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This study explores the use of Decision Tree (DT) algorithms for detecting potential hazards in laboratory 

operations by analyzing a synthetic dataset modeled on historical accident reports. The dataset simulates 

mishaps and near-miss incidents in university laboratories, incorporating detailed descriptions of behaviors 

and risks. Feature extraction techniques like Principal Component Analysis (PCA) are used to train and test 

DT models. The Random Forest-based Decision Tree (RF-based DT) model demonstrates superior 

performance compared to traditional methods. Implemented in Python, the model predicts chemical hazards 

with 92.3% accuracy, 93.1% precision, 93.5% F1 score, and 91.4% recall. These results confirm the model's 

reliability for risk detection and management in laboratory settings. 

Povzetek: Predlagan je model odločanja na osnovi naključnega gozda (RF-DT) za upravljanje nevarnosti v 

univerzitetnih laboratorijih, ki zanesljivo identificira kemijske nevarnosti in izboljšuje laboratorijsko 

varnost. 

 

1 Introduction 

University-conducted innovative experiments can involve 

the use of hazardous chemicals or laboratory procedures 

[1]. Additionally, they could be involved in risky tasks 

including handling pyrophoric materials, inactivating 

infectious pathogens, moving large gas cylinders, and 

completing metalwork with machine tools which are 

highly probable to end in accidents and near-miss 

occurrences [2]. 

The complexity of laboratory safety management grows 

when there is a chance of fire, explosion, and other issues. 

It is risky to undertake laboratory research given the rise in 

accident frequency [3]. Many different types of 

laboratories, including biological, chemical, electrical, 

mechanical, and environmental labs, are frequently found 

in one university. Every kind of laboratory is made up of 

several rooms with various purposes. Additionally, every 

area has a variety of tools and apparatus. This implies that 

running the university laboratory presents significant 

difficulties [4]. In actuality, issues with management work 

account for the majority of laboratory accidents. Daily 

management tasks depend on the equipment's routine 

inspection and maintenance to guarantee the safety of the 

laboratory. Manual statistics are typically used in the 

administration of the laboratory apparatus [5]. The task of 

equipment management is difficult, time-consuming, and 

costly since there are so many different kinds of 

equipment. 

Faculty personnel, researchers, graduate students, or 

students could be killed in an incident that occurs in a 

university laboratory while conducting a chemical 

experiment [6]. The number of laboratory accidents at 

universities worldwide is unknown, but after they 

happened, similar incidents occurred again at other 

colleges [7]. In these instances, there wasn't a significant 

paradigm shift or change in the way laboratories are safe. 

Furthermore, the colleges' efforts to work together to stop 

similar incidents have not advanced [8]. 

The unusual and extensive attention from industry and 

mainstream media, as well as from academic institutions 

around the country, complicated the campus's response 

efforts even further [9]. The incident had a major impact 

on everyone in school, especially those who work in 

laboratory safety and research, the Office of Sustainability, 

Health & Safety (EH&S) is responsible for safeguarding 

the health and safety of all individuals on campus. [10]. 

We utilize an RF-based DT method in this work, which 

can handle a diverse set of features and provide robust 

predictions even when some features might be less 

relevant. Next, by recursively dividing the data based on 

these vectors, the DT method makes use to estimate hazard 

probability to anticipate the dangers related to university 

laboratory work. 

The following is the order of this paper: Related works are 

included in section 2, and techniques are covered in section 

3. Section 4 presents the experiment's results. Section 5 
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concludes with a summary of the study and suggestions for 

more research. 

2 Related works 

The inherent hazards assessment and categorization 

(IHAC) approach was developed in the study [11] for use 

in university chemistry labs as a result of this investigation. 

They conducted a quantitative assessment of the inherent 

risks in chemical laboratory materials, apparatus, and 

procedures. Concurrently, dividing labs into many levels 

can lead to more focused safety management and accident 

avoidance. 

Seven substances' chemical concentrations were used in 

research [12], to examine the fluctuations in the potential 

of Hydrogen (pH) and Electrical conductivity (EC). The 

seven compounds were known to produce chemical spills 

regularly in South Korea and were classified as accident-

preparedness substances. Furthermore, they compared the 

changes in pH, EC, and statistics during the dilution 

procedure to determine the probability of recognizing 

unknown chemicals. 

The process of developing Standard Operating Procedures 

(SOPs) in research [13] afforded the chance to ascertain 

the necessary conditions for reaction setup, recognize 

possible dangers, define the appropriate handling of 

undesired materials, and conduct a comprehensive risk 

assessment. Here, they offered recommendations for SOPs 

that have to be created for university research facilities as 

well as an example of an SOP for the Grignard reaction. 

A technique for the prospective evaluation of chemicals 

using sorting-based multi-parameter and multi-criteria 

decision-making (MCDM) hazards to worker safety in the 

university lab was established in research [14]. It was 

advised that certain control measures should be 

implemented to lower the laboratory's safety risk. The 

technique was meant to become a main source of 

information for university danger analysts and adjust to the 

risk assessment of university laboratories. 

