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This review taxonomically analyzes and evaluates recent advances in machine learning (ML) frameworks
applied to near-infrared spectroscopy (NIRS) for food quality assessment. Through a comprehensive liter-
ature search across IEEE Explore, ScienceDirect, and Springer (2021-2024), we examine key framework
components: data acquisition, public datasets, preprocessing, wavelength selection, and advanced ML ar-
chitectures. Our analysis reveals the current state: miniaturized devices and multi-device data collection
are expanding spectral coverage, while public datasets focus mainly on nutritional indices, lacking safety-
related data. Framework-wide challenges persist in device compatibility, dataset comprehensiveness, and
model interpretability. Recent advances show promising developments through: specialized deep learning
architectures achieving 97-100% accuracy, data transformation techniques (2D-COS, GAFD) enhancing
interpretability, hybrid traditional-deep learning models, and effective transfer learning for cross-device
applications. Based on these insights, we propose three critical research directions: expanding food safety
datasets through regulatory partnerships, developing multi-level fusion for heterogeneous device data, and
creating automated techniques for model optimization and interpretability. These directions are vital for
advancing ML-NIRS applications in food quality assessment, improving both efficiency and reliability.

Povzetek: Analizirani so napredki v strojnih učnih modelih za spektroskopijo bližnjega infrardečega spek-
tra (NIRS) pri oceni kakovosti hrane. Pregled obsega ključne komponente, kot so zbiranje podatkov, pred-
procesiranje in izbira valovnih dolžin. Predlagane so tri raziskovalne smeri: širitev podatkovnih zbirk,
razvoj fuzije večnivojskih podatkov in avtomatizacija optimizacije modelov za boljšo zanesljivost ocenje-
vanja kakovosti hrane.

1 Introduction

Food quality and safety have emerged as critical concerns
for both the food industry and global consumers [1]. The
burden of foodborne diseases and economic losses due to
poor quality or spoiled food at the production and distri-
bution stages is enormous [2], requiring careful monitor-
ing of food composition regularly. NIRS, as an analytical
technique that can provide complex “chemical fingerprints”
of food samples related to their composition, quality, and
safety [3–5], has been combined with classical statistical
methods and advanced ML to address this issue.
ML techniques and IoT development have brought about
considerable changes in many fields [6–8]. Applying ML,
mainly supervised learning, to multivariate NIRS spectral
analysis has significantly changed food quality assessment
and assurance. These studies have been diverse across var-
ious data types and increased rapidly in the past two years
[9]. From 2022 to 2024, along with traditional ML meth-

ods such as Principal Component Analysis (PCA), Partial
Least Squares (PLS), Support Vector Machine (SVM), De-
cision Tree (DT), Random Forest (RF), and Deep Learn-
ing (DL) such as Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN), Autoencoders (AE), as
in Figure 1, there are four major trends in NIRS applica-
tions. This includes (1) detecting contaminated and adul-
terated food, identifying adulterants, and determining the
level and residual concentration of chemicals in agricultural
and livestock products [10, 11]; (2) developing sustainable
agriculture through monitoring crop growth, soil nutrients,
and various components of crops to improve care and early
detection and treatment of crop diseases [12]; (3) determin-
ing the optimal harvest time to achieve maximum economic
yield [13]; and (4) evaluating product quality, particularly
for high-value economic items [14–19], etc.
However, ML for NIRS is still inceptive compared to other
fields for several reasons. First, ML on NIRS spectra re-
quires specialized data, which is difficult to collect due
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Figure 1: NIRS applications and ML techniques for NIRS

to expensive spectrometers and reference chemical data,
in chemical content determination problems [9]. Second,
studies are often published in agricultural or interdisci-
plinary chemometrics journals that combine data science
and chemistry, as in Figure 2, so computer scientists’ access
to technical developments is more limited. With the poten-
tial of developingML to solve social food quality problems,
this needs to be further promoted by supporting a technical
overview.

Figure 2: Subject area from 2021 to 2024 according to Sco-
pus analysis in ML for NIRS food quality

Therefore, this study aims to shift the focus to techni-
cal surveys, technological advances, availability of public
datasets, and development potentials not mentioned in pre-
vious review studies. We conduct two main review bases:

1. First, we summarize and discuss the contributions and
limitations of recent review articles on ML in NIRS
and food analysis in particular. From there, we find
gaps that need to be exploited and further evaluated
on techniques and data.

2. Second, we synthesize and evaluate recent new
research articles, classifying and highlighting infor-
mation on data (NIRS tools, data fusion techniques,
public datasets), as well as ML techniques (pre-
processing, wavelength selection, and advanced ML

architectures) that have not been covered in existing
reviews.

From this background, gaps were identified from a com-
puter science perspective to conduct future research in food
inspection.

2 Methodology
In the fourth quarter of 2023, a thorough investigation
was conducted through IEEE Explore, ScienceDirect, and
Springer, employing controlled vocabulary in ML, NIRS,
and food quality analysis, as in Figure 3. The search fo-
cused on emerging ML techniques for NIRS in food qual-
ity assessment, utilizing specific terms such as “deep learn-
ing”, “chemometrics”, “NIR spectroscopy”, and “food”. In
addition to these above primary keywords, we conducted
deeper searches focusing on specific components of our
ML framework. Each framework component served as
secondary keywords - notably “preprocessing” and “wave-
length selection” - to thoroughly identify recent studies fo-
cusing on improvements in these critical areas. For ma-
chine learning algorithms, we specifically searched for both
traditional methods (PCA, PLS, SVM) and emerging deep
learning architectures (CNN,RNN,AE,GAN) to track their
evolution and applications in NIR analysis. Additionally,
the NIR dataset was also searched extensively on Mende-
ley and Zenodo. This hierarchical search approach, struc-
tured according to our ML framework taxonomy, enabled
us to systematically evaluate recent advances in specific
methodological aspects rather than just general applica-
tions. Through this focused search strategy, we could bet-
ter assess how recent research has contributed to advancing
different components of the ML framework in NIR spectral
analysis.
The literature review methodology branches into two dis-
tinct paths: (1) comprehensive review papers and (2) orig-
inal research articles. The first branch focuses on conduct-
ing rigorous analyses of existing literature to identify key
challenges, significant contributions, and unexplored terri-
tories within the machine learning domain for NIR analysis.
The second branch encompasses original research papers,
systematically categorized according to their contributions
to the ML framework - spanning from data acquisition and
public datasets to preprocessing/wavelength selection and
advanced architectural innovations. This dual-branch ap-
proach ensures both a broad understanding of the field’s
current state through synthesized reviews and a detailed ex-
amination of specific technical advancements through orig-
inal research contributions.
Stringent filters were applied, including English language
restriction and consideration of peer-reviewed articles, re-
views, books, book chapters, and conference papers from
the four years (2021-2024). The research database has been
updated to include publications up to September 2024 to
ensure the most informed and up-to-date discussion. The
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strategy aimed to capture the latest innovations at the inter-
section of machine learning and NIRS for non-destructive
and rapid evaluation of diverse food quality traits, exclud-
ing older publications beyond the scope of emerging tech-
niques.

Figure 3: Research process flow chart

3 Previous review studies: an
overview

Our analysis of previous ML in NIR spectroscopy for food
quality and safety draws from 18 review articles published
between 2021 and 2024. This comprehensive overview re-
veals significant progress in applying advanced ML tech-
niques to NIR data and exposes critical challenges, as in
Table 1, 2. While studies demonstrate the potential of meth-
ods ranging from traditional multivariate analysis to sophis-
ticated deep learning algorithms, they also underscore per-
sistent limitations in datasets, model optimization, and real-
world applicability.

Building upon this overview, we conduct an additional re-
view in the next section to explore unaddressed aspects
that significantly impact machine learning trends in food
spectroscopy. This supplementary analysis aims to fill cru-
cial gaps and provide insights into emerging directions that
could shape the future of ML-driven NIRS in food analysis.

These studies are mainly related to ML for food quality
and safety and cover a range of applications or techniques.
Recent review articles have examined hyperspectral imag-
ing and NIR spectroscopy combined with advanced algo-
rithms for non-invasive assessment of parameters, includ-
ing nutritional composition (e.g., protein, moisture, fatty
acids), adulteration/defect detection, and geographical ori-
gin discrimination in various food products. Both tradi-
tional multivariate analysis methods, like PCA and PLS,
and increasingly sophisticated ML algorithms, including
SVM, ANN, and CNNs, have been explored for relevant
tasks such as multi-class food classification and quality pre-
diction. This demonstrates the general feasibility of data-
driven modeling approaches on spectroscopic data for food
evaluation. However, significant limitations persist regard-
ing dataset availability and model optimization, transfer-
ability, and interpretability, specifically for NIR food ap-
plications using advanced machine learning.
Despite the widespread application of NIRS in food qual-
ity and safety assessment, significant challenges remain in
developing and sharing suitable datasets for machine learn-
ing research in this field. Firstly, current technique re-
views tend to cover NIR datasets broadly without an in-
depth analysis tailored to the food domain. Secondly, the
mentioned datasets primarily consist of Vis-NIR spectral
range (< 1000 nm) stored in MATLAB data files, which
poses challenges for developing ML research applications
(typically developed with Python). However, this spec-
tral range is often considered less informative in chemi-
cal information than the 1000-2500 nm [4]. Thirdly, other
current shared datasets with broader coverage (400 - 2500
nm) are just suitable for simple classification tasks, lacking
the detailed chemical information required for laboratory-
based quality assessment regression problems. Besides, re-
searchers also highlighted significant limitations in collect-
ing valuable data, labeling, data enrichment, and practical
deployment due to high costs. Last but not least, many pre-
vious studies utilizing NIRS for food quality and safety in-
spection have relied on small datasets, oftenwith fewer than
200 samples, limiting model robustness and generalizabil-
ity. Therefore, building NIRS spectral datasets with appro-
priate wavelength bands, relevant chemical parameteriza-
tion, and proper labeling would be more practical when ad-
dressing real-world problems.
Additionally, reviews focusing specifically on deep learn-
ing also need more details regarding optimal network ar-
chitectures, data requirements regarding sample size and
variability, and quantitative benchmarking on relevant food
NIR datasets. There is no in-depth discussion of deep learn-
ing or other advanced machine learning methods, nor is
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Table 1: Previous Review Studies (1)
The issues Review focus Related Contributions Limitations
Quantification of food
bioactives by NIR
spectroscopy: Current
insights, long-lasting
challenges, and future
trends [3]

Factors af-
fecting model
performance.
Algorithm used:
Mostly PLS;
SVM, MLR,
BP-ANN, CNN

Effects of sample prep, analyte
concentration, instrument fea-
tures on performance. Compares
benchtop/portable NIR. Pro-
poses FAIR data management.
Suggests theoretical calculations
for interpretation.

Limited datasets (< 200 sam-
ples). Difficulty in choosing pre-
processing/regression methods.
Interpretability/transferability
issues. Lacks DL focus.

