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 This paper presents a comprehensive study on the dynamic modeling and control of a small-scale 

organic Rankine cycle (ORC) system for waste heat recovery in power generation applications. The 

primary objective is to develop an effective control strategy that optimizes the system performance 

under transient operating conditions, maximizing the expander power output. A high-fidelity 

dynamic model of the evaporator is developed using the finite volume method and validated against 

experimental data. A reduced-order control-oriented model is derived using the moving boundary 

method to facilitate the design of the controller. A nonlinear model predictive control (NMPC) 

strategy is proposed, utilizing the control-oriented model to predict future system behavior and 

optimize control actions while explicitly considering system constraints. An extended Kalman filter 

(EKF) is integrated with the NMPC controller to estimate unmeasured state variables. 

Experimental validation on an engine test bench demonstrates the controller’s ability to effectively 

track the reference superheating degree with an average error of ±2°C, compensate for 

disturbances within 5 seconds, and maintain safe expander operation under highly transient 

conditions. The NMPC approach achieved a 15% improvement in cycle efficiency compared to 

steady-state operation. Comparative analysis with traditional control methods highlights the 

superiority of the NMPC approach, reducing tracking error by 40% and response time by 50% 

compared to PID control, while effectively handling system constraints. The proposed dynamic 

modeling and control strategies provide a solid foundation for the effective utilization of small-scale 

ORC systems in waste heat recovery applications, contributing to the advancement of efficient and 

sustainable energy systems. 

Povzetek: Predlagana raziskava se osredotoča na dinamično modeliranje in obvladovanje 

majhnega sistema organskih Rankine ciklov (ORC) za izrabo odpadne toplote v vozilih, kjer 

nevronsko napovedovanje modelov optimizira delovanje sistema in povečuje učinkovitost cikla za 

15% v primerjavi z uporabo tradicionalnih metod. 
 

1 Introduction 

The transportation sector, particularly heavy-duty 

vehicles such as trucks, is a significant contributor to 

global energy consumption and greenhouse gas 

emissions. According to recent statistics, the fuel 

consumption and carbon emissions from global freight 

trucks have been steadily increasing over the years, as 

shown in Fig. 1 [1]. 

 
Figure 1: Global fuel consumption and carbon 

emissions from freight trucks 
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To mitigate the environmental impact and improve the 

efficiency of heavy-duty vehicles, waste heat recovery 

(WHR) systems have gained considerable attention [2]. 

Among various WHR technologies, the Organic 

Rankine Cycle (ORC) has emerged as a promising 

solution for recovering low-grade waste heat from 

vehicle exhaust gases [3]. The ORC system utilizes an 

organic working fluid with a lower boiling point 

compared to water, enabling the extraction of energy 

from low-temperature heat sources [4]. Numerous 

studies have investigated the application of ORC 

systems in vehicle waste heat recovery, focusing on 

working fluid selection [5], system design and 

optimization [6-8], and experimental evaluations [9, 

10]. 

However, the dynamic nature of vehicle operating 

conditions poses challenges to the efficient operation 

and control of ORC systems [11]. The waste heat 

available from the exhaust gases varies significantly 

depending on the vehicle’s speed, load, and ambient 

conditions [12]. Moreover, the transient behavior of the 

ORC system, including the response time and stability, 

is crucial for real-time power generation [13]. To 

address these challenges, dynamic modeling and 

advanced control strategies are essential for optimizing 

the performance of vehicle-based ORC systems [14, 

15]. 

Despite the progress made in ORC research for vehicle 

applications, there are still limitations in the existing 

literature. Many studies focus on steady-state modeling 

and optimization [16], neglecting the dynamic 

behavior of the system under varying operating 

conditions. Additionally, the control strategies 

proposed in the literature often rely on simplified 

models and assumptions [17], which may not 

accurately capture the complex dynamics of the ORC 

system [18]. 

To bridge these gaps, this paper aims to develop a 

dynamic model of a small-scale ORC system for waste 

heat recovery in vehicle applications. The model will 

consider the transient behavior of the system 

components, including the evaporator, expander, 

condenser, and pump [19]. Furthermore, advanced 

control strategies will be investigated to maximize the 

power output and efficiency of the ORC system under 

varying operating conditions [20]. 

Table 1 summarizes recent state-of-the-art studies on 

ORC modeling and control, highlighting the gaps in 

transient modeling and control under constraints that 

this paper addresses. 

 

 

 

 

Table 1: Comparison of recent ORC modeling and 

control studies 
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[16] Steady-

state 

PID No No 
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[18] Dynamic Fuzzy 

Logic 

Yes No 

This 
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Dynamic 

(FVM+M

BM) 

NMP

C 

Yes Yes 

 

As shown in Table 1, while recent studies have made 

progress in various aspects of ORC modeling and 

control, there remains a gap in combining accurate 

dynamic modeling with advanced control strategies 

that can handle both system transients and operational 

constraints. This paper aims to address this gap by 

proposing a nonlinear model predictive control 

(NMPC) strategy based on a high-fidelity dynamic 

model for small-scale ORC systems. 

Despite the progress made in ORC research for vehicle 

applications, significant challenges remain in 

optimizing system performance under highly dynamic 

operating conditions. This paper addresses these 

challenges through the following key contributions: 

❖ Development of a high-fidelity dynamic 

model of a small-scale ORC system using the finite 

volume method, validated against experimental data 

from an engine test bench. 

❖ Design of a nonlinear model predictive 

control (NMPC) strategy that explicitly accounts for 

system constraints and optimizes performance under 

transient conditions. 

❖ Implementation of an extended Kalman filter 

(EKF) for state estimation, enabling robust control 

even with limited sensor measurements. 

❖ Comprehensive experimental validation of 

the proposed control strategy, demonstrating 

significant improvements in tracking performance, 

disturbance rejection, and overall system efficiency 

compared to traditional control methods. 

❖ Detailed sensitivity analysis of key NMPC 

parameters, providing insights into controller tuning 

for optimal performance in real-world applications. 

By addressing these aspects, this research contributes 

to advancing the practical implementation of ORC 

systems for waste heat recovery in vehicular 

applications, potentially leading to significant 

improvements in fuel efficiency and reduced emissions 

in the transportation sector. 
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The main objectives of this study are as follows: 1. 

Develop a dynamic model of a small-scale ORC 

system for vehicle waste heat recovery, considering the 

transient behavior of system components. 2. 

Investigate advanced control strategies to optimize the 

performance of the ORC system under varying 

operating conditions. 3. Evaluate the performance of 

the proposed dynamic model and control strategies 

through simulations and case studies. 

The findings of this research will contribute to the 

advancement of ORC technology for vehicle waste 

heat recovery, enabling more efficient and sustainable 

transportation systems. The dynamic modeling 

approach and control strategies developed in this study 

can be extended to other applications of small-scale 

ORC systems, such as industrial waste heat recovery 

and renewable energy generation. 

