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Aiming at the problems of sensitive background interference, insufficient key frame recognition 

accuracy and low computational efficiency of traditional aerobics jumping action feature extraction 

methods, this study proposes a feature extraction method that integrates Gaussian mixture model, 

entropy sequence fusion and AdaBoost algorithm. The video key frames are extracted by machine vision 

technology, combined with entropy sequence (standard deviation ± 0.3) and music energy features 

(threshold = 0.85) to achieve synchronized key frame recognition (96.8% accuracy); Gaussian mixture 

model is used to eliminate background noise (42% reduction in false detection rate), combined with 

Harris3D operator to construct the action potential function, and integrated with AdaBoost algorithm to 

integrate the weak classifier to optimize feature extraction. The experiments show that compared with 

the existing SOTA method, the average error of azimuth recognition is 1.2° (significantly lower than 

3.8°±1.1° in A-BLSTM and 4.5°±1.5° in NN-BIGRU, p<0.05); the feature extraction rate is 

improved to 92.4% (32.5% higher than that of the MEM-LBP method); and the processing efficiency 

reaches 35ms/frame, which is higher than that of the A-BLSTM (50ms). BLSTM (50ms) and NN-BIGRU 

(48ms) by 30% and 27%, respectively. In terms of comprehensive performance, the accuracy (96.8%), 

recall (94.5%) and F1 score (95.6%) are close to that of A-BLSTM (97.0%/95.2%/96.1%), but the 

computational resource requirement is 35% lower; and the feature purity in complex contexts (variance 

±0.3) significantly outperforms that of multi-threshold optimization methods (variance ±1.5). This 

study provides a high-precision and low-latency analysis tool for aerobics training and verifies its 

robustness in real-time action recognition scenarios (95% confidence interval error band width 

narrowed to 0.5°), which provides new ideas for cross-domain applications of sports action analysis. 

Povzetek: Članek predlaga metodo za ekstrakcijo skokovnih gibov v aerobiki z Gaussovimi modeli, 

entropijsko fuzijo in AdaBoost algoritmom, ki izboljša kvaliteto in učinkovitost v realnem času. 

 

1 Introduction 
With the widespread application of communication 

technology and wireless systems, human activity 

recognition has gradually become an important part of 

artificial intelligence research due to its broad application 

potential in various fields. HAR provides possibilities for 

a range of application areas, including elderly 

monitoring, fall detection, gesture recognition, and 

respiratory tracking [1,2]. Structured monitoring and 

analysis of elderly behavior can predict potential health 

risks, while gesture recognition provides services for 

hearing-impaired communities, making HAR one of the 

most prominent and influential research topics in 

multiple fields. However, research and implementation of 

HAR technology face some challenges, and existing 

research mainly focuses on the fields of vision and 

sensors. Although the visual system provides rich data  

 

for activity recognition, it also faces many challenges,  

such as environmental lighting, background confusion,  

object occlusion, and other factors that often affect the 

effectiveness of imaging and analysis [3-5]. Similarly, 

cameras may cause privacy issues. On the other hand,  

sensor technology used in HAR can provide accurate 

recognition results, but its high cost and the need for 

users to actively carry it reduce its adaptability and 

feasibility in practical scenarios. In view of this, HAR 

technology based on WIFI has received widespread 

attention [6-8]. WIFI devices have lower costs, relatively 

less resource consumption, and are not affected by 

environmental lighting and camera privacy issues. 

Therefore, it has significant advantages in practical 

applications. In addition, WIFI has a wide coverage 

range and is easy to integrate, making WIFI based HAR 

demonstrate good application effects in various 

application scenarios [9]. 
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Research on HAR has made a series of progress in the 

field of deep learning. Yousef [10] proposed a long 

short-term memory network model, which can better 

solve the problems of vanishing and exploding gradients 

compared to recurrent neural networks. Compared with 

traditional random forest and hidden Markov model 

algorithms, the LSTM model has an accuracy of over 

75%. Especially, for the first time, research has directly 

obtained action features through deep learning models 

without the need for any feature extraction processing. 

Given the low accuracy of the above research, Chen [11] 

proposed an A-BLSTM model that integrates attention 

mechanism and bidirectional LSTM model. By using 

bidirectional LSTM to extract forward and backward 

features from CSI action sequences and combining with 

attention mechanism, the model can focus more on action 

related information, with an accuracy of 97%. However, 

LSTM faces problems such as long processing time and 

high parameter complexity when processing large 

amounts of data. Therefore, Sowmiya et al. [12] proposed 

a hybrid model NNBIGRU, which mainly uses 

convolutional neural networks to extract original action 

features and incorporates gated recurrent units as part of 

its deep learning model. With the help of GRU, it only 

requires one unit to achieve the multiple functions of 

LSTM, such as selective memory and forgetting, which 

to some extent optimizes computation time [13]. 

Shanableh [14] explored the use of feature extraction and 

machine learning techniques for detecting motion vector 

data embedding in HEVC videos, demonstrating that 

machine learning models can effectively identify subtle 

embedding patterns and improve video data analysis 

accuracy.   Zhou [15] applied virtual reality technology 

to extract features from human motion videos, showing 

that integrating immersive environments with video 

processing can enhance the understanding of motion 

dynamics and provide more precise feature extraction.   

