
https://doi.org/10.31449/inf.v49i20.7400 Informatica 49 (2025) 105–118 105 

Neural Backward Chaining Logic Algorithm Based on Dynamic 

Knowledge Region Segmentation in Knowledge Graph Completion 

Chunmao Liu1,2, Somkiat Tuntiwongwanich1*, Thiyaporn Kantathanawat1 
1School of Industrial Education and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 

10520, Thailand 
2School of Electronic and Information Engineering, Henan Polytechnic Institute, Nanyang, 473000, China 

E-mail: somkit_l@126.com 

*Corresponding author 

Keywords: internet, knowledge graph, recurrent neural networks, neural backward chain reasoning, unified medical 

language system 

Received: October 23, 2024 

With the rapid development of the Internet, the information age has arrived in a comprehensive way. 

The explosive growth of information data has greatly increased people's demand for knowledge 

management. Knowledge graph, as an effective structured knowledge representation tool, greatly 

enhances the organization and retrieval capabilities of information. However, in practical applications, 

knowledge graphs often face problems of knowledge loss and incompleteness, which severely limit their 

widespread application. To address this issue, this study proposes a neural backward chain inference 

method based on dynamic knowledge region generation. This method overcomes the bottleneck of 

performance degradation of traditional static methods on large datasets by introducing a dynamic 

knowledge region generation mechanism, which significantly improves the completion effect of 

knowledge graphs. The experiment was conducted on the Unified Medical Language System dataset and 

the Nations dataset. The results showed that when the size of the Unified Medical Language System 

dataset reached 2500, the accuracy of the proposed method reached 0.85. It was 6.25%, 20%, and 

51.8% higher than the 0.80 of the neural backward chain inference method generated by static 

knowledge regions, 0.70 of the conditional theorem prover algorithms, and 0.56 of the traditional neural 

theorems proving algorithm, respectively. In the Nations dataset, the accuracy of the proposed method 

was 0.80 at the same data scale, which was significantly better than other methods. In addition, the 

method based on dynamic knowledge region generation reduced the iteration time to 1.4 seconds, which 

was about 52% and 63% higher than the static method's 2.9 s and the traditional method's 3.8 s, 

respectively. The research results indicate that the proposed neural backward chain logic algorithm 

based on dynamic knowledge region generation exhibits good performance in completing knowledge 

graphs. 

Povzetek: Opisana metoda za dopolnjevanje znanstvenih grafov uporablja nevralno obratno verigo 

sklepanja s dinamičnim generiranjem znanstvenih področij, kar povečuje kvaliteto v primerjavi s 

tradicionalnimi statičnimi metodami. 

 

1  Introduction 
With the development of the Internet, the information 

age has arrived, and the way people live and work has 

changed radically. The development of mobile Internet 

has made the web no longer serve only specific 

professionals, but become a tool used by all people [1]. 

The sheer volume of information makes it particularly 

difficult for people to query information sets, and the 

emergence of knowledge graph (KG) solves this problem. 

KG is a graphical database for organizing and 

representing structured knowledge, but there are some 

problems with KG, KG may have incomplete 

information and some information about relationships or 

attributes between entities may be missing [2]. This may 

be due to the fact that the information has not yet been 

added to the graph, or due to the dynamic nature of 

knowledge, new information is generated but not yet 

updated to the graph. It is the missing and incomplete  

 

nature of the knowledge in KGs that poses a significant 

limitation to the use of KGs. The research aims to  

address the problems of low efficiency and insufficient 

accuracy in KG completion in large-scale and dynamic 

environments. A neural backward chain inference (BCI) 

method based on dynamic knowledge region generation 

is proposed. This method assumes that by dynamically 

adjusting the knowledge region, the accuracy and 

computational efficiency of KG completion can be 

significantly improved. It is hypothesized that this 

method will demonstrate higher accuracy and lower 

computation time than traditional static methods on 

datasets of different sizes and types. This proves the 

effectiveness of the dynamic knowledge region 

generation mechanism in KG completion. In this 

research, a neural theorem provers (NTPs) model based 

on BCI is proposed, and a recurrent neural network 

(RNN)-based NTPs model is proposed for the 
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improvement of the model in response to the 

shortcomings of the model in terms of computational 

efficiency. Aiming at the problem that RNNNNTPs are 

not ideal for dynamic knowledge area (KA) 

complementation, a conditional theorem provers (CTPs) 

algorithm is proposed to improve the NTPs. There are 

four primary sections to this research. The first includes a 

synopsis of previous studies on the subject of KG 

research. The second part is a review of the main 

methods used in this research, and the third part is the 

model results obtained by applying the methods to the 

research and analyzing the results. The fourth part is a 

summary of all the above studies and the outlook for 

future research. 

2  Related works 
The emergence of KG has brought multiple benefits to 

Internet information. Shen et al. discovered that 

substantial semantic information may be gleaned from 

the relationships and attributes of KGs, aiding in the 

creation of possible semantic representations of KGs. 

Knowledge representation approaches could reduce 

variation between distinct knowledge domains by 

aligning things through their conversion into spatial 

vectors. Nevertheless, previous methods neglected the 

distinctions between relations by using the same 

optimization objective for triples under various relations. 

The study team employed an adaptive margin strategy in 

training and provided an entity alignment method based 

on the TransE model to address this issue. The results of 

the study demonstrated that the proposed method had 

significant improvement compared to the baseline model 

[3]. Wu et al. found that due to the large amount of item 

information in KG that could help recommender systems 

to develop users, it becomes the most important source of 

auxiliary information. However, there were some 

problems in this application scenario. To address this 

problem, the research team proposed a 

multi-context-aware recommendation algorithm based on 

KG. According to experimental data, the suggested 

approach could handle KG faults more effectively [4]. 

