolved, demonstrating its versatility and 

effectiveness. Notably, cross-modal fusion has been 

successfully applied in many applications such as object 

detection [51], night pedestrian detection [52] , low light 

image semantic segmentation [53], and depression 

detection [54]. Cross-modal fusion mechanism intends to 

develop a joint representation that gathers all the 

collective essential features from all the modalities and 

feeds into a single vector while retaining each modality’s 

contributions. 

While traditional cross-modal fusion mechanisms are 

discussed in the literature review section, this section 

focuses on three advanced cross-modal fusion 

mechanisms for emotion recognition: Factorized bilinear 

pooling (FBP), Compact bilinear pooling (CBP), and 

Compact Bilinear Gated Pooling (CBGP). 

 

Figure 1: Basic architecture of Audio-video based cross-modal fusion mechanism 

3.2 Factorized bilinear pooling (FBP) 

Factorized Bilinear Pooling (FBP) is a method that 

enhances the standard bilinear pooling technique by 

factorizing the bilinear interaction tensor into lower-rank 

approximations [55]. Traditional bilinear pooling involves 

computing the outer product of two feature vectors from 

different modalities, resulting in a high-dimensional feature 

representation. While this method captures rich interactions 

between the modalities, it is computationally expensive and 

prone to overfitting due to the large number of parameters. 

FBP mitigates these issues by factorizing the interaction 

tensor into a product of two lower-rank matrices, 

significantly reducing the number of parameters while 

preserving the expressive power of bilinear interactions. 

𝑍 = ∑ (𝑀𝑇𝐴)𝑚
𝑖=1 . (𝑁𝑇𝑉)   (1) 

Where, Z: Pooled feature vector, M and N are bilinear 

interaction matrices, A and V are feature vectors from audio 

and video, respectively. Algorithm 1 illustrates the step-by-

step factorized bilinear pooling fusion process 

implementation. 

Training method: Let 𝐴′ represents the Audio and 𝑉′ 

represents the Video modality. The   feature extraction 

functions 𝑓𝑎 𝑎𝑛𝑑 𝑓𝑣 are applied to the audio and video 

modality. It generates the feature vectors: 

𝐹𝐴 = 𝑓𝑎(𝐴′) 𝑎𝑛𝑑 𝐹𝑉 = 𝑓𝑣(𝑉′)   (2) 
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Where 𝐹𝐴 𝑎𝑛𝑑 𝐹𝑉 are the extracted feature vectors from 

audio and video, 𝐷𝐴  𝑎𝑛𝑑 𝐷𝑉 are dimensionality spaces of 

the audio and video feature spaces.  

If the features from audio and video need to be combined, a 

fusion mechanism 𝛴 can be used to integrate these feature 

vectors into a unified representation 𝐹′. It can be calculated 

as:  

𝐹′ = Σ(𝐹𝐴, 𝐹𝑉)  𝑜𝑟 𝐹 = 𝐹𝐴 ⨁ 𝐹𝑉     (3) 

A prediction function f (F’) is then applied to the feature 

vector 𝐹′ to predict the target emotion category value, Z’ so, 

𝑍′ = 𝑓(𝐹).  Here, 𝑓(𝐹) is a 2D-CNN deep neural network 

acting as a classifier. The model is trained on labelled 

dataset so it is calculated as follows: 

(𝐹𝑖𝑦𝑖)𝑖=1
𝑁       (4) Where 𝑦𝑖  is the 

true prediction label and N is the size of the sample.  

Algorithm 1:  Factorized Bilinear Pooling (FBP) 

Input: Factorize audio features: 𝐹𝐴 = 𝑓𝑎(𝐴′) 

Factorize video features:  𝐹𝑉 = 𝑓𝑣(𝑉′) 

Output: Predict the emotion class for new inputs 

1. 1.  Compute the bilinear interaction between the 

factorized audio and video features: 

𝐹′ = Σ(𝐹𝐴, 𝐹𝑉)  𝑜𝑟 𝐹 = 𝐹𝐴 ⨁ 𝐹𝑉 

2. Feed the compact bilinear pooled vector ZFBP 

into a deep neural network classifier: (𝐹𝑖𝑦𝑖)𝑖=1
𝑁  

3. Calculate the loss function, minimize, and 

evaluation metrics 

4.    4.    Use the trained model to predict the emotion 

class 

5.           for new inputs. 

6.  

This factorization reduces the computational burden and 

allows the model to generalize better, especially when 

dealing with limited data. FBP has been successfully 

applied in tasks such as Visual Question Answering (VQA) 

and image-text matching, where the interaction between 

modalities is crucial. 