Suresha et al. [16] conducted a comprehensive study on 

deep learning-based spatiotemporal models and feature 

extraction techniques for video understanding, 

highlighting that combining convolutional and recurrent 

neural networks can efficiently capture spatial and 

temporal dependencies, leading to improved performance 

in video action recognition. Similarly, Kwon et al. [17] 

introduced the MotionSqueeze framework, which utilizes 

neural motion feature learning for video understanding, 

emphasizing the importance of hierarchical motion 

representations in achieving state-of-the-art results on 

various video datasets.    

Collectively, these studies underline the critical role of 

advanced feature extraction techniques and machine 

learning models in enhancing the analysis and 

understanding of motion in video processing tasks, 

paving the way for more robust and efficient applications 

in fields such as sports analytics, human-computer 

interaction, and autonomous systems. 

In the application of DL, action classification mainly 

relies on the powerful learning ability of DL models to 

achieve prediction. However, multipath effects have a 

significant impact on the characteristics of wireless 

channel transmission, as they cause signals to be 

transmitted through multiple paths to the receiver, each 

path resulting in transmission effects such as phase delay 

and amplitude loss. The CSI formed by the convergence 

of signals generated by various paths is affected by 

multipath effects on its propagation fading and spectral 

characteristics, resulting in different antenna 

representations of a certain action. Therefore, relying 

solely on DL models for prediction may lead to 

confusion in classification results. To optimize the above 

problem, Gringoli et al. [18] proposed a new solution that 

uses four receiving antennas to collect CSI data in 

parallel, and uses matrix decomposition method to fuse 

multiple CSI data to obtain more accurate CSI data. 

Zhangus et al. [19]. are committed to mitigating the 

negative impact of multipath effects on the accuracy of 

CSI fingerprint localization. They design a strategy for 

processing collected CSI data in a time-domain filter and 

develop a frequency-domain merging scheme to 

compensate for channel fading. Zhang et al. [20]. proposed 

the CSI-GDAM model, designed feature extraction 

layers to obtain finer CSI data information, calculated the 

feature vectors of CSI active samples using difference 

and inner product, and implemented a graph 

convolutional network with graph attention mechanism. 

It effectively avoids the impact of multipath effects on 

data and can maintain high recognition accuracy even in 

different environments. The AdaBoost algorithm is an 

ensemble learning method that combines multiple weak 

learners to construct a strong learner with high accuracy 

and generalization ability [21]. In the feature extraction of 

jumping movements in aerobics, the AdaBoost algorithm 

can effectively extract key features from a large amount 

of motion data, improving the accuracy of action 

recognition. In addition, the AdaBoost algorithm has 

good noise resistance and can adapt to complex and 

changing sports scenes, providing strong technical 

support for feature extraction of aerobics jumping 

movements. 

Table 1: Comparison of different methods 
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By comparing with the existing SOTA methods, the 

proposed method in this study shows significant 

advantages in terms of feature extraction rate and 

processing time (as shown in Table 1). Compared with 

the A-BLSTM model, this method significantly improves 

the purity of action features through the effective 

processing of background interference by Gaussian 

mixture model; while the entropy order fusion technique 

further enhances the correlation between actions and 

music rhythm, thus achieving 96.8% action recognition 

accuracy, which is close to that of the A-BLSTM (97%), 

but significantly simplifies the model parameters, and 

reduces the computational resource requirement by 35%. 

Compared with NN-BIGRU, although the present 

method is slightly higher in accuracy by 1.8%, the 

feature extraction efficiency is improved by more than 

30%, which is more suitable for real-time motion 

analysis and large-scale video processing scenarios. 

However, the present method also has some limitations. 

For example, the Gaussian mixture model is more 

sensitive to parameter selection when dealing with 

complex backgrounds, which may lead to performance 

fluctuations. In addition, the AdaBoost algorithm needs 

to further optimize the efficiency of its weak classifiers 

when facing super-large samples to maintain the 

processing speed advantage. Existing methods generally 

suffer from high model complexity, strong dependence 

on training data, and low feature extraction efficiency. In 

this study, by combining the background elimination 

technique of Gaussian mixture model, the key frame 

extraction method of entropy order fusion, and the 

efficient feature learning capability of AdaBoost 

algorithm, we significantly reduce the computational 

resource demand while maintaining high accuracy, and 

provide an efficient solution for real-time analysis of 

aerobics movements. 
This study aims to explore a feature extraction method 

for aerobics jumping movements based on the AdaBoost 

algorithm. By constructing a feature extraction model for 

aerobics jumping movements, automatic recognition and 

evaluation of aerobics athlete jumping movements can be 

achieved. The study will first conduct an in-depth 

analysis of the jumping movements in aerobics and 

extract key features; Then, the AdaBoost algorithm is 

used to train and optimize these features, and a 

recognition model for aerobics jumping movements is 

constructed; Finally, the effectiveness and accuracy of 

the proposed method were verified through experiments. 

The results of this study can not only provide technical 

support for the scientific training and competition of 

aerobics, but also provide reference and inspiration for 

the analysis of movements in other sports, with important 

theoretical and practical value. 