Food quality 4.0:
From traditional ap-
proaches to digitalized
automated analysis [5]

Traditional
vs emerging
techniques. Al-
gorithm used:
Mostly PLSR,
PLS-DA; SVM

Industry 4.0 innovations (AI,
DL, sensors) in spectroscopic.
Portable/miniaturized NIR-AI
for evaluation. HSI as non-
destructive quality technique.

Brief NIRS-food analysis men-
tion. No in-depth NIRS/DL
applications with food datasets.
Mostly Vis-NIR datasets.

DL for NIRS data
modeling: Hypes and
benefits [9]

Potential benefits
and pitfalls of us-
ing DL for mod-
eling NIRS

DL auto-transforms spectral data
without preprocessing. Shallow
DL success with small datasets
(< 1000). DL efficiency
for complex food analysis tasks
(multi-class, multi-response).

Small, under-optimized datasets
in DL-chemometrics compar-
isons. Limited food NIR spectra
DL modeling. No large food
quality/safety datasets for DL
benchmarking.

Multivariate analysis
of food fraud: A
review of NIR based
instruments in tandem
with chemometrics
[10]

Chemometrics
with NIRS, HSI.
Algorithm used:
Mostly PLSR,
PLS-DA; SVM,
PCA, SIMCA,
ANN, KNN

Overview of NIR/HSI princi-
ples. Summarizes chemometrics
for spectral processing. Reviews
NIR/HSI with chemometrics
for adulterant detection. Com-
pares classification/regression
models. Discusses advan-
tages/limitations for food
authenticity.

No DL discussion. Focuses on
PCA, PLS, and SVM. No spe-
cific NIR datasets for food. Lab-
prepared samples, not real-world
fraud. Limited assessment of
method robustness and applica-
bility.

AI-based techniques
for adulteration and
defect detections in
food and agricultural
industry: A review
[11]

AI techniques
combined with
sensors. Al-
gorithm used
(NIR-specific):
Mostly SVM,
PLSR, ANN,
PCA, CNN,
Random Forest.

AI for food authentica-
tion/quality. CNN (2015-2022).
Challenges: technique standard-
ization, algorithm selection, data
fusion, fast detection, severity
quantification, framework de-
velopment.

Lack of sensor device, data ac-
quisition, preprocessing details.
Impact on model performance
not discussed.

Computer vision and
DL in insects for food
and feed production
[20]

Applications CV and NIRS for non-invasive
assessment of nutritional com-
position, moisture, protein, fat,
fatty acids in live insects.

Limited NIRS applications men-
tioned. No technical aspects dis-
cussed.

Application of NIRS
for the nondestructive
analysis of wheat
flour: A review [21]

Application.
Algorithm used:
MPLS, PLSR,
RF, RBF, LDA.

NIR fundamentals, recent devel-
opments for wheat flour qual-
ity/safety assessment. Four de-
velopment areas: data quality,
chemometrics, affordable tools,
data integration.

Focuses on traditional ML for
classification/regression.

Quality analysis and
authentication of
nutraceuticals using
near IR (NIR) spec-
troscopy: trends and
applications [22]

Novel analytical
trends and ap-
plications from
a chemistry/
metabolomics
perspective

NIR trends for nutraceutical
quality control (HSI, portable
devices). Targeted/untargeted
metabolomics applications.
Geographical classification.

No DL discussion for NIR data.
No specific NIR nutraceutical
datasets were analyzed.
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Table 2: Previous Review Studies (2)
The issues Review focus Related Contributions Limitations
A research review on
DL combined with
HSI in multiscale
agricultural sensing
[23]

Applications
and limitations.
Algorithm used
(specific to NIR):
Mostly CNN, AE

DL models for food quality,
ripeness, moisture, nitrogen,
chlorophyll, sugar prediction.
HSI range (250-2500 nm) is
broader than NIRS.

Data collection/real-world ap-
plication challenges. Limited
food authentication focus. CNN,
SAE, and RNN without detailed
evaluation.

Efficient extraction of
deep image features
using CNN for appli-
cations in detecting
and analyzing com-
plex food matrices
[24]

Principle, archi-
tectures, applica-
tions of feature
extraction meth-
ods, CNNs

1D CNN feasibility for NIRS
food classification/defect detec-
tion. CNN features outperform
traditional ML. HSI-CNN ex-
amples for cereal variety/quality
classification.

Not NIRS-specific. Limited
NIRS-based food analysis
datasets. Lacks DL challenges
for food NIRS data.

A Review of ML for
NIRS [25]

ML, especially
DL. Algorithm
used: Mostly
PLS, ELM, SVR,
SVM, SLFN,
DT, RF, AE,
CNN, RNN,
LSTM, GRU,
GAN.

Summarizes NIR modes, instru-
ments, preprocessing, datasets,
feature selection. Covers tradi-
tional ML (PLS, SVM, ELM)
and DL (CNN, RNN, autoen-
coders) for NIR food data.

No in-depth ML-NIR food anal-
ysis. Limited food spectroscopy
dataset details. Nomodel perfor-
mance comparison. No data aug-
mentation/transfer learning dis-
cussion.

Are standard sample
measurements still
needed to transfer
multivariate calibra-
tion models between
NIR spectrometers?
[26]

Recent develop-
ments in calibra-
tion transfer (CT)
methods

Mentions DL for multivariate
calibration and transfer learning
in NIRS model updating.

No in-depth DL-NIR food anal-
ysis discussion. No public DL-
NIR food datasets were men-
tioned. Brief food applications
(temperature/form adaptation).

Recent advances and
application of ML in
food flavor prediction
and regulation [27]

Algorithm used:
SVM, DT, RF,
KNN, ELM,
ANN

Pinciples, advantages, applica-
tion, challenges of ML for food
flavor prediction/regulation.

Traditional ML focus. Few
NIRS flavor prediction studies.
Small sample sizes. Limited
public NIRS flavor datasets.

ML applications for
multi-source data of
edible crops[28]

Fusion of multi-
source data with
ML techniques

CNN and ResNet for edible crop
classification using 2D spec-
tral/HSI.

Not NIRS-specific. No NIRS al-
gorithm performance

AI in sensory and con-
sumer studies of food
products [29]

Applications.
Algorithm used:
ANN, SVM,
CNN

ML, particularly NIRS, for pre-
dicting sensory responses from
physicochemical data.

ANN common, but basic super-
vised learning prevalent. More
DL research needed for complex
spectroscopic data. Lack of pub-
lic NIRS-sensory datasets limits
validation/research.

DL in analytical chem-
istry [30]

Applications.
Algorithm used:
CNN, DNN,
LSTM, GAN,
AE

DL applications in analyt-
ical chemistry. AEs for
cereals, CNNs for vibra-
tional spectral data classifica-
tion/quantification, chemical
component determination,
geographical discrimination.

No in-depthNIRS-foodDL anal-
ysis. Lacks food application
datasets discussion. No focus on
DL techniques/datasets for food
NIRS.

Recent advances in
assessing qualita-
tive and quantitative
aspects of cereals
using nondestructive
techniques[31]

Chemometrics
based AI & ML.
Algorithm used:
PLS, PCR, LDA,
PLSR, PCA,
KNN

Chemometrics for cereal analy-
sis. NIRS for amylose, moisture,
texture, authentication. Prepro-
cessing, models, performance
parameters for NIRS.

Lacks DL/large dataset focus for
NIRS. No public datasets. Lim-
ited portable NIRS discussion
for on-site cereal analysis.
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there any analysis provided comparing the performance of
different algorithms specifically for NIRS data. The re-
views mainly focus on conventional chemometrics tech-
niques like PCA, PLS, SVM, etc. Even where public ref-
erence datasets exist, few studies thoroughly validate and
compare deep learning techniques using these resources.
Based on the mentioned contributions and limitations, in
these review studies, we focus on exploring key aspects
related to measurement devices, data collection, publicly
available NIR food datasets, and new ML architectures ap-
plied to NIRS spectral data. This review aims to contribute
to expanding multidisciplinary progress at the intersection
of NIRS, data science, food science, and industrial applica-
tions.

4 Recent advances of machine
learning for NIRS

Based on the comparison with previous research results in
section 3, this section classifies new contributions to ma-
chine learning frameworks in processing NIR spectral data
in classification, pattern recognition, and component con-
tent regression problems, as in Figrure 4.

Figure 4: Advances in ML framework for NIRS

4.1 Data acquisition
Effective and accurate data acquisition using near-infrared
spectrometers is crucial for food quality assurance. This re-
lies on appropriate spectrometer selection, compatible mea-
surement modes, and relevant reference components.

4.1.1 Miniaturization NIR spectral instruments

In recent years, NIR spectral instruments have undergone a
notable transformation in size and portability, progressing
from traditional benchtops to various compact, handheld,
pocket-sized, miniaturized, and real-time versions [4, 32].
Traditionally, benchtop systems provide standardized de-
sign, broad spectral range, and high performance. For in-
stance, the NIRSystems 6500 covers the full NIR range
from 400 nm to 2500 nm, and the FT-NIR Frontier oper-
ates between 900-2500 nm [33]. The NIR spectral dataset
covering the entire spectral range is typically measured us-
ing this instrument.
On the other hand, portable NIR spectrometers prioritize
practical applications and offer greater flexibility, revolu-
tionizing modern measurement techniques. However, this
comes at the cost of design uniformity and spectral range.
The diverse designs and technologies used in portable sys-
tems lead to variations in spectral coverage and resolution
compared to their benchtop counterparts. For example, the
SCiO operates within a narrow 740-1070 nm range [34],
while the IAS-3120 [35], NIR-S-G1 [36], and NIR-M-R2
[37] function within the more common 900-1700 nm range.
Specialized instruments like the Spectromètre portable NIR
[38] cover a distinct 1750-2150 nm range. Many other de-
vices from various manufacturers in [32, 34, 39–41] also
have differing spectral ranges. This diversity challenges the
development of multivariate analysis models with hetero-
geneous data. Despite these challenges, the ongoing minia-
turization of NIR spectral instruments continues to expand
their applicability across diverse fields, driving innovation
in portable spectroscopic analysis.