3.3 Compact bilinear pooling (CBP) 

Compact Bilinear Pooling (CBP) further refines the bilinear 

pooling approach by employing compact representations of 

the bilinear interactions. Unlike standard bilinear pooling, 

which directly computes the outer product of two feature 

vectors, CBP leverages approximations based on the Tensor 

Sketch technique to produce a compact representation of the 

outer product. This method dramatically reduces the 

dimensionality of the resulting feature vector without losing 

the key interactions between modalities. Algorithm 2 

illustrates the compact bilinear pooling fusion process 

implementation. 

In CBP, the outer product of the feature vectors A and V is 

approximated by projecting both vectors into a higher-

dimensional space using random projections, followed by 

element-wise multiplication and summation. Presented 

equation represents how to implement CBP for audio-video 

emotion recognition using a deep neural network: 

𝑍 = ∑ (𝑝𝑟𝑜𝑗𝑎(𝐴)𝑖)
𝑚
𝑖=1 . (𝑝𝑟𝑜𝑗𝑣(𝑉𝑖))   (5) 

Where, Z:  Pooled feature vector, A and V are feature 

vectors from audio and video, respectively. 𝑝𝑟𝑜𝑗𝑎 , and 𝑝𝑟𝑜𝑗𝑣 

are projection matrix of audio and video features.  

 

 

 

Training Method:  Let 𝐴′ represents the Audio and 𝑉′ 

represents the Video modality. The feature extraction 

functions 𝑓𝑎 𝑎𝑛𝑑 𝑓𝑣 are applied to the audio and video 

modality. It generates the feature vectors:   

  𝐹𝐴 = 𝑓𝑎(𝐴′) 𝑎𝑛𝑑 𝐹𝑉 = 𝑓𝑣(𝑉′)   (6) 

CBP uses random projections to project the high-

dimensional feature vectors into a lower-dimensional space 

before combining them. Random projection for audio (ZA) 

and video features (ZV): 

𝑍𝐴 = (𝑃𝐴𝐹𝐴)  and  𝑍𝑉 = (𝑃𝑉𝐹𝑉)    (7) 

Where, ZA/V: Projection of audio /video, PA, and Pv: 

Projection matrix of audio /video features. To maintain the 

information during projection, random sign vectors are 

applied to the projected features.   

𝑍𝐴′ = 𝑆𝐴 ∘ 𝑍𝐴 and 𝑍𝑉′ = 𝑆𝑉 ∘ 𝑍𝑉  (8) 

SA and SV are random sign vectors for audio and video 

features, ° 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑠𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. Then 

we applied the random permutation to the elements of the 

signed vectors to further scramble the features. 

𝑍𝐴" = 𝑃𝑒𝑟𝑚𝑢𝑡𝑒(𝑍′𝐴, ℎ𝐴), and 𝑍𝑉" = 𝑃𝑒𝑟𝑚𝑢𝑡𝑒(𝑍′𝑉 , ℎ𝑉) (9) 

 where, ℎ𝐴, ℎ𝑉 is a permutation vector applied to the indices 

of Z’A and Z’V. 

The core of CBP involves computing the circular 

convolution of the two permuted feature vectors:  

𝑍𝐶𝐵𝑃 = 𝐹𝐹𝑇−1 (𝐹𝐹𝑇(𝑍𝐴)) ° (𝐹𝐹𝑇(𝑍𝑉))    (10) 

𝐹𝐹𝑇−1 ∶ 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑓𝑎𝑠𝑡 𝑓𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚, and 

𝐹𝐹𝑇: 𝑓𝑎𝑠𝑡 𝑓𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 

 After this we normalized the obtained CBP feature vector 

and classified the categories of emotions by using deep 

neural networks. Calculated with the following formula:  
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𝑍′𝐶𝐵𝑃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝐶𝐵𝑃)     (11) 

where 𝑍′𝐶𝐵𝑃  predicts the emotion class, and 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝐶𝐵𝑃) represents the function of the deep neural 

network. 

 

3.4 Compact bilinear gated pooling (CBGP) 

Compact Bilinear Gated Pooling (CBGP) enhances and 

builds upon Compact Bilinear Pooling (CBP) by adding a 

gating mechanism that adjusts or selectively emphasizes 

features based on their relevance, using a learned Softmax 

function to modulate feature interactions before pooling.  