Hussey et al. proposed to advance nursing theory through 

nursing KG using health informatics standards and 

translating nursing knowledge for nursing research. 

Experimental results showed that the proposed KG was 

able to gain valuable insights into nursing interventions 

and inform future big data science [5]. 

Lin et al. discovered that knowledge representation is a 

crucial stage in building domain KG, and that domain 

KG has emerged as a study issue in the artificial 

intelligence era. However, there were some gaps in the 

construction of domain KGs. Therefore, the research 

team studied the classification of KGs, and the study 

analyzed the unresolved issues and future research trends 

of knowledge representation in domain KG research [6]. 

Haoran et al. found that KG complementation could 

solve the problem of sparse data in KGs. However, 

under-utilization of structural information around nodes 

was the main problem of the traditional KG 

complementation model, which led to relatively 

homogeneous encoded information. To address this 

problem, the research team proposed a new KG 

complementation model for encoding and decoding 

feature information. The study’s findings showed that the 

suggested model functioned well on the used dataset [7]. 

According to Yutian et al., KG was a helpful tool and 

resource for describing items and connections in tasks 

involving natural language processing. The function of 

logic rules and the impact of false negative samples on 

knowledge embedding, however, were not fully taken 

into account by traditional methods of KG embedding, 

and the current KGs were insufficient. The model could 

well enhance the complementing effect of KG, according 

to experimental results [8]. 

In summary, many scholars have already had research on 

KG and achieved certain results. In this study, a 

BCI-based NTPs model is proposed, and for the 

shortcomings of the computational efficiency of this 

model, the model is improved by proposing an 

RNN-based NTPs model, and for the problem that 

RNNNNTPs are not ideal for dynamic KG 

complementation, the NTPs are improved and a CTPs 

algorithm is proposed. The comparison table of literature 

review is shown in Table 1. 

 

Table 1: Related works 

Research Method Research content Dataset used 
Key performance 

metrics 
Reference 

Shen et 

al. 

(2022) 

Entity alignment 

method based on 

transe model with 

adaptive margin 

strategy 

Proposed an entity 

alignment method 

addressing the issue of 

using the same 

optimization objective 

for triples under 

different relations in 

knowledge graphs, 

enhancing alignment 

through an adaptive 

margin strategy 

Knowledge 

graph embedding 

datasets  

Significantly 

improved entity 

alignment 

compared to 

baseline models 

[3] 

Wu et al. 

(2022) 

Multi-context-aware 

recommendation 

algorithm based on 

Developed a 

multi-context-aware 

recommendation 

Recommendation 

system related 

datasets 

Effectively 

addressed defects 

in knowledge 

[4] 
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knowledge graph algorithm leveraging 

project information in 

knowledge graphs to 

enhance 

recommendation 

systems, addressing 

deficiencies in 

knowledge graphs 

graphs, 

improving 

recommendation 

accuracy 

Hussey 

et al. 

(2021) 

Method using health 

informatics standards 

and translated nursing 

knowledge 

Constructed a nursing 

knowledge graph by 

combining health 

informatics standards 

and nursing knowledge 

to advance nursing 

theory 

Nursing big data 

Provided 

valuable insights 

for nursing 

interventions, 

supporting 

nursing theory 

and big data 

science research 

[5] 

Lin et al. 

(2021) 

Classification study of 

domain knowledge 

graphs, analyzing 

knowledge 

representation issues 

and trends 

Researched the 

classification of domain 

knowledge graphs, 

analyzed unresolved 

issues in knowledge 

representation within 

domain knowledge 

graph studies, and 

proposed future 

research directions 

AI domain 

related datasets 

Analyzed 

challenges in 

knowledge 

representation in 

domain 

knowledge graph 

studies and 

proposed future 

research 

directions 

[6] 

Haoran 

et al. 

(2022) 

Knowledge graph 

completion model 

based on graph 

convolutional 

networks (GCN) with 

multi-information 

fusion and 

high-dimensional 

structure analysis 

weighting 

Proposed a new feature 

encoding and decoding 

knowledge graph 

completion model using 

GCN for 

multi-information 

fusion and 

high-dimensional 

structure analysis 

Knowledge 

graph completion 

related datasets 

The proposed 

model performs 

well on the used 

datasets, 

improving the 

accuracy of 

knowledge graph 

completion 

[7] 

Yutian et 

al. 

(2021) 

Knowledge graph 

embedding model 

based on soft rules 

and adversarial 

learning 

Combined soft rules 

and adversarial learning 

to propose a new 

knowledge graph 

embedding method, 

enhancing knowledge 

graph completion 

Knowledge 

graph embedding 

datasets (specific 

datasets not 

detailed) 

Effectively 

improved 

knowledge graph 

completion, 

enhancing the 

robustness of 

embeddings 

[8] 

 

3 Knowledge graph complementation 

model based on neural backward 

chain logic algorithm 
The first section of this chapter introduces KGs and 

builds a BCI-based model for NTPs. The second chapter 

addresses the problems of the complementary model and 

proposes a neural BCI method based on dynamic KG 

generation to complement KGs. 