4.1.2 Expanded spectral ranges and combined
multiple devices

NIR spectrometers are capable of operating in various mea-
surement modes: diffuse reflectance for solid surfaces;
transmittance for gases, liquids, or cuvette-contained semi-
solids; transflectance combining reflectance and transmit-
tance for semi-solids without cuvettes; interactance using a
specialized probe for enhanced solid sample analysis; and a
transmittance mode accounting for scattering in dense sam-
ples [25, 42]. Each mode varies in cost, signal quality, and
speed, and the selection depends on the specific needs of
sample material and analysis requirements. These modes
are determined by the detector, wavelength selector, and
light source. For instance, the portable SCiO spectrometer
uses a silicon array detector, a bandpass filter as the wave-
length selector, and an LED light source, making it suitable
for transmittance measurements of liquid or thin solid sam-
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ples like vanilla solutions to determine vanillin content [34].
The DLPR NIRscan Nano employs an InGaAs detector, re-
flective diffraction grating, and tungsten lamps, enabling
diffuse reflectance analysis of solid samples such as adul-
terated almond flour [43].
NIR datasets are typically collected by scanning multiple
times and averaging values for each sample, potentially
including 1500-1700 variables for the full NIR range [4].
However, achieving such comprehensive datasets is un-
common, due to challenges in sensor sensitivity across the
broad spectral range and the high cost of instruments for
full spectrum. NIRS data in various types of foods typi-
cally collected exclusively from either the short-wave (800-
1100 nm, often together with the Vis-NIR region) or long-
wave (1100-2500 nm) regions or the middle region [44].
The selection of NIR spectral range is crucial for analy-
sis effectiveness. The key difference lies in signal strength
across wavelengths [4]. In short-wave regions (700-1000
nm), signals become progressively weaker with 3rd and 4th
overtones and show extensive band overlap, making de-
tection and analysis more challenging. In contrast, long-
wave regions (1000-2500 nm) contain stronger first and
second overtones with better peak separation. This spec-
tral range is especially effective at detecting absorption
from specific molecular bonds - primarily those contain-
ing hydrogen atoms (O-H, C-H, N-H) and certain strong
bonds (C=O, C≡N) - which produce characteristic ab-
sorption patterns useful for chemical analysis and machine
learning model development. While long-wave regions
typically provide better analytical performance, the choice
of spectral range often requires balancing between analy-
sis accuracy and economic considerations, as instruments
for shorter wavelengths can use simple glass components,
making them significantly more cost-effective than special-
ized equipment needed for longer wavelengths. The sub-
1700 nm range is the most common due to its sufficiency
in capturing key chemical components of the sample, as
demonstrated by numerous studies [4, 44].
Recently, obtaining comprehensive and valuable informa-
tion across the entire NIR spectral range often requires em-
ploying at least two instruments to capture data from both
short-wave and long-wave regions. For instance, the NIR
spectral of almond flour [43] were obtained from 900-2500
nm using three portable spectrometers: DLPR NanoN-
IRscan (900-1700 nm), MicroNIR 1700 (950-1650 nm),
and NeoSpectra FT-NIR (1350-2500 nm) with 16 nm res-
olution. The classification models using portable near-
infrared devices achieved 100% sensitivity and over 95%
specificity in identifying almond flour adulterations above
5% (w/w), while the PLS regression models obtained coef-
ficients of determination above 0.90 and RMSEP values be-
tween 3.2-4.8% for quantifying almond flour purity. More-
over, many real-time datasets are also collected with ad-
ditional white reference and black reference spectra inside
the instrument. These are two reference environments with
no light at all, and light is reflected at 99.99%, which can
be designed as supplementary components within standard

measurement devices [45]. Compared to datasets measured
in laboratory settings, as done previously, this trend of real-
world data collection is more practical and is being targeted
by food companies.
Therefore, the trend of using handheld or ultracompact de-
vices for direct measurements at the production site, col-
lecting the wide NIR spectrum by many devices, and sup-
plementing reference spectra within the devices, are notable
highlights in current food authentication data collection de-
vices. This convenience creates significant opportunities
for generating valuable datasets and improving food safety
control.
Discussion: Development insights
The using multiple NIR spectral devices trend in food anal-
ysis offers opportunities for more comprehensive data col-
lection but also presents challenges due to data heterogene-
ity. To address this issue and create larger datasets, devel-
oping effective data fusion techniques becomes crucial.
In NIRS, these multilevel fusion techniques enable integra-
tion and standardization of data from diverse instruments,
effectively leveraging data resources from multiple insti-
tutions and organizations to build large, valuable datasets
without depending on homogeneous equipment. Data fu-
sion, as in [46–48], occurs at three levels: low-level fusion
directly combines raw data from multiple sources, mid-
level fusion integrates extracted features from different data
sources, and high-level fusion combines decisions or in-
terpretations made from separate data sources to conclude.
Promising approaches for data fusion include data normal-
ization, selection of important variables, application of ad-
vanced machine learning methods such as neural networks
or transfer learning, utilization of multi-block data analysis
techniques, and development of advanced spectral correc-
tion methods. These multilevel fusion techniques enable
integration and standardization of data from diverse NIR in-
struments, effectively leveraging data resources from mul-
tiple institutions and organizations to build valuable large
datasets without depending on homogeneous equipment,
thereby significantly improving the effectiveness of mul-
tivariate analysis models in food quality control.
Moreover, compared to using a single handheld device with
a narrow spectral range, fusing data from multiple devices
to expand the spectral range offers advantages similar to
laboratory benchtop with full-range spectra. Specifically,
there are more additional spectral information from differ-
ent spectral regions, facilitating better discrimination and
quantification of components in complex samples with high
spectral overlap while maintaining the mobility and conve-
nience of handheld devices in practical applications.

4.2 Public datasets

This section reviews publicly accessible NIR spectroscopy
food datasets, addressing the limitations of proprietary
datasets in developing robust, generalizable machine learn-
ing models. These datasets typically include spectral data
(often in .csv, .xlsx, or .unsb formats) spanning vari-
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ous wavelength ranges, predominantly 900-2500 nm, with
some datasets covering both visible and near-infrared re-
gions (Vis-NIR). In NIR spectral archiving, the .unsb file
format is a standard format similar to .csv and .xlsx. This
is a proprietary file format of The Unscrambler software.
To open and process this file, it is necessary to use The
Unscrambler or convert it to a more familiar format for
machine learning. Corresponding reference values for key
food quality parameters are usually provided. While hyper-
spectral imaging (HSI) offers both spatial and spectral in-
formation, its large file sizes and complex processing limit
widespread use in portable devices. Therefore, this re-
view focuses on spectral data from NIRS, balancing infor-
mation richness and practicality for rapid, non-destructive
food quality assessment. The datasets cover diverse food
products, highlighting the need for larger, more diverse, and
standardized spectral databases to advance NIRS applica-
tions in food science.

4.2.1 Milk composition in transmittance mode

Collected over eight weeks on a dairy farm, the milk dataset
in [45] includes transmittance mode spectra spanning the
960-1690 nm range for 1224 raw milk samples from 41
cows, each with a 2.86 nm/pixel resolution. The dataset
incorporates raw milk spectra and white and dark reference
spectra used for calibration. With accompanying laboratory
reference values for essential milk components such as fat,
protein, lactose, urea, and somatic cell count, this dataset
goes beyond spec-tral information by including details like
cow ID, milk yield, and time intervals between milkings.
Formatted as a .csv file with comprehensive variable de-
scriptions, the dataset aims to facilitate chemometric anal-
ysis and the development of multivariate calibrationmodels
for predicting milk parameters.

4.2.2 Handheld NIR for chicken breast filets

In a non-destructive manner, portable miniaturized NIR
spectrometry captured diffuse reflectance data (908–1676
nm, with an evenly distributed spectral resolution, resulting
in 125 variables/measurement) from chicken breast filets in
[49]. This data helped differentiate fresh and thawed filets
and assess bird growth conditions. NIRmeasurements were
taken from 153 commercial chicken filet samples in three
modes: direct contact with meat and through the top foil
(with or without an air pocket). Thawed samples were gen-
erated by freezing and thawing. Multivariate statistics were
applied to the 4590 raw NIR spectra.

4.2.3 SpectroFood dataset

The SpectroFood dataset in [50] is a comprehensive hy-
perspectral meta-dataset aimed at non-destructive estima-
tion of dry matter content across multiple crops. It com-
prises visible/near-infrared (VIS/NIR) hyperspectral data
coupled with corresponding dry matter measurements for

four crops - apples, broccoli, leeks, and mushrooms. In to-
tal, 1028 samples were measured using four different cal-
ibrated hyperspectral imaging cameras across the spectral
range of 398-1717 nm, with all measurements capturing
the VIS/NIR range of 470-900 nm. Specifically, 240 ap-
ple samples were measured in the 430-990 nm range with
141 bands, 250 broccoli samples in the 470-900 nm range
with 150 bands, 288 leek samples in the 398-1717 nm range
with 421 bands, and 250 mushroom samples in the 400-998
nm range with 204 bands. The dataset provides the mean
reflectance spectrum extracted for each sample in a tabu-
lar (.csv) format, along with the corresponding dry matter
percentage which ranges from 8.1% to 87%. Additionally,
the raw hyperspectral image data for each crop is also pro-
vided as .mat files. This multi-crop, multi-sensor dataset
aims to facilitate the development of generalized AI/ML
models for dry matter estimation that can robustly handle
data from different imaging systems and crops.

4.2.4 Reflectance spectral dataset of pre-cooked pasta

This dataset in [51] comprises 1200 Vis-SWIR reflectance
spectra (350-2500 nm, with 2151 variables/measurement)
of 6 Pennette 72 and 6 Mezze Penne pre-cooked pasta
samples with varying salt levels, measured in both frozen
and thawed states. The spectra were non-destructively ac-
quired using a portable ASD FieldSpec 4 Standard-Res
spectrophotometer, with 50 spectra collected per sample.
The data is provided as a .mat file containing a dataset ob-
ject with rows labeled for sample ID, dry matter content
(42.8%, 46.7%, 47.5%), pasta type, and physical state. The
averaged spectra highlight differences in the visible region
based on salt content, while frozen and thawed samples
differed in reflectance intensities across most wavelength
ranges, especially 350-1450 nm, 1600-1850 nm, 2100-2400
nm. This annotated Vis-SWIR dataset has valuable reuse
potential for developing multivariate classification and re-
gression models to rapidly inspect pre-cooked pasta qual-
ity by combining portable spectroscopy and chemometric
techniques.

4.2.5 Sugar content measurements of grapes berries
in various maturity stage

This dataset in [52] involves 274 samples, each composed
of 100 grapes, representing three grape varieties: Syrah,
Fer, and Mauzac. The dataset is structured as a CSV file,
where rows represent samples and columns include vari-
ables such as tray keys, grape varieties, sugar content, and
reflectance spectra. Sugar content ranges from 100 to 300
g/L across varie-ties. Grape sorting was performed using
NaCl densimetric baths, followed by hyperspectral acquisi-
tion. A total of 274 reflectance spectra were obtained, cov-
ering red (Syrah, Fer Servadou) and white (Mauzac) grape
varieties.
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4.2.6 Mango fruits

The dataset in [53] comprises 186 NIR spectra (1000-
2500 nm, log(1/R) absorbance) of intact mangoes from
4 cultivars, acquired using FT-NIR with 64 coadded
scans/sample. Raw spectral data in .xls and .unsb for-
mats. Reference data includes vitamin C (mg/100g), solu-
ble solids (°Brix), and total acidity (mg/100g). This dataset
enables the development of prediction models for rapid,
non-destructive quality evaluation of whole mangoes using
NIR spectroscopy.