1.1   Keyframe extraction method based on 

machine vision 

The proposed method aims to deeply analyze aerobics 

videos through machine vision technology, in order to 

achieve accurate recognition and analysis of aerobics 

movements. Firstly, this method captures aerobics videos 

through a machine vision system and segments the video 

stream into a series of continuous image frames. 

Subsequently, optical flow calculation is performed on 

these image frame sequences, which is a technique used 

to analyze the motion of objects in the image sequence. It 

can estimate the motion speed and direction of each pixel 

in the image sequence. Through the analysis of optical 

flow diagrams, the dynamic characteristics of aerobics 

movements, including movement speed and direction, 

can be obtained, which is crucial for understanding the 

rhythm and intensity of movements. In order to further 

enhance the accuracy of feature extraction, this method 

also uses entropy calculation to calculate the amount of 

information present in the optical flow image. Entropy is 

a concept in information theory used to measure the 

uncertainty or complexity of information in an image. By 

calculating the entropy value of optical flow images, the 

richness of motion information in the images can be 

quantified, providing additional dimensions for feature 

extraction of aerobics movements. In addition, 

considering the importance of music in aerobics, this 

method also utilizes machine vision technology to extract 

the energy and envelope features of music. The energy 

characteristics of music reflect the intensity changes of 

music, while the envelope features describe the contours 

and dynamic changes of music. By combining these 

musical features with entropy sequences, an entropy 

sequence closely related to music rhythm and dynamic 

changes can be obtained. By setting appropriate 

thresholds, keyframes that match the music rhythm can 

be identified from the entropy sequence, which can 

reflect the synchronization between aerobics movements 

and music rhythm. Through the above steps, the 

proposed method can effectively extract features related 

to movements and music rhythm from aerobics videos, 

providing a solid foundation for subsequent action 

analysis and recognition. This method not only improves 

the accuracy of aerobics movement analysis, but also 
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provides new technical means for aerobics training and 

competition, helping to improve the performance of 

athletes and the training effectiveness of coaches. Future 

research can further explore how to apply these features 

to areas such as automatic scoring of aerobics 

movements, motion guidance, and the development of 

personalized training plans. 

 

 

( ) ( ) ( ) ( )  = + +color grad smoothE w E w E w E w  (1) 

In the formula, ( )colorE w  represents the assumption of 

brightness invariance;   、 、  represents adjustable 

weight parameters. By introducing gradient constraint 

( )gradE w  to reduce the impact of lighting, and using 

( )smoothE w  to smooth aerobics videos. Calculate the 

entropy value corresponding to the current optical flow 

chart in chronological order using equation (2). 

2_ log ( )= −
m

k

k

E img p E w  (2) 

In the formula, _E img  represents entropy value; m  

represents the grayscale level; 
kp  represents the 

proportion of pixels with a grayscale value of k in the 

image. As the entropy value increases, there is more 

information present in the image. 

Framing processing is the first step in extracting audio 

energy features. Firstly, windowing and framing audio 

( )X j  to obtain the K -th frame of audio. Store the 

audio signal in y  with a length of N , take a length of 

wlen  and a sampling rate of fs  each time, and 

describe the overlapping part of two frames with 

= −olap wlen dis ; dis  is the displacement between the 

two frames before and after. Frame the audio signal with 

a length of N  using formula (3): 

1

− −
= =

+

N olap N wlen
fs

dis dis
 (3) 

Calculate the average amplitude corresponding to the 

audio using the following formula to obtain the energy 

characteristics corresponding to the audio: 

1

0

( ) ( ) [ ( 1) ] _

( ) ( )
−

=

=  − +



=




k

L

k

j

y j win j x dis k j E img

M k y j fs
 (4) 

In the formula, ( )ky j  represents the value of one 

frame; ( )win j  represents the window function; ( )M k  

represents the energy level corresponding to a frame of 

audio. 

Through the above process, the production of entropy 

sequence and feature sequence is achieved, and the 

product operation is performed on the entropy sequence 

and audio feature sequence to achieve feature fusion and 

obtain entropy sequence related to music. 

Music features play an important auxiliary role in the 

keyframe extraction process of aerobics videos. To 

ensure that the selection of keyframes matches the 

rhythm and dynamics of the music, we first calculated an 

entropy sequence that integrates music features. The 

entropy sequence can reflect the amount of information 

and complexity contained in video frames, while the 

fusion of music features adds dimensions related to 

music rhythm and dynamic changes to the entropy 

sequence. 

( )−
=

current key

key

H H M k
V

H
 (5) 

In the formula, keyH  represents the entropy value 

corresponding to the current keyframe; 
currenH  

represents the entropy value corresponding to the current 

frame. 

Through this approach, it is ensured that the selected 

keyframes not only contain rich visual information, but 

also coordinate with the rhythm and dynamic changes of 

music, providing more accurate and meaningful video 

clips for the analysis and evaluation of aerobics 

movements. This method not only improves the accuracy 

of keyframe selection, but also enhances the practicality 

and relevance of aerobics video analysis, providing 

valuable feedback information for coaches and athletes. 

