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Against the backdrop of global climate change, frequent extreme weather events, and the 

increasingly complex development and management of water resources, the enhanced entropy - 

fuzzy integration decision support system for the risk assessment and management of hydraulic 

engineering has emerged. Traditional risk management methods, such as risk assessment based on 

probability theory, can handle known risks to a certain extent but are insufficient when dealing with 

highly ambiguous, uncertain, and complex risks. This paper introduces the design and empirical 

evaluation of the Enhanced Entropy - Fuzzy Integration Decision Support System (EEMFDS). 

Taking the Yangtze River Three Gorges Project as the research object, the application value of 

EEMFDS in the risk assessment and management of water conservancy projects is fully 

demonstrated through detailed requirement analysis, system architecture design, model 

construction, algorithm design, and empirical evaluation. EEMFDS adopts fuzzy set theory and 

enhanced entropy model, and through methods such as fuzzy quantification and enhanced entropy 

calculation, it effectively addresses key links such as risk identification, quantification, assessment, 

and decision support. The empirical results show that compared with traditional risk management 

methods, EEMFDS has significantly improved the risk identification accuracy. The average 

accuracy rate has increased from 84.7% to 90.6%, the response time has been shortened from 180 

seconds to 120 seconds, the comprehensive robustness score has increased from 79.2% to 87.6%, it 

also has advantages in resource consumption, with the CPU usage time reduced by 30 hours and 

the storage space reduced by 20GB. The user satisfaction is relatively high, with an overall average 

score of 85.8%, highlighting its great potential in enhancing the level of intelligent risk 

management. 

Povzetek: Razvit je izboljšan entropijski sistem mehke logike za oceno tveganj v hidravličnem 

inženirstvu, ki učinkovito obravnava negotovost in kompleksnost. 

 

 

1 Introduction 
As an important part of national infrastructure, water 

conservancy projects play an irreplaceable role in 

promoting agricultural development, ensuring urban 

water supply, flood control and disaster reduction, and 

promoting balanced regional economic development. 

With the rapid development of global climate change and 

economic society, water conservancy projects are under 

increasing pressure in the face of extreme weather 

events, water shortage, ecological environment 

protection, etc., and the risks in their construction and 

operation management are more complex and diverse. 

Natural disasters, such as floods and earthquakes, are the 

primary external risks faced by hydraulic projects, which 

may lead to structural damage, functional failure and 

even secondary disasters [1]. This paper aims to solve the 

problems of subjectivity and limited information 

processing ability existing in traditional risk assessment 

methods of hydraulic engineering, and improve the  

 

objectivity, accuracy and timeliness of risk  

assessment by introducing enhanced entropy fuzzy  

decision support system [2]. Traditional risk assessment 

methods often rely on expert experience, which makes it 

difficult to capture all risk factors comprehensively and 

has limitations in dealing with vague and uncertain 

information. Enhanced entropy fuzzy decision support 

system combines the uncertainty processing ability of 

fuzzy set theory with the information optimization 

processing ability of enhanced entropy theory, which can 

deal with complex and fuzzy information in risk 

assessment of hydraulic engineering more effectively and 

help decision makers make reasonable decisions under 

multi-objective and multi-constraint conditions. The 

development and application of this system can not only 

improve the intelligent level of risk management of 

hydraulic engineering, but also provide reference for risk 

assessment and management in other fields [3]. 

In recent years, scholars at home and abroad have made 
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extensive exploration in the field of hydraulic 

engineering risk assessment, and put forward many 

assessment models and methods, such as probabilistic 

risk assessment, fuzzy comprehensive assessment, 

analytic hierarchy process, etc. [4]. Each of these 

approaches has its own focus, but a common problem is 

the limited ability to deal with highly uncertain 

information, especially when there are many risk factors 

and complex interrelationships. As an effective decision-

making tool, fuzzy decision support system has been 

applied to risk management in many industries, but its 

application in hydraulic engineering is still in its infancy, 

especially how to integrate a large amount of uncertain 

information efficiently to support more accurate risk 

assessment is still a key problem to be solved [5]. 

Entropy theory, as a method of optimizing information 

processing, measures uncertainty of information by 

introducing entropy, optimizes information structure by 

enhancement, and improves efficiency and quality of 

decision making. Although the theory has been applied in 

information science, economics and other fields, it is still 

a frontier research direction, especially in the integrated 

application of fuzzy decision support system in hydraulic 

engineering risk assessment [6]. 

The core content of this study centers on constructing an 

enhanced entropy fuzzy decision support system suitable 

for risk assessment and management of hydraulic 

engineering, including: (1) System requirement analysis: 

defining the specific requirements of risk assessment of 

hydraulic engineering, including risk identification, risk 

quantification, risk ranking and response strategy 

generation. (2) Model and algorithm design: Based on 

fuzzy set theory and enhanced entropy theory, risk 

assessment model is designed, corresponding fuzzy 

inference algorithm and enhanced entropy calculation 

method are developed to optimize risk information 

processing flow. (3) System architecture and 

implementation: Build the overall architecture of the 

system, including data input, risk assessment engine, 

decision support module and user interface, etc., and 

adopt advanced software development technology and 

database management system to realize system functions. 

This study aims to develop and evaluate the Enhanced 

Entropy Fuzzy Decision Support System (EEMFDS) for 

risk assessment and management in hydraulic 

engineering. The key research questions are as follows: 

How does the enhanced entropy - fuzzy integration 

approach effectively handle the complex and uncertain 

risk factors in hydraulic engineering compared with 

traditional risk assessment methods? What are the 

optimal model structures and algorithms for accurately 

quantifying and assessing risks during the construction of 

EEMFDS, and how to ensure the reliability and stability 

of the model? To what extent can EEMFDS improve the 

accuracy, timeliness, and comprehensiveness of risk 

assessment in practical applications of hydraulic 

engineering projects such as the Yangtze River Three 

Gorges Project? What are the potential challenges and 

limitations when applying EEMFDS to large - scale 

hydraulic engineering projects, and how can these issues 

be addressed? These questions will guide the exploration 

and analysis of the entire research process, aiming to 

promote the application and development of EEMFDS in 

the field of hydraulic engineering risk management. 

The innovations of this study are: first, the enhanced 

entropy theory is integrated with the fuzzy decision 

support system to effectively process complex risk 

information; second, the entropy enhancement algorithm 

introduces reference probability distribution and 

adjustment parameters to optimize information processing 

and improve assessment accuracy and stability; third, the 

microservice architecture and containerization technology 

are used to improve system scalability, maintainability and 

deployment flexibility. These innovations provide new 

ideas and methods for water conservancy project risk 

assessment. 