3.1. Modeling of NTPs based on backward chain 

reasoning 

KG usually adopts the ternary form to represent 

structured semantic knowledge. The ternary consists of 

subject, predicate and object, which are used to describe 

the relationship between the entities, where the entity is  

 

the most basic element, which is generally a real-world 

physical object or an abstract concept, and the 

relationship is the link connecting the entities, and in the 

construction of KG, it will generally contain three 

phases: information extraction, knowledge fusion, and 

knowledge processing [9]. Inductive logic programming 

(ILP) is a machine learning method that combines 

inductive reasoning and logic programming. It aims to 

automatically learn logic programs from given facts and 

rules for reasoning and decision making. The basic idea 

of ILP is to reason and make decisions by generalizing 

general logical rules from examples. It does this by 

representing examples as logical facts and goals, and 

then finding logical rules that satisfy the goals by using 
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logical reasoning and search algorithms, the flow of which is shown in Fig. 1. 

 

Data 

representation

Spatial 

hypothesis

Search

 strategy
Inductive 

learning

Evaluation 

optimization  
Figure 1: ILF flow 

 

In Fig. 1, the ILF algorithmic process is mainly divided 

into five types, which are data representation, hypothesis 

space, search strategy, inductive learning, and evaluation 

and optimization. Among them, data representation 

refers to the form of transforming example data into 

logical facts, i.e., mapping attributes and relations in data 

into logical predicates. Hypothesis space refers to the 

determination of the hypothesis space of logical rules, 

which is usually realized by defining the formal syntax 

and constraints of logical rules. Search strategy refers to 

the selection of an appropriate search strategy to search 

for logical rules in the hypothesis space. Inductive 

learning refers to the continuous adaptation of logical 

rules during the search process, based on a given 

objective function and learning algorithm, and the 

evaluation of their accuracy and generalization ability on 

example data. Evaluation optimization refers to 

evaluating the performance of the logic rules obtained by 

learning and optimizing and correcting the rules 

according to the evaluation metrics of the learning 

algorithm [10-11]. 

RNN is a neural network model for processing sequential 

data or data with time dependency [12]. Unlike 

traditional feed-forward neural networks, RNN has 

recurrent connections that can transfer information 

within the network, giving it memory capability, the 

RNN recurrent hidden state update formula is shown in 

equation (1). 

 

1

0,                0

( , ),  
t

t t

t
h

h x otherwise −

=
= 


        (1) 

 

In equation (1), 
th  denotes the cyclic hidden state of 

the RNN,   denotes the nonlinear function, and x  

denotes the sequence. Equation (2) displays the update of 

the cyclic hidden state. 

 

1( )t t th g Uh Wx−= +             (2) 

 

In equation (2), g  represents a smooth bounded 

function and W  and U  denote constant parameters. 

Conventional RNNs are prone to the problem of gradient 

vanishing or gradient explosion during the training 

process, which leads to difficulties in capturing 

long-term temporal dependencies. To solve this problem, 

some improved RNN structures, such as gated recurrent 

unit (GRU) and Long Short-Term Memory (LSTM), 

have emerged to deal with long-term dependencies 

efficiently by introducing a gating mechanism, and the 

structure of LSTM is shown in Fig. 2. 

 

Cell

Tanh
( ( 1), ( ))h t x t−

( )f tOut-gate

( )h t



Input gate


( ( 1), ( ))h t x t−

( )i t

Tanh
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( )s t

Forget Gate



( ( 1), ( ))h t x t−  
Figure 2: Structure of LSTM 

 

In Fig. 2, the input layer input at moment t is ( )x t , 

( 1)h t −  is the hidden layer at moment 1t − , and the 

internal state s  is the secret key for neuron activation 

and also determines the network structure of the LSTM. 

Equation (3) shows the output of the LSTM unit, which 

is a value ( )f t  between 0 and 1. This value is obtained 

through ( 1)h t −  and ( )x t , representing a trade-off 

between retaining or discarding the internal states. The 

activation function used is a sigmoid function. 

 

tanh( )j j j

t t th o c=                (3) 

 

In equation (3), 
j

to  denotes the output gate that controls 

exposure, 
j

tc  denotes the memory cell. Equation (4) 

displays the expression for the output gate. 

 

1( )j t

t o t o t o to W x U h V c −= + +         (4) 

 

In equation (4),   represents the sigmoid function and 

oV  represents the diagonal matrix. The degree of 

forgetting of existing memories is regulated by the 

forgetting gate, and the new memory content is 

controlled by the updating gate, and the two gates are 

calculated as shown in equation (5). 
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In equation (5), 
iV  and 

jV  denote diagonal matrices. 

Based on the current input and the concealed state of the 

previous instant, the input gate uses a sigmoid function to 

determine which information needs to be added to 

memory. Using a sigmoid function, the forgetting gate 

determines whether data should be erased from memory 

based on the input at hand and the hidden state of the 

preceding instant. Using a sigmoid function, the output 

gate determines which data should be output depending 

on the input at hand and the hidden state from the 

previous instant. 

In the complementation of KG, when there are missing 

relations or entities in the triad, all relations or entities in 

the KG are generally complemented to the triad, and the 

triad for which the filling is performed is used as a query 

option, sorted and scored, and the relations or entities 

with the highest scores are used as the final result output 

[13]. BCI based NTPs apparatus are characterized by 

micro-computability and strong interpretability of rules 

and results. The core of RNN is the GRU, which is an 

improved RNN structure with good performance and 

computational efficiency. The GRU model incorporates 

update and reset gates to regulate the flow of information 

at every moment, thereby enabling the model to 

selectively retain or forget information. This approach 

effectively solves the gradient vanishing problem that 

traditional RNNs frequently encounter when processing 

long sequences. In practical implementation, RNNs 

utilize the features of each entity as input, combining 

them with the relevant relationships in the graph to 

achieve inference. During each inference, the RNN 

computes the current hidden state based on the current 

input and the previous hidden state. This recursive 

structure allows the model to maintain a "contextual" 

memory of the entire KG at each time step, taking into 

account the dependencies between entities and 

relationships in the graph during knowledge completion. 