 

2 System description and dynamic 

characteristics analysis 

2.1 Organic rankine cycle system 

principles and experimental platform 

The Organic Rankine Cycle (ORC) is a 

thermodynamic cycle that converts heat into 

mechanical work or electricity. It operates on the same 

principles as the conventional steam Rankine cycle but 

uses an organic working fluid instead of water [21]. 

The choice of working fluid depends on the 

temperature range of the heat source and the desired 

operating conditions of the system [22]. Fig. 2 

illustrates the schematic diagram of a typical ORC 

system. 

 

 
Figure 2: Schematic diagram of An ORC system 

 

The ORC system consists of four main components: 

evaporator, expander, condenser, and pump. The 

working fluid is pumped to high pressure and enters the 

evaporator, where it absorbs heat from the low-grade 

heat source, such as vehicle exhaust gases [23]. The 

heated working fluid then expands in the expander, 

generating mechanical work or driving an electric 

generator. After expansion, the working fluid enters the 

condenser, where it rejects heat to a cooling medium 

and condenses back to a liquid state. The liquid 

working fluid is then pumped back to the evaporator, 

completing the cycle [24]. 

To investigate the dynamic behavior and control 

strategies of a small-scale ORC system for waste heat 

recovery in vehicle applications, an experimental 

platform was developed. The experimental setup 

consists of a diesel engine, an exhaust gas 

aftertreatment system, and the ORC system, as shown 

in Fig. 3. 

 

 
Figure 3: Experimental test platform 

 

The diesel engine serves as the primary power source 

and generates exhaust gases containing waste heat. The 

exhaust gases pass through the aftertreatment system, 

which includes a diesel oxidation catalyst (DOC) and a 

diesel particulate filter (DPF) to reduce emissions. The 

ORC system is integrated with the exhaust 

aftertreatment system to recover the waste heat from 

the exhaust gases. 

The main components of the ORC system in the 

experimental platform are as follows: 1. Evaporator: A 

plate-fin heat exchanger is used as the evaporator, 

where the working fluid absorbs heat from the exhaust 

gases. 2. Expander: A scroll expander is employed to 

convert the high-pressure vapor into mechanical work. 

3. Condenser: A water-cooled plate heat exchanger acts 

as the condenser, rejecting heat from the working fluid 

to the cooling water. 4. Pump: A diaphragm pump is 

used to circulate the working fluid and maintain the 

desired system pressure. 

The experimental platform is equipped with various 

sensors and measurement devices to monitor and 

record the key parameters of the ORC system, such as 

temperatures, pressures, flow rates, and power output 
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[25]. The data acquisition system collects and stores the 

measured data for further analysis and validation of the 

dynamic model. 

The experimental tests are conducted under different 

operating conditions, simulating the varying waste heat 

availability and engine load profiles encountered in 

real-world driving scenarios. The transient response of 

the ORC system is captured by subjecting it to step 

changes in the heat source temperature and flow rate. 

The collected experimental data will be used to validate 

the dynamic model and evaluate the performance of the 

proposed control strategies. 

 

2.2 Working fluid selection and 

thermodynamic analysis 

The selection of an appropriate working fluid is crucial 

for the efficiency and safety of the ORC system [26]. 

The ideal working fluid should have favorable 

thermodynamic properties, such as high thermal 

stability, low critical temperature and pressure, and 

good compatibility with system materials [27]. 

Additionally, environmental and safety aspects, 

including low global warming potential (GWP), low 

ozone depletion potential (ODP), and non-toxicity, 

should be considered [28]. 

For the small-scale ORC system in this study, several 

organic working fluids were investigated, including 

R245fa, R123, R134a, and isobutane. These fluids 

have been widely used in low-temperature ORC 

applications due to their suitable thermodynamic 

properties [29]. Fig. 4 presents the T-s diagrams of the 

selected working fluids, comparing their thermal 

performance. 

 

 
Figure 4: T-S Diagrams of different working fluids 

 

To evaluate the efficiency of the ORC system with 

different working fluids, a thermodynamic analysis 

was conducted. The theoretical Carnot efficiency 

( 𝜂𝐶𝑎𝑟𝑛𝑜𝑡 ) represents the maximum achievable 

efficiency for a heat engine operating between a heat 

source at temperature 𝑇𝐻  and a heat sink at temperature 

𝑇𝐿 . It is given by [30]: 

 

𝜂𝐶𝑎𝑟𝑛𝑜𝑡 = 1 −
𝑇𝐿

𝑇𝐻
                                                 (1) 

However, the actual efficiency of the ORC system is 

lower than the Carnot efficiency due to irreversibilities 

in the system components. The thermal efficiency of 

the ORC system (𝜂𝑂𝑅𝐶) can be expressed as: 

𝜂𝑂𝑅𝐶 =
𝑊𝑛𝑒𝑡

𝑄𝑖𝑛
=

𝑊𝑒𝑥𝑝−𝑊𝑝𝑢𝑚𝑝

𝑄𝑖𝑛
                                 (2) 

where 𝑊𝑛𝑒𝑡  is the net power output, 𝑄𝑖𝑛  is the heat 

input from the heat source, 𝑊𝑒𝑥𝑝 is the expander power 

output, and 𝑊𝑝𝑢𝑚𝑝 is the pump power consumption. 

The thermodynamic analysis was performed for 

different operating conditions, considering variations 

in the heat source temperature and flow rate. The 

results showed that R245fa and isobutane exhibited 

higher thermal efficiencies compared to R123 and 

R134a under the given operating conditions. The 

maximum theoretical Carnot efficiency achieved was 

around 25%, while the actual ORC system efficiency 

ranged from 8% to 15%, depending on the working 

fluid and operating parameters. 

Based on the thermodynamic analysis and considering 

the environmental and safety aspects, R245fa was 

selected as the most suitable working fluid for the 

small-scale ORC system in this study. R245fa has a 

relatively low GWP and ODP, non-toxicity, and good 

thermal stability within the operating temperature 

range [31]. 

The thermodynamic analysis provides insights into the 

performance potential of the ORC system with 

different working fluids. However, it is based on 

steady-state conditions and does not consider the 

dynamic behavior of the system. In the following 

sections, a dynamic model of the ORC system will be 

developed to investigate its transient performance and 

develop appropriate control strategies. 

 

2.3 System dynamic characteristics 

analysis 

To investigate the dynamic behavior of the small-scale 

ORC system, open-loop simulations and experiments 

were conducted. The main focus was to analyze the 

influence of evaporator heat source conditions (exhaust 

gas temperature and flow rate) and working fluid pump 

speed on the superheating degree at the evaporator 

outlet. 

The dynamic model of the ORC system was developed 

using Modelica language in the Dymola environment 

[32]. The model consists of sub-models for each 

component, including the evaporator, expander, 
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condenser, and pump. The evaporator model is based 

on the finite volume method, where the heat exchanger 

is discretized into several control volumes [33]. The 

heat transfer coefficients and pressure drop correlations 

were obtained from literature and calibrated using 

experimental data. 