4.2.7 Enhanced NIR spectra of intact mangoes

This dataset in [54] provides original and enhanced near-
infrared (NIR) spectral data (1000-2500 nm, 1557 wave-
length variables) of 58 intact Kent mango samples. The
spectra were acquired using a Fourier transform NIR spec-
trometer, with 32 coadded scans per sample. The raw ab-
sorbance spectra were enhanced using algorithms like mul-
tiplicative scatter correction (MSC), baseline linear correc-
tion (BLC), and their combinationMSC+BLC. The original
and enhanced spectral data in .unsb and .xlsx formats for
predicting two key internal quality traits - total acidity (TA)
and vitamin C content. Model performances were evalu-
ated against reference TA and vitamin C values measured
by standard methods, using metrics such as coefficient of
determination (R2), correlation (r), root mean square error
(RMSE), and residual predictive deviation (RPD).

4.2.8 Cocoa beans

The dataset in [55] contains NIR absorbance spectra (1000-
2500 nm) with 32 co-added scans at 0.2 nm resolution
for a total of 72 bulk samples of intact cocoa beans, with
each sample amounting to 50g. The spectra data is pro-
vided in both .xlsx and .unsb file formats. For each sample,
the actual moisture content (%) and fat content (%) were
measured using standard laboratory methods like thermo-
gravimetry and Soxhlet extraction, respectively. The mea-
sured moisture content ranged from 6.74% to 12.08% with
a mean of 9.04%, while the fat content ranged from 35.26%
to 45.75% with a mean of 40.32%.

4.2.9 Vis-NIR spectra for sugarcane across multiple
spectrometers

This dataset in [56] provides Vis-NIR absorbance spec-
tra and corresponding chemical reference data for 60 sug-
arcane samples, which were analyzed using 8 different
spectrometers. These include one laboratory spectrome-
ter (LabSpec 4) and seven micro-spectrometers (NIRscan
Nano, F750, MicroNIR1700, MicroNIR2200, NIRONE
2.2, SCIO, TellSpec). The spectral ranges covered span
from 350-2500 nm for the LabSpec 4, while the micro-
spectrometers capture narrower ranges, such as 1750-2150
nm for the NIRONE 2.2 device. The reference chemical

data encompasses total sugar content (ranging from 1.1-
51% dry matter), crude protein content (0.9-9.6%), acid
detergent fiber (26-59.3%), and in-vitro organic matter di-
gestibility (13-66.6%). This open-access dataset facilitates
comparing prediction performance across the various spec-
trometers employed.

4.2.10 Enhanced Vis/NIR spectral dataset of intact
Cucurbitaceae fruits

The dataset in [57] comprises Vis/NIR absorbance spectra
(381-1065 nm) of 300 samples from 6 Cucurbitaceae fruit
types, including zucchini, bitter gourd, ridge gourd, melon,
chayote, and cucumber. The spectra were acquired using
a NirVana AG410 portable spectrometer, with each sample
scanned 6 times. The data is provided in .xls and .unsb for-
mats. Reference data on soluble solids and water content
were determined by standard wet chemistry methods.
Discussion: Development insights
Analysis of existing public NIR datasets in the food indus-
try reveals a clear trend: prioritizing nutritional indices and
product quality. This trend reflects economic development
goals through enhancing nutritional value and optimizing
production processes. However, a notable gap exists - the
relative scarcity of data related to food safety factors, par-
ticularly in identifying chemical toxins and other hazards.
Based on the above survey, to the best of our knowledge,
there are currently no relevant public NIR datasets. This
could be due to some factors: the high cost of preparing
absolutely safe samples for reference, the cost of chemicals
for testing and measuring unsafe levels, the sensitivity of
data related to food contamination, and the technical chal-
lenges of detecting low concentrations of substances using
NIR methods.
The first approach to closing this gap is to promote the cre-
ation, development, and sharing of NIR spectral datasets
through active partnerships with food safety regulatory
bodies. Through one project supported by the People’s
Committee, we are currently collecting NIR spectral data
in collaboration with regional food safety authorities to
build comprehensive datasets covering 19 common chem-
ical residues found in daily food products, following Min-
istry of Health standards. This NIR data is validated
through independent testing using traditional chemical ref-
erence methods. This data collection strategy aligns with
regulatory requirements and enables standardized datasets
for market surveillance while advancing ML applications
in food quality.
The second approach is to improve small food safety
datasets, creating richer, larger-scale, and more valuable
datasets. Methods such as data enrichment with Generative
Adversarial Networks (GANs) and spectral diffusion mod-
els that can generate synthetic spectra are untapped poten-
tial directions. This approach can increase both the quan-
tity and quality of available data, partly addressing the diffi-
culty of high cost in collecting spectral data related to chem-
icals and chemical residues in food. This will support the
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development of comprehensive, rapid, and non-destructive
analytical methods, bringing double benefits: economic de-
velopment in parallel with consumer health protection.
In these recent datasets containing over 1000 spectra, tech-
niques are mainly in traditional ML, such as PLS for [50]
in [58], PLS-DA, SVM, ANN or combine methods Ran-
dom Subspace Discriminant Ensemble (RSDE) for [49] in
[59]. In [59], RSDE demonstrated superior performance
with over 95% classification accuracy. Its innovative en-
semble architecture combines multiple submodels through
random subspace projection and majority voting, deliver-
ing enhanced accuracy and reliability while inherently re-
ducing noise sensitivity and overfitting risks. The trend
across studies shows a shift from single methods to ensem-
ble and hybrid approaches for handling complex spectral
data. Another instance, a milk composition study using
NIR transmittance spectra [45] showed that combining SO-
PLS with appropriate preprocessing improved prediction
accuracy by 5-25%. While these studies demonstrated the
effectiveness of hybrid approaches, they examined differ-
ent food products under varying conditions, making direct
comparisons challenging. Notably, DL approaches were
not extensively explored, suggesting potential opportuni-
ties for investigating modern architectures like CNNs and
transformermodels that have proven effective in other com-
puter vision and spectral analysis applications. Further re-
search exploring traditional and DL techniques across stan-
dard datasets would be valuable to establish their relative
effectiveness and generalizability.

4.3 Pre-processing and wavelength selection

While deep learning has developed increasingly, traditional
MLmodels still dominate in NIR tasks. In this context, data
preprocessing and feature selection are two commonly ex-
ploited factors, improving the quality of input data, reduc-
ing data dimensionality, extracting important information
from NIR spectra, and enhancing the performance of mod-
els. This review focuses on the recent trends and notable
developments in data preprocessing and feature selection
for NIR spectral analysis in the last few years.
The identification of recent advances in preprocessing and
wavelength selection methodologies was conducted sys-
tematically and compared with established baseline meth-
ods (as in Figure 4).

4.3.1 Pre-processing

Pre-processing of NIR data is important to improve model
performance. These common techniques have been shown
in [25, 44], mainly including noise reduction, baseline
correction, resolution enhancement, centering, smoothing,
derivative, de-trending, and scaling methods. Most stud-
ies apply only one or two pre-processing methods, chosen
based on experience rather than a systematic assessment of
optimal methods. This is a highly complex process that re-
quires expert knowledge to select the most appropriate pre-

processing method for each specific dataset. Choosing the
wrong pre-processing method can lead to the loss of im-
portant information or add more unwanted noise, thereby
negatively affecting model performance. Therefore, devel-
oping a systematic approach to evaluate and select optimal
pre-processing techniques for NIR spectrum data is an im-
portant direction for future research.

Recently, the trend in NIR spectral data pre-processing
has seen significant advancements, particularly towards au-
tomation and optimization of procedures. Methods such as
Synergy Adaptive Moving window algorithm based on the
Immune Support Vector Machine (SA-MW-ISVM) [62],
Automatically generating pre-processing strategy (AgoES)
[65], and Sequential preprocessing through ORThogonal-
ization (SPORT) [66] have been developed to automate the
selection and combination of optimal pre-processing meth-
ods, thereby reducing manual intervention and experimen-
tation time. Although the Self-expansion Full Information
Optimization strategy (SFIOS) [57] is not entirely auto-
matic in pre-processing selection, it nevertheless provides
a comprehensive optimization strategy that includes pre-
processing, as in Figure 5. Simultaneously, the trend of
combining multiple pre-processing methods, as in Table 3,
such as Savitzky-Golay (SG) with Standard Normal Variate
(SNV), has become popular to leverage the advantages of
each method. Researchers in [65] developed strategies to
find optimal pre-processing pipelines, evaluating 150 dif-
ferent combinations of 16 common techniques. Similarly,
another study [64] explored an automated method to com-
bine up to 4 out of 9 pre-processing types for NIR data of
coconut milk. Using various models (Multi-Layer Percep-
tron (MLP), k-Nearest Neighbors (KNN), and Partial Least
Squares (PLS)), they achieved the best results with KNN
on Micro-NIR data, obtaining a classification accuracy of
0.97 and a regression RPD of 16.108. Both studies [64,
65] emphasize the importance of automated optimization in
pre-processing pipelines, as no single method consistently
outperforms others across all scenarios.
Notably, there is a close integration between pre-processing
and machine learning algorithms, as demonstrated in SA-
MW-ISVM, where both pre-processing and SVM param-
eters are optimized simultaneously. Similarly, ensemble
learning techniques are widely applied, as in AGoES and
SPORT, to combine various pre-processing models. Addi-
tionally, many methods focus on selecting relevant spectral
variables, thus contributing to dimensionality reduction and
improving model performance.
Not limited to a single data type, new methods have been
developed with adaptability for various data types, includ-
ing both solid and liquid data, as well as spectral types be-
yond NIR. Moreover, the trend of sharing open-source pre-
processing algorithms is increasing, thereby enabling the
research community to continue developing and improving
these methods. Interestingly, while many methods focus
on large datasets, some approaches like Extended Multi-
plicative Signal Augmentation (EMSA) emphasize improv-
ing performance on smaller datasets, meeting the needs of
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Table 3: Preprocessing methods and their applications
Preprocessing
methods

Single Combine Remarks

SG smoothing,
MSC, SNV, 1st
Der, 2nd Der [60]

x Multiple combinations
of SGwith other meth-
ods

SG alone or combined with SNV gave the best re-
sults for most models; Improved classification accu-
racies compared to raw spectra; SG+SNV optimal for
predicting most physicochemical properties; Prepro-
cessing crucial for developing robust NIR models for
melon seed powder authentication

SM, DF, NM, CT,
DE [61]

x Multiple schemes
from multiple meth-
ods

SFIOS auto-optimization strategy combines meth-
ods, and provides statistical info; en-iViSSA en-
semble improves model performance; DF highlights
spectral info; CT and DE good for solid samples;
MSC and SNV minimize scattering effects; Open
source