In NTPs, there are three main modules, which are 

unfication (unify), or and. the computational process of 

NTPs can be approximated as a search. That is, or 

indicates that any rule in the knowledge base serves the 

goal of the proof, and indicates that the premises of the 

rules must be recursively proved. RNN is used as the 

regulation and facts for the knowledge generation 

operation because the proof process of NTPs is top-down, 

the unify operation needed by each layer will be 

increased step by step, and there is a sequential 

relationship between the upper layers and lower layer’s 

rule facts. Its structure is shown in Fig. 3. 
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NTPs Target score
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predicate

Train

 
Figure 3: RNNNTPs model structure 

 

In Fig. 3, the proof target is firstly input into the relation 

selector, and the relations in the relation warehouse are 

selected through the relation selector. The knowledge in 

the knowledge base is selected according to the selected 

relation predicates, the generated knowledge is fed into 

NTPs to generate high quality knowledge, and the 

generated new rules are added to the knowledge base, the 

high-quality relation predicates are refined by the 

high-quality knowledge, and in turn the relation selector 

is trained, and finally the NTPs outputs the target values 

by the generated knowledge. In this study, RNN selector 

is used to predict the sequence and the generated 

sequence is shown in equation (6) [14]. 

 

0 ( )h f r=                 (6) 

 

In equation (6), where f  denotes the linear 

transformation, the relationship between different 

positions is predicted by the gating unit and the 

expression is shown in equation (7). 

 

 1 1( , ( , ))t t t th GRU h g r r− −=           (7) 

 

In equation (7), g  denotes the linear transformation 

and  , tr r  denotes the connection between the 

previous relation and the current relation. The generated 

relation set is divided by softmax function to get the next 

relation. In RNNNTPs, the relation selector generates 

only the relation set generates the knowledge set by 
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matching algorithm and the expression is shown in 

equation (8). 

( ,Re )

( ,Re )

gen genKB Select KBs l

Select KB l KB

=


=
        (8) 

 

In equation (8), KB  denotes the knowledge base and 

Re l  denotes the set of relations. Since NTPs have the 

problem of slow computational efficiency, the modules 

in NTPs are improved to address this problem. The Or 

module is improved by reconstructing it so that it only 

considers the knowledge provided by the knowledge 

generator. By establishing a threshold to govern the 

Unify module, it may be made better. If a similarity 

surpasses the threshold, it will be added to the 

high-quality knowledge set [15]. Fig. 4 depicts the 

revised algorithm’s flow. 

 

KB initialization Generator 

initialization
Predictor settings

Generate 

Knowledge Set

Training predictorHigh quality 

knowledge completion  
 

Figure 4: Flowchart of the improved algorithm 

 

In Fig. 4, firstly the ternary dataset is input and then it is 

preprocessed, secondly the GRU-based RNN is built, 

then the predictor setting is performed and ComplEx is 

used as the optimization function for the NTPs. The 

knowledge set is generated by the predictor setting, the 

individual relations in the target are proved by the RNN 

selector to generate the set of relations. To create the 

knowledge set, the relations in the set are matched in the 

KBs. The predictor is then trained to add the closest 

knowledge into the KBs for knowledge 

complementation. 

3.2. Knowledge graph complementation model 

based on dynamic knowledge search region 

segmentation 

RNNNTPs substantially improve the computational 

efficiency of NTPs, but there are some problems, in the 

relation selection, some relations will appear more 

frequently, and some simple relations will be matched 

with more knowledge. This presents a significant 

challenge for the next connection selection process. To 

address this, the CTP algorithm is used to optimize the 

model by incorporating the neural layer of knowledge 

selection into the predictor. This further increases the 

accuracy of the link selection process. CTPs are 

computational models that prove given conditional 

propositions through the use of conditionals and 

inference rules, and can be used in areas such as logical 

reasoning, theorem proving, and formal verification [16]. 

The main use of CTPs is to automate the theorem 

proving process. CTPs algorithm can receive conditions 

and propositions to be proved and try to prove these 

propositions using logical inference rules and reasoning 

strategies, the model of RNN-CTPs algorithm is shown 

in Fig. 5. 
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Figure 5: Model flow of RNNCTPs algorithm 
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In the relation selector, the sequence relations are 

predicted by RNN relation selector, after initializing the 

RNN selector, the relations at different positions are 

predicted by gating unit, the generated rule set is divided 

by softmax function to get the next rule body, and the 

number of generated relations is shown in equation (9). 

 

(Re )srelNum batchSize size l rel KB =     (9) 

 

In equation (9), relNum  denotes the generated 

relations and batchSize  is the proof objectives. 

relNum  denotes the hyperparameter whose purpose is 

to adjust the relations generated, and (Re )ssize l  

denotes the relations present in the relation repository. 

KB  denotes the degree to which the generated 

knowledge matches the relations. In the relation 

warehouse, dynamic expansion coefficients are used and 

the dynamic change of expansion coefficients is shown 

in equation (10). 

 

( )new last new last

i iep ep KB KB = − −       (10) 

 

In equation (10),   represents the hyperparameter that 

controls the diffusion coefficient, and 
newKB  and 

lastKB  are the current KB  and the KB  of the 

previous cycle, respectively. CTPs, as an improved 

version of NTPs, reduces the amount of knowledge that 

needs to be learned by increasing the neural layer used 

for knowledge selection, which improves the efficiency 

of computation. To achieve better computation, CTPs 

will choose alternative functions dependent on the object. 