In CBGP, the feature vectors A and V undergo compact 

bilinear pooling as described in CBP, but before the final 

summation, the resulting interaction vector is element-wise 

multiplied by a gating vector  𝐺′ ∈ 𝑅𝑑 Where, d is the 

dimensionality of the compact representation. The gating 

vector is computed as:  

𝐺′ = 𝜎(𝑊𝐺(𝐴′, 𝑉′) + 𝑏𝐺)           (12) 

Where 𝜎: 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑊𝐺  : weight matrix, 𝑏𝐺: bias 

vector, 𝐴′, 𝑉′: audio, video feature vectors. 

Training Method: Let 𝐴′ represents the Audio and 𝑉′ 

represents the Video modality. The feature extraction 

functions 𝑓𝑎 𝑎𝑛𝑑 𝑓𝑣 are applied to the audio and video 

modality. It generates the feature vectors:  

𝐹𝐴 = 𝑓𝑎(𝐴′)  and  𝐹𝑣 = 𝑓𝑣(𝑉′)  (13) 

CBP uses random projections to project the high-

dimensional feature vectors into a lower-dimensional space 

before combining them and calculates the random 

projection for audio (𝑍𝐴) and video features (𝑍𝑉):  

𝑍𝐴 = 𝑃𝐴𝐹𝐴   𝑎𝑛𝑑  𝑍𝑉 = 𝑃𝑉𝐹𝑉  (14) 

Where ZA 𝑎𝑛𝑑 𝑍𝑉: Projection of audio and video, PA, and 

Pv: Projection matrix of audio and   video features. Then, we 

compute element-wise multiplication of the projected 

vectors: 

𝑍′ = 𝑍𝐴 ∘ 𝑍𝑉  (15) 

Gated pooling: (i) compute the introduced gating vector 

𝐺′ ∈ 𝑅𝑑 Where, d is the dimensionality of the compact 

representation. The gating vector is computed as: 

   

𝐺′ = 𝜎(𝑊𝐺(𝐴′, 𝑉′) + 𝑏𝐺)         (16) 

Here, 𝜎 is a Softmax function.   

(ii) then we apply the gating mechanism to the element-wise 

multiply vector:  

𝑍′′ = 𝐺′ ∘ 𝑍′      (17) 

Finally, we sum the elements of the gated interaction vector 

to obtain the final pooled vector by the following equation-  

𝑍 = 𝑆𝑢𝑚(𝑍′′)     (18) 

This entire mechanism can be summarized by an equation, 

Where, Z: pooled feature vector, ZA/𝑎𝑛𝑑 𝑍𝑉: Projection of 

audio and video.      

𝑍 = ∑  (𝜎(𝑊𝐺  (𝐴, 𝑉) + 𝑏𝐺))𝑖 . (𝑍𝐴)𝑖)
𝑚
𝑖=1 . (𝑍𝑉(𝑉𝑖))  (19) 

  

Algorithm 3:  Compact Bilinear Gated Pooling (CBGP) 

Input: Project audio features: ZA, and Project video features:  𝑍𝑉 

 

Output: Predict the emotion class for new inputs. 

 

1. Compute gating vectors for audio and video features: 

𝐺′ = 𝜎(𝑊𝐺(𝐴′, 𝑉′) + 𝑏𝐺) 

Algorithm 2:  Compact Bilinear Pooling (CBP) 

Input: Project audio features, 𝑍𝐴 𝑎𝑛𝑑 

Project video features, 𝑍𝑉 

Output: Predict the emotion class for new inputs 

1. Generate projection matrix, 𝑍𝐴′ 

2. Apply sign vectors to the projected audio features: 

𝑍𝐴′ = 𝑆𝐴 ∘ 𝑍𝐴 

3. Apply sign vectors to the projected video features: 

𝑍𝑉′ = 𝑆𝑉 ∘ 𝑍𝑉 

4. Apply permutation to the audio features: 

𝑍𝐴" = 𝑃𝑒𝑟𝑚𝑢𝑡𝑒(𝑍′𝐴, ℎ𝐴) 

5. Apply permutation to the video features: 

𝑍𝑉" = 𝑃𝑒𝑟𝑚𝑢𝑡𝑒(𝑍′
𝑉 , ℎ𝑉) 

6. Compute the circular convolution of the two 

permuted feature 

vectors: 𝑍𝐶𝐵𝑃 = 𝐹𝐹𝑇−1 (𝐹𝐹𝑇(𝑍𝐴)) ° (𝐹𝐹𝑇(𝑍𝑉)) 

7. Feed the compact bilinear pooled vector ZCBP 

into a deep neural network classifier: 