Firstly, the effect of exhaust gas temperature on the 

superheating degree was investigated. The exhaust gas 

temperature was varied in a step-wise manner, while 

keeping the exhaust gas flow rate and working fluid 

pump speed constant. Fig. 5 shows the dynamic 

response of the superheating degree to step changes in 

the exhaust gas temperature. 

 

 
 

Figure 5: Effect of exhaust gas temperature on 

superheating degree 

 

It can be observed that the superheating degree 

increases with the increase in exhaust gas temperature. 

The dynamic response exhibits a first-order behavior 

with a time constant that depends on the thermal inertia 

of the evaporator and the working fluid properties. The 

time constant can be estimated using the following 

equation [34]: 

 

𝜏 =
𝑚𝑒𝑣𝑐𝑝,𝑒𝑣+𝑚𝑤𝑓𝑐𝑝,𝑤𝑓

𝑈𝐴𝑒𝑣
                                          (3) 

 

where 𝜏  is the time constant, 𝑚𝑒𝑣  and 𝑚𝑤𝑓  are the 

masses of the evaporator and working fluid, 

respectively, 𝑐𝑝,𝑒𝑣  and 𝑐𝑝,𝑤𝑓  are the specific heat 

capacities of the evaporator and working fluid, 

respectively, and 𝑈𝐴𝑒𝑣  is the overall heat transfer 

coefficient of the evaporator. 

Next, the influence of exhaust gas flow rate on the 

superheating degree was analyzed. The exhaust gas 

flow rate was subjected to step changes, while 

maintaining a constant exhaust gas temperature and 

working fluid pump speed. Fig. 6 depicts the dynamic 

response of the superheating degree to variations in the 

exhaust gas flow rate. 

 
 

Figure 6: Effect of exhaust gas flow rate on 

superheating degree 

 

As the exhaust gas flow rate increases, the superheating 

degree decreases due to the higher heat transfer rate in 

the evaporator. The dynamic response shows a similar 

first-order behavior as in the case of exhaust gas 

temperature variations. The time constant can be 

calculated using the same equation as before, 

considering the changes in the overall heat transfer 

coefficient due to the varying exhaust gas flow rate. 

Lastly, the effect of working fluid pump speed on the 

superheating degree was investigated. The pump speed 

was varied in a step-wise manner, while keeping the 

exhaust gas temperature and flow rate constant. Fig. 7 

illustrates the dynamic response of the superheating 

degree to step changes in the working fluid pump 

speed. 

 

 
 

Figure 7: Effect of working fluid pump speed on 

superheating degree 
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The superheating degree decreases with the increase in 

working fluid pump speed. This is because a higher 

pump speed leads to a higher working fluid mass flow 

rate, reducing the residence time of the working fluid 

in the evaporator and consequently the heat transfer 

[35]. The dynamic response exhibits a second-order 

behavior, which can be approximated by the following 

transfer function: 

 

𝐺(𝑠) =
𝐾

𝜏1𝑠2+𝜏2𝑠+1
                                               (4) 

 

where 𝐾 is the gain, 𝜏1 and 𝜏2 are the time constants, 

and 𝑠 is the Laplace variable. 

The open-loop simulations and experiments provide 

valuable insights into the dynamic characteristics of the 

small-scale ORC system. The results demonstrate that 

the superheating degree at the evaporator outlet is 

significantly influenced by the evaporator heat source 

conditions and the working fluid pump speed. The 

dynamic responses exhibit first-order and second-order 

behaviors, respectively, with time constants dependent 

on the system parameters and operating conditions. 

These findings lay the foundation for the development 

of effective control strategies to maintain the desired 

superheating degree and optimize the performance of 

the ORC system under varying operating conditions. In 

the subsequent sections, different control approaches 

will be investigated, considering the dynamic 

characteristics and constraints of the system. 

 

2.4 Control objectives 

Based on the results of the dynamic characteristics 

analysis, it is evident that the evaporator heat source 

conditions and the working fluid pump speed have a 

significant impact on the superheating degree at the 

evaporator outlet. The superheating degree, in turn, 

affects the performance of the expander and the overall 

efficiency of the ORC system. 

Considering the dynamic behavior of the system and 

the goal of maximizing the utilization of the low-grade 

waste heat, the control objective of the small-scale 

ORC system is determined to be the maximization of 

the expander power output. By optimizing the 

expander power output, the system can effectively 

convert the available waste heat into useful electrical 

energy, thereby improving the overall efficiency and 

economic viability of the waste heat recovery 

application. 

To achieve this control objective, it is necessary to 

develop and implement appropriate control strategies 

that can adapt to the varying operating conditions and 

maintain the optimal superheating degree for 

maximum expander power output. The control 

strategies should consider the dynamic characteristics 

of the system, such as the response times and the 

coupling effects between different variables, to ensure 

stable and efficient operation of the ORC system. 

In the following sections, different control approaches 

will be investigated and evaluated, aiming to maximize 

the expander power output while ensuring safe and 

reliable operation of the small-scale ORC system under 

dynamic operating conditions. 

 

2.5 Research questions and hypotheses 

Based on the dynamic characteristics analysis and 

control objectives, we formulate the following research 

questions and hypotheses: 

RQ1: How does the NMPC strategy perform compared 

to traditional control methods (PID and LMPC) in 

tracking the optimal superheating degree under 

transient operating conditions? H1: We hypothesize 

that NMPC will achieve at least 30% lower tracking 

error and 40% faster response time compared to PID 

and LMPC controllers. 

RQ2: To what extent can the NMPC strategy improve 

the overall efficiency of the ORC system in waste heat 

recovery applications? H2: We expect the NMPC 

strategy to increase the average cycle efficiency by at 

least 10% compared to steady-state operation under 

varying heat source conditions. 

RQ3: How effectively does the NMPC handle system 

constraints compared to other control methods? H3: 

We hypothesize that NMPC will maintain all system 

variables within their specified limits 100% of the time, 

while PID and LMPC may violate constraints under 

rapid transients. 

To address these research questions, we will conduct a 

series of experiments on the engine test bench, 

subjecting the ORC system to various transient 

scenarios representative of real-world driving 

conditions. The experimental methodology is detailed 

in Section 4.1. 

 

3 Nonlinear model predictive 

controller design 

3.1 High-fidelity evaporator modelling 

To accurately capture the dynamic behavior of the 

evaporator and develop effective control strategies, a 

high-fidelity model of the evaporator is essential. In 

this study, the finite volume method (FVM) is 

employed to establish a distributed parameter model of 

the evaporator [36]. 

The evaporator is discretized into 𝑁 control volumes 

along its length, and each control volume is treated as 

a lumped parameter system. The conservation 

equations for mass, energy, and momentum are applied 
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to each control volume to describe the dynamic 

behavior of the evaporator [37]. 

The mass conservation equation for the working fluid 

in each control volume is given by: 

 
𝑑(𝜌𝑖𝑉𝑖)

𝑑𝑡
= �̇�𝑖−1 − �̇�𝑖                                             (5) 

where 𝜌𝑖 is the density of the working fluid, 𝑉𝑖 is the 

volume of the control volume, �̇�𝑖−1  and �̇�𝑖  are the 

mass flow rates entering and leaving the control 

volume, respectively. 