The selection module is based on the attention function, 

as illustrated in equation (11). 

 

( )i Rf x E=              (11) 

 

In equation (11), RE  denotes the embedding matrix of 

predicates, and   denotes the attention distribution of 

predicate verbs in the matrix, the expression of which is 

shown in equation (12). 

 
1

max( )
R

isoft W x
−

=           (12) 

 

In equation (12),   denotes the attention distribution 

of the predicate verbs in the matrix and iW  denotes the 

elements embedded in the matrix. CTPs go through the 

selection module to generate a set of knowledge by 

proving the goal. After each generation of knowledge set 

by the model, variables need to be recorded and the 

expression is shown in equation (13). 

 

i

i

i

Used

gen

KB
KB

KB
 =              (13) 

 

In equation (13), i
KB  denotes the set of variables, 

iUsedKB  denotes the knowledge that is involved in the 

process at this time. Moreover, igenKB  represents the 

knowledge produced by the CTPs following the feeding 

of inputs. The flow of the algorithmic model of the 

RNNCTPs is shown in Fig. 6. 

 

KB initialization
Generator 

initialization
Predictor settings

Generate 

Knowledge Set CTPs
High quality 

knowledge completion  
 

Figure 6: Model flow of RNNCTPs algorithm 

 

Firstly, the ternary dataset is input and then it is 

preprocessed, secondly the GRU based RNN is built and 

then the predictor setting is performed. The predictor 

setting creates the knowledge set. The RNN selector 

proves each individual relation in the target to create the 

set of relations. Moreover, the KBs match the relations in 

each set to create the knowledge set. The predictor is 

then trained to add the closest knowledge to the KBs for 

knowledge complementation. The training of the CTPs 

module already includes the selection of the module, so 

the amount of knowledge used for the unify module to 

run is under control. Each iteration produces limb 

utilization as shown in equation (14). 

( ),

,               
2

mean mean

mean

KB KB KB if KB KB

KB KB KB
else

    

  

  + − − 


=  +



 (14) 

 

In equation (14),  A denotes the learning rate of KB  

update.   denotes the learning threshold, which can be 

fine-tuned if the difference between 
meanKB  and 

KB  is too large. 
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# Input: Dataset X (features) and Y (labels), RNN parameters, CTPs parameters

# Output: Predicted labels Y_pred

# Step 1: Initialization

1. Initialize RNN structure (e.g., number of layers, number of hidden units).

2. Define CTPs parameters (e.g., tree depth, splitting criterion such as Gini index or information 

gain).

# Step 2: Training Phase

2.1 Feature Extraction with RNN:

    for each sample (x, y) in (X, Y):

        # Pass input sequence x through RNN to extract features

        h_t = RNN(x_t; W_rnn)  # W_rnn is the weight matrix of the RNN

        h_T = FinalState(h_t)  # h_T is the final hidden state representation of the sequence

    # Collect the final hidden states h_T as the feature set for all samples

2.2 Build Conditional Probability Trees (CTPs):

    1. Initialize root node with all training samples and their extracted features h_T.

    2. While the stopping criterion is not met (e.g., max depth or minimum samples in a node):

        a. For each node, calculate the optimal splitting condition based on features h_T 

           and maximize conditional probabilities of labels.

        b. Split the data into child nodes based on the chosen condition.

    3. At each leaf node, compute the probability distribution of labels and store it.

# Step 3: Prediction Phase

3.1 Predict for each test sample x_test:

    a. Pass x_test through the RNN to obtain feature representation h_test.

    b. Traverse the CTPs using h_test, following the splitting conditions until reaching a leaf 

node.

    c. At the leaf node, select the class with the highest probability as the predicted label y_pred.

# Step 4: Output

4. Return all predicted labels Y_pred.

RNN-CTPs

 
Figure7: RNN CTPs pseudocode 

4 Performance analysis of knowledge 

graph complementation model based 

on neural backward chain logic 

algorithm 
In the first section of this section, the performance 

comparison is carried out for static KG segmentation of 

KG using UMLS dataset and Nation’s dataset, and the 

results of the study show that it performs well in the 

UMLS dataset. Therefore, the performance of KG 

complementary model based on dynamic KG 

segmentation is analyzed using UMLS dataset. 

4.1. Performance analysis of knowledge Graph 

complementary model based on static knowledge 

area segmentation 

The server CPU used in this study is Inter(R) Core (TM) 

i5-10210U with 16GB of RAM, GPU is GeForce RTX 

2080 operating system is Windows 10 with 8G of RAM. 

Using a systematic hyperparameter selection method, 

different combinations of hyperparameters such as 

learning rate, batch size, GRU layers, number of hidden 

units, and similarity threshold are first traversed by grid 

search, and the performance of each parameter set is 

evaluated on the validation set to finally select the 

optimal parameter combination. To ensure the robustness 

of the selection, k-fold cross-validation is used to divide 

the training data into k subsets, and multiple training and 

validation are performed to calculate the average 

performance of each parameter group. At the same time, 

an early-stop mechanism is introduced to stop training if 

the performance of the validation set did not significantly 

improve in 10 consecutive training rounds to prevent 

overfitting. The specific hyperparameter settings are as 

follows: learning rate set to 0.001, batch size set to 64, 

GRU layers set to 2, number of hidden units set to 128, 

similarity threshold set to 0.7, Dropout rate set to 0.5, 

optimization algorithm using Adam, iteration count set to 

300, embedding dimension set to 100, activation function 

set to ReLU, and batch normalization applied in the 

model. To ensure the robustness of the results, each 

experiment is run independently at least five times with 

the same hyperparameter settings, using different random 

seeds to avoid random effects, and taking the average of 

key performance indicators such as accuracy, iteration 

time, and knowledge utilization, while calculating the 

standard deviation to evaluate the stability of the results. 