𝑍′𝐶𝐵𝑃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝐶𝐵𝑃) 

8. Calculate the loss function, minimize, and 

evaluation metrics 

9. Use the trained model to predict the emotion class 

for new inputs. 
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2. Apply the gating vectors to the projected features: 

 

𝑍′ = 𝑍𝐴 ∘ 𝑍𝑉 

3. Apply sign vectors to the gated audio features: 

𝑍𝐴′ = 𝑆𝐴 ∘ 𝑍𝐴 

 

4. Apply sign vectors to the gated video features: 

𝑍𝑉′ = 𝑆𝑉 ∘ 𝑍𝑉 

 

5. Apply permutation to the gated and signed audio features: 

𝑍𝐶𝐵𝐺𝑃 = 𝐹𝐹𝑇−1 (𝑃(𝐹𝐹𝑇(𝑍𝐴 ∙ 𝐺))) 

 

6. Apply permutation to the gated and signed video features: 

𝑍𝐶𝐵𝐺𝑃 = 𝐹𝐹𝑇−1 (𝑃(𝐹𝐹𝑇(𝑍𝑉 ∙ 𝐺))) 

 

7. Compute the circular convolution of the two permuted feature 

vectors: 

𝑍′′ = 𝐺′ ∘ 𝑍′ 
 

8. Normalize the pooled feature vector: 

𝑍 = 𝑆𝑢𝑚(𝑍′′) 

9. Feed the compact bilinear gated pooled vector ZCBGP into a deep 

neural network classifier: 

𝑍𝐶𝐵𝐺𝑃 = ∑  (𝜎(𝑊𝐺  (𝐴, 𝑉) + 𝑏𝐺))𝑖 . (𝑍𝐴)𝑖)

𝑚

𝑖=1

. (𝑍𝑉(𝑉𝑖)) 

10. Calculate the loss function, minimize, and evaluation metrics 

11. Use the trained model to predict the emotion class for new inputs 

 

Through this mathematical analysis, CBGP has been able 

to identify the optimal fusion approaches that can be 

applied to audio-video-based emotion recognition systems, 

ultimately contributing to the development of more robust 

and accurate emotion recognition technologies. The gating 

mechanism allows to control the flow of information 

between the layers while selecting and rejecting the 

relevant or non-relevant (based on correlation feature 

score) inputs. As we know, not all the features are equally 

important at every step or time frame, so the gating 

mechanisms dynamically assign weights to features to 

capture complex regions more effectively. 

4 Model training and experiments 

Our experiments are conducted on a system equipped with 

an AMD Ryzen 7 processor, 16GB of RAM, and an 

NVIDIA GeForce RTX GPU. The code was implemented 

using Jupyter Notebook IDE and the PyTorch framework. 

For audio and video preprocessing, we utilized the Librosa 

and OpenCV Python libraries.  

 

4.1 Evaluation dataset 

CMU-MOSEI [37]: CMU-MOSEI dataset comprises 

over 23,259 annotated video clips collected from more 

than 1,000 speakers across a diverse range of topics. 

Total number of videos is 3228, video clips contain 

naturally occurring monologues in English, making the 

dataset a realistic representation of human 

communication. The dataset is annotated with six 

categorical emotions: happy, sad, angry, fear, disgusted, 

and surprised. Additionally, CMU-MOSEI provides 

intensity scores for each emotion, allowing for a fine-

grained analysis of emotional expressions. After 

preprocessing, 20,323 samples are processed for feature 

extraction. The dataset is divided into three sets; 80% for 

training, 10% for testing, and 10% for validation. The 

performance is evaluated on Accuracy, F1-score, and 

mean absolute error, (MAE). 

4.2 Deep learning model implementation 

details 

a. 2D-CNN for Audio feature extraction and training 

model 
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We used 2D-cnn to extract and capture inter-modal 

feature dependencies from the CMU-MOSEI dataset. To 

generate spectrograms from raw audio files, we used the 

LibROSA library, which converts the raw audio 

waveform into a time series sampled at 22500 Hz. The 

waveform is then transformed into a spectrogram using 

the Short-Time Fourier Transform (STFT), with a 

window size of 2048 and a hop length of 512, striking a 

balance between time and frequency resolution. 