The energy conservation equation for each control 

volume is expressed as: 
𝑑(𝑈𝑖𝑉𝑖)

𝑑𝑡
= �̇�𝑖−1ℎ𝑖−1 − �̇�𝑖ℎ𝑖 + 𝑄𝑖                          (6) 

where 𝑈𝑖 is the specific internal energy of the working 

fluid, ℎ𝑖−1  and ℎ𝑖  are the specific enthalpies of the 

working fluid entering and leaving the control volume, 

respectively, and 𝑄𝑖  is the heat transfer rate from the 

exhaust gas to the working fluid. 

The momentum conservation equation for each control 

volume is given by: 
𝑑(�̇�𝑖)

𝑑𝑡
=

𝐴𝑖

𝛥𝐿𝑖
(𝑃𝑖−1 − 𝑃𝑖 − 𝛥𝑃𝑓,𝑖)                            (7) 

where 𝐴𝑖  is the cross-sectional area of the control 

volume, 𝛥𝐿𝑖 is the length of the control volume, 𝑃𝑖−1 

and 𝑃𝑖  are the pressures at the inlet and outlet of the 

control volume, respectively, and 𝛥𝑃𝑓,𝑖 is the pressure 

drop due to friction. 

The heat transfer rate 𝑄𝑖  is calculated using the 

following equation: 

𝑄𝑖 = 𝛼𝑖𝐴𝑠,𝑖(𝑇𝑔,𝑖 − 𝑇𝑤,𝑖)                                       (8) 

where 𝛼𝑖 is the heat transfer coefficient, 𝐴𝑠,𝑖 is the heat 

transfer surface area of the control volume, 𝑇𝑔,𝑖  is the 

exhaust gas temperature, and 𝑇𝑤,𝑖 is the working fluid 

temperature. 

The heat transfer coefficient 𝛼𝑖  is determined using 

appropriate correlations based on the flow regime and 

the working fluid properties [38]. The pressure drop 

𝛥𝑃𝑓,𝑖 is calculated using correlations for single-phase 

and two-phase flow, depending on the state of the 

working fluid [39]. 

The thermodynamic properties of the working fluid, 

such as density, specific internal energy, and specific 

enthalpy, are calculated using accurate equations of 

state or lookup tables [40]. 

The FVM-based evaporator model is implemented in 

MATLAB/Simulink environment, and the system of 

equations is solved using numerical integration 

techniques, such as the fourth-order Runge-Kutta 

method [41]. 

To validate the accuracy of the high-fidelity evaporator 

model, experimental data obtained from the test bench 

is used. The model predictions are compared with the 

measured data for different operating conditions, 

including variations in the exhaust gas temperature, 

exhaust gas flow rate, and working fluid mass flow 

rate. 

The validation results demonstrate good agreement 

between the model predictions and the experimental 

data, with an average relative error of less than 5% for 

the evaporator outlet temperature and pressure. The 

high-fidelity evaporator model captures the dynamic 

behavior of the system accurately, making it suitable 

for the development of advanced control strategies. 

The validated high-fidelity evaporator model serves as 

the basis for the design of the nonlinear model 

predictive controller, which will be discussed in the 

following sections. 

 

3.2 Control-oriented evaporator modelling 

While the high-fidelity evaporator model developed in 

the previous section provides accurate predictions of 

the system dynamics, it is computationally expensive 

and may not be suitable for real-time control 

applications. To address this issue, a control-oriented 

evaporator model is developed using the moving 

boundary method (MBM) [42]. 

The MBM assumes that the evaporator can be divided 

into three distinct regions: liquid, two-phase, and 

vapor, as shown in Fig. 8. 

 

 
Figure 8: Moving boundary model schematic 

 

The boundaries between these regions are defined by 

the time-varying lengths of each zone, denoted as 𝐿𝑙, 

𝐿𝑡𝑝 , and 𝐿𝑣  for the liquid, two-phase, and vapor 

regions, respectively [43]. 

The conservation equations for mass and energy are 

applied to each region, assuming homogeneous flow 

and thermodynamic equilibrium [44]. The mass 

conservation equations for the liquid, two-phase, and 

vapor regions are given by: 
𝑑(𝜌𝑙𝐿𝑙)

𝑑𝑡
= �̇�𝑖𝑛 − �̇�𝑙,𝑡𝑝                                          (9) 

𝑑(𝜌𝑡𝑝𝐿𝑡𝑝)

𝑑𝑡
= �̇�𝑙,𝑡𝑝 − �̇�𝑡𝑝,𝑣                                  (10) 

𝑑(𝜌𝑣𝐿𝑣)

𝑑𝑡
= �̇�𝑡𝑝,𝑣 − �̇�𝑜𝑢𝑡                                      (11) 

where 𝜌𝑙 , 𝜌𝑡𝑝 , and 𝜌𝑣  are the densities of the liquid, 

two-phase, and vapor regions, respectively, and �̇�𝑙,𝑡𝑝 

and �̇�𝑡𝑝,𝑣 are the mass flow rates between the regions. 
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The energy conservation equations for each region are 

expressed as: 
𝑑(𝑈𝑙𝐿𝑙)

𝑑𝑡
= �̇�𝑖𝑛ℎ𝑖𝑛 − �̇�𝑙,𝑡𝑝ℎ𝑙 + 𝑄𝑙                        (12) 

𝑑(𝑈𝑡𝑝𝐿𝑡𝑝)

𝑑𝑡
= �̇�𝑙,𝑡𝑝ℎ𝑙 − �̇�𝑡𝑝,𝑣ℎ𝑣 + 𝑄𝑡𝑝                (13) 

𝑑(𝑈𝑣𝐿𝑣)

𝑑𝑡
= �̇�𝑡𝑝,𝑣ℎ𝑣 − �̇�𝑜𝑢𝑡ℎ𝑜𝑢𝑡 + 𝑄𝑣                  (14) 

where 𝑈𝑙, 𝑈𝑡𝑝, and 𝑈𝑣 are the specific internal energies 

of the liquid, two-phase, and vapor regions, 

respectively, ℎ𝑖𝑛 , ℎ𝑙 , ℎ𝑣 , and ℎ𝑜𝑢𝑡  are the specific 

enthalpies of the working fluid at the inlet, liquid, 

vapor, and outlet, respectively, and 𝑄𝑙 , 𝑄𝑡𝑝, and 𝑄𝑣  are 

the heat transfer rates in each region. 

The heat transfer rates are calculated using simplified 

correlations based on the heat transfer coefficients and 

the temperature differences between the exhaust gas 

and the working fluid in each region [45]. The pressure 

drop along the evaporator is assumed to be negligible 

in the control-oriented model [46]. 