SG smoothing, SG
derivatives, MSC,
SNV, Autoscale,
Normalization
[62]

x Multiple schemes
from 6 methods

SA-MW-ISVM algorithm optimizes preprocessing,
wavelength selection, and SVM parameters simulta-
neously; Improves prediction accuracy by up to 44%
compared to PLS; Selects relevant wavelengths, re-
ducing variables to ∼30% of full spectrum; Chooses
appropriate preprocessing combinations; Applicable
to NIR and other spectroscopy data

SG, EMSC,
EMSA, Batch Aug
[63]

x Multiple schemes
from 4 methods

EMSA can replace pre-processing for CNNs; Combi-
nation of pre-processing and augmentation improves
results for conventional classifiers on small datasets;
CNNs benefit from traditional pre-processing; Aug-
mentation especially beneficial for small datasets

BSO3, 1st Der,
2nd Der, SNV,
MSC, MS, SG
filter, SS [64]

x Multiple schemes
from 9 methods

Automatic strategy combines preprocessing and ML
hyperparameter tuning; Improves classification (up
to 98% accuracy) and regression (RPD up to 16)
for coconut milk adulteration detection using FT-NIR
and Micro-NIR

Baseline cor-
rection, Scatter
correction, Scal-
ing [65]

x 150 combinations
from 16 single meth-
ods

AGoES automatically generates and evaluates all
preprocessing combinations; Different optimal com-
binations are found for each ML algorithm and prop-
erty predicted; Improved model performance com-
pared to raw spectra for most cases; SVM with
AGoES preprocessing performed best overall

SG smooth-
ing/derivatives,
SNV, VSN [66]

x Multiple combinations
via SO-PLS

SPORT method automatically combines and selects
optimal preprocessing sequence; Outperformed sin-
gle preprocessing and stacking approaches; Selected
parsimonious combinations of 2-3 methods; Order of
combination had minor impact on performance

many practical applications.
Discussion: Development insights
Effective preprocessing depends on the type of data. How-
ever, the variety of handheld measurement devices avail-
able today, as discussed in Section 4.1, and the rapid de-
velopment of deep learning raise questions about the fu-
ture role and necessity of data preprocessing. Possible re-
search directions include: (1) more flexible preprocess-
ing automation, adapting to different types of data, serv-
ing complex multi-class classification problems in prac-
tice, such as classifying unsafe fruits and vegetables in

food safety inspection, (2) developing preprocessing meth-
ods suitable for many different measuring devices, aiming
at a model that can transfer technology between localities
with asynchronous devices, and (3) evaluating if the need
for preprocessing, with fluctuating data in different mea-
suring environments, such as markets and supermarkets,
where humidity, light, and temperature can all affect mea-
surement values, thereby affecting the effectiveness of ma-
chine learning models.
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Figure 5: The optimal preprocessing scheme of SFIOS [61]

4.3.2 Wavelength selection

Wavelength selection is critical for NIR analysis. By iden-
tifying the most informative spectral regions, it simplifies
complex data, improves model performance, and focuses
on key information, as in Table 4, 5. These methods are
categorized by their approach and can be broadly grouped
as follows:

1. Filter methods utilize statistical criteria to evaluate
the relevance of individual wavelengths to the target
variable, including Variable Importance in Projection
(VIP), Correlation-based Feature Selection (CFS), Re-
lief, Fisher score, and Chi-squared test;

2. Wrapper methods assess the quality of wavelength
subsets based on the performance of a prediction
model, such as Genetic Algorithm (GA), Successive
Projections Algorithm (SPA), Recursive Feature Elim-
ination (RFE), Sequential Forward Selection (SFS),
and Sequential Backward Selection (SBS);

3. Embedded methods integrate feature selection within
the model-building process, including Least Absolute
Shrinkage and Selection Operator (LASSO), Elastic
Net, Ridge Regression, Random Forest, and Compet-
itive Adaptive Reweighted Sampling (CARS);

4. New hybrid methods combine the strengths of differ-
ent approaches, such asMulti-Feature Extraction com-
bined with LASSO (MFE-LASSO), Maximal infor-
mation coefficient - Successive projections algorithm
combinedwith Extreme learningmachine - Genetic al-
gorithm (MIC-SPA-GA-ELM), and Beluga whale op-
timization with Iterative variable subset optimization
(BWO-IVSO).

Each method has its strengths and limitations, making it
suitable for specific data types and analytical objectives.
Filter methods efficiently screen large variable spaces to
rank features. For instance, VIP was used to select 13 key
wavelengths out of 209 initial variables for adulterant de-
tection in quinoa flour [67], improving the R2

p from 0.94 to
0.98 and reducing RMSEP from 3.04% to 1.60%. Wrapper
methods, such as GA and SPA, directly optimize subsets
based on model performance. In a study on durian fruit
quality assessment [19], GA selected 23 wavelengths for
dry matter prediction and 19 for total soluble solids, im-
proving the model’s accuracy. Hybrid methods combine
filter and wrapper approaches for robust performance, as
seen in the MIC-SPA-GA-ELM [68] combination used for
tobacco and corn samples, which showed the best accuracy
and robustness. However, most techniques retain spectro-
scopic variables related to key functional groups and struc-
tural chemistry to develop broadly applicable, physically
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interpretable models, as in Table 5.
Wavelength selection can also be divided into interval

or peak selection, as in Figure 6. Peak selection involves
choosing specific, individual wavelengths that are most in-
formative. For example, four peaks (1428, 1704, 1892,
1912 nm) were identified as crucial in a vineyard water
status prediction study [69]. On the other hand, interval
selection chooses continuous ranges of wavelengths. In
the same vineyard study, three intervals (1402-1508, 1676-
1750, 1870-1926 nm) were selected. This approach can be
particularly useful when certain regions of the spectrum are
known to be associated with specific molecular structures
or properties of interest.
The current trend is to combine multiple variable selection
methods to optimize results. For instance, the BWO-IVSO
approach applied in aflatoxin B1 analysis in peanuts sig-
nificantly improved model performance compared to using
the full spectrum [72]. Another example is the two-step ap-
proach using RReliefF and MIC, followed by Elastic Net,
for azodicarbonamide detection in wheat flour [74]. Be-
sides, recent studies also emphasize the importance of opti-
mizing model parameters. Algorithms like Harris Hawks
Optimization (HHO) and Rime Optimization Algorithm
(RIME) have been used to fine-tune parameters of models
such as Kernel-based Extreme Learning Machine (KELM),
significantly improving model performance [78].
The number of selected wavelengths or spectral regions

typically varies based on the complexity of the sample and
the specific analytical objectives. For instance, 18 wave-
lengths were selected for sugar in tobacco leaves, while 24,
34, 26, and 16 wavelengths were chosen for moisture, oil,
protein, and starch in corn, respectively [68]. In some cases,
a few carefully selected wavelengths can provide compara-
ble or even superior results to models using the full spec-
trum, while significantly reducing computational require-
ments. Discussion: Development insights
Wavelength selection is a popular method in NIR spectral
processing. This is based on the interpretability of the re-
sults, which are related to the functional groups represent-
ing the sample. Although this method is effective, as with
preprocessing, whether wavelength selection is necessary
or using the raw data itself with deep learning architectures
is more effective needs to be further compared.
Combining both methods is also a possible direction for de-
velopment. This method takes advantage of both the non-
linear learning capabilities of the neural network and main-
tains the interpretability of the final model.

4.4 Advanced NIR food spectral analysis
techniques

4.4.1 Traditional machine learning

Traditional ML methods play a crucial role in NIR spec-
tral analysis, focusing on addressing multicollinearity is-
sues and improving generalization capabilities. In a typi-
cal pipeline, these techniques involve data pre-processing,

Figure 6: Wavelength selection methods comparison: (a)
Manual VIP-based selection after preprocessing, (b) Inter-
val selection approach, and (c) Peak selection method high-
lighting key wavelengths and bandwidths [69]

feature selection/ extraction, and applying traditional ML
algorithms to model the selected features and generate out-
puts. Popular techniques include PCA, PLS, ELM, SVM,
SVR, DT, and RF. These methods concentrate on extract-
ing important features, minimizing data redundancy, and
building effective predictive models for various NIR appli-
cations. The recent highlights of traditional ML on NIR
spectra largely lie in the improvements in pre-processing
strategies as well as wavelength selection, and the effective
feature extraction methods mentioned earlier.
However, traditional methods often face limitations in
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Table 4: Wavelength selection methods for NIR spectra (1)
Task Dataset Variable

Selection
Methods

Selected
Wavelengths

Results Remarks

Quinoa
flour
adulter-
ation
[67]

54 samples,
941-1674 nm,
209 vars

VIP 13 wave-
lengths

Initial (209 vars): R2
p=0.94,

RMSEP=3.04%. Selected
(13 vars): R2

p=0.98, RM-
SEP=1.60%

PLSR model im-
proved for quinoa
flour adulteration
prediction

Vineyard
water
status
[69]

288 samples,
1200-2100
nm, 501 vars

Interval,
Peak, IPLS

3 intervals:
1402-1508,
1676-1750,
1870-1926
nm. 4 peaks:
1428, 1704,
1892, 1912
nm

Initial (501 vars): R2
p=0.84,

RMSEP=0.167 MPa. Se-
lected (9-33 vars): R2

p=0.77-
0.78, RMSEP=0.186-0.201
MPa

3 methods for
key wavelengths,
simplified model,
comparable accu-
racy

Durian
quality
[19]

278 samples,
860-1750 nm

SPA, GA,
VIP

GA: DM 23,
TSS 19wave-
lengths

Full: R2=0.83, RM-
SEP=4.96% (DM); R2=0.81,
RMSEP=3.71% (TSS).
Selected: R2=0.85, RM-
SEP=4.50% (DM); R2=0.66,
RMSEP=5.15% (TSS). Accu-
racy: 94.20%

3 methods im-
proved DM and
TSS prediction, GA
best

Robust
NIR
model
[68]

Corn: 80,
1100-2498 nm

LARS,
CARS,
SPA, UVE,
MIC-
combined

24 (mois-
ture), 34
(oil), 26
(protein), 16
(starch)

MIC-SPA-GA-ELM: Best ac-
curacy, robustness

Combined methods
improve model ac-
curacy, stability

S-
ovalbumin
in eggs
[70]

150 samples,
900-1700 nm,
390 vars

SPA, IRIV SPA: 16,
IRIV: 14

PLSR (16): R2
c=0.90, RM-

SECV=8.92%,R2
p=0.84, RM-

SEP=9.98%. PLSR (14):
R2

c=0.91, RMSECV=8.44%,
R2

p=0.86, RMSEP=9.33%

IRIV-selected (14)
PLSR best for
S-ovalbumin pre-
diction

Adaptive
PLS
[71]

Corn: 80,
2498-1100
nm. Wine: 44,
900-5000 cm-1

CARS,
MCUVE,
LARS,
ABUSE

Corn: 4
regions.
Wine: 4
wavelengths

ABUSE PLS: Corn (25):
RMSECV=0.003, RM-
SEP=0.004. Corn (26):
RMSECV=0.009, RM-
SEP=0.013. Wine (4): RM-
SECV=5.12, RMSEP=4.66.
Wine (3): RMSECV=5.13,
RMSEP=4.63