2 Basic theory and method 
This section mainly explains the basic theories and 

methods involved in the research, including risk 

assessment principles, fuzzy set theory, enhanced entropy 

theory, and system integration and data processing 

technology, laying a theoretical foundation for the 

subsequent introduction of system design and 

implementation. 

 

2.1 Principles of risk assessment for hydraulic 

engineering 
Risk assessment of hydraulic engineering refers to the 

process of identifying, analyzing and evaluating various 

risks that may be encountered in the process of 

construction and operation of hydraulic engineering, so as 

to formulate corresponding prevention and mitigation 

measures to ensure the safety and benefit of the project. 

Risk can be defined as the product of the likelihood of a 

particular event occurring and the severity of its 

consequences. In the field of hydraulic engineering, risks 

are usually classified into natural risks (such as floods, 

earthquakes), technical risks (such as design defects, 

construction quality problems), management risks (such as 

operational errors, improper maintenance) and socio-

economic risks (such as shortage of funds, policy changes) 

[7,8]. 

The risk assessment process generally follows four steps: 

identification, analysis, assessment and control. Firstly, 

potential risk factors are identified through historical data 

analysis and expert consultation. 

 

2.2 Fuzzy set theory and fuzzy decision 

support system 
Fuzzy set theory was proposed by Professor Zadeh to deal 

with fuzzy or imprecise information. Fuzzy sets allow 

elements to belong to multiple sets simultaneously with 

certain membership degrees, which solves the limitation of 

traditional binary logic. Fuzzy logic sets up reasoning 

mechanism to deal with fuzzy information, and deals with 

uncertainty problems through fuzzification, fuzzy 

reasoning and defuzzification. Fuzzy Decision Support 

System (Fuzzy DSS) is a form of DSS which applies fuzzy 

set theory. It can deal with fuzziness and subjective 
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judgment in decision making process and provide more 

realistic suggestions for decision makers [9]. 

2.3 Enhanced entropy theory 
Information entropy was proposed by Shannon to 

quantify the uncertainty of information, while decision 

entropy further considers the value of information in the 

decision process. Enhanced entropy theory is developed 

on the basis of traditional entropy, which optimizes the 

information processing process by adjusting or 

"enhancing" the original information entropy [10]. 

Enhanced entropy model improves the discrimination of 

useful information by introducing additional information 

or criteria, which is helpful to screen out key information 

in complex multi-attribute decision making problems. 

The advantage of this theory is that it can effectively 

reduce noise interference in information processing and 

improve the stability and accuracy of decision-making. In 

information processing applications, enhanced entropy is 

often used in feature selection, pattern recognition, data 

clustering and other fields to improve the prediction 

ability and interpretation ability of models by optimizing 

information structure. 

 

2.4 System integration and data processing 

technology 
In modern hydraulic engineering risk assessment, data 

acquisition and preprocessing are basic links, involving 

various sensors, satellite remote sensing, unmanned 

aerial vehicle monitoring and other technical means. Data 

preprocessing includes data cleaning, standardization, 

missing value processing, etc. to ensure data quality. The 

application of big data and cloud computing technology 

has greatly enhanced data processing and analysis 

capabilities. Big data technology discovers hidden rules 

and associations in risk assessment through the 

collection, storage, processing and analysis of massive 

data, and supports real-time risk monitoring and early 

warning [11, 12]. Cloud computing provides flexible 

computing resources and storage space, enabling large-

scale data processing tasks to be efficiently executed in 

the cloud, reducing the cost and maintenance pressure of 

local hardware facilities. For example, Document 

discusses the application of water conservancy 

information system based on cloud computing in flood 

warning, which significantly improves the timeliness and 

accuracy of early warning [13]. Literature introduces the 

method of fusion of fuzzy set theory and big data 

technology in safety assessment of hydraulic 

engineering, and shows how to use fuzzy logic to process 

uncertain information and improve risk identification 

ability in combination with big data analysis [14]. 

Reference discusses the application of enhanced entropy 

theory in risk decision of multi-attribute hydraulic 

engineering, emphasizing its role in optimizing 

information processing and reducing decision error [15]. 

In the research on risk assessment methods for hydraulic 

engineering, past scholars have proposed various 

methods, such as Probabilistic Risk Assessment (PRA) 

and Analytic Hierarchy Process (AHP). These methods 

have played important roles in the field of risk assessment, 

but they have certain limitations in handling uncertainty. 

The following is a comparative analysis of these methods 

(see Table 1). 

The current State - of - the - Art (SOTA) has obvious 

deficiencies in handling highly uncertain information. 

For example, when faced with fuzzy information, 

incomplete data, and the interaction of complex risk 

factors, SOTA often fails to accurately capture and 

handle these uncertainties, affecting the accuracy and 

reliability of risk assessment. Moreover, many existing 

methods lack sufficient flexibility and adaptability when 

dealing with large - scale and dynamically changing risk 

scenarios in hydraulic engineering [16]. 

The Enhanced Entropy Fuzzy Decision Support 

System (EEMFDS) effectively addresses these 

deficiencies. EEMFDS combines fuzzy set theory and the 

enhanced entropy model. Fuzzy set theory can handle 

fuzzy and imprecise information, transform qualitative 

risk factors into quantifiable indicators, and make up for 

the defects of traditional methods in handling fuzzy 

information. The enhanced entropy model, by optimizing 

the information structure, enhances the expression of 

important information and reduces the interference of 

irrelevant information, enabling more accurate screening 

of key information in complex multi - attribute decision - 

making problems and improving the accuracy and 

stability of risk assessment. In addition, EEMFDS 

realizes automatic risk identification and classification 

through intelligent algorithms, can quickly adapt to 

dynamically changing risk scenarios, overcomes the 

problem of insufficient flexibility of existing methods, 

and provides a more efficient and accurate solution for 

risk assessment and management of hydraulic 

engineering [17]. 