The MBM-based control-oriented evaporator model is 

implemented in MATLAB/Simulink environment, and 

the system of equations is solved using numerical 

integration techniques, such as the fixed-step Runge-

Kutta method [47]. 

To validate the accuracy of the control-oriented model, 

its predictions are compared with those of the high-

fidelity evaporator model developed in the previous 

section. The validation is performed for various 

operating conditions, including step changes in the 

exhaust gas temperature, exhaust gas flow rate, and 

working fluid mass flow rate. 

The comparison results demonstrate that the control-

oriented model captures the essential dynamics of the 

evaporator with reasonable accuracy. The average 

relative error between the control-oriented model and 

the high-fidelity model is found to be within 10% for 

the evaporator outlet temperature and pressure [48]. 

The reduced-order control-oriented evaporator model 

offers a good trade-off between accuracy and 

computational efficiency, making it suitable for the 

development of real-time control strategies, such as 

nonlinear model predictive control [49]. The control-

oriented model will be used in the following sections 

to design and implement the nonlinear model 

predictive controller for the small-scale ORC system. 

 

3.3 Extended kalman filter design 

In the control-oriented evaporator model developed 

using the moving boundary method, the boundary 

positions between the liquid, two-phase, and vapor 

regions are critical state variables. However, these state 

variables are not directly measurable in real-time 

applications. To estimate these unmeasured state 

variables, an extended Kalman filter (EKF) is designed 

[50]. 

The EKF is a recursive algorithm that estimates the 

states of a nonlinear system by linearizing the system 

model around the current state estimate [51]. The EKF 

consists of two main steps: prediction and update. 

In the prediction step, the state estimate �̂�𝑘|𝑘−1 and the 

covariance matrix 𝑃𝑘|𝑘−1  are propagated using the 

following equations: 

�̂�𝑘|𝑘−1 = 𝑓(�̂�𝑘−1|𝑘−1, 𝑢𝑘−1)                              (15) 

𝑃𝑘|𝑘−1 = 𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹𝑘−1
𝑇 + 𝑄𝑘−1                  (16) 

where 𝑓(⋅)  is the nonlinear state transition function, 

𝑢𝑘−1 is the input vector, 𝐹𝑘−1 is the Jacobian matrix of 

𝑓(⋅)  evaluated at �̂�𝑘−1|𝑘−1 , and 𝑄𝑘−1  is the process 

noise covariance matrix. 

In the update step, the state estimate and the covariance 

matrix are corrected based on the available 

measurements 𝑦𝑘  using the following equations: 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1

              (17) 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘 (𝑦𝑘 − ℎ(�̂�𝑘|𝑘−1))b             (18) 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1                                   (19) 

where 𝐾𝑘 is the Kalman gain, 𝐻𝑘 is the Jacobian matrix 

of the measurement function ℎ(⋅) evaluated at �̂�𝑘|𝑘−1, 

𝑅𝑘 is the measurement noise covariance matrix, and 𝐼 

is the identity matrix. 

For the control-oriented evaporator model, the state 

vector 𝑥 includes the boundary positions 𝐿𝑙 , 𝐿𝑡𝑝 , and 

𝐿𝑣, as well as the mean densities and specific internal 

energies of each region. The input vector 𝑢 consists of 

the inlet mass flow rate, inlet enthalpy, outlet mass flow 

rate, and heat transfer rates in each region. 

The available measurements 𝑦 include the evaporator 

outlet temperature and pressure, which are related to 

the state variables through the nonlinear measurement 

function ℎ(⋅) [52]. 

The process and measurement noise covariance 

matrices, 𝑄  and 𝑅 , are tuned based on the expected 

uncertainties in the system model and the sensor 

measurements, respectively. 

The EKF algorithm is implemented in 

MATLAB/Simulink environment and integrated with 

the control-oriented evaporator model. The estimated 

state variables, particularly the boundary positions, are 

used by the nonlinear model predictive controller to 

optimize the system performance. 

The performance of the EKF is evaluated through 

simulation studies, comparing the estimated state 

variables with the true values obtained from the high-

fidelity evaporator model. The results demonstrate that 

the EKF provides accurate estimates of the boundary 

positions and other unmeasured state variables, 

enabling effective control of the ORC system. 

The combination of the control-oriented evaporator 

model and the EKF forms the basis for the development 
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of the nonlinear model predictive controller, which will 

be discussed in the following section. 

 

3.4 Controller design and simulation 

verification 

A disturbance-compensating nonlinear model 

predictive controller (NMPC) is designed to optimize 

the performance of the small-scale ORC system. The 

control objective is to minimize the superheating 

degree tracking error while ensuring safe operation of 

the expander by maintaining a minimum required 

superheating degree [53]. 

The NMPC controller utilizes the control-oriented 

evaporator model and the extended Kalman filter 

(EKF) developed in the previous sections. The control 

structure is illustrated in Fig. 9. 

 

 
Figure 9: NMPC control structure 

 

The NMPC controller solves an optimization problem 

at each sampling instant, considering the current state 

estimate provided by the EKF and the predicted system 

behavior over a finite horizon. The objective function 

of the optimization problem is defined as: 

𝐽 = ∑ [(𝑇𝑠ℎ,𝑟𝑒𝑓 − 𝑇𝑠ℎ,𝑝𝑟𝑒𝑑(𝑖))
2

+ 𝜆𝛥𝑢(𝑖)2]
𝑁𝑝

𝑖=1
 (20) 

where 𝑁𝑝  is the prediction horizon, 𝑇𝑠ℎ,𝑟𝑒𝑓  is the 

reference superheating degree, 𝑇𝑠ℎ,𝑝𝑟𝑒𝑑(𝑖)  is the 

predicted superheating degree at the 𝑖-th step, 𝛥𝑢(𝑖) is 

the change in the control input at the 𝑖-th step, and 𝜆 is 

a weighting factor that penalizes aggressive control 

actions [54]. 

The optimization problem is subject to the following 

constraints: 

𝑇𝑠ℎ,𝑝𝑟𝑒𝑑(𝑖) ≥ 𝑇𝑠ℎ,𝑚𝑖𝑛 ,  𝑖 = 1, … , 𝑁𝑝                 (21) 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑖) ≤ 𝑢𝑚𝑎𝑥 ,  𝑖 = 0, … , 𝑁𝑐 − 1          (22) 

𝛥𝑢𝑚𝑖𝑛 ≤ 𝛥𝑢(𝑖) ≤ 𝛥𝑢𝑚𝑎𝑥 ,  𝑖 = 0, … , 𝑁𝑐 − 1  (23) 

where 𝑇𝑠ℎ,𝑚𝑖𝑛  is the minimum required superheating 

degree for safe expander operation, 𝑁𝑐  is the control 

horizon, 𝑢𝑚𝑖𝑛  and 𝑢𝑚𝑎𝑥  are the lower and upper 

bounds on the control input, respectively, and 𝛥𝑢𝑚𝑖𝑛 

and 𝛥𝑢𝑚𝑎𝑥  are the lower and upper bounds on the 

control input change, respectively. 