ABUSE selects
key peaks, best
performance, fewer
variables, improved
accuracy, reduced
time

Aflatoxin
B1 in
peanuts
[72]

100 samples,
955-1702 nm,
128 vars

IVSO,
BWO-IVSO

IVSO: 32,
BWO-IVSO:
18

SVM (full): RM-
SEP=31.4602, Rp=0.9608,
RPD=3.6799. SVM
(IVSO): RMSEP=30.4587,
Rp=0.9633, RPD=3.8009.
SVM (BWO-IVSO): RM-
SEP=24.6322, Rp=0.9761,
RPD=4.6999

BWO-IVSO re-
moves redundancy,
noise, enhances
AFB1 analysis
accuracy

learning complex and nonlinear features when dealing with
complex and high-dimensional NIR spectral data. This
leads to the need for deep learning approaches, which can
automatically extract complex features and efficiently pro-

cess high-dimensional data, thereby improving accuracy
and generalization capabilities in many NIR spectral anal-
ysis tasks.
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Table 5: Wavelength selection methods for NIR spectra (2)
Task Dataset Variable

Selection
Methods

Selected
Wavelengths

Results Remarks

Dual-
sPLS
NIR
[73]

Rice: 447,
12481-3595
cm−1, 1153
vars

PLS, iPLS,
SiPLS, mw-
PLS

149 optimal
vars

SiPLS (149 vars): RMSEP re-
duced 0.2284 to 0.1952

Variable selection
improves model,
saves computation
time

ADA in
wheat
flour
[74]

101 samples,
0-300 mg/kg,
7012 vars

RReliefF,
MIC, EN

Two-step:
500, then 40

PLSR (7012): RM-
SEP=2.53%, r=0.975.
PLSR (500 MIC): RM-
SEP=1.32%, r=0.992.
PLSR (40 MIC+EN): RM-
SEP=0.78%, r=0.997

MIC+EN elimi-
nates irrelevant
vars, retains key
info, improves
accuracy

Talcum
in wheat
flour
[75]

123 samples,
1050 vars

EN, GA EN+GA: 55 EN+GA (55/1050): GBDT:
R2=0.9778, RMSEP=0.8905,
RPD=6.8099

Detects low talcum
concentrations in
wheat flour

GBM-
PLS for
corn
[76]

120 samples, 7
countries, 867-
2535 nm, 949
vars

RC, CARS,
XGBoost,
LightGBM,
CatBoost

Moisture: 6
(CatBoost).
Protein: 6
(LightGBM)

Best: Moisture -
R2

V =0.97, RMSEV=0.45%,
RPDV=6.20. Protein -
R2

V =0.82, RMSEV=0.51%,
RPDV=2.41

GBMs good for
wavelength selec-
tion. CatBoost best
for moisture, Light-
GBM for protein.
SHAP identified
key wavelengths

Straw-
berry
SSC
[77]

630 samples.
Reflectance:
600-1080
nm (949).
Transmittance:
600-950 nm
(805)

SI, SPA,
UVE,
CARS

Transmittan-
ce (CARS):
33

Best (Transmittance
CARS-PLS): Rp=0.928,
RMSEP=0.412 °Brix,
RPD=2.670

Transmittance with
CARS best. 3
strawberries/sec.
More research
needed

Zeara-
lenone
in wheat
(CSA-
NIR)
[78]

131 samples,
901-1701 nm,
228 vars

VCPA,
BOSS,
CARS

CARS: 107
(best)

Best (CARS-RIME-
KELM): R2

p=0.9900, RM-
SEP=18.4610 µg/kg

CARS best. RIME
improved KELM.
CSA-NIR effective
for zearalenone
detection

Zeara-
lenone
in wheat
(FT-
NIR)
[79]

116 samples,
10,000-4000
cm−1, 3112
vars

CARS,
SVM-RFE,
MFE-
LASSO

MFE-
LASSO:
38 (best)

Best (MFE-LASSO-
PLS): R2

p=0.9545, RM-
SEP=18.6442 µg/kg,
RPD=4.3198

MFE-LASSO best.
FT-NIR+MFE-
LASSO-PLS
effective for zear-
alenone detection

4.4.2 Deep learning architecture

In NIRS analysis, DL architectures have demonstrated
great potential in enhancing the efficiency and accuracy of
analytical processes. Each architecture possesses unique
operational mechanisms and advantages suitable for differ-
ent challenges in NIR analysis, as shown in [25]. Stacked
Autoencoders (SAE) excel at learning low-dimensional
representations of input data, effectively reducing noise
and focusing on essential information. Variational Autoen-

coders (VAE) function as generative models capable of pro-
ducing new samples, proving valuable for data augmenta-
tion. CNN are adept at learning local features of NIR data,
while RNN process NIR data as time series, capturing se-
quential relationships. ELM show high efficiency in sce-
narios with limited training samples, and GAN can gener-
ate new training data, addressing data scarcity issues. A
thorough understanding of the mechanisms and advantages
of each architecture enables researchers to select the most
appropriate method for specific applications in NIR analy-
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sis, ultimately leading to more accurate and reliable results
in this crucial field of spectroscopy. In this study, we focus
only on recent notable DL research and the salient value
points not discussed in previous review articles. In partic-
ular, papers that have comparisons with traditional ML are
prioritized, as in Table 6, 7, 8.

Firstly, DL models achieve superior performance over
traditional ML methods in NIRS analysis through their
innovative architectures such as automatic hierarchical
feature extraction, attention mechanisms, deep temporal
learning via recurrent networks, and intelligent feature fu-
sion through dense connections, enabling more accurate
classification, regression, and anomaly detection tasks.
Previously, many DL studies were done without compar-
ison with traditional methods that have achieved high per-
formance. This has received more attention recently. These
results confirm the potential of DL in enhancing perfor-
mance for regression, classification, and anomaly detection
tasks in NIR spectral analysis, opening up possibilities for
wide-ranging applications across fields requiring high ac-
curacy and reliability.
In classification tasks, for instance, Convolutional Neural
Network-Attention (CNN-ATT) achieved 100% accuracy
in categorizing chickpeas into HTC and ETC classes [84],
surpassing traditional SVM models. In this study, CNN-
ATT enhances performance through its attention block
mechanism that dynamically weighs and focuses on the
most relevant features in input data, allowing the network to
adaptively prioritize important spectral information while
filtering out less significant signals. Similarly, the Trans-
former in [92] achieves remarkable classification accuracy
(99.31%) through its three-layer encoder and multi-head at-
tention mechanism that effectively extracts semantic infor-
mation from both vibration and Vis/NIR spectral data while
dynamically adjusting feature weights via an attention fea-
ture fusion module to focus on the most relevant informa-
tion for apple moldy core detection, better than PLS-DA,
SVM, ELM. In another study, for corn variety recognition
[87], CNN reached 99.2% accuracy, outperforming tradi-
tional methods like KNN, SVM, and PLS by 25.78%. In a
more complex scenario of identifying adulterated beef and
mutton [85], ResNet with 2DCOS, as in Figrure 7, achieved
100% accuracy, significantly surpassing PLS-DA’s 32-50%
accuracy. A total of 1,878 synchronous and asynchronous
2D-COS spectra were obtained from transforming 1D spec-
tra across 23 diverse adulteration patterns (5 pure meats and
18 mixed samples with varying proportions of 25%, 50%,
and 75%) into 2D images to enhance resolution and ana-
lytical sensitivity while providing multi-dimensional infor-
mation through auto and cross-correlation peaks, enabling
accurate detection of both components and mixing ratios
in meat samples, with characteristic markers at different
wavelengths. Besides, ResNet achieves superior perfor-
mance through its innovative skip connection technique
that allows direct data flow between layers, effectively pre-
venting gradient vanishing and enabling faster, more accu-
rate training than traditional CNNswhen handling this com-

plex multi-class classification problem.
For regression tasks, DL models consistently showed su-
perior performance. For instance, in predicting lead con-
tent in oilseed rape [81], the Transfer Stacked Auto-encoder
(T-SAE) model achieved R2 values of 0.9215 and 0.9349
for leaves and roots respectively, outperforming PCA-
SVM and SAE. A highlight of this research is that T-SAE
achieves high performance through its dual-model trans-
fer mechanism, where network weights are initialized from
pre-trained SAE models while allowing deep feature layers
to be trained from scratch with random weights, effectively
combining information from both leaf and root spectral data
to achieve superior classification accuracy (98.75%) in lead
stress detection. In another study, for estimating soluble
solids content in pears [83], SpectraNet-32 achieved the
best results, surpassing classical methods like PLS, MLR,
and SVM. In predicting cooking time for chickpeas [84],
1D-CNN also outperformed traditional regressionmethods.
Regarding anomaly detection and complex analysis, DL
models also excelled. For pesticide residue recognition
on garlic chive leaves [90], 1D CNN achieved 97.9% ac-
curacy, outperforming traditional models. In analyzing
complex organic compounds [89], the proposed DL model
achieved R2 values between 0.9574 and 0.9996, improv-
ing upon PLSR and BPNN by significant margins. This
architecture achieves superior dynamic feature extraction
through its innovative dual-module design, as in Figure
8, where the short-term feature extraction utilizes multi-
rate dilated convolutions with dense connections to capture
short-term spectral patterns while the long-term feature ex-
traction employs Gated Recurrent Unit (GRU) enhanced by
temporal attention mechanism to comprehensively merge
features across all timesteps, complemented by a linear by-
pass path and two-stage quality regression approach that ef-
fectively prevents overfitting in NIR spectral analysis.
Thus, the outstanding advantages of DL architecture, such
as automatic feature extraction, attention mechanisms,
multi-scale temporal feature learning through dilated con-
volutions, comprehensive time-series analysis via GRU
networks, and intelligent fusion through dense connections,
have led to superior performance compared to traditional
ML approaches.
Second highlight, DL architectures demonstrate high flex-
ibility, successfully applied to various data types ranging
from 1D spectra to 2D images, 2D correlation spectra (2D-
COS), and even 2D dynamic data. These studies highlight
the versatility of DL architectures in NIRS, effectively pro-
cessing various data formats from simple to complex data,
and even enabling advanced techniques like transfer learn-
ing across different devices. This flexibility opens up the
potential for developing architectures in computer vision on
NIR spectral data transformed into image data formats.
There are many methods to convert 1D NIR spectra into
2D. First of all, the 2D-COS technique [82, 91], as in Fig-
ure 9 transforms one-dimensional NIR spectra into two-
dimensional correlation spectra (synchronous and asyn-
chronous) by calculating cross-correlations between spec-
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Table 6: Advanced DL Architectures for NIR food spectral analysis (1)
NIR Tasks Datasets Pre-

processing
Models DL Architec-

ture
Results

ADF and
IVOMD in
sugarcane [80]