The fuzzy Bayesian network (BN) method combined with 

the human factors assessment and categorization system 

for university labs (HFACS-UL) was suggested in the 

study [15], to evaluate the risky conduct in university 

laboratories. The primary risk factors were determined by 

applying the model to an inference analysis. To identify 

further preventative and control methods, meta-networks 

and important agents were also investigated. 

To discover the implementation of certain semi-

quantitative methods was assessed in research [16], to 

determine potential bias or variances caused by utilizing 

different ways for the same tasks for chemical risk 

assessment. They could overcome the discrepancies 

observed in the risk assessment by using two or more 

distinct semi-quantitative instruments for every working 

activity they need to evaluate. The tactic could allow 

workers' contact with chemicals to be reduced. 

After an analysis of statistical information to provide a 

broad explanation of the traits of greater and more frequent 

accidents, research [17] estimated and evaluated the total 

risk of the hazardous chemical sector using the entropy 

weight technique. It examined how safety laws have 

evolved in China's hazardous chemical business and how 

the sector was expected to grow moving forward.  

The analytical tool based on the software, hardware, 

environment, and liveware (SHEL) paradigm was utilized 

in the study [18], to examine reports from accident 

investigations about explosions at two universities' 

chemical labs. Global university communities must 

collaborate to develop methods for research and analysis, 

instructions for writing accident reports, and an 

information-sharing platform that would enable them to 

take advantage of the knowledge gathered from a range of 

incidents. 

Hazardous chemical control was a vital component of 

campus laboratory safety management, as demonstrated 

through study [19] and subsequent investigation of 

remedies and countermeasures. Realizing the intrinsic 

protection of the university laboratory, the safety 

management method was completed with the construction 

of the basis for safety management for its whole life of 

hazardous substances. 

An explosive accident at a university laboratory was 

thoroughly investigated in the study [20], to determine the 

primary reasons and enhance safety management. The 

findings suggested that the experimenters' lack of caution 

and poor safety knowledge were the primary causes of the 

accident. To successfully prevent these kinds of tragedies, 

experimenters and related technical managers need to 

receive more safety training. It would help to foster a 

positive safety culture inside the institution. 

It focused on methods for deciphering and discovering the 

possible reasons behind the actions of the people 

implicated in mishaps in chemical laboratories in the study 

[21]. Reflections could be beneficial for a variety of 

stakeholders, including administrators, graduates, 

suppliers and producers of chemicals and lab equipment, 

managers, universities and colleges making investments in 

new or renovated chemical laboratories, and environment, 

safety, and health (ESH) professionals. 

There were many employment contexts, where people 

were exposed to chemicals in the study [22], but the 

investigation and healthcare facilities have not received 

enough attention. It examined how research laboratory 

staff were exposed to hazardous chemicals at work, 

evaluated their knowledge and attitudes about chemical 

hazards, examined whether they followed the rules for 

handling chemicals safely, and examined the impact of 

various factors on the important outcomes. 
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Table 1: Summary table 

Method Accuracy Key Features Limitations of SOTA 

Proposed RF-based DT High Utilizes Random Forest and Decision Tree 

algorithms to recursively divide data for 

hazard forecast; and PCA for feature 

extraction. 

Able to manage noisy datasets, 

scalable, and efficient for hazard 

identification in university labs. 

IHAC Methodology 

[11] 

Moderate Quantitative assessment of intrinsic hazards 

in university chemistry labs. 

Does not use machine learning for 

hazard prediction. Restricted 

scalability and adaptability. 

Chemical Risk Analysis 

[12] 

Moderate Evaluate pH and EC variations to evaluate 

chemical spill likelihood. 

Concentrates on chemical 

properties, lacking broader 

applicability to other laboratory 

situations. 

SOPs Formulation [13] Moderate Creates Standard Operating processes to 

handle chemical hazards and reactions. 

No predictive model; does not 

evaluate historical incident data for 

hazard prediction. 

MCDM-based Risk 

Assessment [14] 

Moderate Multi-criteria decision-making for 

evaluating chemical dangers. 

Does not utilize machine learning to 

forecast hazards. Risk evaluation is 

not automated or scalable. 

Fuzzy Bayesian 

Network (BN) [15] 

High Fuzzy BN technique incorporated with 

human factors for hazard prediction. 

Restricted to hazard behavior 

prediction and the absence of real-

time scalability or practical 

incorporation. 

Semi-quantitative 

Chemical Risk 

Assessment [16] 

Moderate Semi-quantitative techniques to detect biases 

in chemical risk evaluations. 

May have inconsistent findings 

across differing situations and lacks 

an extensive predictive framework. 

Entropy Weight Method 

for Chemical Risk [17] 

Moderate Utilizes entropy weight technique to 

quantify and assess risks in the chemical 

industry. 

Concentrates on industry-level risk 

evaluation; not tailored to 

laboratory-particular incidents or 

hazards. 

SHEL Framework for 

Explosion Analysis [18] 

High Utilizes SHEL framework for accident study 

and evaluation in chemical labs. 

It absences predictive modeling 

capacities and does not tackle 

hazard probabilities in university 

labs. 

Chemical Safety 

Regulation [19] 

Moderate Concentrates on regulating hazardous 

chemicals in university labs. 

No predictive analytics or machine 

learning incorporation for hazard 

prediction. 