Spectrograms play a crucial role in audio-video emotion 

recognition as they align with video frames, increasing 

the likelihood of feature correlations due to time and 

frequency samples during fusion mechanism. 

b. 3D-CNN for video feature extraction and training 

model 

We used a simple 3D-CNN model because emotion 

recognition requires synchronized feature relations in 

each frame of a video, and a compact bilinear gated 

fusion mechanism can increase computational 

complexity. Additionally, our proposed approach aims to 

extract spatial and temporal features and incorporates a 

gated filter to fuse features from the audio and video 

modalities for each utterance. Therefore, we chose a 

simple deep learning architecture. The 3D-CNN takes a 

224x224x3 image as input, which passes through the 

first 3D convolution layer followed by pooling layers, 

with a filter size of 3x3x3 and a stride of 1.  Table 2 

illustrates the Hyperparameters for 2D-CNN and 3D-

CNN model.

Table 2. Hyperparameters for 2D-CNN and 3D-CNN model 

Hyperparameter (2D-CNN) Audio 

 

Hyperparameter (3D-CNN) Video 

Input size= 224x224 Spectrogram Input size=224x224x3 image frames 

Kernels (conv layers) =32,64,128,256 Kernels (conv layers) = 64,128,256,512 

Stride=1 Stride=1 

Activation function= Relu and Softmax Activation function= Relu and Softmax 

Max Pooling= 2x2 Max Pooling= 3x3x3, 2x2x2 

Batch size=32 Batch size=32 

Epochs= 30 Epochs= 30-50 

Learning rate=0.00003 (cosine decay) Learning rate=0.00003 (cosine decay) 

Regularization=L2 Regularization= L2 

Dropout= 0.3% Dropout=0.2% 

Optimizer = Adam Optimizer = Adam 

 

 

5 Result and discussion 

We evaluate the performance of each cross-modal fusion 

mechanism (FBP, CBP,CBGP) and compare it with the 

state-of-the-art (early fusion, late fusion and hybrid 

fusion) mechanisms on the CMU-MOSEI dataset using 

accuracy, F1-score, and MAE. F1-Score is the harmonic 

mean of precision and recall metrics. The results are 

summarized in the tables below, highlighting the 

contributions of each fusion method to the overall 

system performance 

5.1 Ablation study 

To investigate the specific contributions of compact 

bilinear gated pooling fusion (CBGP) of cross-modal 

fusion mechanism, this paper presents a detailed analysis 

of a series of ablation experiments conducted on the 

CMU-MOSEI datasets. These results are presented in 

tables, comparing key performance using accuracy, F1-

score, and MAE among advanced cross-modal fusion 

mechanisms such as bilinear gated pooling, compact 

bilinear pooling, and compact bilinear gated pooling. We 

analyse the accuracy of each traditional fusion 

mechanism such as early fusion, late fusion and hybrid 

fusion on the same dataset, CMU-MOSEI. This 

approach employs 2D CNN and 3D CNN simple deep 

neural network architectures to avoid pruning and 

quantizing the mode while managing insignificant 

weights and neurons. The ablation study was carried out 

with a feature extraction process where features are 

audio and video modalities that interact through the outer 

product. The outer product allows the 2D-CNN and 3D-

CNN to capture the interactions between every feature 

of one modality and every feature of the other modality 

in a compact manner. Comprehensive analysis and 

baseline comparisons show that our proposed CBGP 

fusion mechanism fuses feature effectively and 

outperforms the state-of-the-art fusion approaches. This 

study also provides a comprehensive discussion about 

transformer model based fusion approaches- attention 

fusion and transformer fusion. 
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5.2 Baseline comparisons  
a. Comparison of advanced cross-modal fusion mechanism with state-of-the-art FBP, and CBP fusion mechanism. 

Table 3: Performance comparison of advanced cross-modal fusion mechanisms on CMU-   MOSEI dataset, 

highlighting their accuracy, F1-score, MAE, and specific strengths. 

Cross-modal 

fusion mechanism 

Accuracy 

(%) 

F1-Score 

(%) 

MAE 
Remarks 

FBP 
76.9 75.6 59.1 Performs well with sentiment-emotion 

overlap 

CBP 
78.4 77.1 59.8 

Captures diverse emotions effectively 

CBGP 80.3 79.2 54.2 Best for fine-grained emotion 

detection 

Table 3 illustrates that CBGP achieves the highest 

scores, particularly excelling in recognizing fine-

grained emotions. Its ability to dynamically adjust the 

importance of different feature interactions allows it to 

handle the nuanced and varied expressions found in the 

illustrations in the CMU-MOSEI dataset. 

b. Comparison of advanced cross-modal fusion mechanism with baseline cross-modal fusion mechanism 

Table 4: Performance comparison of advanced cross-modal fusion mechanism with traditional, and baseline cross-

modal fusion mechanism on CMU-MOSEI dataset, highlighting their accuracy, F1-score, and MAE. 

