
https://doi.org/10.31449/inf.v49i20.7400 Informatica 49 (2025) 105–118 105

Neural Backward Chaining Logic Algorithm Based on Dynamic

Knowledge Region Segmentation in Knowledge Graph Completion

Chunmao Liu1,2, Somkiat Tuntiwongwanich1*, Thiyaporn Kantathanawat1
1School of Industrial Education and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok,

10520, Thailand
2School of Electronic and Information Engineering, Henan Polytechnic Institute, Nanyang, 473000, China

E-mail: somkit_l@126.com

*Corresponding author

Keywords: internet, knowledge graph, recurrent neural networks, neural backward chain reasoning, unified medical

language system

Received: October 23, 2024

With the rapid development of the Internet, the information age has arrived in a comprehensive way.

The explosive growth of information data has greatly increased people's demand for knowledge

management. Knowledge graph, as an effective structured knowledge representation tool, greatly

enhances the organization and retrieval capabilities of information. However, in practical applications,

knowledge graphs often face problems of knowledge loss and incompleteness, which severely limit their

widespread application. To address this issue, this study proposes a neural backward chain inference

method based on dynamic knowledge region generation. This method overcomes the bottleneck of

performance degradation of traditional static methods on large datasets by introducing a dynamic

knowledge region generation mechanism, which significantly improves the completion effect of

knowledge graphs. The experiment was conducted on the Unified Medical Language System dataset and

the Nations dataset. The results showed that when the size of the Unified Medical Language System

dataset reached 2500, the accuracy of the proposed method reached 0.85. It was 6.25%, 20%, and

51.8% higher than the 0.80 of the neural backward chain inference method generated by static

knowledge regions, 0.70 of the conditional theorem prover algorithms, and 0.56 of the traditional neural

theorems proving algorithm, respectively. In the Nations dataset, the accuracy of the proposed method

was 0.80 at the same data scale, which was significantly better than other methods. In addition, the

method based on dynamic knowledge region generation reduced the iteration time to 1.4 seconds, which

was about 52% and 63% higher than the static method's 2.9 s and the traditional method's 3.8 s,

respectively. The research results indicate that the proposed neural backward chain logic algorithm

based on dynamic knowledge region generation exhibits good performance in completing knowledge

graphs.

Povzetek: Opisana metoda za dopolnjevanje znanstvenih grafov uporablja nevralno obratno verigo

sklepanja s dinamičnim generiranjem znanstvenih področij, kar povečuje kvaliteto v primerjavi s

tradicionalnimi statičnimi metodami.

1 Introduction
With the development of the Internet, the information

age has arrived, and the way people live and work has

changed radically. The development of mobile Internet

has made the web no longer serve only specific

professionals, but become a tool used by all people [1].

The sheer volume of information makes it particularly

difficult for people to query information sets, and the

emergence of knowledge graph (KG) solves this problem.

KG is a graphical database for organizing and

representing structured knowledge, but there are some

problems with KG, KG may have incomplete

information and some information about relationships or

attributes between entities may be missing [2]. This may

be due to the fact that the information has not yet been

added to the graph, or due to the dynamic nature of

knowledge, new information is generated but not yet

updated to the graph. It is the missing and incomplete

nature of the knowledge in KGs that poses a significant

limitation to the use of KGs. The research aims to

address the problems of low efficiency and insufficient

accuracy in KG completion in large-scale and dynamic

environments. A neural backward chain inference (BCI)

method based on dynamic knowledge region generation

is proposed. This method assumes that by dynamically

adjusting the knowledge region, the accuracy and

computational efficiency of KG completion can be

significantly improved. It is hypothesized that this

method will demonstrate higher accuracy and lower

computation time than traditional static methods on

datasets of different sizes and types. This proves the

effectiveness of the dynamic knowledge region

generation mechanism in KG completion. In this

research, a neural theorem provers (NTPs) model based

on BCI is proposed, and a recurrent neural network

(RNN)-based NTPs model is proposed for the

mailto:somkit_l@126.com

106 Informatica 49 (2025) 105–118 C. Liu et al.

improvement of the model in response to the

shortcomings of the model in terms of computational

efficiency. Aiming at the problem that RNNNNTPs are

not ideal for dynamic knowledge area (KA)

complementation, a conditional theorem provers (CTPs)

algorithm is proposed to improve the NTPs. There are

four primary sections to this research. The first includes a

synopsis of previous studies on the subject of KG

research. The second part is a review of the main

methods used in this research, and the third part is the

model results obtained by applying the methods to the

research and analyzing the results. The fourth part is a

summary of all the above studies and the outlook for

future research.

2 Related works
The emergence of KG has brought multiple benefits to

Internet information. Shen et al. discovered that

substantial semantic information may be gleaned from

the relationships and attributes of KGs, aiding in the

creation of possible semantic representations of KGs.

Knowledge representation approaches could reduce

variation between distinct knowledge domains by

aligning things through their conversion into spatial

vectors. Nevertheless, previous methods neglected the

distinctions between relations by using the same

optimization objective for triples under various relations.

The study team employed an adaptive margin strategy in

training and provided an entity alignment method based

on the TransE model to address this issue. The results of

the study demonstrated that the proposed method had

significant improvement compared to the baseline model

[3]. Wu et al. found that due to the large amount of item

information in KG that could help recommender systems

to develop users, it becomes the most important source of

auxiliary information. However, there were some

problems in this application scenario. To address this

problem, the research team proposed a

multi-context-aware recommendation algorithm based on

KG. According to experimental data, the suggested

approach could handle KG faults more effectively [4].

Hussey et al. proposed to advance nursing theory through

nursing KG using health informatics standards and

translating nursing knowledge for nursing research.

Experimental results showed that the proposed KG was

able to gain valuable insights into nursing interventions

and inform future big data science [5].

Lin et al. discovered that knowledge representation is a

crucial stage in building domain KG, and that domain

KG has emerged as a study issue in the artificial

intelligence era. However, there were some gaps in the

construction of domain KGs. Therefore, the research

team studied the classification of KGs, and the study

analyzed the unresolved issues and future research trends

of knowledge representation in domain KG research [6].