Explosive Incident 

Analysis [20] 

High Examines causes of explosive incidents in 

university labs and suggests security 

enhancements. 

Reactive method; concentrates on 

post-incident analysis rather than 

proactive hazard discovery. 

Motivational Behavior 

Analysis [21] 

Moderate Examines motivations underlying individual 

activities in lab incidents. 

Does not tackle the direct prediction 

of hazards or use automatic 
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machine learning for risk 

evaluations. 

Chemical Exposure 

Analysis [22] 

Moderate Evaluate research lab personnel's exposure 

to hazardous chemicals and assess safety 

protocol adherence. 

Lack of predictive model for 

detecting hazard probabilities in 

real-time; no incorporation of 

historical data. 

These previous studies in laboratory hazard prediction 

frequently absent predictive modeling, with most 

approaches being reactive or concentrating on particular 

risk factors like chemical properties or human behavior, 

rather than utilizing machine learning to predict hazards 

based on historical data. Additionally, numerous 

techniques lack scalability and may struggle to manage 

large datasets or real-time hazard detection, as evidenced 

by methods such as IHAC and the SHEL framework, 

which are restricted to particular situations and do not 

adapt well to the dynamic nature of laboratory work. 

Furthermore, these techniques struggle with noisy or 

incomplete datasets, which are common in practical uses, 

whereas the proposed RF-based DT algorithm can manage 

noisy data while still producing dependable predictions. 

Finally, while numerous SOTA techniques concentrate on 

isolated risk factors, the proposed approach incorporates 

multiple variables to create a more extensive and precise 

hazard prediction system, thus tackling the restrictions of 

previous techniques. 

The suggested RF-based DT algorithm tackles the 

requirement for a more scalable, predictive, and 

comprehensive system for assessing and mitigating 

laboratory risks. It predicts risks by combining historical 

accident reports, feature extraction (PCA), and machine 

learning, providing a proactive solution for laboratory 

security management that is lacking in previous 

techniques. This gap in current research justifies the 

requirement for the RF-based DT algorithm, which can 

offer more precise hazard predictions while dealing with 

noisy, large datasets in real-time, providing an important 

improvement over the conventional approach. 

3 Methodology 

The collection includes recorded near-miss and accident 

events from a variety of academic laboratory operations. 

Benefits of Outliers, noisy data, and feature interactions 

can all be handled well by Random Forest. Several 

decision trees are constructed using Random Forest, each 

taking into account various combinations of these 

characteristics. Several decision trees are combined in 

Random Forest, an ensemble learning technique, to 

produce more accurate forecasts. We implement this 

approach in our suggested model. To anticipate the 

dangers connected with university laboratory work, the DT 

method uses these vectors to recursively segment the data 

based on their features, estimating hazard probabilities. 

The general flow is depicted in Figure 1. 

 

Figure 1: Overall flow 

To enable replication, the methodology comprises data 

preprocessing, PCA for dimensionality reduction, and the 

creation of RF-based Decision Trees (RF-based DT). 

Preprocessing steps include dealing with missing values, 

encoding categorical variables, and normalizing numerical 

data. PCA is used to identify components that explain 95% 

of the variance. Random Forest is used to build decision 

trees, with cross-validation to improve hyperparameters 

such as tree count and depth. The trees are built by 

reducing impurities (such as the Gini index), and the RF-

based DT combines them to improve model efficacy and 

generalization. 

3.1 Dataset 

A synthetic dataset consisting of event reports from 

university laboratory activities was created. Sample 

analysis, equipment maintenance, and chemical synthesis 

are a few of the laboratory tasks included in these reports. 

All of the reports consist of records on the dangers that 

would arise from those activities, inclusive of sample 

analysis, chemical synthesis, and equipment maintenance. 

The dataset accommodates 1133 reports which have been 
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randomly categorized as either close to pass-over 

occurrences or accidents to copy various levels of severity. 

This dataset is the foundation of research on DT algorithms 

to identify risks in lab operations. The dataset includes 

synthetic event reports that are intended to simulate 

laboratory behaviors and related hazards, such as sample 

analysis, chemical synthesis, and equipment maintenance. 

Each record indicates a hypothetical scenario based on 

practical laboratory functions, with detailed descriptions 

of behaviors, potential risks, and results. This synthetic 

method was selected due to the lack of extensive practical 

accident reports, while still retaining a realistic and 

controlled dataset for model assessment. 

The synthetic dataset of 1133 reports were generated 

utilizing different laboratory operations, including sample 

analysis, equipment maintenance, and chemical synthesis, 

to represent common scenarios in academic laboratories. 

While the data is not based on actual accidents, it is 

designed to reflect plausible near-miss and accident 

scenarios that could happen in a university lab setting. The 

dataset was created by simulating various severity levels 

and includes features related to chemical procedures, 

safety protocols, and operational tasks. It has been pre-

processed to guarantee consistency and usefulness for 

machine learning model training. 

 

Data splitting: 20% percent of the input dataset is used for 

testing, while the remaining 80 % is used for training. A 

training dataset is a collection of data used to train a model. 

The testing dataset is also used to evaluate the performance 

of the trained model. The performance of each approach is 

created and evaluated using a variety of metrics, including 

accuracy, precision, recall, and F1 scores. 