60 NIR x
3 devices,
600/device,
3:1:1 split

WS, Inter-
polation,
SNV

1D-Inception-
ResNet, PLS

8 Conv, 4 FC,
Residual, Soft-
plus, Dropout
0.15

ADF/IVOMD:
R2 > 0.96, RMSEP
< 2.75. Outperformed
PLS, Successful inter-
device transfer

Lead content
in oilseed rape
[81]

500 samples
(leaves/roots),
3:1:1 split
(480.46-
1001.61 nm)

SNV, 1st
Der, 2nd
Der, PCA

T-SAE, SAE,
SVM, SVR,
PCA-SVM

Best T-SAE:
411-148-108-
60 (leaves),
410-140-91-56
(roots)

R2 = 0.9215, RMSEP =
0.0302 mg/kg (leaves);
R2 = 0.9349, RMSEP
= 0.0278 mg/kg (roots)
Outperformed PCA-
SVM, SAE; successful
transfer learning

Total phenolic
content in bo-
letes [82]

187 samples (3
species), 90%
model, 10%
valid

SNV, HCA,
Folin-
Ciocalteu

ResNet, 2D-
COS, SVM,
PLS-DA

12-layer
ResNet, identity
& conv blocks,
BatchNorm,
ReLU

100% accuracy (train &
test). Outperformed tra-
ditional methods, rapid
& non-destructive

SSC and temp
in ”Rocha”
pear [83]

3300 spec-
tra (1650
pears), 499.73-
1101.83 nm, 5
valid sets

QNV,
Savitzky-
Golay
(1st &
2nd), PLS
wrapper
(BVE-PLS),
PLS-VIP

SpectraNet-
32/53, Deep-
Spectra, PLS,
MLR, SVM,
MLP

SpectraNet-
32: 32-layer
ResNet, 3
Residual Units,
BatchNorm,
GELU, Global
Avg Pooling,
Dropout

Best: RMSEP = 1.08%,
R2 = 0.58 (SSC).Outper-
formed classical meth-
ods, predicted SSC &
temperature, 8000 spec-
tra/s

Chickpea
HTC/ETC
classification,
Cooking time
prediction [84]

864 seeds (8
varieties), 900-
2500 nm

SNV, 1st
and 2nd
derivatives;
CARS,
IRIV, CNN-
FS

PLSDA, SVC,
CNN-ATT,
1D-CNN

CNN-ATT:
ATT block,
3 1D conv, 2
dense, SoftMax.
1D-CNN: 1
input, 1 conv, 4
dense, 1 output

SVC & CNN-ATT:
100% acc (full spec-
trum). 1D-CNN:
R2

p = 0.880, RMSEP
= 0.662 (cooking time)
Non-destructive, rapid
detection. Effective for
both classification and
prediction

Adulterated
beef/mutton
ID [85]

1878 samples,
0-100% adul-
teration, 400-
2500 nm

Raw, FD,
SD, MSC-
SG

PLS-DA,
ResNet with
2DCOS

ResNet: 12
hidden layers,
ReLU, global
avg pooling

ResNet+2DCOS: 100%
acc. PLS-DA: 32-50%
acc. 2DCOS enhances
spectral resolution.
ResNet extracts 2DCOS
features effectively.

Subsurface
bruises in
plums [86]

1125HSI, 430-
1000 nm

Standar-
dization,
Data aug-
mentation;
PCA (10
wave-
lengths)

HSCNN,
ResNet, 3D-
CNN, PLS-DA

HSCNN.
ResNet:
Adapted for
HSI. 3D-CNN:
3 conv, 3 max-
pool, 3 batch
norm, global
avg pool, 2
dense

Best: HSCNN (full
spectrum), F1 90%.
3 wavelengths: F1
89%. Detected invisible
bruises. Reduced to 3
wavelengths with similar
performance
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Table 7: Advanced DL Architectures for NIR food spectral analysis (2)
NIR Tasks Datasets Pre-

processing
Models DL Architec-

ture
Results

Corn variety
recognition
[87]

450 NIR (5
varieties), 2:1
split, 11542-
3940 cm-1

DT for
baseline
drift; CARS
(114/1845
wave-
lengths)

CNN-LeNet-5,
BP, KNN,
SVM, PLS

3 Conv: 32, 64,
128 kernels (7,
4, 4 windows).
3 Pool: Max
& Glob. Avg.
ReLU, Dropout
0.1, FC, soft-
max

CNN: 99.2% test acc.
Combining NIR, CNN
enables accurate, rapid
recognition; 25.78%
higher accuracy than
traditional models

Watermelon
SSC [88]

1440 Vis-NIR
(317-1117
nm), 60:30:10
split

PLSR:
SG+2nd
der. BPNN:
MSC

PLSR, BPNN,
1D-CNN

1D-CNN: 5
Conv1D, 3
MaxPool, Flat-
ten, 3 Dense,
BatchNorm,
Dropout 0.1

1D-CNN: R2
p = 0.97,

RMSEP=0.21. +14.1%
vs PLSR, +6.6% vs
BPNN High R2

p, Low
RMSEP. Features at
720, 810nm

Quality of
complex or-
ganics [89]

2D NIR,
1408 spectra
(12500-
3950 cm-1),
844:432:564
windows

SG (NIR).
SG+2nd der
for PLSR.
MSC for
BPNN

PLSR, BPNN,
Proposed DL

MDFE: SDFE
(3 dilated 2D
CNN) + LDFE
(GRU with
attention). Re-
gression: FC
(1024, 500),
ReLU, Batch-
Norm, Dropout
0.1

DL: R2=0.9574-0.9996,
RMSE=0.0013-0.4374.
+14.1% vs PLSR, +6.6%
vs BPNN. Short/long-
term dynamics, Dilated
CNN extracts multi-level
short-term features;
Temporal attention
redistributes GRU fea-
tures; Nonlinear fitting
of complex NIR-quality
mapping; Visualization
shows model extracting
relevant spectral bands

Pesticide on
garlic chives
[90]

SWIR HSI, 30
leaf spectra,
920-1700nm,
90:5:5 split

Mean filter
(SNR), Iso-
lated Forest
(outliers)

PLS, MLR,
BPNN, KNN,
LDA, NB, RF,
SVM, 1D CNN

1D CNN: 3
conv (3x1,
stride 2x1, pad
1), avg/max
pool, flatten,
2 FC (256,
128), 4-node
output, ReLU,
BatchNorm

97.9% test acc. Re-
call > 97.7%, AUC
> 0.99. 0.208 Ham-
ming loss (mixed).
vs KNN (91.2%),
LDA (77.5%), NB
(41.4%), RF (90.9%),
SVM (92.8%).Non-
destructive, Rapid, Out-
performed traditional
models, Exploiting
pixel-wise spectra for a
large dataset; Successful
mixed residue identifica-
tion

tral intensities ỹ(v1) and ỹ(v2) at wavelengths v1 and v2
as external perturbations (like geographical origins, storage
time) change. The synchronous spectrum reveals peaks that
change in the same direction through auto-correlation peaks
(diagonal) and cross-correlation peaks (off-diagonal), while
the asynchronous spectrum only shows cross-peaks indicat-
ing spectral changes from different molecular sources. This
technique is particularly valuable for NIR spectral analysis

when spectral peaks overlap due combinations, and com-
plex molecular interactions in food samples, as it improves
spectral resolution and helps distinguish overlapping fea-
tures that are not observable in one-dimensional spectra.
Unlike 2D-COS method which focuses on molecular inter-
actions through correlation analysis, the Gramian Angular
Difference Field (GADF) [93] converts one-dimensional
NIRS into two-dimensional images by first normalizing
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Table 8: Advanced DL Architectures for NIR food spectral analysis (3)
NIR Tasks Datasets Pre-

processing
Models DL Architec-

ture
Results

Wolfberry ori-
gin identifica-
tion [91]

NIR-HSI
(900-1700nm,
256 bands),
700 samples
from 5 re-
gions, 525:175
split

2D-COS
to resolve
overlap-
ping peaks.
CARS/IRIV/iVISSA
for wave-
length
selection.
GLCM
for texture
features

LDA, PLS-DA,
SVM, CNN

CNN: 3 conv
layers (16,32,64
filters), 3×3
kernel, ReLU,
BatchNorm,
MaxPool(2),
GAP, FC(128),
Dropout(0.2),
Sigmoid

CNN+iVISSA:
Acc=96.67%.
CNN+texture: 97.71%.
+9.71% vs PLS-DA,
+7.42% vs SVM. 2D-
COS resolves peaks,
iVISSA selects wave-
lengths, Texture features
improve accuracy

Apple moldy
core detection
[92]

Vibration
signals (100-
1500Hz) +
Vis/NIR (350-
1150nm), 725
samples (180
normal + 545
diseased) split
3:1:1

CEEMDAN,
Vibration
+ Vis/NIR
fusion

PLS-DA,
SVM, ELM,
MobileNet,
DMLPT

DMLPT:
3-layer Trans-
former Encoder
for each input,
AFF for fusion,
MLPwith resid-
ual connection.
Multi-head
attention

DMLPT+fusion:
Acc=99.31% (nor-
mal/moderate/severe:
100%). +11.03% vs
PLS-DA, +5.52% vs
MobileNet. Multi-modal
fusion and multi-head
attention excel at sever-
ity detection

Apple SSC
prediction [93]

Vis/NIR
transmission
spectra (589-
1120nm, 1468
bands), 1450
spectra from
290 apples,
1020:430 split

GADF,
SNV-UVE

PLS, MLR,
VGG16,
ResNet50,
ShuffleNetv2,
MobileViT

MobileViT:
Conv + Trans-
former hybrid,
CA mecha-
nism for spatial
features, multi-
head attention.
3 MobileNet
blocks, SiLU
activation

GADF-MobileViT:
R2=0.938,
RMSE=0.532. +6.6%
vs PLS, +2.1% vs
ResNet50. GADF en-
ables 2D transform,
CA enhances features,
Model focuses on key
bands

Tea quality
classification
[94]

NIR (1000-
1800nm,
800 points),
1000 samples
(50 grades,
21 brands),
750:250 split

SNV pre-
processing.
Transform
1D spec-
tra to 2D
pseudo-
images
(2×20×20)

PLS-DA, SVM,
RF, TeaNet
variants

TeaNet series: 3
conv/ residual/
inverted blocks,
BatchNorm,
ReLU, GAP,
FC. Feature
extraction +
classification

TeaResNet+SNV:
Acc=100%, TeaMo-
bileNet: 99.6%. +31.2%
vs SVM, +2.4% vs RF.
2D transform enables
CNN, SNV increases
variance, Models excel
at multi-category

Pb detection
in oilseed rape
[95]

FHSI 480-
980nm, 2400
samples (1200
per environ-
ment), 3:1 split

SNV pre-
processing,
T-SCAE
for cross-
environment
transfer

SVR with SPA/
CARS/ IRIV/
VISSA, SCAE,
T-SCAE

Pre-trained
SCAEs + ex-
tended layers
(822-423-301-
155)