Haoran et al. found that KG complementation could

solve the problem of sparse data in KGs. However,

under-utilization of structural information around nodes

was the main problem of the traditional KG

complementation model, which led to relatively

homogeneous encoded information. To address this

problem, the research team proposed a new KG

complementation model for encoding and decoding

feature information. The study’s findings showed that the

suggested model functioned well on the used dataset [7].

According to Yutian et al., KG was a helpful tool and

resource for describing items and connections in tasks

involving natural language processing. The function of

logic rules and the impact of false negative samples on

knowledge embedding, however, were not fully taken

into account by traditional methods of KG embedding,

and the current KGs were insufficient. The model could

well enhance the complementing effect of KG, according

to experimental results [8].

In summary, many scholars have already had research on

KG and achieved certain results. In this study, a

BCI-based NTPs model is proposed, and for the

shortcomings of the computational efficiency of this

model, the model is improved by proposing an

RNN-based NTPs model, and for the problem that

RNNNNTPs are not ideal for dynamic KG

complementation, the NTPs are improved and a CTPs

algorithm is proposed. The comparison table of literature

review is shown in Table 1.

Table 1: Related works

Research Method Research content Dataset used
Key performance

metrics
Reference

Shen et

al.

(2022)

Entity alignment

method based on

transe model with

adaptive margin

strategy

Proposed an entity

alignment method

addressing the issue of

using the same

optimization objective

for triples under

different relations in

knowledge graphs,

enhancing alignment

through an adaptive

margin strategy

Knowledge

graph embedding

datasets

Significantly

improved entity

alignment

compared to

baseline models

[3]

Wu et al.

(2022)

Multi-context-aware

recommendation

algorithm based on

Developed a

multi-context-aware

recommendation

Recommendation

system related

datasets

Effectively

addressed defects

in knowledge

[4]

Neural Backward Chaining Logic Algorithm Based on Dynamic… Informatica 49 (2025) 105–118 107

knowledge graph algorithm leveraging

project information in

knowledge graphs to

enhance

recommendation

systems, addressing

deficiencies in

knowledge graphs

graphs,

improving

recommendation

accuracy

Hussey

et al.

(2021)

Method using health

informatics standards

and translated nursing

knowledge

Constructed a nursing

knowledge graph by

combining health

informatics standards

and nursing knowledge

to advance nursing

theory

Nursing big data

Provided

valuable insights

for nursing

interventions,

supporting

nursing theory

and big data

science research

[5]

Lin et al.

(2021)

Classification study of

domain knowledge

graphs, analyzing

knowledge

representation issues

and trends

Researched the

classification of domain

knowledge graphs,

analyzed unresolved

issues in knowledge

representation within

domain knowledge

graph studies, and

proposed future

research directions

AI domain

related datasets

Analyzed

challenges in

knowledge

representation in

domain

knowledge graph

studies and

proposed future

research

directions

[6]

Haoran

et al.

(2022)

Knowledge graph

completion model

based on graph

convolutional

networks (GCN) with

multi-information

fusion and

high-dimensional

structure analysis

weighting

Proposed a new feature

encoding and decoding

knowledge graph

completion model using

GCN for

multi-information

fusion and

high-dimensional

structure analysis

Knowledge

graph completion

related datasets

The proposed

model performs

well on the used

datasets,

improving the

accuracy of

knowledge graph

completion

[7]

Yutian et

al.

(2021)

Knowledge graph

embedding model

based on soft rules

and adversarial

learning

Combined soft rules

and adversarial learning

to propose a new

knowledge graph

embedding method,

enhancing knowledge

graph completion

Knowledge

graph embedding

datasets (specific

datasets not

detailed)

Effectively

improved

knowledge graph

completion,

enhancing the

robustness of

embeddings

[8]

3 Knowledge graph complementation

model based on neural backward

chain logic algorithm
The first section of this chapter introduces KGs and

builds a BCI-based model for NTPs. The second chapter

addresses the problems of the complementary model and

proposes a neural BCI method based on dynamic KG

generation to complement KGs.

3.1. Modeling of NTPs based on backward chain

reasoning

KG usually adopts the ternary form to represent

structured semantic knowledge. The ternary consists of

subject, predicate and object, which are used to describe

the relationship between the entities, where the entity is

the most basic element, which is generally a real-world

physical object or an abstract concept, and the

relationship is the link connecting the entities, and in the

construction of KG, it will generally contain three

phases: information extraction, knowledge fusion, and

knowledge processing [9]. Inductive logic programming

(ILP) is a machine learning method that combines

inductive reasoning and logic programming. It aims to

automatically learn logic programs from given facts and

rules for reasoning and decision making. The basic idea

of ILP is to reason and make decisions by generalizing

general logical rules from examples. It does this by

representing examples as logical facts and goals, and

then finding logical rules that satisfy the goals by using

108 Informatica 49 (2025) 105–118 C. Liu et al.

logical reasoning and search algorithms, the flow of which is shown in Fig. 1.

Data

representation

Spatial

hypothesis

Search

 strategy
Inductive

learning

Evaluation

optimization
Figure 1: ILF flow

In Fig. 1, the ILF algorithmic process is mainly divided

into five types, which are data representation, hypothesis

space, search strategy, inductive learning, and evaluation

and optimization. Among them, data representation

refers to the form of transforming example data into

logical facts, i.e., mapping attributes and relations in data

into logical predicates. Hypothesis space refers to the

determination of the hypothesis space of logical rules,

which is usually realized by defining the formal syntax

and constraints of logical rules. Search strategy refers to

the selection of an appropriate search strategy to search

for logical rules in the hypothesis space. Inductive

learning refers to the continuous adaptation of logical

rules during the search process, based on a given

objective function and learning algorithm, and the

evaluation of their accuracy and generalization ability on

example data. Evaluation optimization refers to

evaluating the performance of the logic rules obtained by

learning and optimizing and correcting the rules

according to the evaluation metrics of the learning

algorithm [10-11].

RNN is a neural network model for processing sequential

data or data with time dependency [12]. Unlike

traditional feed-forward neural networks, RNN has

recurrent connections that can transfer information

within the network, giving it memory capability, the

RNN recurrent hidden state update formula is shown in

equation (1).