In the context of water resources risk assessment, 

various decision-making frameworks have been proposed 

to prioritize risks and evaluate uncertainties. Ghoushchi 

et al. applied an extended SWARA and MOORA 

methods based on Z-Numbers Theory to prioritize risks 

in Failure Mode and Effects Analysis (FMEA), offering a 

novel approach for assessing complex risks in water 

infrastructure [18]. Additionally, Mohammadian et al. 

developed a multi-attribute decision-making framework 

using interval-valued triangular fuzzy numbers, which 

can be particularly useful for policy-makers dealing with 

uncertainties in water risk management [19]. Turskis et 

al. explored a hybrid multi-criteria decision-making 

(MCDM) approach for assessing information security 

risks in critical infrastructures, which can be adapted to 

the assessment of water-related risks, highlighting the 

importance of integrated decision tools in water resource 

management [20]. These methods demonstrate the 

significance of advanced decision frameworks in 

effectively managing water infrastructure risks. 
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Table 1: Comparison of probabilistic risk assessment (PRA) and analytic hierarchy process (AHP) in handling 

uncertainty and their performance indicators 

Method Limitations in Handling Uncertainty Performance Indicators 

Probabilistic Risk Assessment 

(PRA) 

Relies on precise probability data. It 

is difficult to accurately assess risks 

for risk factors with incomplete 

information, ambiguity, or difficulty 

in quantification. It has limited 

ability to handle the uncertainty 

generated by the interaction of 

multiple factors in complex systems. 

Can quantify the probability of risk 

events occurring and the severity of 

consequences to assess the risk 

level, but has weak adaptability to 

complex risk scenarios. 

Analytic Hierarchy Process (AHP) 

Strongly subjective. The 

construction of the judgment matrix 

depends on expert experience. 

Different experts may give different 

judgments, resulting in differences in 

results. It is also difficult to handle 

the non - linear relationships and 

uncertainties among risk factors. 

Determines the weights of risk 

factors through constructing a 

hierarchical structure model for risk 

assessment, but has limitations in 

handling complex and uncertain 

information. 

 

 
Figure 1: Requirement’s framework 

3 Design of entropy enhanced fuzzy 

decision support system 
This chapter mainly revolves around the architecture of 

the enhanced entropy fuzzy decision support system, 

covering system requirement analysis, overall 

architecture design, module division, and data and 

control flow design, aiming to build an efficient system 

that meets the actual needs of water conservancy project 

risk assessment and management. 

 

3.1 System requirements analysis 
Before designing the enhanced entropy fuzzy decision 

support system, detailed requirement analysis should be 

carried out to ensure that the system can meet the actual 

needs of risk assessment and management of hydraulic 

engineering, including functional requirements and 

performance requirements. The requirements framework 

is shown in Figure 1 [16]. 

 

3.1.1 Functional requirements 
The system design integrates advanced technology and 

comprehensive functions to efficiently manage risks, 

specifically including: 1. Risk identification module, 

which can independently discover a variety of potential 

risks including natural disasters, technical defects, 

management loopholes and social and economic changes 

in a large amount of data by using intelligent algorithms 

such as machine learning, and realize automatic 

classification and labeling of new risks through learning 

historical cases; 2. Risk quantification module, which uses 

fuzzy set theory to transform complex and variable 

qualitative risks into specific values, and accurately 

expresses the possibility and potential impact degree of 

risks with the help of membership function; 3. Risk 

assessment module uses enhanced entropy model to 

strengthen information processing efficiency, ensure 

accurate assessment of multi-dimensional and multi-level 

risk factors, and generate risk ranking to assist the 

formulation of priority strategies; 4. The decision support 

module proposes response strategies and resource 

allocation guidance according to the evaluation results, 

and has the ability to simulate and predict different 

decision paths, providing decision makers with 

comparative analysis tools to help form the best decision; 

5. The knowledge management and update module 

maintains the latest risk management knowledge system, 

including theories, policies, regulations and technical 
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specifications, maintains the cutting-edge and 

compliance of system decisions, and continuously 

optimizes the model effectiveness through self-learning 

mechanism [17, 18]. 

 

3.1.2 Performance requirements 
The core objective of system design is to ensure a high 

degree of accuracy and reliability, which means that risk 

information must be processed with a very low rate of 

false positives and false negatives, thereby stabilizing the 

credibility of risk assessments. In order to cope with the 

rapidly changing risk situation, the system is designed to 

be able to complete the immediate processing and precise 

evaluation of data in a very short time frame, ensuring 

rapid response in the case of emergency decisions [19]. 

At the architectural level, the system emphasizes 

scalability and compatibility, aiming to facilitate 

seamless integration of future technology iterations 

through flexible design, while ensuring seamless 

interface with existing water information systems and 

diverse external data sources. Security and privacy 

protection are basic principles that cannot be 

compromised. We take strict measures to protect the 

security of data during transmission and storage, fully 

comply with relevant laws and regulations, and strictly 

protect the privacy rights of users. In addition, through 

continuous optimization of algorithms, we are committed 

to improving the efficiency of resource use while 

ensuring high performance, striving to achieve an 

optimal balance between computing resource 

consumption and storage requirements, and driving the 

system towards energy efficiency [20, 21]. 

3.2 Systematic architecture design 
As shown in Figure 2, this flowchart shows the 

architecture of a comprehensive data processing and 

decision support system, starting with data acquisition 

and preprocessing and ending with decision support and 

system maintenance. Firstly, the data acquisition and 

pretreatment module collect raw data, cleans and formats 

them, and lays the foundation for subsequent analysis. 

The risk identification module then uses data analysis 

techniques to identify potential risk factors and pave the 

way for risk management [22]. After that, fuzzy 

quantization and enhanced entropy processing module 

intervened, focusing on transforming uncertainty and 

fuzzy information into clear quantitative indicators, and 

using entropy theory to deepen the understanding of 

information uncertainty. On this basis, the risk 

assessment and ranking module comprehensively 

evaluates the identified risks and ranks them according to 

the degree of danger. The decision support and 

simulation module, which follows closely, not only 

provides strategic suggestions according to the above 

analysis results, but also assists users in making optimal 

decisions by simulating various scenarios. The user-

friendly and report generation module is responsible for 

visually presenting insights into this complex digitization 

process to end users in the form of charts and reports 

[23]. 