Fusion Mechanism Accuracy (%) F1-score (%) MAE (%) 

Early fusion  

(EF-LSTM) [43] 

78.2 77.9 64.2 

Late fusion  

(LF-LSTM) [43] 

80.6 80.6 61.9 

Graph-MFN [45] 76.9 77.0 - 

HFU-BERT model [56] 73.2 72.0 86.7 

Early Fusion  

2D-CNN (Ours) 

67.3 65.4 69.7 

Late Fusion 

2D-CNN (Ours) 

70.4 69.2 67.4 

Hybrid Fusion 

2D-CNN (Ours) 

72.6 71.4 65.8 

FBP (Ours) 
76.9 

75.6 
59.1 

CBP (Ours) 
78.4 

77.1 
59.8 

CBGP (Ours) 81.3 79.2 54.2 

Table 4, illustrates that FBP performs well in scenarios 

involving sentiment-emotion overlap. CBP further 

improves by effectively capturing a diverse range of  

emotions. CBGP achieves the highest performance over 

traditional cross-modal fusion mechanisms due to 

limited feature interaction and correlation.  CBGP excels 

in fine-grained emotion recognition and setting a 

benchmark on CMU-MOSEI dataset.
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Figure 2: Accuracy performance of FBP, CBP, and CBGP fusion approaches on CMU-MOSEI

Figure 2 illustrates that in the CMU-MOSEI dataset 

emotion categories, CBP consistently outperforms FBP. 

The accuracy of 'Happy' emotion recognition increases 

from 76% (FBP) to 78% (CBP), and 'Sad' improves from 

70% to 72.5%. CBGP provides higher accuracy than all 

other fusion mechanisms across all emotion categories. 

The progression from FBP to CBP, and from CBP to 

CBGP, emphasizes the strength and effectiveness of the 

fusion model in capturing emotional feature cues. This 

fusion leads to meaningful results that help classify 

emotion categories more accurately. 

c. System complexity analysis 

Table 5: Computational costs comparison (in floating 

point operations) for FBP, CBP, and CBGP 

approaches across CMU-MOSEI Datasets. 

Datasets FBP CBP CBGP 

 

CMU-

MOSEI 
4.5 × 106 3.8 × 106 4.0 × 106 

 

Table 5 presents the computational cost comparison, and 

highlights the relative efficiency of the FBP, CBP, and 

CBGP approaches on the CMU-MOSEI dataset. Despite 

the apparent efficiency of CBP, the marginal difference 

in computational costs, particularly the 0.2 × 106 FLOP 

gap between CBP and CBGP, raises questions about the 

trade-offs in performance. Lower computational costs 

may come at the expense of reduced accuracy or 

robustness in multimodal emotion recognition tasks. The 

slight increase in CBGP’s computational load may 

reflect the additional overhead required to manage bi-

modal interactions and graph-based modeling, 

potentially leading to enhanced performance and 

interpretability. 

 

 

Table 6: Performance comparison of accuracy and p-value 

for cross-modal fusion mechanism. 

Cross-modal fusion 

mechanism 

Accuracy 

 (%) 

p-value 

FBP 76.9 0.004 

CBP 78.4 0.003 

CBGP 80.3 0.002 

 

Table 6 presents the accuracy and p-value of Full Bilinear 

Pooling (FBP), Compact Bilinear Pooling (CBP), and 

Compact Bilinear Gated Pooling (CBGP), where FBP 

achieves the lowest accuracy of 76.9%. CBP improves 

accuracy to 78.4% by introducing compact bilinear 

pooling. CBGP achieves the highest accuracy of 80.3% by 

incorporating the gating mechanism, which selectively 

emphasizes relevant features. The p-value decreases across 

the methods, indicating improved statistical significance 

with increasing accuracy. The values (0.004 for FBP, 0.003 

for CBP, and 0.002 for CBGP) demonstrate that the 

performance improvements are statistically significant. 
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d. Comparison of CBGP fusion mechanism with 

attention fusion and transformer fusion  

Transformer fusion: Transformer fusion is an advanced 

approach of fusion mechanism with the help of a pre-

trained transformer model, which scales well to large 

datasets and long sequences due to parallel computations. 