1

0, 0

(,),
t

t t

t
h

h x otherwise −

=
= 


 (1)

In equation (1),
th denotes the cyclic hidden state of

the RNN,  denotes the nonlinear function, and x

denotes the sequence. Equation (2) displays the update of

the cyclic hidden state.

1()t t th g Uh Wx−= + (2)

In equation (2), g represents a smooth bounded

function and W and U denote constant parameters.

Conventional RNNs are prone to the problem of gradient

vanishing or gradient explosion during the training

process, which leads to difficulties in capturing

long-term temporal dependencies. To solve this problem,

some improved RNN structures, such as gated recurrent

unit (GRU) and Long Short-Term Memory (LSTM),

have emerged to deal with long-term dependencies

efficiently by introducing a gating mechanism, and the

structure of LSTM is shown in Fig. 2.

Cell

Tanh
((1), ())h t x t−

()f tOut-gate

()h t



Input gate


((1), ())h t x t−

()i t

Tanh

()g t

()s t

Forget Gate



((1), ())h t x t−
Figure 2: Structure of LSTM

In Fig. 2, the input layer input at moment t is ()x t ,

(1)h t − is the hidden layer at moment 1t − , and the

internal state s is the secret key for neuron activation

and also determines the network structure of the LSTM.

Equation (3) shows the output of the LSTM unit, which

is a value ()f t between 0 and 1. This value is obtained

through (1)h t − and ()x t , representing a trade-off

between retaining or discarding the internal states. The

activation function used is a sigmoid function.

tanh()j j j

t t th o c= (3)

In equation (3),
j

to denotes the output gate that controls

exposure,
j

tc denotes the memory cell. Equation (4)

displays the expression for the output gate.

1()j t

t o t o t o to W x U h V c −= + + (4)

In equation (4),  represents the sigmoid function and

oV represents the diagonal matrix. The degree of

forgetting of existing memories is regulated by the

forgetting gate, and the new memory content is

controlled by the updating gate, and the two gates are

calculated as shown in equation (5).

Neural Backward Chaining Logic Algorithm Based on Dynamic… Informatica 49 (2025) 105–118 109

1 1

1 1

()

()

j j

t f t f t f t

j j

t i t i t i t

f U h W x V c

i U h W x V c





− −

− −

 = + +


= + +

 (5)

In equation (5),
iV and

jV denote diagonal matrices.

Based on the current input and the concealed state of the

previous instant, the input gate uses a sigmoid function to

determine which information needs to be added to

memory. Using a sigmoid function, the forgetting gate

determines whether data should be erased from memory

based on the input at hand and the hidden state of the

preceding instant. Using a sigmoid function, the output

gate determines which data should be output depending

on the input at hand and the hidden state from the

previous instant.

In the complementation of KG, when there are missing

relations or entities in the triad, all relations or entities in

the KG are generally complemented to the triad, and the

triad for which the filling is performed is used as a query

option, sorted and scored, and the relations or entities

with the highest scores are used as the final result output

[13]. BCI based NTPs apparatus are characterized by

micro-computability and strong interpretability of rules

and results. The core of RNN is the GRU, which is an

improved RNN structure with good performance and

computational efficiency. The GRU model incorporates

update and reset gates to regulate the flow of information

at every moment, thereby enabling the model to

selectively retain or forget information. This approach

effectively solves the gradient vanishing problem that

traditional RNNs frequently encounter when processing

long sequences. In practical implementation, RNNs

utilize the features of each entity as input, combining

them with the relevant relationships in the graph to

achieve inference. During each inference, the RNN

computes the current hidden state based on the current

input and the previous hidden state. This recursive

structure allows the model to maintain a "contextual"

memory of the entire KG at each time step, taking into

account the dependencies between entities and

relationships in the graph during knowledge completion.

In NTPs, there are three main modules, which are

unfication (unify), or and. the computational process of

NTPs can be approximated as a search. That is, or

indicates that any rule in the knowledge base serves the

goal of the proof, and indicates that the premises of the

rules must be recursively proved. RNN is used as the

regulation and facts for the knowledge generation

operation because the proof process of NTPs is top-down,

the unify operation needed by each layer will be

increased step by step, and there is a sequential

relationship between the upper layers and lower layer’s

rule facts. Its structure is shown in Fig. 3.

Prove

Objectives

Relationship

Selector

Relationship

Warehouse

Relational

predicate

Knowledge

base

Generate

knowledge
NTPs Target score

High quality

knowledge

High quality

Relational

predicate

Train

Figure 3: RNNNTPs model structure

In Fig. 3, the proof target is firstly input into the relation

selector, and the relations in the relation warehouse are

selected through the relation selector. The knowledge in

the knowledge base is selected according to the selected

relation predicates, the generated knowledge is fed into

NTPs to generate high quality knowledge, and the

generated new rules are added to the knowledge base, the

high-quality relation predicates are refined by the

high-quality knowledge, and in turn the relation selector

is trained, and finally the NTPs outputs the target values

by the generated knowledge. In this study, RNN selector

is used to predict the sequence and the generated

sequence is shown in equation (6) [14].

0 ()h f r= (6)

In equation (6), where f denotes the linear

transformation, the relationship between different

positions is predicted by the gating unit and the

expression is shown in equation (7).

 1 1(, (,))t t t th GRU h g r r− −= (7)

In equation (7), g denotes the linear transformation

and  , tr r denotes the connection between the

previous relation and the current relation. The generated

relation set is divided by softmax function to get the next

relation. In RNNNTPs, the relation selector generates

only the relation set generates the knowledge set by

110 Informatica 49 (2025) 105–118 C. Liu et al.

matching algorithm and the expression is shown in

equation (8).

(,Re)

(,Re)

gen genKB Select KBs l

Select KB l KB

=


=
 (8)

In equation (8), KB denotes the knowledge base and

Re l denotes the set of relations. Since NTPs have the

problem of slow computational efficiency, the modules

in NTPs are improved to address this problem. The Or

module is improved by reconstructing it so that it only

considers the knowledge provided by the knowledge

generator. By establishing a threshold to govern the

Unify module, it may be made better. If a similarity

surpasses the threshold, it will be added to the

high-quality knowledge set [15]. Fig. 4 depicts the

revised algorithm’s flow.