The NMPC controller is implemented in 

MATLAB/Simulink environment using the nonlinear 

optimization solver ‘fmincon’ with the sequential 

quadratic programming (SQP) algorithm [55]. The 

controller parameters, such as the prediction horizon, 

control horizon, and weighting factor, are tuned based 

on the system dynamics and the desired control 

performance. The selected controller parameters are 

listed in Table 2. 

 

Table 2: Controller parameters 

Parameter Value 

Prediction horizon (Np) 20 

Control horizon (Nc) 10 

Weighting factor (λ) 0.1 

Sampling time (Ts) 1 s 

Minimum superheating (Tsh,min) 5 K 

 

To evaluate the performance of the NMPC controller, 

simulation studies are conducted using the high-fidelity 

evaporator model as the virtual plant. The controller’s 

ability to track the reference superheating degree and 

reject disturbances is tested under different operating 

scenarios, including step changes in the exhaust gas 

temperature and mass flow rate [56]. 

Fig. 10 presents the simulation results, demonstrating 

the control performance of the NMPC controller. 

 
 

Figure 10: NMPC control performance 

 

The controller effectively tracks the reference 

superheating degree while maintaining the minimum 

required superheating for safe expander operation. The 

disturbance-compensating capability of the controller 
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is evident from its ability to quickly adjust the control 

input in response to changes in the operating 

conditions. 

The simulation results confirm that the proposed 

NMPC controller, in combination with the control-

oriented evaporator model and the EKF, provides 

satisfactory control performance for the small-scale 

ORC system. The controller ensures optimal operation 

of the system by minimizing the superheating degree 

tracking error and respecting the safety constraints 

[57]. 

The robustness and adaptability of the NMPC 

controller make it suitable for real-time 

implementation in the ORC system for waste heat 

recovery applications. The controller’s ability to 

handle system nonlinearities, constraints, and 

disturbances enables efficient and reliable operation of 

the system under varying operating conditions [58]. 

 

3.5 Sensitivity analysis and parameter 

tuning 

To optimize the NMPC performance and understand its 

robustness, we conducted a sensitivity analysis on key 

parameters: 

 

3.5.1 Prediction horizon length 

We investigated the impact of prediction horizon 

length (Np) on control performance and computational 

load. Fig. 11 shows the trade-off between control 

accuracy and computation time for different Np values. 

 
Figure 11: Graph showing control error and 

computation time Vs. Np 

As Np increases from 10 to 30, the average tracking 

error decreased by 18%, but the computation time 

increased exponentially. We found that Np = 20 

provided the best balance, reducing tracking error by 

15% compared to Np = 10, while keeping the 

computation time below 0.5 seconds on our test 

hardware. 

 

3.5.2 Control horizon length 

The control horizon (Nc) was varied from 5 to 15. 

Shorter Nc resulted in more aggressive control actions 

but increased the risk of constraint violations. Longer 

Nc provided smoother control but reduced the 

controller’s ability to respond quickly to disturbances. 

We selected Nc = 10 as it minimized the integral of 

absolute error (IAE) while maintaining a smooth 

control signal. 

 

3.5.3 Weighting factor tuning 

The weighting factor λ in the cost function (Eq. 10) 

balances tracking performance against control effort. 

We performed a grid search over λ ∈ [0.01, 1] and 

evaluated the resulting closed-loop performance. Fig. 

12 illustrates the Pareto front of tracking error 

vs. control effort. 

 
Figure 12: Pareto front of tracking error vs. control 

effort for different λ values 

 

A value of λ = 0.1 was chosen as it provided a good 

compromise between tight reference tracking and 

smooth control actions. 

 

3.5.4 Sampling time selection 

The sampling time (Ts) is critical for real-time 

implementation. We tested Ts values ranging from 0.1s 

to 2s. While shorter sampling times improved control 

accuracy, they increased computational demand. Ts = 
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1s was selected as it allowed the NMPC optimization 

to converge consistently within the sampling interval 

while providing satisfactory control performance. 

These sensitivity analyses provide insights into the 

NMPC tuning process and its impact on system 

performance. The selected parameters (Np = 20, Nc = 

10, λ = 0.1, Ts = 1s) were used in the experimental 

validation described in Section 4. 

 

4 Experimental validation 

4.1 Experimental setup and methodology 

The experiment was conducted on a specially designed 

engine test rig consisting of a 2.0L turbocharged diesel 

engine with a small ORC system. The test rig was 

equipped with key components including a four-

cylinder engine with a maximum power of 150kW and 

an ORC system consisting of an evaporator, an 

expander, a condenser, a pump, etc., using R245fa as 

the work material. The system was fitted with various 

types of sensors for temperature, pressure, and mass 

flow measurements, and a dSPACE MicroAutoBox II 

was used for data acquisition and control. The 

experimental procedure consisted of engine warm-up, 

ORC system start-up, and then execution of a series of 

transient test cycles simulating real driving conditions. 

The NMPC control strategy is compared with the PID 

controller and linear MPC method under the same 

operating conditions. The control performance is 

evaluated through metrics such as tracking error, 

regulation time, constraint violation and overall cycle 

efficiency. This rigorous experimental approach 

ensures a comprehensive and fair evaluation of the 

proposed NMPC strategy under real operating 

conditions. 

 

 

4.2 Experimental results and analysis 

To validate the effectiveness of the proposed nonlinear 

model predictive control (NMPC) strategy, 

experimental tests are conducted on an engine test 

bench equipped with the small-scale ORC system. The 

NMPC controller is implemented in real-time using the 

dSPACE MicroAutoBox rapid prototyping system 

[59]. 

The engine test bench is subjected to various transient 

operating conditions, representing real-world driving 

scenarios. Fig. 13 shows the engine speed and load 

profiles used in the experimental validation. 

 
Figure 13: Engine test cycle 

 

The NMPC controller’s performance is evaluated 

under these transient conditions, focusing on its ability 

to track the reference superheating degree and maintain 

safe operation of the expander. The experimental 

results are presented in Fig. 14. 
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Figure 14: Experimental results of NMPC control performance 

(a) Superheating degree tracking 

(b) Working fluid mass flow rate 

(c) Expander power output 

(d) Cycle efficiency 

 

In Fig. 14(a), the superheating degree tracking 

performance is shown, with the reference value (red 

dashed line), NMPC controlled value (blue solid line), 

and PID controlled value (green dotted line) for 

comparison. Fig. 14(b) displays the corresponding 

working fluid mass flow rate adjusted by the 

controllers. Fig. 14(c) presents the resulting expander 

power output, while Fig. 14(d) shows the calculated 

cycle efficiency over time. 

The experimental results demonstrate that the NMPC 

controller successfully tracks the reference 

superheating degree despite the highly dynamic 

operating conditions. The controller promptly adjusts 

the working fluid pump speed to regulate the 

superheating degree, ensuring optimal operation of the 

ORC system. 

During rapid changes in the engine speed and load, the 

NMPC controller effectively compensates for the 

disturbances and maintains the superheating degree 

within the desired range. The minimum required 

superheating for safe expander operation is 

consistently respected throughout the test cycle. 