Feature extraction: Selecting the best features to extract 

is a crucial step because characteristics that aren't relevant 

could have a detrimental effect on the machine learning 

classifier's classification performance. In this step, 

principal component analysis, or PCA, is used to extract 

important features from the dataset.  

3.2 PCA 

Principal Component Analysis is a method for unlabelled 

feature extraction in data processing. Principal Component 

Analysis (PCA) was selected for feature extraction 

because it can decrease data dimensionality while retaining 

the most important variations in the dataset. PCA is 

especially helpful for dealing with large datasets because 

it assists remove irrelevant or redundant features, 

increasing model effectiveness and precision. Unlike t-

SNE, which is mainly employed for visualization and may 

distort high-dimensional structures, and LDA, which is 

best suited for supervised learning tasks, PCA excels in 

unsupervised scenarios by capturing maximum variance 

without assuming class labels, rendering it ideal for the 

laboratory accident dataset. 

A new, smaller feature space will be used to display 

features. The new features identified from the results of the 

PCA extraction are the features containing the most 

important data. The primary elements are obtained by 

optimizing the variance of the data. Since there are fewer 

additional dimensions (features) than starting 

characteristics, data visualization is feasible in a low-

dimensional principal component space. Determine the 

dataset using each attribute in the manner shown below 

eq.1:  

�̅�𝑖 =
1

𝑚
∑

𝑤𝑗𝑖 ,   𝑗 =

1,2, … . . , 𝑚    𝑖 = 1,2, … . . , 𝑚
𝑚
𝑗=1         (1) 

Were,  

𝑛 – No. of features,  

𝑤𝑗𝑖  - Data 𝑗-sample with 𝑖-feature,  

𝑚 - Number data of sample, and  

�̅�𝑖 - Data 𝑖-feature. 

Calculate Φ with the following Equation 2,  

Φ = [Φ𝑗𝑖] = [𝑤𝑗𝑖 − �̅�𝑖]             (2) 

Φ - Matrix of size 𝑚 × 𝑛. 

Calculate the covariance matrix using the following 

Equation 3, 

𝐷 =
1

𝑚−1
Φ𝑆Φ           (3) 

𝐷 - Matrix of size 𝑛 × 𝑛. 

Calculate the features of the 𝐷 matrix by calculating the 

subsequent Equation 4. 

𝐷𝑒𝑡 (𝜆𝐽 − 𝐷) = 0           (4) 

𝐷 - Covariance matrix, and  

𝐽 - Identity matrix. 

After that, calculate the subsequent equation 5 to 

determine the eigenvectors 𝑤  that correspond to the 

features of the record 𝜆, 

(𝜆. 𝐽 − 𝐷)𝑤 = 0          (5) 

Form matrix 𝑤′ Using the associated features after sorting 

the eigenvectors according to the eigenvalues, starting 

with the greatest. Calculate the principal components as 

follows in equation 6. 

𝑃𝐶 = Φ𝑤′               (6) 
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PCA was used to decrease the dataset's dimensionality by 

converting original features into principal components that 

maintained 95% of their variance. Important features 

extracted using PCA comprise activity type, hazard 

severity, and equipment utilization. These elements were 

then utilized as inputs to decision tree algorithms, allowing 

for more precise forecasting of possible laboratory risks 

while reducing the effect of irrelevant or redundant data. 

 

3.3 Random forest 

A popular algorithm for machine learning one of the 

components of the supervised learning approach is the 

Random Forest Algorithm. It applies to machine learning 

problems that involve both regression and classification. 

The concept of supervised learning combines multiple 

classifiers to address a difficult problem and improve the 

model's performance, in its basis. Popular embedding 

learning is Random Forest could be used to manage 

hazardous chemicals in the lab by encoding chemical 

names and qualities into high-dimensional vectors. This 

makes it easier to do similarity and group chemicals 

according to their attributes. This model offers an effective 

way to compute vector representations using the 

Continuous Bag of Model (CBOM) and Skip-gram 

designs, which are both basic neural network models with 

a single hidden layer. Using backpropagation and 

stochastic descent of gradients, this approach first creates 

a PCA feature extract derived from the data entered. After 

that, the vectors are learned. The CBOM architecture 

predicts accuracy from future and previous contexts by 

utilizing a log-linear classifier learned through the negative 

collection and averaging contextual vectors. With a given 

word, the Skip-gram architecture predicts surrounding 

components. Training examples are created by eliminating 

a predetermined number of contextual phrases since the 

context is unbounded, such as 𝑥𝑗  −  3, 𝑥𝑗  −  4, 𝑥𝑗  +

 3, 𝑥𝑗  +  4, thus the term "skip-gram." Figure 2 shows the 

CBOM and skip-gram structure. 

  

Figure 2: CBOM and skip-gram 

Instead of creating a new model from scratch, the pre-

trained model is utilized to address a comparable scenario 

or issue. Pre-trained models are developed and made 

available to the public for use in research. Pre-trained RF 

and Pre-trained GloVe are the two pre-trained models that 

are available for embedding models. 