KB initialization Generator

initialization
Predictor settings

Generate

Knowledge Set

Training predictorHigh quality

knowledge completion

Figure 4: Flowchart of the improved algorithm

In Fig. 4, firstly the ternary dataset is input and then it is

preprocessed, secondly the GRU-based RNN is built,

then the predictor setting is performed and ComplEx is

used as the optimization function for the NTPs. The

knowledge set is generated by the predictor setting, the

individual relations in the target are proved by the RNN

selector to generate the set of relations. To create the

knowledge set, the relations in the set are matched in the

KBs. The predictor is then trained to add the closest

knowledge into the KBs for knowledge

complementation.

3.2. Knowledge graph complementation model

based on dynamic knowledge search region

segmentation

RNNNTPs substantially improve the computational

efficiency of NTPs, but there are some problems, in the

relation selection, some relations will appear more

frequently, and some simple relations will be matched

with more knowledge. This presents a significant

challenge for the next connection selection process. To

address this, the CTP algorithm is used to optimize the

model by incorporating the neural layer of knowledge

selection into the predictor. This further increases the

accuracy of the link selection process. CTPs are

computational models that prove given conditional

propositions through the use of conditionals and

inference rules, and can be used in areas such as logical

reasoning, theorem proving, and formal verification [16].

The main use of CTPs is to automate the theorem

proving process. CTPs algorithm can receive conditions

and propositions to be proved and try to prove these

propositions using logical inference rules and reasoning

strategies, the model of RNN-CTPs algorithm is shown

in Fig. 5.

Prove

Objectives

Relationship

Selector

Relationship

Warehouse

Relational

predicate

Knowledge

base

Generate

knowledge

Target score

High quality

knowledge

High quality

Relational predicate

Select

module

Inference

module

Prove

Objectives

Figure 5: Model flow of RNNCTPs algorithm

Neural Backward Chaining Logic Algorithm Based on Dynamic… Informatica 49 (2025) 105–118 111

In the relation selector, the sequence relations are

predicted by RNN relation selector, after initializing the

RNN selector, the relations at different positions are

predicted by gating unit, the generated rule set is divided

by softmax function to get the next rule body, and the

number of generated relations is shown in equation (9).

(Re)srelNum batchSize size l rel KB =    (9)

In equation (9), relNum denotes the generated

relations and batchSize is the proof objectives.

relNum denotes the hyperparameter whose purpose is

to adjust the relations generated, and (Re)ssize l

denotes the relations present in the relation repository.

KB denotes the degree to which the generated

knowledge matches the relations. In the relation

warehouse, dynamic expansion coefficients are used and

the dynamic change of expansion coefficients is shown

in equation (10).

()new last new last

i iep ep KB KB = − − (10)

In equation (10),  represents the hyperparameter that

controls the diffusion coefficient, and
newKB and

lastKB are the current KB and the KB of the

previous cycle, respectively. CTPs, as an improved

version of NTPs, reduces the amount of knowledge that

needs to be learned by increasing the neural layer used

for knowledge selection, which improves the efficiency

of computation. To achieve better computation, CTPs

will choose alternative functions dependent on the object.

The selection module is based on the attention function,

as illustrated in equation (11).

()i Rf x E= (11)

In equation (11), RE denotes the embedding matrix of

predicates, and  denotes the attention distribution of

predicate verbs in the matrix, the expression of which is

shown in equation (12).

1

max()
R

isoft W x
−

=  (12)

In equation (12),  denotes the attention distribution

of the predicate verbs in the matrix and iW denotes the

elements embedded in the matrix. CTPs go through the

selection module to generate a set of knowledge by

proving the goal. After each generation of knowledge set

by the model, variables need to be recorded and the

expression is shown in equation (13).

i

i

i

Used

gen

KB
KB

KB
 = (13)

In equation (13), i
KB denotes the set of variables,

iUsedKB denotes the knowledge that is involved in the

process at this time. Moreover, igenKB represents the

knowledge produced by the CTPs following the feeding

of inputs. The flow of the algorithmic model of the

RNNCTPs is shown in Fig. 6.

KB initialization
Generator

initialization
Predictor settings

Generate

Knowledge Set CTPs
High quality

knowledge completion

Figure 6: Model flow of RNNCTPs algorithm

Firstly, the ternary dataset is input and then it is

preprocessed, secondly the GRU based RNN is built and

then the predictor setting is performed. The predictor

setting creates the knowledge set. The RNN selector

proves each individual relation in the target to create the

set of relations. Moreover, the KBs match the relations in

each set to create the knowledge set. The predictor is

then trained to add the closest knowledge to the KBs for

knowledge complementation. The training of the CTPs

module already includes the selection of the module, so

the amount of knowledge used for the unify module to

run is under control. Each iteration produces limb

utilization as shown in equation (14).

(),

,
2

mean mean

mean

KB KB KB if KB KB

KB KB KB
else

    

  

  + − − 


=  +



 (14)

In equation (14),  A denotes the learning rate of KB

update.  denotes the learning threshold, which can be

fine-tuned if the difference between
meanKB and

KB is too large.

112 Informatica 49 (2025) 105–118 C. Liu et al.

Input: Dataset X (features) and Y (labels), RNN parameters, CTPs parameters

Output: Predicted labels Y_pred

Step 1: Initialization

1. Initialize RNN structure (e.g., number of layers, number of hidden units).

2. Define CTPs parameters (e.g., tree depth, splitting criterion such as Gini index or information

gain).

Step 2: Training Phase

2.1 Feature Extraction with RNN:

 for each sample (x, y) in (X, Y):

 # Pass input sequence x through RNN to extract features

 h_t = RNN(x_t; W_rnn) # W_rnn is the weight matrix of the RNN

 h_T = FinalState(h_t) # h_T is the final hidden state representation of the sequence

 # Collect the final hidden states h_T as the feature set for all samples

2.2 Build Conditional Probability Trees (CTPs):

 1. Initialize root node with all training samples and their extracted features h_T.

 2. While the stopping criterion is not met (e.g., max depth or minimum samples in a node):

 a. For each node, calculate the optimal splitting condition based on features h_T

 and maximize conditional probabilities of labels.

 b. Split the data into child nodes based on the chosen condition.