2 Method for extracting features of 

jumping movements in aerobics 
Extract the jumping motion features of aerobics based on 

the keyframes obtained above. It is divided into two 

steps, background elimination and feature extraction, as 

follows: 

3.1 Background elimination 

The background elimination process is carried out using 

a Gaussian mixture model, and the specific process is as 

follows 

(1) Establish a model where 
tX  represents the 

corresponding value of a pixel at time t ; ( )tP X  

represents the probability of 
tX  occurring, and its 

expression is as shown in equation (6) 

, , .

1

( ) ( , , )   
=

= 
K

t i t t i t i t

i

P X X V  (6) 

In the formula, ,i t  represents the weight corresponding 

to the i -th Gaussian distribution at time t ; , i j  

represents variance; ,i t  represents the mean; 

, ,( , , )  t i t i jX  represents the probability density 

function, which can be described by equation (7). 
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(2) Update the model, assuming that the value of a pixel 

in a frame of image is 
tX , use , , 12.5  −− t i t i jX  to 

determine whether K  Gaussian distributions can match 

the pixel. Update the weight, variance, and mean of the 

Gaussian distribution using formula (8): 

, ,
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 (8) 

In the formula, represents a Gaussian mixture model 

with values within the interval [0,1], and the update 

speed of the image background model is controlled by 

parameter  ;   represents the parameter update 

factor that determines the speed of parameter updates. 

(3) Foreground detection. After completing the 

background model training, arrange the Gaussian 

distributions of each region according to their size, and 

select the top B Gaussian distributions to form the 

background. 

1

arg min( )
=

= 
b

k

k

B T  (9) 

In the formula, T represents the threshold. 

3.2 Feature extraction 

1. Identification of Jumping Actions in Aerobics 

Using a threshold recognition algorithm to recognize the 

jumping movements in aerobics, providing a basis for 

establishing the potential function of the jumping action 

sequence in the future. The specific process is as follows: 

(1) Let N represent the number of pixels present in the 

aerobics exercise image, describe the aerobics exercise 

image through a matrix, use 

1 1 2 2 3 3 4 4( , ) ( , ) ( , ) ( , )、 、 、A X Y B X Y C X Y D X Y  to 

describe the coordinates of the points, and calculate the 

parameter 、P S  using formula (10). 

2 1

3 1

2 1 3 1( ) ( )

−
=

−
 = −  −

x x
P

y y

S x x y y

 (10) 

(2) In the process of recognizing jumping movements in 

aerobics, if the pixel value is greater than the threshold 

A , it is 
eN . 

(3) If there are no pixels within the specified range, 

update the coordinates to expand the search area in the 

aerobics exercise image. 

(4) Complete the scan to obtain 
eN  and identify the 

target. 

(5) Calculate the aspect ratio of the target area and 

compare the calculation results with the recognition 

threshold. If the threshold A  is greater than the aspect 

ratio 1− P , proceed to the next step. 

(6) Calculate the size of the target area, obtain the ratio 

/= eM N S  between the target area and the area of the 

aerobics exercise image, and compare this ratio with the 

threshold A . When 0.785−M  is reached, the 

aerobics jump action is recognized. 

2. Establishing the Potential Function of Jumping 

Action Sequence in Aerobics 

Using the Harris3D operator to establish a potential 

function for the sequence of aerobics jumping 

movements based on the recognition results, laying the 

foundation for feature extraction of aerobics jumping 

movements. 

Let ( , )zi ziX y  represent the key skeleton points of 

aerobics athletes, set the local reference point as ( , )i ia b , 

and let n represent the shortest Euclidean distance 

between the local reference center point and the 

spatiotemporal interest point. The calculation formula is 

as follows: 
2arg min ( ) ( )

( , )

− + −
=

i j i j

zi zi

a x b y
n

x y
 (11) 

In the formula, ( , )j jX y  represents the spatiotemporal 

point of interest. 

Obtain the aerobics jumping action dataset through 

K-means clustering: let pf  represent the BOW feature 

corresponding to the aerobics action image p , and its 

calculation formula is as follows: 

162 
= n n

p

K N K
f

K p
 (12) 

In the formula, N  represents the length of the 

spatiotemporal unit sequence corresponding to the 

jumping action image in aerobics; 
nK  represents the 

number of cluster centers within the range of n. By 

fusing the BOW features as follows: 

[1,7]

= p n p

n

F K Nf  
(13) 

In the formula, pF  represents the fusion features within 

each level of the jumping action image in aerobics. 

On the basis of the above equation, establish a 

conditional probability model ( , / , )P Y h X  for 

aerobics jumping movements: 

 
1

exp( ( , , ))
( , / , )

( ( , , ))




=


= 


t p

i pi

P

f Y h z
P Y h X X F

F Y h X
 (14) 

In the formula, ( , , ) Y h X  represents the potential 

function of the jumping action sequence in aerobics; Y  

represents sequence marker;   represents a constant; 
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h  represents hierarchy; X  and  
1=

t

i i
X  represent any 

sequence of jumping movements in aerobics. 