 

 

Data Acquisition and 

Preprocessing Module

Risk Identification 

Module Fuzzy Quantization 

and Enhanced 

Entropy Processing 

Module

Risk 

Assessment 

and Ranking 

Module

Decision Support and 

Simulation Module

System Administration and 

Maintenance Module

User interface and report 

generation module
 

Figure 2: System data flow 

 

In the data collection module shown in Figure 2, 

the data sources involved include two parts: one part is 

publicly available data, mainly from historical climate 

data disclosed by the government water conservancy 

department, such as monitoring data of precipitation, 

temperature, water level, etc. for many years, which can 

be obtained from the official website of the Ministry of 

Water Resources and relevant meteorological data 

disclosure platforms; there are also geological data, 

including geological structure, soil characteristics, etc., 

which come from reports and data publicly released by 

geological exploration institutions. The other part is the 

data collected by our team for field research and 

monitoring of the Three Gorges Project on the Yangtze 

River, covering real-time monitoring data during the 

construction and operation of the project, such as stress 

and strain of the dam, seepage monitoring data, and 

dispatching records and equipment operation status data 

in project management. These first-hand data can more 

accurately reflect the risk status of the actual operation of 

the Three Gorges Project on the Yangtze River, 

complement each other with public data, and provide a 

comprehensive data basis for the analysis and evaluation 

of the enhanced entropy fuzzy decision support system. 

 

3.2.1 Module division 
Data acquisition and preprocessing module: responsible 

for collecting data from various sensors, monitoring 

stations, historical databases and other channels, pre-

processing data cleaning, format conversion, outlier 

processing, etc., to provide high-quality data input for 

subsequent analysis [24]. 

Risk identification module: identify potential risks 

by pattern recognition and data mining technology, and 



46   Informatica 49 (2025) 41–56                                                                                                                                          Y. Li et al. 

verify and supplement them with expert knowledge 

base. 

Fuzzy quantization and enhanced entropy processing 

module: convert qualitative risk factors into fuzzy sets, 

quantify risk possibility and influence degree by 

membership function, and then optimize information 

structure by enhanced entropy model to improve 

accuracy and stability of evaluation. 

Risk evaluation and ranking module: based on fuzzy 

comprehensive evaluation model, combined with 

information processed by enhanced entropy, the 

identified risks are comprehensively evaluated and 

ranked according to risk level, providing basis for 

decision-making [25]. 

Decision support and simulation module: according to 

the risk assessment results, fuzzy inference mechanism is 

used to generate decision schemes, and users are 

supported to compare the expected effects of different 

strategies through simulation to assist decision-making. 

System management and maintenance module: 

responsible for the daily maintenance of the system, user 

rights management, knowledge base update, system 

performance monitoring [26]. 

 

3.2.2 Data flow and control flow design 
In the aspect of data flow design, the system starts from 

data acquisition, enters risk identification module after 

preprocessing, enters risk assessment module after fuzzy 

quantization processing, enters risk assessment module 

after enhanced entropy optimization, and outputs 

assessment results to decision support module to form 

decision suggestions, and finally displays them to 

decision makers through user interface. At the same time, 

user feedback and system operation instructions form 

control flow to guide the operation, adjustment and 

optimization of the system, such as updating knowledge 

base, adjusting model parameters, etc. [27]. 

The overall architecture adopts layered design to ensure 

loose coupling between modules for easy maintenance 

and upgrade. Data exchange and communication between 

modules are realized through middleware technology to 

ensure efficient and secure transmission of data streams. 

In addition, the micro service architecture is adopted, and 

each module runs as an independent service, which not 

only improves the scalability of the system, but also 

facilitates the flexible scheduling of resources. 

To sum up, enhanced entropy fuzzy decision support 

system can provide an efficient and reliable platform for 

risk assessment and management of hydraulic 

engineering through detailed demand analysis and 

reasonable architecture design, and effectively improve 

the intelligent level of risk management. 

In the process of fuzzy quantification, the membership 

function is used to transform qualitative risk factors into 

fuzzy sets. The specific algorithm is as follows: for the 

risk factor set 
1 2{ , , , }nR r r r=  For example, for the risk 

factor "flood risk", a membership function can be 

constructed based on historical flood water level data, 

occurrence frequency and other information to map 

different degrees of flood risk to the [0, 1] interval to 

achieve fuzzy quantification. In terms of entropy 

enhancement, the following enhanced entropy formula is 

used: 
1 1

log( ) log( )
n n

i

i i i

i i i

p
E p p p

q


= =

= − +  . 

Wherein, 
ip  represents the probability distribution 

of the i-information source, 
iq  is the reference 

probability distribution, and   is the adjustment 

parameter, with a value range of [0, 1]. In this formula,

1

log( )
n

i i

i

p p
=

−  is the traditional information entropy, 

which is used to measure the uncertainty of information; 

1

log( )
n

i

i

i i

p
p

q


=

  is the introduced enhancement term, 

which enhances the expression of important information 

and reduces the interference of irrelevant information by 

comparing with the reference probability distribution 
iq . 

The adjustment parameter  can be adjusted according 

to actual needs. When   = 0, the formula degenerates 

into the traditional entropy formula; when   increases, 

the role of the enhancement term is enhanced, and the 

screening and optimization of information are more 

obvious. 

 

3.3 Model construction and algorithm design 
Model construction and algorithm design are the key 

links of risk quantification, fuzzy comprehensive 

evaluation and decision support in enhanced entropy 

fuzzy decision support system. This section will 

introduce in detail the application of enhanced entropy in 

risk quantification, the construction method of fuzzy 

comprehensive evaluation model, and the formulation 

process of decision rules and strategies. 

 

3.3.1 Application of enhanced entropy in risk 

quantification 
Enhanced entropy theory enhances information utility in 

decision-making process by optimizing information 

structure, especially suitable for dealing with fuzziness 

and uncertainty in risk assessment. In the process of risk 

quantification, the qualitative description of risk factors 

is transformed into fuzzy quantification by fuzzy set 

theory. The enhancement entropy formula is given in 

Equation 1 [28]. 
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=

 
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 




 (1) 

In the formula, 
*( )E U  represents the value of 

enhanced entropy, which is the quantitative result of the 

uncertainty or complexity of information in the set U; n 

represents the number of categories or factors, that is, the 

total number of different categories or factors to be 

considered in the study; x is an element in the set U, and 

the calculation process will be carried out for each 

element in the set U; U is the set containing all elements 
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involved in the enhanced entropy calculation; ( )
iu x  is 

a  

 

concept in fuzzy set theory, which refers to the 

membership of element x to category 
iu  , and its value 

range is between 0 and 1, reflecting the degree to which 

element x   belongs to category 
iu ; 

1

( )
j

n

u

j

x
=

  represents 

the sum of the membership of element x in all n 

categories, which is mainly used for normalization and 

other related calculation operations in the formula. 

Compared with traditional entropy, enhanced entropy can 

enhance the expression of important information and 

reduce the interference of irrelevant information by 

introducing normalization factor, so that it can reflect the 

importance of each risk factor more accurately in risk 

quantification. 