This fusion is suitable for text-based emotion recognition 

tasks and natural language processing-based (NLP) 

applications because transformer fusion model such as 

BERT [57], RoBERTa [40] performs on all token 

embeddings parallelly which is not efficient to work with 

audio and video modalities together. Audio and video have 

large interdependencies of features and long sequences, as 

a result, the computational cost will be very high, training 

and testing will need more memory and computational 

burdens. Transformer fusion will also face challenges to 

extract, fuse and learn complex spatiotemporal features 

without architectural modifications in the model. 

Transformer fusion works by dividing the word sequences 

into tokens, which is feasible but if we divide long audio 

signals and high frame rate videos can lead to loss of 

important features, fine-grained temporal information, 

tokenization can reduce the effectiveness and increase the 

biases in SoftMax function.   

Attention fusion: In our proposed work, we opted for 

CBGP over attention fusion to reduce the computational 

cost because the CMU-MOSEI dataset is largest dataset, 

and our proposed solution uses 2D-CNN for audio and 

3D-CNN for video modalities to avoid pruning and 

quantizing the mode while managing insignificant 

weights and neurons. If we apply an attention fusion 

mechanism, we would need to apply self-attention fusion 

separately for both models and then integrate their 

outputs using multi-head attention fusion. This entire 

process would likely result in high dimensionality and an 

increased number of trainable parameters, leading to 

high memory usage and expensive computation. 

 Attention mechanism relies on element-wise scale dot 

products, which may cause high variance during training 

Since our implementation employs a simpler CNN 

architecture, in that case the model could predict 

unbalanced attention scores. The extreme parameters 

could further cause exponential computation issues, as 

unbalanced attention implies that the model may focus 

excessively on some regions while ignoring others. In 

conclusion, while attention fusion is an effective fusion 

mechanism, it is not a suitable fit for our employed deep 

learning emotion recognition model that’s why we have 

excluded it from the experiment. It may perform better 

with architectures such as fit well in ResNet [12], 

DenseNet [58], MobileNet [59], and other transformer-

based models, where its capabilities can be better 

utilized. 

5.3 Why CBGP outperforms better? 

Representation capacity 

Traditional fusion: Traditional fusion typically 

concatenate or aggregate features from multiple 

modalities, which can result in linear combinations of 

features, whereas attention and transformer fusion 

enhance inter-modality interactions by learning feature 

weights, but they still rely on additive or multiplicative 

relationships between modalities. They often struggle 

with complex feature interactions and fail to capture 

higher-order dependencies effectively.  

Advanced fusion: Factorized bilinear and compact 

bilinear pooling can capture non-linear and higher-order 

interactions between features across modalities, which 

allows richer representations. These methods compress 

the high-dimensional feature space into a lower-

dimensional representation while preserving inter-modal 

relationships, addressing the curse of dimensionality in 

traditional bilinear pooling. 

Computational efficiency 

Traditional fusion: Simple concatenation or weighted 

aggregation methods are computationally inexpensive but 

may lead to redundant or over-complex representations. 

Transformer-based fusion, although effective, can be 

computationally expensive due to quadratic complexity in 

multi-head attention over long sequences or large 

modalities. 

Advanced fusion: Compact bilinear pooling and gated 

pooling introduce compact representations by leveraging 

approximations (e.g., Random Fourier Transform or Count 

Sketch). These methods significantly reduce computational 

and memory overhead compared to traditional bilinear 

pooling without losing important interaction features. 

Dimensionality reduction 

Traditional fusion: These methods often rely on post-

fusion dimensionality reduction techniques (e.g., PCA) to 

manage high-dimensional outputs. However, these 

approaches are not integrated into the fusion process, 

potentially leading to loss of modality-specific 

information. 

Advanced fusion: Methods like compact bilinear and gated 

pooling perform dimensionality reduction implicitly 

during fusion, ensuring that only the most relevant and 

informative interactions are preserved. 

Modality-specific challenges 

Traditional Fusion: Early and late fusion assume 

modalities contribute equally, potentially underperforming 

in scenarios where modalities have asymmetric importance 

or varying quality. Transformers address some modality-

specific issues but may fail in noisy or sparse input 

scenarios without sufficient modality-specific pretraining. 
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Advanced fusion: Compact bilinear and gated pooling are 

robust to modality-specific variations. For example: Gated 

pooling introduces selective weighting mechanisms that 

dynamically prioritize certain modalities or features based 

on their relevance. Factorized pooling ensures that noisy or 

less-relevant features are naturally down-weighted during 

fusion. 

Generalization and scalability 

Traditional fusion: Simple techniques like early and late 

fusion can generalize well but may not scale effectively to 

high-dimensional, multimodal, or diverse datasets. 