The jumping movements in aerobics have their own 

changing patterns. Based on formula (14), the potential 

functions of jumping sequences in aerobics at different 

levels are calculated: 

3

1 2

( , , )
( , , ) [ ( , ) ( , )]

( , / , )


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
=


 

j k

j j j

Y h h
Y h X X h Y h

P Y h X

 

(15

) 

In the formula, 1 , )（ j jX h  represents the relationship 

between the prediction node and the latent variable node; 

2 , )（ jY h  represents the relationship between sequence 

punctuation and latent variable nodes. 

3. Feature extraction of jumping movements in 

aerobics 

Let 
1 2( , ),...,( , ),...,( , )i i N NX y X y X y  represent the 

training sample set of aerobics action images, where 
iy  

represents the label of aerobics action image samples; 

iX  represents the sample data of aerobics action images. 

Using the AdaBoost algorithm, calculate the error rate 

t
 corresponding to the image samples of aerobics 

jumping movements based on ( , , ) Y h X : 

1 1

( , , ) ( ( ) )

( , ),..., ( , ),..., ( , )




 
=

t i j

t

i i N N

Y h X h x y

x y x y x y
 (16) 

Establish a feature extraction model for aerobics jumping 

movements based on the above calculation results 

through iteration: 
2ˆ argmin ( ) = − i i j tC d C d  (17) 

In the formula, 
id  represenAbstract: This study 

proposes a machine vision-based method for feature 

extraction of jumping movements in aerobics, addressing 

the shortcomings of traditional methods. This method 

first obtains aerobics videos through machine vision 

technology, and extracts the entropy sequence and music 

features of the videos to assist in identifying the 

keyframes of aerobics actions. Subsequently, a Gaussian 

mixture model is used to process keyframes to eliminate 

background interference and improve the accuracy of 

feature extraction. Next, the potential function of 

aerobics jumping action sequences is established through 

threshold recognition algorithm and Harris3D operator to 

further enhance the accuracy of action recognition. 

Finally, the AdaBoost algorithm is used to extract 

features of jumping movements in aerobics, in order to 

achieve high-precision recognition of the direction and 

angle of the movements. The experimental results show 

that the proposed method for extracting features of 

aerobics jumping movements exhibits significant 

advantages in terms of accuracy, feature extraction rate, 

and extraction efficiency in recognizing the orientation 

angle of the movements. This method not only improves 

the accuracy of aerobics motion analysis, but also 

provides a scientific analysis tool for aerobics training  

 

 

 

and competition through the combination of machine 

vision and intelligent algorithms, which has important 

theoretical and practical application value. In the future, 

this method is expected to be more widely applied in 

aerobics and other sports, providing strong technical 

support for athlete training and competition.ts the i-th 

feature data present in the jumping action sequence of 

aerobics; ( )iC d  represents the category of the j -th 

aerobics jump feature data in the training sample, and the 

model constructed using the above equation is used to 

extract the aerobics jump action features.The Harris3D 

operator is a technique for detecting spatio-temporal 

points of interest in videos that captures key features of 

jumping actions by identifying points with significant 

variations in three dimensions (temporal and spatial 

dimensions). In this study, the main role of the Harris3D 

operator is to help build a potential function of the 

aerobics jumping action to characterize the 

spatio-temporal dynamics of the action. Specifically, the 

Harris3D operator extracts the spatio-temporal interest 

points of the jumping action from the key frames, which 

represent the key regions where the action occurs (e.g., 

the starting position of the limb movement or the highest 

point of the jump). By calculating the shortest Euclidean 

distance between the local reference point and these 

spatio-temporal points of interest, a potential function is 

generated, which can reflect the change pattern of each 

part of the action over time. The construction of the 

potential function lays the foundation for subsequent 

feature extraction and classification, enabling the model 

to more accurately capture the unique characteristics of 

the jumping action. 

The integration steps of Harris3D in the work pipeline: 

Input data: obtain the video keyframe sequence after 

background elimination. 

Point of interest detection: Identify the spatio-temporal 

points of interest of the jumping action in the keyframes 

by the Harris3D operator. 

Calculate Euclidean distance: Calculate the shortest 

Euclidean distance between the spatio-temporal interest 

point and the reference point centered on the local 

reference point. Construct potential function: Based on 

the Euclidean distance, generate a potential function 

describing the dynamic change of the action for 

subsequent feature extraction. 

Through the above process, the Harris3D operator 

effectively connects the action keyframes with the 

feature extraction step, making the potential function a 

crucial intermediate bridge. A simple diagram showing 

the pipeline, such as the flow from keyframe input, to 

interest point detection, to potential function output, can 

be considered to illustrate its role more intuitively. 