When comparing performance, paired t-test and analysis 

of variance methods are used with a significance level of 

α=0.05 to ensure that performance differences between 

different models are statistically significant. At the same 

time, a 95% confidence interval is calculated to provide 

an uncertainty assessment for performance estimation 

and increase the reliability of result interpretation. The 

study is conducted using the Unified Medical Language 

System (UMLS) dataset and the Nations dataset. UMLS 

is a medical knowledge representation and retrieval 

system developed by the National Institutes of Health. Its 

purpose is to facilitate the interoperability and exchange 

of medical information so that different medical 

information resources can be connected and shared. 

UMLS contains many medical vocabularies, coding 

systems, and standardized terminology, including 49 

predicates, 135 constants, and 6529 true facts. It also 

unifies terminology, coding, and standards from various 

medical disciplines. Nations has 2565 true facts, 111 

unary predicates, 14 constants, and 56 binary predicates. 

The performance of the proposed model is analyzed on 

both datasets and the results are shown in Fig. 8. 

 



Neural Backward Chaining Logic Algorithm Based on Dynamic… Informatica 49 (2025) 105–118 113 

 

0 1000500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

c
y

Dataset size

NTPs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

c
y

(a) Performance of Three Algorithms on 

UMLS Datasets
(b) Performance of Three Algorithms on the 

Nations Dataset

1500 2000 2500 1000500
Dataset size

1500 2000 2500

CTPs

RNNNTPs

NTPsCTPs

RNNNTPs

 
Figure 8: Comparison of accuracy of three algorithm models in different datasets 

 

Fig. 8(a) shows the performance of three algorithms on 

the UMLS dataset, while Fig. 8(b) shows the 

performance of the three algorithms on the Nations 

dataset. According to Fig. 8(a), in the UMLS dataset, as 

the dataset increases, the accuracy of RNNNTPs, CTPs, 

and NTPs algorithm models also fluctuates and increases. 

Among them, the RNNNTPs algorithm model shows 

higher performance. When the dataset size is 2500, the 

accuracy of RNNNTPs, CTPs, and NTPs algorithm 

models are 0.88, 0.79, and 0.71, respectively. As shown 

in Fig. 8(b), in the Nations dataset, the accuracy of the 

three algorithms also increases with the size of the 

dataset, but the training performance is relatively poor 

compared to the UMLS dataset. When the dataset size is 

2500, the accuracy of RNNNTPs, CTPs, and NTPs 

algorithm models are 0.80, 0.70, and 0.56, respectively. 

The experimental results show that the proposed hybrid 

algorithm model exhibits high accuracy among the three 

algorithms and performs well in training on the UMLS 

dataset. Compare the performance of three algorithms at 

different iteration times, and the results are shown in Fig. 

9. 

Fig. 9(a) shows the knowledge utilization rates of three 

algorithms in the UMLS dataset, while Fig. 9(b) shows 

the knowledge utilization rates of the three algorithms in 

the Nations dataset. As shown in Fig. 9(a), with the 

increase of iteration times, the knowledge utilization rate 

of the three algorithms also continues to rise. When the 

number of iterations reaches 100, the knowledge 

utilization rates of RNNNTPs, CTPs, and NTPs 

algorithm models in the UMLS dataset are 0.68, 0.53, 

and 0.46, respectively. In Fig. 9(b), with the increase of 

iteration times, the knowledge utilization rate of the three 

algorithm models also continues to rise, but it is 

significantly lower than that of the UMLS dataset. When 

the number of iterations reaches 100, the knowledge 

utilization rates of the three algorithm models are 0.65, 

0.48, and 0.32, respectively. The experimental results 

show that the proposed RNNNTPs algorithm model has 

better performance compared to other algorithm models, 

and each algorithm model performs well in the UMLS 

dataset. The iteration times of the three algorithms are 

compared for different numbers of iterations, and the 

results are presented in Fig. 10. 
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Figure 9: Knowledge utilization rate of three algorithms at different iteration times 
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Figure 10: Iteration time in different datasets 

 

Fig. 10(a) represents the iteration time of the three 

algorithms in the UMLS dataset and Fig. 10(b) 

represents the iteration time of the three algorithms in the 

Nations dataset. In Fig. 10, the RNNNTPs algorithm 

model exhibits less time used for iterations than the other 

two methods in all three methods. The iteration times of 

the RNNNTPs, CTPs and NTPs algorithm models in the 

UMLS dataset are 1.4s, 2.9s and 3.8s, respectively, when 

the number of iterations is 100. In the Nations dataset, 

the iteration times of the three algorithms are 1.9s, 3.2s 

and 4.3s, respectively. The findings revealed that the 

proposed RNNNNTPs algorithm has a lower iteration 

time under different iteration number of iterations have 

low iteration time. 

4.2. Performance analysis of knowledge graph 

complementation model based on dynamic 

knowledge area segmentation 

The findings are displayed in Fig. 11 after the superior 

UMLS dataset is chosen and the model performance is 

examined to compare each model’s performance. 
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Figure 11: Accuracy of three algorithmic models with different dataset sizes and number of iterations 

 

Fig. 11(a) represents the accuracy comparison of the 

three algorithms under different dataset sizes, and Fig. 

11(b) represents the accuracy comparison of the three 

algorithms under different iteration numbers. In Fig. 