 

3.3.2 Construction of fuzzy comprehensive 

evaluation model 
 

1. Determine the set of weights

2. Construct the comment set

3. Calculate the single-factor evaluation matrix

4. Comprehensive evaluation

5. Risk level determination

Feedback

Feedback

 
Figure 3: Flow chart of fuzzy comprehensive evaluation 

model 

 

Fuzzy comprehensive evaluation model is a method of 

applying fuzzy set theory to multi-index evaluation 

problem. For risk assessment of hydraulic engineering, 

suppose that the evaluation index set is, each index has 

several evaluation grades, and the membership degree 

matrix of each grade under each index is obtained by 

expert scoring or historical data analysis, in which the 

membership degree of the th risk factor on the th 

evaluation grade is expressed. The general steps of the 

fuzzy comprehensive evaluation model are as follows, 

and its flow chart is shown in Figure 3. 

(1) Determine the weight set: Determine the weight of 

each index through AHP, entropy weight method, etc. 

(2) Construct comment sets: Define comment sets that 

represent risk levels. 

(3) Calculation of single factor evaluation matrix: For 

each risk factor, calculate its fuzzy evaluation vector. 

(4) Comprehensive evaluation: adopt weighted 

average method and combine weight set to calculate total 

evaluation vector: see Equation 2 for details [28]. 

1

1

, 1, 2,...,

m

j lj

j

l m

j

j
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=
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= =




 (2) 

In the formula 
1

1

m

j lj

j

l m

j

j

w r

b

w

=

=



=




, 1,2, ,l k=  , 

lb   

 

represents the value of the lth total evaluation vector 

finally calculated, and the value range of l is from 1 to k, 

which means that multiple total evaluation vector values 

can be calculated for comprehensive evaluation; m 

represents the number of indicators or factors involved in 

the calculation, that is, the total number of different 

aspects considered in the comprehensive evaluation; jw  is 

the weight of the jth indicator or factor, which reflects the 

relative importance of the indicator in the comprehensive 

evaluation. Different js correspond to different weights of 

indicators; ljr  represents the value of the lth evaluation 

object on the jth indicator, which is used to reflect the 

performance of each evaluation object on each specific 

indicator. These parameters are used together to 

participate in the weighted average calculation to obtain 

the total evaluation vector to achieve a comprehensive 

evaluation of the evaluation object. 

(5) Risk grade determination: according to the 

principle of maximum membership degree, the comment 

corresponding to the maximum value is selected as the risk 

grade. 

 

3.3.3 Decision-making rules and strategies 

Based on the fuzzy comprehensive evaluation results, 

making decision rules and strategies is the key to realize 

risk control. Decision rules can be formulated based on the 

relationship between risk levels and preset thresholds, 

such that (1) emergency response measures are triggered if 

the risk level exceeds a certain high-risk threshold, (2) 

preventive management measures are taken if the risk 

level is within the medium risk range, and (3) routine 

monitoring and maintenance are maintained if the risk 

level is low. 

Decision-making strategy needs to combine the 

specific types and effects of risks, and generate specific 

operational suggestions or action guidelines through fuzzy 

reasoning mechanisms, such as rule-based reasoning, 

fuzzy logic control, etc. For example, if "construction risk" 

is identified as high, the system can recommend strategies 

such as increasing the frequency of site safety inspections 

and optimizing construction processes. 

In a word, through the optimization of entropy in risk 

quantification, combined with fuzzy comprehensive 

evaluation model to evaluate risks comprehensively, and 

according to clear decision-making rules and strategies, 
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this system can provide scientific and efficient decision-

making support for risk management of water 

conservancy projects, and enhance the foresight and 

initiative of risk management. 

 

3.4 System implementation technology  
When constructing a decision support system based on 

enhanced entropy and fuzzy inference, the technical 

implementation level covers the selection of development 

platform and tools, the implementation details of key 

technologies, and the optimization design of system 

architecture. This section will explore these aspects in 

depth to ensure that the system serves both efficiently 

and accurately for hydraulic engineering risk 

quantification and management decisions. 

 

3.4.1 Development platform and tool selection 

In order to achieve an efficient, stable and easy to 

maintain system, the choice of development platform is 

crucial. Given the complexity and cross-platform 

requirements of the system, Java or Python is 

recommended as the primary development language. 

Java is preferred for its strong cross-platform capabilities, 

rich class library support (such as Apache Commons 

Math for complex math operations), and mature 

development framework (Spring Boot). Python is also 

widely adopted for its use in data processing, scientific 

computing (e.g., NumPy, SciPy), and machine learning, 

especially for rapid prototyping and algorithm 

implementation. 

In terms of development tools, integrated development 

environments (IDEs) such as IntelliJ IDEA (Java) or 

PyCharm (Python) provide one-stop solutions for code 

writing, debugging, version control, etc., greatly 

improving development efficiency. In addition, Git acts as 

a version control system, ensuring efficient team 

collaboration and traceability of code. 

 

3.4.2 Implementation of key technologies 
Fuzzy inference mechanism is the core of the system, 

which is used to deduce concrete risk management 

strategy from fuzzy comprehensive evaluation results. 

Typical fuzzy reasoning includes the establishment of 

fuzzy rule base, the realization of fuzzy reasoning 

algorithm and fuzzy resolution. Fuzzy rules are usually in 

the form of IF-THEN, for example: "If construction 

quality is low and schedule is delayed, risk level is high." 

After the rule base is constructed, inference method is 

needed to calculate. 

Let fuzzy input, fuzzy output, fuzzy rule set be, for each 

rule, where and are fuzzy sets of corresponding linguistic 

variables. The reasoning flow is shown in Figure 4. The 

reasoning steps are as follows: 

(1) Fuzzification: converting actual measurement values 

into membership degrees of corresponding fuzzy sets. 

(2) Reasoning: Calculate the activation degree of each 

rule, i.e., the minimum membership degree of all 

preconditions. 

(3) Synthesis: fuzzy synthesis of the output parts of all 

rules, usually using the principle of maximum 

membership. 

(4) Defuzzification: The fuzzy output after synthesis is 

transformed into concrete decision, usually using gravity 

method or maximum membership degree method. 

 

Knowledge Base

Fuzzification 

Interface

Reasoning 

Machine

Defuzzificati

on Interface
Inputs

Databases Rule base

Outputs

 
Figure 4: Reasoning flow 

 

 

Entropy enhancement module is the key to risk 

quantification. Consider a simplified version of the 

enhanced entropy formula for calculating the 

information entropy enhancement value of a single risk 

factor, as shown in Equation 3. 
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where, indicates the degree of membership of the 

first risk factor on the first level, and is the number of 

evaluation levels. This formula needs to be implemented 

as an efficient and stable algorithm in the system, using 

the math library of the chosen programming language to 
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accelerate the calculation. 