 3. At each leaf node, compute the probability distribution of labels and store it.

Step 3: Prediction Phase

3.1 Predict for each test sample x_test:

 a. Pass x_test through the RNN to obtain feature representation h_test.

 b. Traverse the CTPs using h_test, following the splitting conditions until reaching a leaf

node.

 c. At the leaf node, select the class with the highest probability as the predicted label y_pred.

Step 4: Output

4. Return all predicted labels Y_pred.

RNN-CTPs

Figure7: RNN CTPs pseudocode

4 Performance analysis of knowledge

graph complementation model based

on neural backward chain logic

algorithm
In the first section of this section, the performance

comparison is carried out for static KG segmentation of

KG using UMLS dataset and Nation’s dataset, and the

results of the study show that it performs well in the

UMLS dataset. Therefore, the performance of KG

complementary model based on dynamic KG

segmentation is analyzed using UMLS dataset.

4.1. Performance analysis of knowledge Graph

complementary model based on static knowledge

area segmentation

The server CPU used in this study is Inter(R) Core (TM)

i5-10210U with 16GB of RAM, GPU is GeForce RTX

2080 operating system is Windows 10 with 8G of RAM.

Using a systematic hyperparameter selection method,

different combinations of hyperparameters such as

learning rate, batch size, GRU layers, number of hidden

units, and similarity threshold are first traversed by grid

search, and the performance of each parameter set is

evaluated on the validation set to finally select the

optimal parameter combination. To ensure the robustness

of the selection, k-fold cross-validation is used to divide

the training data into k subsets, and multiple training and

validation are performed to calculate the average

performance of each parameter group. At the same time,

an early-stop mechanism is introduced to stop training if

the performance of the validation set did not significantly

improve in 10 consecutive training rounds to prevent

overfitting. The specific hyperparameter settings are as

follows: learning rate set to 0.001, batch size set to 64,

GRU layers set to 2, number of hidden units set to 128,

similarity threshold set to 0.7, Dropout rate set to 0.5,

optimization algorithm using Adam, iteration count set to

300, embedding dimension set to 100, activation function

set to ReLU, and batch normalization applied in the

model. To ensure the robustness of the results, each

experiment is run independently at least five times with

the same hyperparameter settings, using different random

seeds to avoid random effects, and taking the average of

key performance indicators such as accuracy, iteration

time, and knowledge utilization, while calculating the

standard deviation to evaluate the stability of the results.

When comparing performance, paired t-test and analysis

of variance methods are used with a significance level of

α=0.05 to ensure that performance differences between

different models are statistically significant. At the same

time, a 95% confidence interval is calculated to provide

an uncertainty assessment for performance estimation

and increase the reliability of result interpretation. The

study is conducted using the Unified Medical Language

System (UMLS) dataset and the Nations dataset. UMLS

is a medical knowledge representation and retrieval

system developed by the National Institutes of Health. Its

purpose is to facilitate the interoperability and exchange

of medical information so that different medical

information resources can be connected and shared.

UMLS contains many medical vocabularies, coding

systems, and standardized terminology, including 49

predicates, 135 constants, and 6529 true facts. It also

unifies terminology, coding, and standards from various

medical disciplines. Nations has 2565 true facts, 111

unary predicates, 14 constants, and 56 binary predicates.

The performance of the proposed model is analyzed on

both datasets and the results are shown in Fig. 8.

Neural Backward Chaining Logic Algorithm Based on Dynamic… Informatica 49 (2025) 105–118 113

0 1000500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

c
y

Dataset size

NTPs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

c
y

(a) Performance of Three Algorithms on

UMLS Datasets
(b) Performance of Three Algorithms on the

Nations Dataset

1500 2000 2500 1000500
Dataset size

1500 2000 2500

CTPs

RNNNTPs

NTPsCTPs

RNNNTPs

Figure 8: Comparison of accuracy of three algorithm models in different datasets

Fig. 8(a) shows the performance of three algorithms on

the UMLS dataset, while Fig. 8(b) shows the

performance of the three algorithms on the Nations

dataset. According to Fig. 8(a), in the UMLS dataset, as

the dataset increases, the accuracy of RNNNTPs, CTPs,

and NTPs algorithm models also fluctuates and increases.

Among them, the RNNNTPs algorithm model shows

higher performance. When the dataset size is 2500, the

accuracy of RNNNTPs, CTPs, and NTPs algorithm

models are 0.88, 0.79, and 0.71, respectively. As shown

in Fig. 8(b), in the Nations dataset, the accuracy of the

three algorithms also increases with the size of the

dataset, but the training performance is relatively poor

compared to the UMLS dataset. When the dataset size is

2500, the accuracy of RNNNTPs, CTPs, and NTPs

algorithm models are 0.80, 0.70, and 0.56, respectively.

The experimental results show that the proposed hybrid

algorithm model exhibits high accuracy among the three

algorithms and performs well in training on the UMLS

dataset. Compare the performance of three algorithms at

different iteration times, and the results are shown in Fig.

9.

Fig. 9(a) shows the knowledge utilization rates of three

algorithms in the UMLS dataset, while Fig. 9(b) shows

the knowledge utilization rates of the three algorithms in

the Nations dataset. As shown in Fig. 9(a), with the

increase of iteration times, the knowledge utilization rate

of the three algorithms also continues to rise. When the

number of iterations reaches 100, the knowledge

utilization rates of RNNNTPs, CTPs, and NTPs

algorithm models in the UMLS dataset are 0.68, 0.53,

and 0.46, respectively. In Fig. 9(b), with the increase of

iteration times, the knowledge utilization rate of the three

algorithm models also continues to rise, but it is

significantly lower than that of the UMLS dataset. When

the number of iterations reaches 100, the knowledge

utilization rates of the three algorithm models are 0.65,

0.48, and 0.32, respectively. The experimental results

show that the proposed RNNNTPs algorithm model has

better performance compared to other algorithm models,

and each algorithm model performs well in the UMLS

dataset. The iteration times of the three algorithms are

compared for different numbers of iterations, and the

results are presented in Fig. 10.