11(a), the accuracy of the three models fluctuates and 

rises as the dataset increases. The accuracy of the 

RNNCTPs, RNNNNTPs, and CTPs algorithmic models 

are 0.82, 0.64, and 0.57, respectively, when the dataset 

size is 1200. In Fig. 11(b), the accuracy of the three 

models fluctuates and rises as the iterations increases. 

The accuracy of the three algorithmic models fluctuates 

and rises when the iterations is 300, the accuracy rates of 

the three algorithmic models are 0.94, 0.76, and 0.78, 

respectively. The study’s findings show that, out of the 

three models, the suggested RNNCTPs model—which is 

based on dynamic KG segmentation—performs better. 

The HITS@k evaluation metric is used to compare the 

three methods. The findings are displayed in Fig. 12 and 

this metric indicates the percentage of real entities that 

are present in the top k entities of the sorted ranked list. 

Fig. 12(a) shows the accuracy of the three algorithms for 

different entities, while Fig. 12(b) shows the iteration 

time for the same. Among the three algorithmic models, 

the proposed RNNCTPs model based on dynamic KG 

segmentation has a better performance. The 

comprehensive performance of the model is analyzed, 

and the results are shown in Table 2. 
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Table 2: Model comprehensive performance analysis 

Dataset size Model ACC 
Calculation 

overhead/s 

Mean response 

time/s 

Training 

time/s 

Iteration 

time/s 

Model 

stability  

1000 

RNNCTPs 0.75 12.3 1.2 85 1.5 0.03 

RNNNTPs 0.7 15.4 1.8 92 2.1 0.05 

CTPs 0.6 18.2 2.0 99 2.5 0.06 

NTPs 0.45 21.6 2.3 110 3.2 0.08 

1500 

RNNCTPs 0.78 15.6 1.4 130 1.7 0.02 

RNNNTPs 0.74 18.0 1.9 138 2.3 0.04 

CTPs 0.68 20.1 2.2 145 2.8 0.05 

NTPs 0.5 23.0 2.6 155 3.6 0.07 

2000 

RNNCTPs 0.82 18.5 1.5 170 1.9 0.01 

RNNNTPs 0.78 21.2 2.0 180 2.5 0.03 

CTPs 0.72 23.4 2.4 190 3.0 0.04 

NTPs 0.55 26.2 2.8 200 3.9 0.06 

2500 

RNNCTPs 0.85 20.7 1.6 210 1.4 0.02 

RNNNTPs 0.80 23.0 2.2 225 2.7 0.04 

CTPs 0.75 25.3 2.6 240 3.2 0.05 

NTPs 0.56 28.6 3.0 260 4.3 0.07 

 

As demonstrated in Table 2, the RNNCTPs model 

displays superior accuracy and reduced computational 

overhead across various dataset sizes, particularly at a 

dataset size of 2500, where the accuracy reaches 0.85. 

Concurrently, the response time and computational 

overhead of the RNNCTP model are notably lower 

compared to other models. Furthermore, the iteration and 

training times of RNNCTPs are relatively brief, 

suggesting their efficacy in handling large-scale datasets. 

For other models, such as RNNNTPs, CTPs, and NTPs, 

the gap in accuracy and computational cost gradually 

becomes apparent as the dataset size increases, especially 

for the 2500 scale dataset, where the performance 

advantage of the RNNCTPs model is particularly 

prominent. The experimental outcomes reveal that the 

proposed RNNCTPs model has stability and robustness 

under different input scales, providing strong support for 

its wide application. Fifty people with certain medical 

knowledge are selected and randomly divided into five 

groups, and the models are scored separately. Moreover, 

Table 3 displays the outcomes. 

 

Table 3: User evaluation form 

Model Group 1 Group 2 Group 3 Group 4 Group 5 Average 

RNNCTPs 96.4 87.6 94.1 86.2 85.2 89.9 

RNNNTPs 91.2 87.3 86.1 80.4 77.6 84.5 

CTPs 87.5 72.6 78.2 77.3 70.4 77.2 

 

In Table 3, the ratings of the five groups of users for the 

RNNCTPs model are 96.4, 87.6, 94.1, 86.2, 85.2, 89.9, 

with an average of 89.9. The ratings of the RNNNNTPs 

model are 91.2, 87.3, 86.1, 80.4, 77.6, and 84.5, with an 

average of 84.5. The ratings of the CTPs model are 87.5, 

72.6, 78.2, 77.3, 70.4, 77.2, and 77.2, respectively. are 
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87.5, 72.6, 78.2, 77.3, 70.4, 77.2 with an average score of 

77.2. According to the experimental findings, there is 

more satisfaction with the suggested RNNCTPs 

algorithmic model. 

5  Discussion 
To complete the KG, a neural backward chain logic 

algorithm based on dynamic knowledge region 

generation was proposed. The experimental results 

showed that this method was significantly better than 

traditional static methods and traditional neural theorem 

proving algorithms in terms of accuracy and 

computational efficiency. First, the proposed RNNCTPs 

model achieved accuracy of 0.85 and 0.80 on the Unified 

Medical Language System and Nations datasets, 

respectively, showing significant improvements over the 

neural BCI method generated from static knowledge 

regions and traditional algorithms. This advantage was 

mainly due to the introduction of a dynamic knowledge 

region generation mechanism. It allowed the model to 

adaptively focus on relevant knowledge regions based on 

the current inference context, thus avoiding the 

performance degradation problem of static methods when 

processing large datasets. In addition, the integration of 

the CTP algorithm further optimized the knowledge 

selection process. By introducing a CTP in the prediction 

layer, the model could more accurately select relevant 

knowledge, reduce the search space, and accelerate the 

inference speed, achieving significant reductions in 

iteration time of about 52% and 63%. The CTP improved 

the accuracy of complex relationship matching by 

optimizing the knowledge selection process, and 

outperformed the soft rule and graph adversarial learning 

models proposed by Yutian et al [8] in complex KGs. In 

addition, compared to Shen L et al.'s improvement of the 

TransE model through an adaptive margin strategy [3], 

this study had higher efficiency in completing tasks. 