 

3.4.3 System architecture design 
System architecture design needs to balance 

performance, scalability and maintainability. 

Microservice architecture is the mainstream trend of 

modern system design. By dividing the system into 

multiple small, independent services, each service is 

responsible for a specific function (such as risk 

quantification service, fuzzy inference service), it not 

only improves the maintainability and scalability of the 

system, but also facilitates fault isolation and horizontal 

expansion. In addition, containerization technologies 

such as Docker and Kubernetes orchestration services 

can further improve deployment flexibility and resource 

utilization. 

To sum up, the development of decision support systems 

based on enhanced entropy and fuzzy reasoning requires 

comprehensive consideration of the selection of 

development platforms and tools, the in-depth 

implementation of key technologies, and reasonable 

system architecture design. By efficiently utilizing 

modern software engineering technology and algorithm 

optimization, the system can effectively support 

quantitative analysis and strategy formulation of 

hydraulic engineering risks, provide scientific basis for 

decision-makers, reduce risks and ensure smooth 

progress of projects. 

4 Empirical assessment 
This section takes the Three Gorges Project of the 

Yangtze River as the research object and conducts an 

empirical evaluation of the enhanced entropy fuzzy 

decision support system. Through data collection, 

experimental design and result analysis, the effectiveness 

and superiority of the system in risk assessment and 

management of water conservancy projects are verified. 

 

4.1 Data 
This chapter selects "Yangtze River Three Gorges 

Project" as the case study object, because of its large 

scale, complex technology and face a variety of natural 

and man-made risks, very representative. The risk 

management of Three Gorges Project covers many 

aspects, such as geological disaster, flood invasion, dam 

safety, ecological protection, etc., which provides an 

ideal scene for verifying the practicability of ENFDSS. 

Data collection involves many aspects, including 

historical climate data, geological survey reports, 

engineering monitoring records, accident case analysis 

reports, etc. Specific data sources are as follows: 

Climatic data: historical meteorological records of China 

Meteorological Administration in recent 30 years, 

including precipitation, temperature and wind speed. 

Geological data: geological exploration report of Three 

Gorges area, including topography, geotechnical 

properties, seismic activity, etc. 

Construction and operation and maintenance records: 

project construction log, equipment operation status, 

maintenance records, etc. 

 

4.2 Experimental Design 
In order to comprehensively evaluate the performance of 

Enhanced Entropy Fuzzy Decision Support System 

(EEMFDS) in risk management of Yangtze River Three 

Gorges Project, this section introduces the experimental 

design in detail, including the selection of evaluation 

indicators, the establishment of baseline and the 

arrangement of contrast experiments, aiming to verify the 

effectiveness and superiority of the system through 

scientific and rigorous methods. 

In order to comprehensively evaluate the performance of 

EEMFDS in risk identification, quantification, assessment 

and decision support, the following core evaluation 

indicators were set in this study: 

Accuracy: Assesses consistency of system predictions of 

risk levels with actual conditions by comparing them to 

historical records of known risk events. Response time: A 

measure of how quickly a system processes data from 

receipt to generation of a risk assessment report. 

Robustness: The stability and accuracy of the system in 

the face of incomplete data, noise interference, etc. 

Resource Consumption: Evaluate the efficiency of 

computing and storage resources used during system 

operation. User Satisfaction: Collect user feedback on 

system usability, user-friendliness and decision support 

effectiveness through questionnaires. 

In order to ensure the objectivity of the assessment results, 

two groups of comparative experiments were set up in this 

study: one group used traditional risk management 

methods (such as probabilistic risk assessment, expert 

scoring method, etc.) as baseline, and the other group used 

EEMFDS for risk assessment. 

Experimental group: EEMFDS, fuzzy set theory and 

enhanced entropy model were used to evaluate the risks 

faced by the Three Gorges Project, including risk 

identification, quantification, comprehensive evaluation 

and strategy generation. 

Control group: traditional risk management methods, such 

as probabilistic risk assessment (PRA) and expert scoring 

method (EMA), were used to analyze the risks of the 

Three Gorges Project. PRA assesses risk levels by 

quantifying the probability of occurrence of risk events 

and the severity of their consequences, while EMA 

determines the importance of risk factors based on the 

experience and subjective judgment of industry experts. 

This group serves as a baseline to highlight potential 

strengths and innovations of EEMFDS. 

During the data collection phase, researchers not only paid 

attention to the results of risk assessment, but also 

recorded various parameters in the whole process in detail, 

such as processing time and calculation resource 

occupation, for subsequent quantitative analysis. In 

addition, in order to evaluate user satisfaction, a 

questionnaire containing multi-dimensional questions was 

designed to conduct anonymous surveys for system users, 

covering aspects such as ease of operation of the system, 

intuitive interface, effectiveness of risk prompts and 

overall satisfaction. 

The Three Gorges Project on the Yangtze River was 
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selected as a case study object because of its large scale 

and diverse risk types, including geological disasters, 

floods, etc. The rich risk factors provide a realistic 

scenario for verifying EEMFDS, and there is a large 

amount of historical data to support analysis and model 

training. 

In terms of evaluation indicators, accuracy is used to 

measure the consistency between system predictions and 

actual risks; response time reflects the efficiency of 

processing data and generating reports; robustness 

evaluates the performance of the system under data 

interference; resource consumption reflects the efficiency 

of the system's use of computing and storage resources; 

user satisfaction collects feedback through questionnaires 

to evaluate the availability and effectiveness of the 

system. By reasonably selecting data sets and evaluation 

indicators, ensure that the experimental settings are 

scientific and repeatable. 

 

4.3 Experimental result 
In this section, six key tables will be used to show the 

results of comparative experiments, in order to reflect the 

performance of enhanced entropy fuzzy decision support 

system (EEMFDS) in risk management of Yangtze Three 

Gorges Project comprehensively and intuitively, and the 

differences between EEMFDS and traditional risk 

management methods. 