0 4020

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K
n

o
w

le
d
g

e
u
ti

li
za

ti
o
n
 r

a
te

Iterations

NTPs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) The knowledge usage rate of three

algorithms in the UMLS dataset
(b) The knowledge usage rate of three

algorithms in the Nations Dataset

60 80 100
Iterations

CTPs

RNNNTPs

K
n

o
w

le
d
g

e
u
ti

li
za

ti
o
n
 r

a
te

4020 60 80 100

0.0 0.0

NTPs

CTPs

RNNNTPs

Figure 9: Knowledge utilization rate of three algorithms at different iteration times

114 Informatica 49 (2025) 105–118 C. Liu et al.

10
0

1

2

3

4

5

T
im

e(
s)

20 40 80 100

Iteration

(a) Iteration time of three algorithms in the

UMLS dataset

0

Iteration

(b) Iteration time of three algorithms in the

Nations dataset

10 20 40 80 500

RNNNTPs

CTPs

NTPs

1

2

3

4

5

T
im

e(
s)

RNNNTPs

CTPs

NTPs

Figure 10: Iteration time in different datasets

Fig. 10(a) represents the iteration time of the three

algorithms in the UMLS dataset and Fig. 10(b)

represents the iteration time of the three algorithms in the

Nations dataset. In Fig. 10, the RNNNTPs algorithm

model exhibits less time used for iterations than the other

two methods in all three methods. The iteration times of

the RNNNTPs, CTPs and NTPs algorithm models in the

UMLS dataset are 1.4s, 2.9s and 3.8s, respectively, when

the number of iterations is 100. In the Nations dataset,

the iteration times of the three algorithms are 1.9s, 3.2s

and 4.3s, respectively. The findings revealed that the

proposed RNNNNTPs algorithm has a lower iteration

time under different iteration number of iterations have

low iteration time.

4.2. Performance analysis of knowledge graph

complementation model based on dynamic

knowledge area segmentation

The findings are displayed in Fig. 11 after the superior

UMLS dataset is chosen and the model performance is

examined to compare each model’s performance.

Iterations

(b) Accuracy under different iterations

Dataset size

(a) Accuracy under different dataset sizes

400 800600

20

40

20

40

60

80

100

200 1000 1200

 RNNNTPs

100 20015050 250 300

100

80

60

A
cc

u
ra

cy

CTPs

RNNCTPs

A
cc

u
ra

cy

RNNNTPs

CTPs

RNNCTPs

Figure 11: Accuracy of three algorithmic models with different dataset sizes and number of iterations

Fig. 11(a) represents the accuracy comparison of the

three algorithms under different dataset sizes, and Fig.

11(b) represents the accuracy comparison of the three

algorithms under different iteration numbers. In Fig.

11(a), the accuracy of the three models fluctuates and

rises as the dataset increases. The accuracy of the

RNNCTPs, RNNNNTPs, and CTPs algorithmic models

are 0.82, 0.64, and 0.57, respectively, when the dataset

size is 1200. In Fig. 11(b), the accuracy of the three

models fluctuates and rises as the iterations increases.

The accuracy of the three algorithmic models fluctuates

and rises when the iterations is 300, the accuracy rates of

the three algorithmic models are 0.94, 0.76, and 0.78,

respectively. The study’s findings show that, out of the

three models, the suggested RNNCTPs model—which is

based on dynamic KG segmentation—performs better.

The HITS@k evaluation metric is used to compare the

three methods. The findings are displayed in Fig. 12 and

this metric indicates the percentage of real entities that

are present in the top k entities of the sorted ranked list.

Fig. 12(a) shows the accuracy of the three algorithms for

different entities, while Fig. 12(b) shows the iteration

time for the same. Among the three algorithmic models,

the proposed RNNCTPs model based on dynamic KG

segmentation has a better performance. The

comprehensive performance of the model is analyzed,

and the results are shown in Table 2.

Neural Backward Chaining Logic Algorithm Based on Dynamic… Informatica 49 (2025) 105–118 115

0.85
HITS@1

A
c
c
u

ra
c
y

CTPs

HITS@3 HITS@5 HITS@7

RNNNTPsRNNCTPs

HITS@9

HITS@k

0.90

0.95

1.00

(a) Accuracy under different number of

entities

1
HITS@1

T
im

e
(s

)

CTPs

HITS@3 HITS@5 HITS@7

RNNNTPsRNNCTPs

HITS@9

HITS@k

2

3

4

(b) Time under different number of

entities
Figure 12: Table comparing the performance of the three algorithms

Table 2: Model comprehensive performance analysis

Dataset size Model ACC
Calculation

overhead/s

Mean response

time/s

Training

time/s

Iteration

time/s

Model

stability

1000

RNNCTPs 0.75 12.3 1.2 85 1.5 0.03

RNNNTPs 0.7 15.4 1.8 92 2.1 0.05

CTPs 0.6 18.2 2.0 99 2.5 0.06

NTPs 0.45 21.6 2.3 110 3.2 0.08

1500

RNNCTPs 0.78 15.6 1.4 130 1.7 0.02

RNNNTPs 0.74 18.0 1.9 138 2.3 0.04

CTPs 0.68 20.1 2.2 145 2.8 0.05

NTPs 0.5 23.0 2.6 155 3.6 0.07

2000

RNNCTPs 0.82 18.5 1.5 170 1.9 0.01

RNNNTPs 0.78 21.2 2.0 180 2.5 0.03

CTPs 0.72 23.4 2.4 190 3.0 0.04

NTPs 0.55 26.2 2.8 200 3.9 0.06

2500

RNNCTPs 0.85 20.7 1.6 210 1.4 0.02

RNNNTPs 0.80 23.0 2.2 225 2.7 0.04

CTPs 0.75 25.3 2.6 240 3.2 0.05

NTPs 0.56 28.6 3.0 260 4.3 0.07

As demonstrated in Table 2, the RNNCTPs model

displays superior accuracy and reduced computational

overhead across various dataset sizes, particularly at a

dataset size of 2500, where the accuracy reaches 0.85.

Concurrently, the response time and computational

overhead of the RNNCTP model are notably lower

compared to other models. Furthermore, the iteration and

training times of RNNCTPs are relatively brief,

suggesting their efficacy in handling large-scale datasets.