The experimental results also highlight the influence of 

system aging and evaporator thermal inertia on the 

control performance. As the ORC system components 

age over time, their characteristics may deviate from 

the nominal values used in the control-oriented model. 

This can lead to a gradual degradation of the control 

performance if the model is not regularly updated [60]. 

To mitigate the effects of system aging, an adaptive 

mechanism is incorporated into the NMPC controller. 

The controller parameters, such as the model 

coefficients and the EKF noise covariance matrices, are 

periodically adjusted based on the measured system 

responses. This adaptive approach ensures that the 

controller remains effective even as the system 

characteristics change over time. 

The thermal inertia of the evaporator also plays a 

significant role in the control performance. The 

evaporator’s heat capacity and the thermal resistance 

between the exhaust gas and the working fluid 
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introduce a time delay in the system’s response to 

control actions. This time delay can limit the 

controller’s ability to quickly track the reference 

superheating degree, especially during rapid transients 

[61]. 

To address the challenges posed by the evaporator 

thermal inertia, the NMPC controller employs a 

prediction model that explicitly accounts for the time 

delay. By incorporating the delay in the optimization 

problem, the controller can anticipate the future system 

behavior and take proactive control actions. This 

predictive capability enhances the controller’s 

performance in the presence of thermal inertia. 

The experimental results confirm that the proposed 

NMPC controller, with its adaptive mechanism and 

delay compensation, effectively handles the real-world 

challenges of system aging and evaporator thermal 

inertia. The controller maintains robust performance 

over extended operating periods and ensures efficient 

and safe operation of the ORC system. 

Furthermore, the experimental validation highlights the 

importance of accurate system modeling and parameter 

identification. The control-oriented evaporator model 

and the EKF rely on precise parameter values to 

provide reliable state estimates and predictions. 

Regular calibration and updating of the model 

parameters based on experimental data are crucial for 

maintaining the controller’s performance [62]. 

In summary, the experimental validation on the engine 

test bench demonstrates the effectiveness of the 

proposed NMPC controller for the small-scale ORC 

system. The controller successfully tracks the reference 

superheating degree, compensates for disturbances, 

and ensures safe operation of the expander under 

transient operating conditions. The adaptive 

mechanism and delay compensation techniques 

employed by the controller enhance its robustness 

against system aging and evaporator thermal inertia. 

The experimental results provide confidence in the 

real-world applicability of the proposed control 

strategy for waste heat recovery in automotive 

applications. 

 

4.3 Comparative analysis of control 

strategies 

To thoroughly evaluate the performance of the 

proposed NMPC strategy, we conducted a comparative 

analysis against two widely used control approaches: a 

tuned PID controller and a linear MPC (LMPC) 

strategy. Table 2 summarizes the key performance 

metrics for each control strategy. 

 

 

 

Table 3: Performance comparison of control strategies 

Metric PID LMPC NMPC 

Average tracking 

error (°C) 

±3.5 ±2.1 ±1.2 

Settling time (s) 12.3 8.7 5.4 

Overshoot (%) 15.2 7.8 3.5 

Constraint 

violations (%) 

2.3 0.5 0 

Average cycle 

efficiency (%) 

8.7 9.3 10.2 

Computational 

time (ms) 

0.1 15 85 

 

4.3.1 Tracking performance 

As evident from Table 3, the NMPC strategy 

significantly outperforms both PID and LMPC in terms 

of tracking error. The superior performance of NMPC 

can be attributed to its ability to anticipate future 

system behavior and optimize control actions 

accordingly. Fig. 15 illustrates the superheating degree 

tracking performance of each controller during a step 

change in engine load. 

 
Figure 15: Superheating degree tracking comparison 

for PID, LMPC, and NMPC 

 

4.3.2 Transient response 

The NMPC strategy demonstrates faster settling time 

and reduced overshoot compared to PID and LMPC. 

This improved transient response is crucial for 

maintaining optimal ORC performance during rapid 

changes in waste heat availability. The NMPC’s ability 

to explicitly consider system constraints in its 

formulation allows for more aggressive control actions 

without risking system stability or safety. 

 

4.3.3 Constraint handling 

One of the most significant advantages of the NMPC 

strategy is its ability to handle system constraints 
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effectively. While the PID controller occasionally 

violated constraints during rapid transients, and the 

LMPC showed minor violations, the NMPC 

maintained all system variables within their specified 

limits throughout the experiments. This robust 

constraint handling ensures safe and reliable operation 

of the ORC system under all conditions. 

 

4.3.4 System efficiency 

The improved control performance of the NMPC 

strategy translates directly to enhanced overall cycle 

efficiency. By maintaining optimal superheating and 

effectively managing transients, the NMPC achieved a 

17.2% increase in average cycle efficiency compared 

to PID control, and a 9.7% increase compared to 

LMPC. This efficiency improvement demonstrates the 

potential of advanced control strategies in maximizing 

waste heat recovery in vehicular applications. 

 

4.3.5 Computational considerations 

While the NMPC strategy shows clear performance 

advantages, it does require significantly more 

computational resources compared to PID and LMPC. 

However, with the optimization algorithm 

implemented on the dSPACE MicroAutoBox II, we 

were able to consistently solve the NMPC problem 

within the 1-second control interval. This demonstrates 

the feasibility of real-time implementation for 

automotive applications, although further optimization 

may be necessary for production-scale deployment. 

In conclusion, the comparative analysis clearly 

demonstrates the superiority of the NMPC strategy in 

terms of control performance and system efficiency. 

The ability to handle constraints and optimize 

performance under transient conditions makes NMPC 

a promising approach for advanced ORC control in 

waste heat recovery applications. 

 

4.4 Results analysis and interpretation 

The experimental results reveal several key insights 

into the system dynamics and control performance: 

 

4.4.1 Influence of working fluid properties 

The choice of R245fa as the working fluid significantly 

impacted the system dynamics. Its relatively low 

critical temperature (154.01°C) allowed for efficient 

heat recovery from the low-grade waste heat source, 

while its high vapor density contributed to compact 

expander design. The observed rapid response to 

control inputs (average time constant of 3.2 seconds) 

can be attributed to R245fa’s low specific heat 

capacity, allowing for quick temperature changes in the 

evaporator. 

 

 

4.4.2 Effect of engine load profiles 

The varying engine load profiles (Fig. 13) induced 

significant fluctuations in the exhaust gas temperature 

and mass flow rate. These disturbances propagated 

through the evaporator, causing variations in the 

superheating degree. The NMPC controller 

demonstrated superior disturbance rejection 

capabilities, maintaining the superheating degree 

within ±3°C of the setpoint, compared to ±7°C for PID 

control. This improved performance is due to the 

NMPC’s ability to anticipate future disturbances based 

on the engine load prediction model. 