Testing on the Nations dataset further validated the 

robustness of the model with an accuracy of 0.80. The 

application of RNNs, especially the use of GRUs, 

enabled the model to effectively remember and utilized 

the information obtained during previous inference 

processes, thus improving the adaptability and accuracy 

of the model in processing dynamic and large KGs. 

Meanwhile, the improved Unify module filtered out 

low-quality knowledge by setting similarity thresholds, 

ensuring high accuracy and efficiency in the inference 

process. The user evaluation results further validated the 

practicality and superiority of the model. The RNNCTPs 

model achieved an average user satisfaction score of 89.9, 

significantly higher than other models, indicating its 

potential value and good performance in practical 

applications. This technology had two primary 

contributions. First, it enhanced the efficacy of KG 

completion. Second, it offered a practical solution for the 

management and application of large-scale dynamic KGs. 

This development was significant from both a technical 

and practical standpoint, and it held considerable 

potential for future applications. Nevertheless, further 

validation was necessary to ascertain the model's 

generalizability across diverse dataset types. Future 

research can test it on more diverse datasets and explore 

its integration with other artificial intelligence 

technologies to further improve the model's performance 

and adaptability. In summary, the neural backward chain 

logic algorithm based on dynamic knowledge region 

generation provides an efficient, accurate, and scalable 

solution for KG completion tasks, thus promoting the 

development of intelligent knowledge management 

systems. Although the research has mainly been validated 

on the unified medical language system and Nation’s 

datasets, in order to more comprehensively evaluate the 

performance of the proposed model, future experiments 

should be extended to different datasets and real-world 

application scenarios to further validate the model's 

applicability and robustness. Outside the medical field, 

applications can be explored in the financial sector for 

risk management, credit scoring and other tasks, or in 

recommendation systems in e-commerce to help 

automate product recommendations and user behavior 

analysis. These scenarios typically have different data 

characteristics and more complex practical requirements, 

which can provide a more challenging validation of the 

model's generalization ability. 

6  Conclusion 
The internet has made an abundance of information 

available due to the accelerated development of 

information technology in recent years. This research 

proposed a neural BCI method based on dynamic KG 

generation for complementary KG. The experimental 

results indicated that the knowledge utilization rates of 

the RNNNTPs, CTPs, and NTPs algorithmic models in 

the UMLS dataset were 0.68, 0.53, and 0.46, respectively, 

when the iterations reached 100. In the Nations dataset, 

the knowledge utilization rates of the three algorithmic 

models were 0.65, 0.48, and 0.32, respectively, when the 

iterations reached 100. The iteration times of the 

RNNNTPs, CTPs, and NTPs algorithm models were 1.4s, 

2.9s, and 3.8s, respectively, in the UMLS dataset when 

the iterations were 100. The iteration times of the three 

algorithms were 1.9s, 3.2s, and 4.3s, respectively, in the 

Nations dataset. In the case where the dataset size was 

1200, the RNNCTPs, RNNNTPs, and CTPs algorithm 

models were 0.82, 0.64, and 0.57, respectively. At an 

iteration number of 300, the three algorithm models were 

0.94, 0.76, and 0.78, respectively. The study’s findings 

demonstrate the potential of the RNNCTPs algorithmic 

model as a supplement for big KGs. The superior 

performance of RNN CTPs over RNNNTPs and CTPs is 

due to their model architecture and adaptability to dataset 

features. RNN CTPs combine the sequence modeling 

capability of RNN with the conditional probability 

splitting mechanism of CTPs. It can capture complex 

temporal dependencies and efficiently segment feature 

spaces. This has significant advantages in diverse or 

high-dimensional data. In contrast, RNNNTPs rely solely 

on deep network capture patterns and lack the 

interpretability of CTPs, which can fail when feature 

relationships are more complex. Although CTPs have 
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strong interpretability, they lack the ability to extract deep 

features, which limits their performance on data with 

strong nonlinear relationships. The feature distribution 

and complexity of the dataset exacerbate these 

differences, further enhancing the advantages of RNN 

CTPs, especially when dealing with time series or nested 

patterns. The RNN part could capture rich features 

through long-range dependencies, and the expansion of 

data scale could further enhance the feature extraction 

capabilities, while CTPs achieved efficient splitting 

through conditional probability and can adapt to a wider 

sample distribution. However, the increase in 

computational complexity when training larger datasets 

become a challenge, especially as the sequence 

computation of RNNs and the tree depth of CTPs coulf 

lead to a decrease in training time and inference 

efficiency. The experimental design could select large 

datasets such as Freebase or DBpedia to evaluate 

accuracy, AUC, and time cost. The expected results 

showed that increasing the data size improved the model 

performance. 

In the future, with the further development of technology 

and the verification of more practical applications, the 

proposed methods are expected to play a greater role in 

the construction and maintenance of KGs. These methods 

are poised to become an indispensable key technology in 

intelligent reasoning, decision support systems, and big 

data analysis. Therefore, the research not only provides 

new ideas for the field of KG completion, but also opens 

up new possibilities for a wider range of future 

application scenarios. 
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