The algorithm flow pseudo-code is shown below: 

Input: Video data V, Audio data A   
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Output: Jumping action features T, Classification result 

C   

 

 

 

 

# Data Preprocessing 

1. Split video data V into frames and standardize frame 

rate to 30fps 

2. Apply Gaussian Mixture Model (GMM) to remove 

background noise from video frames 

3. Extract audio features, including energy features and 

envelope features, from audio data A 

# Keyframe Extraction with Entropy Sequence Fusion 

4. Calculate optical flow for each video frame and 

generate optical flow images 

5. Compute entropy values for optical flow images and 

construct an entropy sequence S 

6. Fuse entropy sequence S with audio features using a 

weighted ratio (0.7:0.3) to create a fused sequence F 

7. Extract keyframes K from the fused sequence F based 

on a predefined threshold 

# Feature Extraction 

8. Apply Harris3D operator to keyframes K to detect 

spatiotemporal interest points P 

9. Calculate Euclidean distance between local reference 

points and interest points P to construct a potential 

function F 

10. Generate jumping action features T based on the 

potential function F 

# Action Classification 

11. Input features T into the AdaBoost classifier 

12. Use the combination of weak classifiers to predict 

action classes and output classification result C 

Return T, C 

3 Simulation experiment analysis 

In order to verify the effectiveness of the proposed 

method, the simulation experiment design focuses on 

solving the problems of background interference, 

inaccurate keyframe identification, and insufficient 

expression of movement features in the feature extraction 

process of aerobics jumping movements. This study 

hypothesizes that by combining the entropy sequence 

fusion and music feature extraction techniques, higher 

accuracy and synchronization with the rhythm can be 

achieved in key frame extraction; meanwhile, the use of 

Harris3D operator to capture the spatio-temporal points 

of interest in the jumping action and the establishment of 

the potential function can enhance the expression of the 

action features, thus improving the accuracy of action 

recognition. For the scene with complex background, 

Gaussian mixture model is selected for background 

elimination, which is intended to reduce the interference 

of irrelevant background on action feature extraction, 

while AdaBoost algorithm is introduced because of its 

powerful weak classifier integration capability, which 

can improve the classification performance and enhance 

the robustness of the system at different feature levels. 

Simulation experiments will be conducted to evaluate the 

accuracy of action azimuth recognition, feature 

extraction rate, and processing efficiency to test the 

performance advantages of the proposed method in 

aerobics jumping action feature extraction, and to 

compare it with the existing SOTA method to clarify its 

practical application value and room for improvement. 

To verify the performance of the AdaBoost 

algorithm-based feature extraction method for aerobics 

jumping movements proposed in this article, the 

hardware and software operating environments selected 

for the experiment are shown in Tables 2 and 3. 

 

Table 2: Experimental hardware and software 

Environment 

operating system Developing software 

Windows 10 

Microsoft Visual Studio 2010 

OpenCV3.4 

Matlab 2008a 

Ubuntu 

GCC and G++ 

OpenCV3.4 

 

Table 3: PC-related parameters 

CPU Intel Pentium Dual Core T4500 

Main frequency 2.3 GHz 

Memory 4.00G 

USB interface 4.0 

 

In the simulation experiments, in order to ensure the 

quality of the data and the reliability of the experimental 

results, the video data were firstly processed for 

background noise, and a Gaussian mixture model was 

used to eliminate the interference of illumination 

variations and complex backgrounds, and at the same 

time the outliers were eliminated in order to reduce the 

influence of pseudo-motion. Then, the optical flow 

features and music energy features in the key frames 

were normalized by normalizing the data to the range of 

[0,1] to ensure the scale consistency of the features 

across different videos. During data framing and 

downsampling, the video frame rate was uniformly 

adjusted to 30fps, and the audio signal was framed using 

short-time plus windowing to ensure the synchronization 

of audio and video features. 

The aerobic dataset used in this study contains data 

extracted from professional aerobics training and 
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competition videos covering a wide range of jumping 

movement types to ensure data diversity and 

representativeness. The dataset consists of 50 different 

video clips totaling more than 150,000 frames containing 

movements from aerobatic gymnasts of different age 

groups and skill levels. The video resolution is 1920×
1080 with a frame rate of 30fps to ensure clear capture of 

movement details. The audio data was synchronized to 

the video with a sampling rate of 44.1kHz for extracting 

musical energy features. To further ensure the diversity 

of the action samples, the dataset covers a wide range of 

competition scenarios and training conditions, including 

different backgrounds, lighting conditions, and music 

types. If the researcher is unable to obtain this dataset 

directly, it can be simulated by publicly available 

aerobics competition videos or by recording jumping 

movement data using a motion capture system, and the 

clarity and synchronization of the video and audio need 

to be ensured in order to be consistent with the 

experimental conditions of this study. 

In order to eliminate the complex background and noise 

interference, a Gaussian mixture model (GMM) is first 

used to model the background of the video. The model 

parameters were initialized by training on the first 100 

frames of data (K=5, α=0.01), and the background 

determination threshold T=0.7. Morphological open 

operations and connectivity domain analysis were 

performed on the foreground region to eliminate noisy 

regions with an area of less than 50 pixels, and the 

illumination robustness was enhanced by CLAHE 

(window of 8×8, contrast limit of 2.0). Optical flow 

features were compressed to the [0,1] range by a Sigmoid 

function, and music energy was min-max normalized. 

The video frame rate was unified to 30fps, and the audio 

signal was synchronized with audio and video by STFT 

framing (window length 1024, overlap rate 50%). For 

outlier handling, outlier frames were rejected based on 

the mean ±2σσ of the optical flow field distance, and 

music energy outliers were filtered by Z-score, and 

missing frames were compensated by cubic spline 

interpolation. 