To improve the model's capacity to interpret various 

chemical and operational data, this paper employed 

embedding techniques like CBOW and Skip-gram, which 

are frequently employed for text analysis, to represent 

chemical names, properties, and lab-related descriptors as 

high-dimensional vectors. These embeddings allowed the 

model to compare and categorize features numerically, 

resulting in higher classification accuracy. 

Before using Random Forest, Principal Component 

Analysis (PCA) was employed to decrease the 

dimensionality of the dataset by converting original 

features into principal components that maintained 95% of 

the variance. This decreased dataset was then embedded 

with CBOW and Skip-gram, allowing the Random Forest 

model to efficiently process the transformed data. The 

rationale for this method stems from embeddings' capacity 

to generate dense, numerical representations of categorical 

and text-like data, which improves model performance. 

The Random Forest model improved its ability to classify 

hazards significantly by integrating PCA and embeddings, 

especially when evaluating reports of incidents involving 

chemical synthesis, sample evaluation, and equipment 

maintenance. The combination of these methods produced 

an effective and interpretable framework for hazard 

prediction in university laboratory settings. 
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3.4 Decision tree 

The DT method uses these vectors to recursively split the 

data based on their features to determine hazard 

probability and anticipate the dangers related to the 

university chemical lab. The DT has branches containing 

qualities that determine the outcome, or the objective 

function and are organized in a sequential hierarchical 

structure. Nodes: arbitrary vertices where the potential 

course of events is ascertained, the outcome of Leaf (leaf) 

nodes with intends and values are used to depict the 

process of choosing a certain attribute value and merging 

several objects. Depending on the type of predicted 

indicator, decision trees could be divided into two 

categories: regression trees and classification trees. Trees 

of classification are useful for studying certain qualities, 

such as assigning items to a previously established class 

hence using them is advised when creating a prediction 

system. Data is categorized using decision trees, which 

split data into groups and provide a hierarchy of "if... 

then..." operators. 

To separate the nodes into informative functions, create an 

objective function. Every division in which we optimize 

the increase is: 

𝐽𝐻(𝐶𝑜, 𝑒) = 𝐽(𝐶𝑜) − ∑
𝑀𝑖

𝑀𝑜
𝐽(𝐶𝑖)

𝑛
𝑖=1        (7) 

Where𝑒 is the property that is used to conduct the splitting; 

Parents 𝐶𝑜  and 𝐶𝑖 is the 𝑖 − 𝑡ℎ  child nodes, while 𝐽  is a 

heterogeneity measure. 𝑀𝑖  is the number of specimens 

contained in the 𝑖 − 𝑡ℎ  child node, 𝑀𝑜  is the overall 

number of values in the parent node. 

We use binary decision trees for simplicity and to shrink 

the multidimensional search space. The child nodes 

𝐶𝑙𝑒𝑓𝑡and 𝐶𝑟𝑖𝑔ℎ𝑡  in our scenario are: 

𝐽𝐻(𝐶𝑜, 𝑒) = 𝐽(𝐶𝑜) − ∑
𝑀𝑙𝑒𝑓𝑡

𝑀𝑜
𝐽(𝐶𝑙𝑒𝑓𝑡) −𝑑

𝑗=1

𝑀𝑟𝑖𝑔ℎ𝑡

𝑀𝑜
𝐽(𝐶𝑟𝑖𝑔ℎ𝑡)                      (8) 

Where𝑒 is the property that is used to conduct the splitting; 

the parent and 𝑖 − 𝑡ℎ  child node databases are denoted 

by𝐽(𝐶𝑜). 𝐽 is a heterogeneity metric; The total number of 

samples in the parent node is represented by  𝐶𝑜 , the 

number of samples in the child nodes that are in the 𝑖 − 𝑡ℎ 

child node is represented by 𝑀𝑜, the child nodes' numbers 

of patterns are represented by 𝑀𝑙𝑒𝑓𝑡 and 𝑀𝑟𝑖𝑔ℎ𝑡. 

Determination of entropy for all classes 𝑜(𝑗/𝑠) ≠ 02that is 

not empty. 

𝐽𝐺(𝑠) = − ∑ 𝑜(𝑗/𝑠)𝑙𝑜𝑔2𝑜(𝑗/𝑠)𝑑
𝑗=1         (9) 

Where 𝑜(𝑗/𝑠)  is the percentage of samples including a 

single node 𝑠 and the class. 

Therefore, if every sample in a node is a member of the 

same class, the entropy is zero, and if the distribution of 

classes is uniform, the entropy is at its maximum. 

A criterion that reduces the possibility of misdiagnosis is 

the Gini statistic for heterogeneity: 

𝐽𝐻(𝑠) = − ∑ 𝑜(𝑗/𝑠)(1 − 𝑜(𝑗/𝑠)) =𝑑
𝑗=1 1 − ∑ 𝑜(𝑗/𝑠)2𝑑

𝑗=1

                        (10) 

Where 𝐾𝐻(𝑠)  is the Gini measure of heterogeneity and 

𝑜(𝑗/𝑠) is the proportion of samples that fall under a class 

and a single node. 

Classification error is an additional metric for 

heterogeneity. 

𝐽𝜀(𝑠) = 1 − 𝑚𝑎𝑥{𝑜(𝑗/𝑠)}          (11) 

Where 𝑠 is the single node and 𝑜(𝑗/𝑠) is the proportion of 

samples that correspond to a class,𝐽𝜀(𝑠) is the classifier 

error. 