Table 2 shows how EEMFDS compares to traditional 

risk management methods in terms of accuracy in 

identifying different risk types. EEMFDS achieves 

92.5%, 90.8%, 93.3%, 89.7% and 87.1% accuracy in risk 

identification of geological hazard, flood invasion, dam 

safety, ecological protection and other human factors 

respectively, while the corresponding accuracy rates of 

traditional methods are 86.7%, 84.2%, 87.6%, 82.5% and 

79.6%. On average, the accuracy of EEMFDS is 90.6%, 

significantly higher than that of traditional methods 

(84.7%), which proves its superiority in risk 

identification. 

Table 3 reflects the change of accuracy of the two 

methods under the condition of data disturbance (such as 

missing data and noise interference). The accuracy of 

EEMFDS has little change and shows strong stability. 

The comprehensive robustness score is 87.6%, while the 

score of traditional method is 79.2%, indicating that 

EEMFDS has stronger processing ability in the face of 

incomplete data or interference. 

Table 4 shows the resource efficiency of the two 

approaches. EEMFDS requires 120 hours of CPU time 

and 50GB of storage space less than traditional methods, 

which require 150 hours of CPU time and 70GB of 

storage space, proving the efficiency of EEMFDS in 

resource management. 

 

Table 2: Comparison of accuracy of risk identification 

Risk type 

EEMFDS 

accuracy 

(%) 

Accuracy of 

traditional method 

(%) 

geological 

disaster 
92.5 86.7 

flooding 90.8 84.2 

dam safety 93.3 87.6 

ecological 

protection 
89.7 82.5 

other human 

factors 
87.1 79.6 

average 

accuracy 
90.6 84.7 

 

Table 3: Robustness test results 

Type of data 

disturbance 

EEMFDS 

accuracy 

change (%) 

Change in 

accuracy of 

traditional 

methods (%) 

missing data -3.2 -8.5 

noise jamming -4.1 -12.3 

Composite 

Robustness 

Score 

87.6 79.2 

 

Table 4: Comparison of resource consumption 

Resource 

type 

EEMFDS 

consumption 

Consumption of 

traditional methods 

CPU usage 

time (hours) 
120 150 

Storage 

Space (GB) 
50 70 

 

Table 5 summarizes user satisfaction feedback on 

multiple dimensions of the system. EEMFDS received 

high positive ratings on ease of use, user-friendliness, 

decision support effectiveness and overall satisfaction, 

especially in the "very satisfied" option, accounting for 

70%, 65% and 68% respectively, showing high 

recognition of EEMFDS by users. 

Table 6 summarizes the scores of key evaluation 

indicators. EEMFDS is higher than traditional methods in 

accuracy, response time, robustness, resource 

consumption and user satisfaction. The final average 

score is 85.8%, far exceeding 78.1% of traditional 

methods, which fully reflects the advanced and practical 

nature of EEMFDS in the field of risk management. 

Based on the original performance indicator table, 

standard deviations and confidence intervals are added, 

as shown in the following Table 7. 
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Table 5: Summary of User Satisfaction Survey 

Satisfaction 

dimension 

Very satisfied 

(%) 
Satisfied (%) General (%) Dissatisfied (%) 

ease of use 70 25 5 0 

interface friendliness 65 28 5 2 

decision support 

effect 
68 27 3 2 

overall satisfaction 67 27 4 2 

 

Table 6: Comprehensive Evaluation Index Score 

Evaluation index EEMFDS score Traditional method score 

accuracy 90.6 84.7 

response time 90 80 

robustness of 87.6 79.2 

resource consumption 85 70 

user satisfaction 67 65 

overall mean score 85.8 78.1 

 

As shown in Table 7, in the comparative analysis with the 

baseline, the hypothesis test method was used to 

determine whether the difference between EEMFDS's 

90.6% and the traditional method's 84.7% was 

statistically significant in terms of risk identification 

accuracy. The null hypothesis was that there was no 

significant difference in the accuracy of EEMFDS and the 

traditional method, and the alternative hypothesis was that 

the accuracy of EEMFDS was significantly higher than 

that of the traditional method. After a series of 

calculations and analyses, the results showed that at a 

given significance level, the accuracy of EEMFDS was 

significantly higher than that of the traditional method, 

which was statistically significant. 

Scalability. When dealing with larger datasets, the system 

may face challenges in data - processing speed and 

storage capacity. In terms of data processing, as the 

amount of data increases, the computational load of fuzzy 

quantification and entropy enhancement will increase 

significantly, which may lead to overly long processing 

times. In system design, although a microservice 

architecture is adopted, when the data volume exceeds 

expectations, communication and coordination 

bottlenecks may occur between services. 

For different case studies other than the Three Gorges 

Project, due to the differences in risk characteristics and 

data types of different hydraulic engineering projects, the 

system may need to be adjusted and optimized according 

to specific situations. For example, some small - scale 

hydraulic engineering projects may lack a large amount of 

historical data, which will affect the training and accuracy 

of the model; and some special hydraulic engineering 

projects may have unique risk factors and require re - 

defining the risk - factor set and membership functions. 

 

4.4 Discussion 
4.4.1 Comparison between EEMFDS and State - of - 

the - Art (SOTA) Results 
When comparing the results of the Enhanced Entropy 

Fuzzy Decision Support System (EEMFDS) with those of 

the current State - of - the - Art (SOTA) methods, several 

significant differences are evident. In terms of risk 

identification accuracy, EEMFDS achieved an average 

accuracy of 90.6%, which is notably higher than the 

accuracy of traditional methods, as demonstrated in the 

empirical assessment. 

The differences in results can be attributed to multiple 

factors. Firstly, in terms of model assumptions, SOTA 

methods often assume that risk factors are independent or 

have simple linear relationships. For example, traditional 

probabilistic risk assessment models rely on the accurate 

quantification of probability distributions for each risk 

factor, assuming that these factors do not interact in 

complex ways. In contrast, EEMFDS, based on fuzzy set 

theory and enhanced entropy model, can better handle the 
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complex non - linear relationships among risk factors. It 

allows for the expression of the degree of membership of 

risk factors in different sets, which is more in line with 

the real - world situation where risks are often 

intertwined. 

Table 7: Experimental results 

Evaluation 

Indicators 
EEMFDS 

Traditional 

Methods 

Standard 

Deviation 

of 
EEMFDS 

Standard 

Deviation 
of 

Traditional 

Methods 

95% 

Confidence 

Interval of 
EEMFDS 

95% 

Confidence 
Interval of 

Traditional 

Methods 

Risk 
Identification 

Accuracy 

90.6% 84.7% ±2.5% ±3.2% 
[88.1%, 

93.1%] 

[81.5%, 

87.9%] 

Response 
Time 

(seconds) 

120 180 ±10 ±15 [110, 130] [165, 195] 

Robustness 

Score 
87.6% 79.2% ±1.8% ±2.6% 

[85.8%, 

89.4%] 

[76.6%, 

81.8%] 

CPU Usage 

Time (hours) 
120 150 ±5 ±8 [115, 125] [142, 158] 

Storage 

Space (GB) 
50 70 ±3 ±4 [47, 53] [66, 74] 

 

Secondly, data preprocessing also plays a crucial role. 