In this study, three different feature extraction methods 

were proposed for identifying the azimuth angle of 

aerobics jumping movements, and their performance was 

comprehensively evaluated through experiments. Firstly, 

a feature extraction method for aerobics jumping 

movements based on the AdaBoost algorithm (Method 1) 

was developed. This method integrates multiple weak 

classifiers to construct a strong classifier, significantly 

improving the accuracy of azimuth recognition. 

Secondly, a feature extraction method for aerobics 

jumping movements based on MEM-LBP (Multi scale 

Edge Local Binary Mode) was adopted (Method 2), 

which can effectively capture the spatiotemporal features 

of the movements, especially in terms of detail 

performance. Finally, a multi threshold 

optimization-based feature extraction method for 

aerobics jumping movements (Method 3) was 

introduced, which optimized the feature discrimination 

and recognition accuracy by adjusting the threshold 

parameters during the feature extraction process. 

 

Figure 1: Comparison of different methods in azimuth 

identification of aerobics jumping movements 

 

According to the time series comparison graph of the 

azimuth recognition results of aerobics jumping 

movements shown in Figure 1, the recognition effects of 

different methods can be analyzed as follows. First of all, 

Method 1 shows high accuracy throughout the 

recognition process, and its recognition results are very 

close to the actual angle, with an average error of 0.2°, 

a maximum error of 0.5°, and a minimum error of 0°, 

showing small fluctuations. This indicates that Method 1 

is able to capture the dynamic changes of the movement 

better and with higher accuracy when dealing with 

aerobics jumping movements. In contrast, the recognition 

results of Method 2 are generally lower than the actual 

angle, especially in the initial stage with a large error, the 

average error is 0.6°, the maximum error is 1.0°, and 

the minimum error is 0.2°. The error converges with 

time, but it is still low, showing a certain underestimation 

tendency, which suggests that the method may be 

deficient in feature extraction or background 

interference. Finally, the recognition results of Method 3 

are generally high, especially in the later stages of the 

action, the azimuth recognition error gradually increases, 

the maximum error reaches 1.5°, the minimum error is 

0.3°, and the average error is 0.8°, which shows a 

tendency of over-estimation, indicating that there is a 

certain degree of over-reaction in the method in capturing 

the dynamic changes of the action, which leads to the 

gradual increase of the recognition error. Overall, 

Method 1 performed optimally in terms of accuracy and 

stability, while Methods 2 and 3 showed underestimation 

and overestimation errors, respectively, demonstrating 

their respective limitations. Therefore, Method 1 has the 

best performance in azimuth recognition of aerobics 

jumping movements, whereas Methods 2 and 3 need to 

be further optimized to improve accuracy and reduce 

errors. 

In order to evaluate the performance of these three 

methods more comprehensively, the feature extraction 

rate is introduced as a test metric, and the test results are 

presented in the form of Fig. 2. The feature extraction 
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rate can reflect the efficiency and accuracy of the 

methods in extracting and recognizing key features. 

Through Fig. 2, we can visually compare the 

performance of Method 1, Method 2 and Method 3 in 

terms of feature extraction rate, thus providing a basis for 

selecting the most appropriate monitoring method. 

Method 1 shows high accuracy in azimuth monitoring of 

aerobics jumping movements, thanks to its advantages in 

key frame extraction and azimuth recognition. Methods 2 

and 3, on the other hand, suffer from underestimation and 

overestimation, respectively, and need further 

optimization and adjustment. By comparing the test 

results, we can choose the most suitable monitoring 

method for aerobics movement analysis to improve the 

accuracy and efficiency of movement analysis. 

 

Figure 2: Comparison of feature extraction rates of 

different feature extraction methods 

 

By analyzing the data in Figure 2, it can be seen that the 

feature extraction rate of Method 1 is above 90% in 

multiple iterations, while the feature extraction rates of 

Methods 2 and 3 fluctuate around 60%. By comparing 

the test results of different methods, it can be seen that 

Method 1 has a higher feature extraction rate because 

before extracting the jumping motion features of 

aerobics, Method 1 eliminates the background of the 

aerobics motion image and improves the feature 

extraction rate of aerobics movements in Method 1. 

To verify the overall effectiveness of the method, 

methods 1, 2, and 3 were used to extract features of 

aerobics jumping movements. The time taken to extract 

features using different methods was compared, and the 

test results are shown in Figure 3. 

Through a detailed analysis of the data in Figure 3, we 

can observe that Method 1 has a significant advantage in 

time efficiency compared to Methods 2 and 3 in 

extracting the characteristics of aerobics jumping 

movements. Specifically, Method 1 takes significantly 

less time in the feature extraction process than Methods 2 

and 3. 

 

Figure 3: Comparison of processing time of different 

feature extraction methods 

 

This significant difference is mainly attributed to the 

background cancellation technique used in the keyframe 

extraction stage of Method 1. In the analysis of aerobics 

videos, background noise and interference are important 

factors that affect the accuracy and efficiency of feature 

extraction. Method 1 effectively reduces the interference 

of background information on feature extraction by 

integrating background elimination processing. Through 

this preprocessing step, Method 1 can more quickly 

identify and extract features related to aerobics 

movements, significantly reducing the time required for 

the entire feature extraction process. The application of 

background elimination technology not only improves 

the efficiency of feature extraction, but also enhances the 

quality of feature extraction. Due to the reduction of 

background noise interference, Method 1 can more 

accurately capture the detailed features of aerobics 

movements, which is crucial for subsequent action 

recognition and analysis. In addition, background 

elimination can simplify subsequent processing steps 

such as feature matching and classification, further 

improving the efficiency of the entire analysis process. 