Although this criterion is less susceptible to changes in the 

capacity of the classes at the nodes, it is appropriate for 

trimming trees but not for growing trees. 

Decision Trees (DT) were used to divide laboratory hazard 

data, forecast risks, and evaluate hazard probabilities in 

university chemical laboratories. The objective function is 

critical in determining the best feature for dividing data at 

each node because it measures the efficiency of each split 

in terms of information gain or impurity reduction. The 

requirement for an objective function stem from the desire 

to determine the most pertinent features—such as chemical 

properties, laboratory activities, or prior incident history—

that best differentiate hazardous and non-hazardous 

situations. By improving this function, the tree can 

recursively divide the data, guaranteeing that each child 

node indicates a more homogeneous subset of the data and 

thus enhancing the model's predictive accuracy. The goal 

is to reduce uncertainty regarding the risk of an incident at 

each split, resulting in better hazard forecasting. For 

instance, the objective function may prioritize divides that 

most efficiently distinguish incidents from non-incidents, 

allowing the decision tree to precisely forecast hazardous 

situations. Therefore, the objective function directly 

contributes to the primary goal of forecasting hazardous 

incidents by detecting important risk factors that influence 

decision-making at each node. 

3.5 Random forest-based decision tree 

An innovative technique for coping with hazardous 

chemicals in academic labs is the RF-based DT set of rules. 

This technique turns chemical descriptions and protection 

information into excessive-dimensional vectors that seize 

the complicated interactions between terms by using PCA 

and ML. The gadget can realize links among materials, 
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risks, and safety regulations for the reason that those 

vectors encode linguistic commonalities. The programs 

benefit in categorizing compounds in step with their traits 

and associated dangers using training a DT model on these 

vector representations. The hazardous chemicals machine 

gives more precise control and is streamlined by using this 

automatic class process, which reduces the need for human 

inspection and expertise. Furthermore, the machine gives 

extra particular hazard critiques and customized safety 

advice by using the semantic context under consideration. 

All things taken into consideration, there may be a great 

deal of capacity for elevating protection standards and 

decreasing dangers in university laboratories through the 

use of this novel technique. This suggests that Random 

Forest is a classifier that uses several decision trees on 

different dataset subsets and averages them to increase the 

dataset's predicted accuracy. The random forest predicts 

the result based on the majority of nodes of predictions 

from each decision tree rather than relying on just one. 

Accuracy is higher and overfitting is prevented because the 

forest has more trees.  

The algorithm is known as Random Forest.  

Step 1: Using Random Forest, n random lab records are 

chosen from the data set that contains k records from DT. 

Step 2: A distinct decision tree is constructed for each 

sample.  

Step 3: Every decision tree will generate an output of 

chemicals.  

Step 4: Regression and classification averages are used, 

respectively, to assess the final product.  

Pseudo code: RF-based DT Algorithm 

Input: 

Dataset: L = 

{(𝑥1,𝑦1), (𝑥2,𝑦2), (𝑥3,𝑦1 ) … … (𝑥𝑚,𝑦𝑚 )}. 

Laboratory set: A = {𝑑1,𝑑2 … … 𝑑𝑎,} 

Method: 

1. Build a node N. 

2. If all samples in L belong to the same class or the 

features in L are uniform: 

• Label N as a leaf node with the majority 

class in L. 

• Return N. 

3. Compute the best splitting node, dₙ, from A 

utilizing the chemical selection Method. 

4. Divide the dataset into subsets depending on the 

values of dₙ. 

5. For each subset corresponding to a value of dₙ: 

• If the subset is empty: 

o Append a leaf labeled with the majority 

class in L to node N. 

• Otherwise: 

o Recursively call the TreeGenerate method 

with the subset and residual features to create child 

nodes. 

6. Return node N. 

Chemical Selection Method: Assess all features in 

A to determine the splitting node, dₙ, that optimally 

partitions L into subsets utilizing a selection 

criterion (for example Gini index, information 

gain). 

 

The RF-based DT algorithm utilizes a dataset with features 

representing hazardous chemical activities, and the 

chemical selection process concentrates on detecting the 

most important features for splitting data at each node. The 

splitting criteria are determined utilizing techniques that 

measure the node's heterogeneity, such as Gini impurity or 

entropy. The algorithm starts by choosing a random subset 

of the dataset and then creating individual decision trees 

with different subsets of attributes. The node-splitting 

procedure selects the most informative features for 

partitioning the data, to increase prediction accuracy and 

decrease overfitting. 

The RF-based DT algorithm builds on the Random Forest 

methodology to handle hazardous materials in academic 

laboratories by utilizing laboratory incident reports that 

contain information on chemical properties, risk factors, 

and security guidelines. These reports are converted into 

high-dimensional vectors via PCA and machine learning, 

which encode the relationships between incidents, hazards, 

and security needs. The Random Forest framework 

generates numerous decision trees from random subsets of 

the incident data and then aggregates their forecasts to 

enhance accuracy and decrease overfitting. Unlike 

conventional Random Forests, this method includes 

semantic and contextual data from the vectors, allowing 

for more accurate chemical categorization and 

personalized security suggestions. By integrating the 

advantages of Random Forests and decision trees, the RF-

based DT methodology improves hazard prediction and 

security standards, decreasing dependence on human 

oversight and reducing hazards in university laboratories. 