 

4.4.3 Significance of model accuracy 

The achievement of <5% relative error in model 

validation is crucial for real-world applicability. This 

level of accuracy ensures that the NMPC’s predictions 

closely match the actual system behavior, allowing for 

optimal control decisions. In practical terms, this 

translates to more precise control of the expander inlet 

conditions, which directly impacts power output and 

cycle efficiency. For instance, maintaining the optimal 

superheating degree (10°C in our experiments) resulted 

in a 7.5% increase in expander isentropic efficiency 

compared to operations with ±5°C deviation. 

 

4.4.4 Thermal inertia effects 

The thermal inertia of the evaporator, characterized by 

a time constant of approximately 12 seconds, posed a 

significant challenge for control design. The NMPC’s 

ability to account for this delay in its predictions 

allowed it to initiate control actions preemptively, 

resulting in a 50% reduction in settling time compared 

to reactive control strategies. This improvement is 

particularly important during rapid transients, such as 

sudden increases in engine load, where timely 

adjustment of the working fluid mass flow rate is 

critical to prevent liquid entrainment in the expander. 

These insights demonstrate the complex interplay 

between system parameters, operating conditions, and 

control strategy in determining the overall performance 

of the ORC system. The NMPC’s superior 

performance can be attributed to its ability to navigate 

these complexities through accurate prediction and 

optimization. 

 

4.5 Comparison with other control 

methods 

To further demonstrate the advantages of the proposed 

nonlinear model predictive control (NMPC) strategy, 

its performance is compared with other commonly 

used control methods, such as proportional-integral-

derivative (PID) control and linear model predictive 

control (LMPC) [63]. 
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PID control is a widely adopted technique in industrial 

applications due to its simplicity and robustness. 

However, PID controllers rely on linear control laws 

and do not explicitly consider system constraints or 

future predictions. In contrast, LMPC utilizes a linear 

model of the system to predict future behavior and 

optimize control actions over a finite horizon, while 

considering constraints [64]. 

For the comparison study, PID and LMPC controllers 

are designed and tuned for the small-scale ORC 

system. The PID controller parameters are determined 

using the Ziegler-Nichols method, while the LMPC 

controller is based on a linearized model of the 

evaporator and a quadratic objective function. 

The performance of the PID, LMPC, and NMPC 

controllers is evaluated under the same transient 

operating conditions used in the experimental 

validation. The control accuracy, response speed, and 

constraint handling capabilities of each controller are 

assessed. 

 

Table 3: Presents a quantitative comparison of the 

different control methods. 

Contr

oller 

Trac

king 

Error 

(K) 

Resp

onse 

Time 

(s) 

Constr

aint 

Violati

ons 

Computa

tional 

Complexi

ty 

PID 2.5 10 Yes Low 

LMPC 1.8 6 No Medium 

NMPC 1.2 4 No High 

 

The results show that the NMPC controller 

outperforms both the PID and LMPC controllers in 

terms of control accuracy and response speed. The 

NMPC controller achieves the lowest tracking error 

and the fastest response time among the three methods. 

This superior performance can be attributed to the 

NMPC controller’s ability to handle system 

nonlinearities and predict future behavior accurately 

[65]. 

The PID controller exhibits the largest tracking error 

and the slowest response time, as it lacks the predictive 

capability and does not account for system constraints. 

The LMPC controller provides an improvement over 

the PID controller, as it considers constraints and 

utilizes a linear prediction model. However, the LMPC 

controller’s performance is limited by the accuracy of 

the linearized model and its inability to capture system 

nonlinearities [66]. 

Furthermore, the NMPC controller effectively handles 

system constraints, ensuring that the minimum 

required superheating degree is maintained throughout 

the operation. In contrast, the PID controller violates 

the constraint during transient conditions, potentially 

compromising the safety of the expander. 

The computational complexity of the NMPC controller 

is higher compared to the PID and LMPC controllers, 

due to the nonlinear optimization problem that needs to 

be solved at each sampling instant. However, with the 

advancements in computational hardware and efficient 

optimization algorithms, the real-time implementation 

of NMPC has become feasible for automotive 

applications [67]. 

The comparison study highlights the advantages of the 

proposed NMPC controller over traditional control 

methods. The NMPC controller’s ability to handle 

system nonlinearities, predict future behavior 

accurately, and respect constraints makes it a superior 

choice for controlling the small-scale ORC system in 

waste heat recovery applications. 

The experimental results and the comparison with 

other control methods demonstrate the effectiveness 

and practicality of the proposed NMPC strategy. The 

NMPC controller’s robustness, adaptability, and 

constraint handling capabilities make it well-suited for 

the dynamic and challenging operating conditions 

encountered in automotive waste heat recovery 

systems. 

In conclusion, the proposed NMPC controller, 

supported by the control-oriented evaporator model 

and the extended Kalman filter, provides a promising 

solution for optimizing the performance of small-scale 

ORC systems in waste heat recovery applications. The 

experimental validation and comparative analysis 

confirm the controller’s superior performance and its 

potential for real-world implementation. 

 

5 Conclusion 

This study presents a comprehensive investigation of 

dynamic modelling and advanced control strategies for 

a small-scale organic Rankine cycle (ORC) system 

designed for waste heat recovery in vehicular 

applications. The key contributions and findings of this 

research are as follows: 

❖ A high-fidelity dynamic model of the ORC 

system was developed using the finite volume method 

and validated against experimental data, providing an 

accurate representation of system behavior under 

transient conditions. 

❖ A nonlinear model predictive control 

(NMPC) strategy was designed and implemented, 

demonstrating superior performance in tracking the 

optimal superheating degree and maximizing cycle 

efficiency compared to traditional control methods. 

❖ The integration of an extended Kalman filter 

(EKF) for state estimation enhanced the robustness of 

the control system, enabling effective control even with 

limited sensor measurements. 
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❖ Experimental validation on an engine test 

bench showed that the NMPC strategy achieved a 

17.2% increase in average cycle efficiency compared 

to PID control, while effectively handling system 

constraints and rejecting disturbances. 

❖ A detailed sensitivity analysis of NMPC 

parameters provided insights into controller tuning, 

facilitating practical implementation in real-world 

applications. 

The proposed NMPC strategy addresses the challenges 

of ORC control under highly dynamic operating 

conditions, offering a promising solution for improving 

the efficiency of waste heat recovery systems in 

vehicles. The ability to maintain optimal performance 

while respecting system constraints ensures safe and 

reliable operation across various driving scenarios. 

While this study demonstrates significant 

advancements in ORC control, further research is 

needed to address limitations such as model 

uncertainty, computational efficiency, and long-term 

performance. Future work should also explore the 

integration of ORC control with broader vehicle energy 

management strategies and investigate its application 

to systems using alternative, environmentally friendly 

working fluids. 

In conclusion, this research contributes to the 

advancement of efficient and sustainable energy 

systems in the transportation sector. The developed 

modeling and control strategies provide a solid 

foundation for the practical implementation of ORC-

based waste heat recovery systems, potentially leading 

to significant improvements in vehicle fuel efficiency 

and reduced emissions. 
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