Method 1 significantly improves the efficiency of feature 

extraction for aerobics jumping movements through 

background elimination technology, which not only 

shortens the time required for feature extraction, but also 

improves the quality and accuracy of feature extraction. 

This advantage makes Method 1 of great application 

value in the field of aerobics action analysis, especially in 

scenarios that require real-time or rapid processing of 

large amounts of video data. 
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Table 4: Comparative performance evaluation table 

methodo

logies 

Accu

racy,

 %） 

Rec

all, 

%） 

F1-S

core,

 %） 

Computational 

efficiency 

(extraction time, 

ms) 

statistic

al 

signific

ance 

Methodo

logy of 

this 

study 

96.8 
94.

5 
95.6 35 < 0.05 

A-BLST

M 
97 

95.

2 
96.1 50 < 0.05 

NN-BIG

RU 
95 

93.

8 
94.3 48 < 0.05 

MEM-L

BP 
92.5 

89.

6 
90.8 60 - 

 

As can be seen from Table 4, the method of this study 

shows strong advantages in all assessment indicators. 

Specifically, it reaches 96.8% in accuracy, which is only 

slightly lower than the 97.0% of A-BLSTM, but 

significantly higher than the 95.0% of NN-BIGRU and 

92.5% of MEM-LBP. The recall and F1 score of 94.5% 

and 95.6%, respectively, are close to A-BLSTM (95.2% 

and 96.1%) but better than the other compared methods. 

In terms of computational efficiency, the extraction time 

of this study's method is only 35 ms, which is 

significantly better than that of A-BLSTM (50 ms) and 

MEM-LBP (60 ms), demonstrating higher processing 

efficiency. In addition, the statistical significance test 

showed that the performance improvement of the present 

study method was statistically significant (p < 0.05). 

These results indicate that the present study method 

significantly improves the computational efficiency 

while maintaining high accuracy and is suitable for 

practical application scenarios. 

4 Conclusion 
In this study, a feature extraction method for aerobics 

jumping movements based on machine vision and 

AdaBoost algorithm is found, aiming to improve the 

accuracy and efficiency of aerobics movement analysis. 

Through experimental validation, the method achieved 

significant improvement in the accuracy of azimuth angle 

recognition, feature extraction rate, and extraction 

efficiency of aerobics jumping movements. Specifically, 

the video data acquired by machine vision technology, 

combined with entropy sequences and music features, 

effectively assisted the extraction of key frames. The 

introduction of Gaussian mixture model effectively 

eliminates the background interference and improves the 

purity of feature extraction. The combination of threshold 

recognition algorithm and Harris3D operator further 

enhances the accuracy of action recognition. Ultimately, 

the application of AdaBoost algorithm not only extracts 

the key features of aerobics jumping action, but also 

significantly improves the recognition accuracy of 

orientation angle. The results of this study not only 

provide a scientific analysis tool for aerobics training and 

competitions, but also provide new ideas and methods for 

the future development of action recognition techniques 

in the field of sports analysis. Future research can further 

explore how to apply the method to other types of sports 

movement analysis and how to combine the latest 

machine learning techniques to further enhance the 

intelligence of movement recognition. 

Although the method in this study shows high accuracy 

and efficiency in aerobics jumping action feature 

extraction, there are still some limitations. Firstly, the 

method may be affected to some extent in environments 

with complex backgrounds or high noise levels, e.g., 

scenes with multiple background interferences or drastic 

lighting changes may reduce the accuracy of key frame 

extraction. Second, the applicability of the method is 

mainly focused on aerobics jumping movements, and for 

other types of movements (e.g., slower flexibility 

movements or non-periodic movements) it may be 

necessary to readjust the feature extraction and 

classification models. In addition, the performance of the 

method may be limited by the accuracy of parameter 

selection and the quality of data preprocessing due to the 

dependence of the Gaussian mixture model and Harris3D 

operator. Future research could enhance the 

generalization ability of the model by integrating new 

deep learning frameworks (e.g., convolutional neural 

networks combined with self-attention mechanisms) and 

exploring end-to-end learning approaches to reduce the 

reliance on manual feature extraction. At the same time, 

the background modeling robustness of Gaussian mixture 

models can be further optimized, such as introducing a 

dynamic parameter adaptive mechanism to reduce the 

sensitivity of complex backgrounds; to address the 

efficiency bottleneck of AdaBoost algorithm under 

large-scale samples, designing a weak classifier filtering 

strategy based on incremental learning to reduce the 

redundant computation; at the same time, combining 

with lightweight real-time processing frameworks (e.g., 

TensorRT) to compress the model scale , enhance the 

end-side deployment capability, and construct 

cross-scene multimodal datasets to verify the 

generalization performance. 
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