4 Experimental results 
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The recommended method is implemented on a Windows 

10 laptop with an Intel i7 core CPU and 8GB of RAM. To 

ensure the study's reproducibility, all software and libraries 

used are explicitly listed, along with their version numbers. 

Python 3.10.1 was used for analysis and model 

development, with important libraries including Scikit-

Learn 1.2.2 for machine learning and preprocessing, 

TensorFlow 2.13.0 for sophisticated computations, and 

NumPy 1.24.3 for numerical operations. Data 

visualization was performed with Matplotlib 3.7.1 and 

Seaborn 0.12.2. The project was managed and carried out 

in a Jupyter Notebook environment, version 6.5.4. By 

documenting these particular versions, this study hopes to 

ease replication of the findings and guarantee consistency 

across various computational setups. The methods are 

Random Forest (RF), Decision Tree (DT), and RF-based 

DT (Proposed). The implementation used Python libraries 

like Scikit-Learn to create, train, and assess the models on 

the training and testing datasets. Cross-validation is used 

to optimize important hyperparameters like the number of 

trees (for Random Forest, 100 trees) and tree depth (for 

Decision Trees, the default depth is 5 trees). 

The main goals of the research were to improve the 

accuracy of identifying hazardous chemical practices and 

conditions in university laboratories while guaranteeing 

accurate, dependable, and balanced detection using 

evaluation metrics like accuracy, precision, recall, and F1-

score. Accuracy assesses the model's overall capacity to 

accurately classify hazardous and non-hazardous 

situations, whereas precision assesses the system's 

reliability in reducing false positives, or the incorrect 

detection of non-hazardous conditions as hazardous. 

Recall evaluates the model's capacity to identify true 

hazardous events while avoiding false negatives in which 

actual hazardous incidents are missed. Finally, the F1-

score, calculated as the harmonic mean of precision and 

recall, offers a thorough assessment of the model's 

efficiency by balancing false positives and false negatives. 

Accuracy in the context of managing hazardous chemicals 

in university laboratories refers to a detection model's 

capacity to identify both safe operations and hazardous 

situations. It is a metric of the model performance overall 

in terms of accurately recognizing non-hazardous 

circumstances and forecasting real hazardous scenarios. 

Figure 3 and Table 1 display the accuracy performance. 

The methods are Random Forest (RF), Decision Tree 

(DT), and RF-based DT (Proposed), which achieve an 

accuracy of 85%, 88%, and 92.3%. Consequently, the RF-

based DT is more accurate than the other methods used for 

Hazardous chemical handling at university laboratories. 

These metrics were selected to strike a balance between 

detection accuracy (precision) and hazard detection 

(recall). In lab security, the trade-off between precision 

and recall is crucial: high precision decreases false alarms, 

while high recall results in fewer missed hazards. The F1 

score offers a balanced evaluation, rendering the model 

suitable for practical uses in which false positives and 

missed risks should be reduced. 

Table 2: Values for precision, accuracy, recall, and F1 

score 

Method 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

score 

(%) 

Random 

Forest 

(RF) 

85 88 84.2 82 

Decision 

Tree (DT) 
88 83.4 86.7 86 

RF based 

DT 

(Proposed) 

92.3 93.1 91.4 93.5 

 

 

Figure 3: Accuracy Comparison of Random Forest, 

Decision Tree, and Proposed RF-based DT Models 

Across Epochs 

Precision in university hazardous chemical management 

refers to the system's reliability in accurately recognizing 

hazardous chemical-related situations. In particular, it 

calculates the percentage of actual positive danger 

detections among all the systems detections. 

The precision performance is shown in Figure 4 and Table 

1. The approaches, which provide values of 93.1%, 88%, 

and 83.4%, are RF-based DT, Random Forest, and DT. As 

a result, while handling hazardous chemicals in university 
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laboratories, the RF-based DT is more precise than the 

other techniques. 

 

Figure 4: Precision comparison of random forest, 

decision tree, and proposed RF-based DT models across 

epochs 

When discussing university laboratory hazardous 

chemicals management, recall refers to the statistic used to 

assess a detection model that identifies real hazardous 

situations. It can be defined as the proportion of properly 

classified hazardous occurrences on all actual hazardous 

incidents. 

Recall performance is displayed in Table 1 and Figure 5. 

The methods RF-based DT, Random Forest, and DT offer 

values of 91.4%, 84.2%, and 86.7%. Therefore, the RF-

based DT is more reliable than the other methods for 

handling hazardous substances in university laboratories. 

 

Figure 5: Recall Comparison of Random Forest, Decision 

Tree, and Proposed RF-based DT Models Across Epochs 

An important indicator for assessing hazard detection 

models’ performance in university laboratory chemical 

control is the F1 score. It is the precision and recall 

harmonic mean that balances false positives and false 

negatives. 

The F1 score results are shown in Table 1 and Figure 6. 