For other models, such as RNNNTPs, CTPs, and NTPs,

the gap in accuracy and computational cost gradually

becomes apparent as the dataset size increases, especially

for the 2500 scale dataset, where the performance

advantage of the RNNCTPs model is particularly

prominent. The experimental outcomes reveal that the

proposed RNNCTPs model has stability and robustness

under different input scales, providing strong support for

its wide application. Fifty people with certain medical

knowledge are selected and randomly divided into five

groups, and the models are scored separately. Moreover,

Table 3 displays the outcomes.

Table 3: User evaluation form

Model Group 1 Group 2 Group 3 Group 4 Group 5 Average

RNNCTPs 96.4 87.6 94.1 86.2 85.2 89.9

RNNNTPs 91.2 87.3 86.1 80.4 77.6 84.5

CTPs 87.5 72.6 78.2 77.3 70.4 77.2

In Table 3, the ratings of the five groups of users for the

RNNCTPs model are 96.4, 87.6, 94.1, 86.2, 85.2, 89.9,

with an average of 89.9. The ratings of the RNNNNTPs

model are 91.2, 87.3, 86.1, 80.4, 77.6, and 84.5, with an

average of 84.5. The ratings of the CTPs model are 87.5,

72.6, 78.2, 77.3, 70.4, 77.2, and 77.2, respectively. are

116 Informatica 49 (2025) 105–118 C. Liu et al.

87.5, 72.6, 78.2, 77.3, 70.4, 77.2 with an average score of

77.2. According to the experimental findings, there is

more satisfaction with the suggested RNNCTPs

algorithmic model.

5 Discussion
To complete the KG, a neural backward chain logic

algorithm based on dynamic knowledge region

generation was proposed. The experimental results

showed that this method was significantly better than

traditional static methods and traditional neural theorem

proving algorithms in terms of accuracy and

computational efficiency. First, the proposed RNNCTPs

model achieved accuracy of 0.85 and 0.80 on the Unified

Medical Language System and Nations datasets,

respectively, showing significant improvements over the

neural BCI method generated from static knowledge

regions and traditional algorithms. This advantage was

mainly due to the introduction of a dynamic knowledge

region generation mechanism. It allowed the model to

adaptively focus on relevant knowledge regions based on

the current inference context, thus avoiding the

performance degradation problem of static methods when

processing large datasets. In addition, the integration of

the CTP algorithm further optimized the knowledge

selection process. By introducing a CTP in the prediction

layer, the model could more accurately select relevant

knowledge, reduce the search space, and accelerate the

inference speed, achieving significant reductions in

iteration time of about 52% and 63%. The CTP improved

the accuracy of complex relationship matching by

optimizing the knowledge selection process, and

outperformed the soft rule and graph adversarial learning

models proposed by Yutian et al [8] in complex KGs. In

addition, compared to Shen L et al.'s improvement of the

TransE model through an adaptive margin strategy [3],

this study had higher efficiency in completing tasks.

Testing on the Nations dataset further validated the

robustness of the model with an accuracy of 0.80. The

application of RNNs, especially the use of GRUs,

enabled the model to effectively remember and utilized

the information obtained during previous inference

processes, thus improving the adaptability and accuracy

of the model in processing dynamic and large KGs.

Meanwhile, the improved Unify module filtered out

low-quality knowledge by setting similarity thresholds,

ensuring high accuracy and efficiency in the inference

process. The user evaluation results further validated the

practicality and superiority of the model. The RNNCTPs

model achieved an average user satisfaction score of 89.9,

significantly higher than other models, indicating its

potential value and good performance in practical

applications. This technology had two primary

contributions. First, it enhanced the efficacy of KG

completion. Second, it offered a practical solution for the

management and application of large-scale dynamic KGs.

This development was significant from both a technical

and practical standpoint, and it held considerable

potential for future applications. Nevertheless, further

validation was necessary to ascertain the model's

generalizability across diverse dataset types. Future

research can test it on more diverse datasets and explore

its integration with other artificial intelligence

technologies to further improve the model's performance

and adaptability. In summary, the neural backward chain

logic algorithm based on dynamic knowledge region

generation provides an efficient, accurate, and scalable

solution for KG completion tasks, thus promoting the

development of intelligent knowledge management

systems. Although the research has mainly been validated

on the unified medical language system and Nation’s

datasets, in order to more comprehensively evaluate the

performance of the proposed model, future experiments

should be extended to different datasets and real-world

application scenarios to further validate the model's

applicability and robustness. Outside the medical field,

applications can be explored in the financial sector for

risk management, credit scoring and other tasks, or in

recommendation systems in e-commerce to help

automate product recommendations and user behavior

analysis. These scenarios typically have different data

characteristics and more complex practical requirements,

which can provide a more challenging validation of the

model's generalization ability.

6 Conclusion
The internet has made an abundance of information

available due to the accelerated development of

information technology in recent years. This research

proposed a neural BCI method based on dynamic KG

generation for complementary KG. The experimental

results indicated that the knowledge utilization rates of

the RNNNTPs, CTPs, and NTPs algorithmic models in

the UMLS dataset were 0.68, 0.53, and 0.46, respectively,

when the iterations reached 100. In the Nations dataset,

the knowledge utilization rates of the three algorithmic

models were 0.65, 0.48, and 0.32, respectively, when the

iterations reached 100. The iteration times of the

RNNNTPs, CTPs, and NTPs algorithm models were 1.4s,

2.9s, and 3.8s, respectively, in the UMLS dataset when

the iterations were 100. The iteration times of the three

algorithms were 1.9s, 3.2s, and 4.3s, respectively, in the

Nations dataset. In the case where the dataset size was

1200, the RNNCTPs, RNNNTPs, and CTPs algorithm

models were 0.82, 0.64, and 0.57, respectively. At an

iteration number of 300, the three algorithm models were

0.94, 0.76, and 0.78, respectively. The study’s findings

demonstrate the potential of the RNNCTPs algorithmic

model as a supplement for big KGs. The superior

performance of RNN CTPs over RNNNTPs and CTPs is

due to their model architecture and adaptability to dataset

features. RNN CTPs combine the sequence modeling

capability of RNN with the conditional probability

splitting mechanism of CTPs. It can capture complex

temporal dependencies and efficiently segment feature

spaces. This has significant advantages in diverse or

high-dimensional data. In contrast, RNNNTPs rely solely

on deep network capture patterns and lack the

interpretability of CTPs, which can fail when feature

relationships are more complex. Although CTPs have

Neural Backward Chaining Logic Algorithm Based on Dynamic… Informatica 49 (2025) 105–118 117