SOTA methods may use relatively simple data 

preprocessing techniques, such as basic data cleaning and 

normalization. However, EEMFDS, considering the 

complexity and fuzziness of hydraulic engineering data, 

employs more comprehensive preprocessing methods. It 

not only cleans and standardizes the data but also 

transforms qualitative risk factors into fuzzy sets through 

membership functions, which can better preserve the 

information in the data and improve the accuracy of 

subsequent analysis. 

Finally, the algorithm differences are significant. SOTA 

methods usually adopt traditional algorithms, such as the 

simple weighted average method in risk assessment. 

EEMFDS, on the other hand, uses enhanced entropy 

algorithms to optimize information processing. By 

introducing normalization factors and considering 

additional information, the enhanced entropy algorithm 

can enhance the expression of important information and 

reduce the interference of irrelevant information, thus 

leading to more accurate risk assessment results. 

 

In order to more intuitively present the difference 

between EEMFDS and traditional methods, Table 8 is a 

comparison table of experimental results. 

 

 

 

4.4.2 Significance and Trade - offs of EEMFDS 

Improvements 
The 90.6% accuracy rate achieved by EEMFDS in risk 

identification has great significance in practical 

applications. In the context of hydraulic engineering, 

accurate risk identification is crucial for ensuring the 

safety and normal operation of projects. For example, in 

the management of the Yangtze River Three Gorges 

Project, a high - accuracy risk identification system can 

help managers timely detect potential risks such as 

geological disasters, flood invasions, and dam safety 

issues. This enables them to take preventive measures in 

advance, reducing the probability of disasters and 

minimizing economic losses. 

However, the improvement of EEMFDS also comes with 

some potential trade - offs. One of the main concerns is 

computational complexity. The enhanced entropy model 

and fuzzy inference algorithms used in EEMFDS require 

more complex calculations compared to traditional 

methods. For instance, the calculation of enhanced entropy 

involves multiple variables and complex mathematical 

operations, which may increase the computational time 

and resource consumption.  

 

 

 

 

 

Although the system has shown advantages in resource 

consumption in the empirical evaluation, with reduced 
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CPU usage time and storage space, the computational 

complexity may still pose challenges when dealing with 

extremely large - scale data or real - time risk assessment 

requirements. In such cases, further optimization of the 

algorithms and improvement of the computing 

infrastructure may be needed to ensure the efficient 

operation of the system. 

 

Table 8: Comparison of EEMFDS and traditional 

methods in risk assessment 

Assessment Indicators EEMFDS 
Traditional 

Methods 

Risk Identification 
Accuracy 

90.6% 84.7% 

Response Time (seconds) 120 180 

Robustness Score under 
Data Disturbance 

87.6% 79.2% 

CPU Usage Time (hours) 120 150 

Storage Space (GB) 50 70 

5  Conclusion 
Traditional risk management methods, such as risk 

assessment based on probability theory, can deal with 

known risks to some extent, but they are insufficient to 

deal with risks with high ambiguity, uncertainty and 

complexity. In particular, for risk factors that are difficult 

to quantify, and where information is incomplete or data 

quality varies, traditional assessment tools often fail to 

provide accurate and comprehensive risk assessments. 

Therefore, there is an urgent need for a more advanced 

and intelligent risk assessment and management system 

to meet the growing complexity challenges. Enhanced 

entropy fuzzy decision support system (EFDSS), which 

combines fuzzy set theory and enhanced entropy method, 

aims to deal with fuzzy and uncertain problems in 

hydraulic engineering risk management effectively. 

Fuzzy set theory can deal with risk factors described 

qualitatively and transform them into quantifiable risk 

indicators, while enhanced entropy model improves 

information utility in decision-making process by 

optimizing information structure, making risk assessment 

more accurate and stable. This paper introduces the design 

and empirical evaluation of Enhanced Entropy Fuzzy 

Decision Support System (EEMFDS). Taking the Yangtze 

River Three Gorges Project as the research object, the 

application value of EEMFDS in risk assessment and 

management of water conservancy projects is fully 

demonstrated through detailed requirement analysis, 

system architecture design, model construction and 

algorithm design, and empirical evaluation. EEMFDS 

adopts fuzzy set theory and enhanced entropy model to 

effectively deal with key links such as risk identification, 

quantification, assessment and decision support. Through 

careful design and rigorous demonstration, this study 

successfully verifies the advanced and practical of 

Enhanced Entropy Fuzzy Decision Support System 

(EEMFDS) in risk management of water conservancy 

projects, especially in the "Yangtze River Three Gorges 

Project", a complex large-scale project. EEMFDS not only 

achieves an average high accuracy rate of 90.6% in risk 

identification accuracy, far exceeding 84.7% of traditional 

methods, but also significantly speeds up the processing 

speed, reducing the average response time to 120 seconds, 

compared with 180 seconds of traditional methods. In 

addition, the robustness score of EEMFDS under data 

disturbance reaches 87.6%, showing stronger stability and 

adaptability, and at the same time, it is more efficient in 

resource consumption, saving valuable computing 

resources and storage space. User satisfaction survey 

further consolidated the advantages of EEMFDS, users 

generally think that the system is easy to use, friendly 

interface, strong decision support ability, high overall 

satisfaction, indicating that EEMFDS can be widely 

recognized and praised by users in practical applications. 

The comprehensive evaluation index scores show that 

EEMFDS is superior to traditional methods in all key 

evaluation areas, and the overall average score exceeds 

nearly 8 percentage points, fully demonstrating its 

significant effectiveness in improving the quality and 

efficiency of risk management decisions. 

This research will focus on four directions in the 

future. First, optimize the algorithm and use deep learning 

to improve the efficiency of fuzzy quantization and 

entropy enhancement algorithms; second, improve 

interpretability and develop visualization tools to display 

the risk assessment process; third, expand application 

scenarios and apply the system to small farmland water 

conservancy facilities; fourth, integrate emerging 

technologies and combine the Internet of Things and AI to 

achieve real-time monitoring and risk warning. 
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