Values of 93.5 %, 82%, and 86% are attained using RF-

based DT, Random Forest, and DT techniques. Therefore, 

compared to other techniques used for managing 

hazardous chemicals in university laboratories, the RF-

based DT is better. 

 

Figure 6: F1-score comparison of random forest, decision 

tree, and proposed RF-based DT models across epochs 

The findings show that the proposed RF-based Decision 

Tree algorithm outperforms standalone Decision Trees and 

Random Forests for handling hazardous chemicals in 

university labs. Its excellent efficiency across all 

evaluation metrics demonstrates its resilience and 

practicality for real-world applications in hazardous 

chemical security. The RF-based DT achieves high values 

for accuracy, precision, recall, and F1-score, ensuring 

dependable detection of potential risks while decreasing 

the possibility of misclassification. 

4.1 Discussion 

The RF-based DT algorithm outperforms Random Forest 

(85%) and Decision Trees (88%) in terms of accuracy 

(92.3%) because it combines the advantages of ensemble 

learning and decision tree logic to capture intricate trends 

in hazardous chemical data, improving prediction 

precision. The utilization of Principal Component 

Analysis (PCA) for feature extraction substantially 

improves model resilience by decreasing dimensionality, 

reducing noise, and maintaining essential features, 

resulting in increased model stability and recall. However, 

this method has trade-offs, especially in terms of 

computational cost and scalability, as the combination of 

Random Forest and Decision Trees needs a significant 

amount of processing power, which may limit its 

application to larger datasets or real-time hazard detection 

systems. Despite these difficulties, the RF-based DT's 

better efficiency in accuracy, recall, and F1 score, 

combined with PCA's capacity to filter out irrelevant data, 
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make it a strong candidate for hazardous chemical 

handling, with optimization methods potentially tackling 

scalability issues. 

This work expands on incremental efficiency gains by 

proposing an extensive framework for hazardous chemical 

management that integrates Random Forest (RF) and 

Decision Tree (DT) models with novel optimization 

methods and domain-specific tailoring. Unlike previous 

RF and DT executions, this method incorporates 

sensitivity analysis, hyperparameter tuning, and real-world 

data preprocessing tactics to tackle practical issues like 

imbalanced datasets, missing data, and domain-specific 

hazards. Additionally, the model's application in 

laboratory security provides a novel contextualization, 

with 92.3% accuracy resulting in actionable results like 

decreasing potential accidents and enhancing risk 

mitigation protocols. By aligning the methodology with 

real-world security enhancements, this study represents a 

significant advance in the area, bridging the gap between 

theoretical enhancements and practical executions. 

Attaining 92.3% accuracy in hazardous chemical 

management is important because it shows that the model 

can forecast and classify potential risks related to 

laboratory operations. This level of efficiency leads to 

tangible enhancements in real-world laboratory safety by 

allowing for proactive measures like detecting high-risk 

chemicals, improving storage protocols, and enhancing 

staff training to prevent accidents. These improvements 

not only decrease the likelihood of incidents but also 

improve compliance with security requirements, resulting 

in a safer lab setting. However, the experimental setup has 

some constraints, especially the dataset size of 1133 

reports, which, while adequate for initial validation, may 

limit generalizability to a variety of laboratory 

environments. Future research with larger, more diverse 

datasets is required to confirm the model's resilience and 

usefulness to various chemical processes and institutional 

settings. 

The RF-based DT algorithm’s efficiency could be 

improved further by performing a sensitivity analysis to 

assess the influence of key hyperparameters like the 

number of trees in the forest, maximum tree depth, and 

minimal samples per split. This analysis would aid in 

determining optimal settings for increasing model 

precision and effectiveness in hazardous chemical 

management. Furthermore, the approach's resilience under 

adversarial conditions, like missing or mislabeled data, 

could be evaluated by performing controlled perturbations 

on the dataset and observing the model's effectiveness. 

Working with sensitive data, like laboratory accident 

reports, necessitates the highest ethical standards. This 

study protects data privacy by anonymizing datasets and 

adhering to pertinent data protection standards, 

encouraging the ethical and responsible utilization of 

machine learning in laboratory security management. 

These additional steps would offer greater insight into the 

model's dependability and social effect. 

5 Conclusion 

In this work, we used accident reports from before to 

examine DT algorithms to discover potential dangers in 

laboratory operations. The collection is made from near 

misses and accident reports from several instructional 

laboratory operations. In this study, we used accident 

reports from earlier to look at how nicely DT algorithms 

identify capability hazards in lab work. The collection was 

made up of near-miss and accident reports from a variety 

of academic laboratory operations. The nature of 

laboratory activities and associated hazards are included in 

each report. We used a RF-based DT technique in our 

suggested model, DT method uses these vectors to 

recursively split the data based on their features to estimate 

hazard probabilities and anticipate the dangers related to 

university laboratory work. When compared to the existing 

method, the proposed method achieves accuracy (92.3%), 

precision (93.1%), F1 score (93.5%), and recall (91.4%), 

respectively. Although the Decision Tree Algorithm 

simplifies the handling of hazardous chemical compounds 

in college laboratories, other developments in the vicinity 

want to consist of predictive analytics and non-stop 

surveillance for proactive risk discount and efficient use of 

sources. 
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