strong interpretability, they lack the ability to extract deep

features, which limits their performance on data with

strong nonlinear relationships. The feature distribution

and complexity of the dataset exacerbate these

differences, further enhancing the advantages of RNN

CTPs, especially when dealing with time series or nested

patterns. The RNN part could capture rich features

through long-range dependencies, and the expansion of

data scale could further enhance the feature extraction

capabilities, while CTPs achieved efficient splitting

through conditional probability and can adapt to a wider

sample distribution. However, the increase in

computational complexity when training larger datasets

become a challenge, especially as the sequence

computation of RNNs and the tree depth of CTPs coulf

lead to a decrease in training time and inference

efficiency. The experimental design could select large

datasets such as Freebase or DBpedia to evaluate

accuracy, AUC, and time cost. The expected results

showed that increasing the data size improved the model

performance.

In the future, with the further development of technology

and the verification of more practical applications, the

proposed methods are expected to play a greater role in

the construction and maintenance of KGs. These methods

are poised to become an indispensable key technology in

intelligent reasoning, decision support systems, and big

data analysis. Therefore, the research not only provides

new ideas for the field of KG completion, but also opens

up new possibilities for a wider range of future

application scenarios.

Funding
The research is supported by science and technology

research project of Henan Province: 232102210193;

Research subject of Computer basic Education in China:

2023-AFCEC-227.

References
[1] Gao L, Qiu J, Chen G. Software Test Data

Management Based on Knowledge Graph.

Informatica, 2024, 48(16), 241-251.

https://doi.org/10.31449/inf.v48i16.6416

[2] Liu J, Wang F, Song B, Wang X. Design of an

Intelligent Classification Model for Interior Design

Knowledge Graph Based on Simulated Annealing

Algorithm. Informatica, 2024, 48(12):44-57.

https://doi.org/10.31449/inf.v48i12.6029

[3] Shen L, He R, Huang S. Entity alignment with

adaptive margin learning knowledge graph

embedding. Data & Knowledge Engineering, 2022,

139(5):101-132.

https://doi.org/10.1016/j.datak.2022.101987

[4] Wu C, Liu S, Zeng Z, Chen M, Alhudhaif A.

Knowledge graph-based multi-context-aware

recommendation algorithm. Information Sciences,

2022, 595(12):179-194.

https://doi.org/10.1016/j.ins.2022.02.054

[5] Hussey P, Das S, Farrell S. A Knowledge Graph to

Understand Nursing Big Data: Case Example for

Guidance. Journal of Nursing Scholarship, 2021,

53(3):323-332. https://doi.org/10.1111/jnu.12650

[6] Lin J, Zhao Y, Huang W, Liu C, Pu H. Domain

knowledge graph-based research progress of

knowledge representation. Neural computing &

applications, 2021, 33(2):126-129.

https://doi.org/10.1007/s00521-020-05057-5

[7] Haoran N, Haitao H E, Jianzhou F, Junlan N,

Yangsen Z, Jiadong R. Knowledge Graph

Completion Based on GCN of Multi-Information

Fusion and High-Dimensional Structure Analysis

Weight. Chinese Journal of Electronics, 2022,

32(2):387-396.

https://doi.org/10.1049/cje.2021.00.080

[8] Yutian W, Jiamin C, Ling S, Yutian W. Improving

Knowledge Graph Completion Using Soft Rules and

Adversarial Learning. Chinese Journal of

Electronics, 2021,30(4):623-655.

https://doi.org/10.1049/cje.2021.05.004

[9] He L, Ye W, Wang Y X, Feng H, Chen B, Liang D.

Using knowledge graph and RippleNet algorithms

to fulfill smart recommendation of water use

policies during shale resources development.

Journal of Hydrology, 2023, 617(23):128-137.

https://doi.org/10.1016/j.jhydrol.2022.128970

[10] Ma J, Zhou C, Wang Y, Guo Y, Hu G. PTrustE: A

high-accuracy knowledge graph noise detection

method based on path trustworthiness and triple

embedding. Knowledge-based systems, 2022,

256(28):1-14.

https://doi.org/10.1016/j.knosys.2022.109688

[11] Wang L, Zhang Y. Digital Dissemination of

Information Based on Knowledge Graph

Recommendation Algorithm. Informatica, 2024,

48(19). https://doi.org/10.31449/inf.v48i19.6561

[12] Gao L, Qiu J, Chen G. Software Test Data

Management Based on Knowledge Graph.

Informatica, 2024,48(16).

https://doi.org/10.31449/inf.v48i16.6416

[13] Wang X, Liu A, Kara S. Constructing Product

Usage Context Knowledge Graph Using

User-Generated Content for User-Driven

Customization. Journal of mechanical design, 2023,

145(4):323-342. https://doi.org/10.1115/1.4056321

[14] Bhosle K, Musande V. Evaluation of Deep Learning

CNN Model for Recognition of Devanagari Digit.

Artif. Intell. Appl.2023, 1(2):114-118.

https://doi.org/10.47852/bonviewaia3202441

[15] Zhao N, Long Z, Wang J, Zhao Z. AGRE: A

knowledge graph recommendation algorithm based

on multiple paths embeddings RNN encoder.

Knowledge-based systems, 2023, 259(10):1-8.

https://doi.org/10.1016/j.knosys.2022.110078

[16] Wang H, Wang Y, Li J, Luo T. Degree aware based

adversarial graph convolutional networks for entity

alignment in heterogeneous knowledge graph.

Neurocomputing, 2022, 487(28):99-109.

https://doi.org/10.1016/j.neucom.2022.02

https://doi.org/10.1016/j.neucom.2022.02

118 Informatica 49 (2025) 105–118 C. Liu et al.