Transformer-based fusion can scale better but may require 

large datasets and pretraining to perform effectively. 

Advanced fusion: Advanced techniques like compact 

bilinear pooling generalize well to high-dimensional data 

and work effectively on smaller datasets due to efficient 

feature compression. Factorized approaches reduce 

overfitting by limiting parameter count, improving 

scalability to complex multi-modal systems. 

Interpretability 

Traditional fusion: Approaches like attention fusion or 

transformer-based fusion are somewhat interpretable 

due to explicit weighting schemes or attention maps. 

However, early and hybrid fusion methods lack 

interpretability since features are often combined in a 

black-box manner. 

Advanced fusion: Compact bilinear pooling and gated 

pooling methods often lack explicit interpretability 

because the transformations (e.g., random projections, 

Fourier transforms) are more abstract. 

Table 7: Comparison of FBP, CBP and CBGP based on various parameters. 

Cross-

Modal 

Fusion 

Feature 

interaction 

level 

Feature map 

dimensionality 

Computation 

cost 

Advantage Limitation 

FBP Element-wise 

product 

Reduced 

𝑘 ≪ 𝑑2 

Low Efficient 

approximation of 

bilinear pooling 

Introduces small 

approximation errors. 

CBP Tensor 

sketching 

Compact 

𝑘 ≪ 𝑑2 

Medium Balances efficiency 

and expressiveness 

It does not capture the full 

bilinear interactions 

 

CBGP Selective 

Second order 

interaction 

Compact 

𝑘 ≪ 𝑑2 

Medium Best for fine-

grained 

classification, 

emphasizes key 

features 

Require extensive 

hyperparameter tuning. 

Table 7 discusses the performance of FBP, CBP and 

CBGP based on various parameters such as, feature 

interaction level, feature map dimensionality, 

computational cost, advantage and limitation various 

parameters. Here,  𝑑2 represents the input feature 

dimensionality, and 𝑘 is the dimensionality of the output 

representation in bilinear pooling. In CBP and CBGP, the 

value of 𝑘 is important as it directly affects the trade-off 

between computational efficiency and model 

expressiveness. If  𝑘 is lower than small memory needed 

but model may lose some effectiveness. Conversely, if 𝑘 

is higher, the model acts more expressively but the 

computational cost increases. 

 

5.4   Real-time application 
As we have seen in the above sections, CBGP has proven 

to be an effective fusion mechanism over traditional 

fusion mechanisms. This comprehensive study has 

demonstrated its full capability as cross-modal based 

emotion recognition. In real-time application, CBGP can 

extend beyond audio and video fusion. It can contribute 

significantly in audio-video-text based real-time 

applications as well. CBGP is a computationally 

effective and robust fusion mechanism, making it crucial 

to capture high correlation and relevant features for 

fusing heterogeneous modalities. Here are some real-

time applications where CBGP can be applied in, 

Computer vision and pattern recognition, Natural 

language Process based language interactions, 

Recommendation systems for customer, Healthcare and 

medical applications, Robotics and automation system, 

Banking and E-commerce based digital applications, 

Security and surveillance based human safety 

application. 

 

6   Conclusion & future scope 

This study investigates the effectiveness of three 

advanced cross model fusion mechanisms; factorized 

bilinear pooling, compact bilinear pooling, and compact 

bilinear gated pooling for audio-video based emotion 

recognition. This comprehensive experiment is 
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conducted on a widely recognized dataset; CMU-

MOSEI. The gating mechanism integrated within CBGP 

enables the model to selectively emphasize relevant 

feature interactions, which is crucial for accurately 

recognizing complex and nuanced emotional 

expressions. We evaluated the performance of each 

fusion technique across various emotional categories, 

including happy, sad, fear, anger, neutral and disgust. 

The performance of advanced cross-modal fusion is 

compared to traditional cross-modal fusion mechanisms 

like early fusion, late fusion and hybrid fusion and 

transformer model based fusion mechanisms like, 

attention fusion and transformer fusion. The 

experimental results clearly demonstrate that the 

compact bilinear gated pooling (CBGP) mechanism 

outperforms the other fusion techniques across 

benchmark dataset, consistently achieving higher 

accuracy, F1-score, and MAE. Overall, the findings from 

this study suggest that incorporating a gating mechanism 

in multimodal fusion processes can significantly 

enhance the performance of emotion recognition 

systems, making CBGP a promising approach for future 

developments in this field. 
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