T-SCAE+SNV:
R2=0.939,
RMSE=0.020. +6.51%
vs traditional. Transfer
learning enables cross-
environment prediction

spectral data to [-1,1], then transforming them into polar
coordinates through angular cosine encoding, and finally
generating a GADF matrix by calculating the sine differ-
ences of angular values between each pair of spectral points,
resulting in a matrix that preserves spectral relationships
while optimizing for pattern recognition andmachine learn-
ing applications, as in Figure 10. Different from 2D-COS,

which focuses on correlation analysis, and GADF, which
uses polar coordinate transformation, TeaNet’s approach
[94] simply transforms one-dimensional NIR spectra with
800 spectral points into two-dimensional pseudo-images
of size 2x20x20 through direct matrix reshaping, requir-
ing no complex mathematical calculations while still pre-
serving all spectral information and enabling spatial rela-
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Figure 7: 2D-COS combined with ResNet process for identifying adulterated beef and mutton [85]

tionship analysis through CNN’s convolutional operations
across spectral bands.
DL demonstrates superior performance across these di-

verse data types. For 1D spectral data instance, in water-
melon soluble solids content analysis [88], a 1D-CNN with
five convolutional layers effectively processed 1D Vis-NIR
spectra (317 to 1117 nm), achieving superior results com-
pared to traditional methods. Similarly, for corn variety
recognition [87], a CNN based on the LeNet-5 architecture
successfully handled 1D NIR spectra (11542-3940 cm−1),
achieving 99.2% accuracy.
With 2D spectral image data, the study on subsurface bruise
detection in plums [86] employed various CNN architec-
tures, including HSCNN and ResNet, to process 2D hy-
perspectral images (430-1000 nm). These models effec-
tively extracted spatial and spectral features, with HSCNN
achieving the best F1 score of 90% using the full spectrum.
For 2D dynamic spectral data, in the quality prediction of
complex organic compounds [89], a novel DL model was
designed to handle 2DNIR dynamic spectral matrices (time
x wavenumbers). This model incorporated multi-level dy-
namic feature extraction, including short-term (using di-
lated 2D CNN) and long-term (using GRU with temporal
attention) feature extraction, effectively capturing both spa-
tial and temporal characteristics of the spectral data. Ad-
ditionally, for transformed 2D data, in identifying adulter-
ated beef and mutton [85], researchers innovatively trans-
formed 1D spectral data into 2D-COS before feeding it

into a ResNet model. This approach achieved 100% ac-
curacy, demonstrating the potential of DL in processing
transformed spectral data. Finally, the study on quantitative
analysis of ADF and IVOMD in sugarcane [80] showcased
the ability of a 1D-Inception-ResNet to handle data from
multiple devices, achieving R2 > 0.96 and RMSEP <
2 for both devices, demonstrating successful inter-device
transfer learning.
The third highlight is the development of hybrid models
and specialized architectures that have significantly ad-
vanced NIR spectral analysis, leading to improved perfor-
mance across various tasks. These innovative approaches
demonstrate the potential of tailored deep learning solu-
tions in spectroscopy. These examples demonstrate how
hybrid models and specialized architectures are pushing the
boundaries of NIR spectral analysis, offering improved ac-
curacy, robustness, and applicability across diverse tasks
and data types.
Hybrid models combine DL techniques or integrate tra-
ditional methods with neural networks, leveraging the
strengths of multiple approaches. For example, the T-SAE
(Transfer Stacked Auto-Encoder) model used for lead con-
tent prediction in oilseed rape [81] combines transfer learn-
ing with auto-encoder architectures. This hybrid approach
achieved impressive results with R2 values of 0.9215 and
0.9349 for leaves and roots respectively, outperforming tra-
ditional methods. Another notable example is the multi-
level dynamic feature extraction model for quality predic-
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Figure 8: Framework of multi-level dynamic feature-based near-infrared quality prediction [89]

Figure 9: 2D-COS of wolfberries [91]

tion of complex organic compounds [89]. This hybrid
approach combined dilated 2D CNNs for short-term fea-
ture extraction and GRU with temporal attention for long-
term feature extraction, as mentioned above. The model’s
sophisticated architecture included three dilated 2D CNN
with varying dilated rates and kernel sizes, followed by a
GRU layer with temporal attention. Besides, specialized
architectures are designed to address specific challenges in
NIR spectral analysis, often incorporating domain knowl-
edge. The CNN-ATT model used for chickpea classifica-
tion [84] incorporated an attention mechanism specifically
designed to focus on relevant spectral regions. This model,
consisting of an attention block followed by three 1D con-
volutional blocks and two dense layers, achieved 100% ac-
curacy in classification.
Fourth highlight, transfer learning has emerged as a new
powerful technique in NIR spectral analysis, allowing mod-
els to leverage knowledge from one task or dataset to im-
prove performance on another. This approach is partic-
ularly valuable in scenarios with limited training data or
when dealing with complex spectral relationships.

Figure 10: GADF transformation [91]

Several studies in the provided table demonstrate the
effectiveness of transfer learning in various NIR appli-
cations. Inter-device transfer learning was successfully
implemented in [80], with a 1D-Inception-ResNet model
achieving consistently high performance across different
spectrometers (R2 > 0.96, RMSEP < 2.75). This ar-
chitecture combines the Inception module for extracting di-
verse features at multiple scales from spectral data with
Residual connections for efficient deep network training,
successfully enabling model transfer across three different
NIR spectrometers. Other studies have demonstrated ef-
fective applications of transfer learning in predicting lead
content in oilseed rape. Using a cross-sample transfer ap-
proach, research by [81] employed the T-SAE model to
predict lead content across different plant samples, achiev-
ing strong results for both leaves (R2 = 0.9215, RM-
SEP = 0.0302 mg/kg) and roots (R2 = 0.9349, RMSEP
= 0.0278 mg/kg). In terms of cross-environment transfer,
[95] developed the Transfer Stacked Convolutional Auto-
Encoder (T-SCAE) architecture, as in Figure 11 to create a
model that could work across different growing conditions.
By combining pre-trained SCAE models from both silicon
and silicon-free environments, this approach effectively ex-
tracted deep features for predicting lead concentrations in
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Figure 11: T-SCAE transfer network [95]

oilseed rape leaves, achieving excellent performance in the
target domain with an R2 of 0.9385, RMSEP of 0.02017
mg/kg, and RPD of 3.291. Additionally, spectral range
transfer was also illustrated in [86], with the HSCNNmodel
maintaining high performance (F1 score 89%) when reduc-
ing from full spectrum to just 3 wavelengths. The model
was trained using the AdamW optimizer with a decaying
learning rate strategy, and incorporated data augmentation
techniques including intensity changes and spatial transfor-
mations to prevent overfitting, underscoring the versatil-
ity of transfer learning across different analytical dimen-
sions. These examples highlight the versatility and power
of transfer learning in NIR spectroscopy, significantly en-
hancing the adaptability and generalization capabilities of
deep learning models in spectral analysis.
Discussion: Development insights
DL architectures demonstrate superior performance over
traditional ML methods in NIR spectral analysis through
advanced features like automatic hierarchical extraction,
attention mechanisms, temporal learning, and dense fea-
ture fusion, significantly outperforming conventional ap-
proaches with accuracies of 97-100% in various analytical
tasks (classification, regression, anomaly detection) across
diverse spectral data formats (1D spectra, 2D correlation
spectra, dynamic data). The development of hybrid mod-
els, specialized architectures, and effective transfer learn-
ing capabilities further enhances its robustness in handling
complex spectral relationships and limited data scenarios,
with proven success in cross-device (R2 > 0.96) and cross-
domain applications, marking a significant advancement in
spectroscopic analysis. In summary, DL has significantly
advanced NIR spectroscopy analysis through superior per-
formance, versatility in data handling, innovative architec-
tures, and effective transfer learning. However, several crit-
ical gaps remain that require further research.
Firstly, processing diverse data from multiple sources and
devices continues to be a challenge, necessitating the devel-

opment of more robust methods to ensure consistency and
accuracy.
Secondly, the interpretability of DL models in NIR spec-
tral analysis needs improvement, particularly in developing
specialized interpretation methods that incorporate expert
knowledge in chemistry and spectroscopy.
Lastly, efficient learning from limited data, especially in ap-
plications such as food quality assessment and hazardous
chemical detection, remains a significant challenge to be
addressed.
With ongoing data collection efforts through collaborations
with the People’s Committee and other governmental agen-
cies, coupled with the accumulation of diverse spectral
datasets from multiple devices and regions, as mentioned
in Section 4.2, ML and DL techniques will be comprehen-
sively evaluated on larger-scale, heterogeneous data. This
expanded evaluation scope will help address several key
challenges: processing diverse data from multiple sources
and devices to ensure consistency and accuracy, improving
DL model interpretability while incorporating domain ex-
pertise in chemistry and spectroscopy, and developing ef-
ficient learning strategies for limited but critical data sce-
narios like food quality assessment and hazardous chemical
detection.

5 Conclusion

This comprehensive review has analyzed recent advance-
ments in the application of machine learning to near-
infrared spectroscopy for food quality assessment. We have
identified significant trends across various aspects of this
field. In data collection, the trend towards using hand-
held or ultracompact NIR devices for direct on-site mea-
surements, combined with multiple devices to collect broad
NIR spectra, has significantly expanded the applicability of
this technology. Regarding pre-processing and wavelength
selection, automated and optimized processing techniques,
along with the trend of combining multiple methods, have
substantially improved model performance. In the field of
deep learning, specialized architectures, and hybrid models
have been developed, often outperforming traditional ML
methods in many NIR spectral tasks. Additionally, trans-
fer learning techniques have shown remarkable potential
in addressing challenges related to interdevice variability,
cross-sample analysis, and adaptation to new tasks or spec-
tral ranges.
However, significant challenges remain to be addressed.
Most notably, there is a lack of comprehensive datasets
for food safety applications, a need to improve the inter-
pretability of complex models, and the necessity to develop
efficient learning methods from limited data. Additionally,
processing diverse data from multiple sources and devices
remains a major challenge to be resolved.
Based on these findings, we propose three important re-
search directions for the future: Based on these research
directions, we propose three important directions for future
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research:

1. Develop larger and more diverse public datasets, with
a particular focus on food safety parameters. This
can be achieved through collaborations between food
safety regulatory authorities and support from local
government agencies to build NIR spectral datasets,
following Ministry of Health standards. This includes
collecting comprehensive spectral data accompanied
by reference concentrations validated through inde-
pendent laboratory testing.

2. Enhance machine learning models’ processing ca-
pabilities and interpretability for heterogeneous data
sources. This involves developing multi-level fusion
techniques for integrating data from different devices,
creating visualizationmethods formodel interpretabil-
ity, and establishing comprehensive cross-validation
strategies using stratified sampling and bootstrapping
techniques to ensure model reliability across diverse
operating conditions. These approaches require sys-
tematic testing across devices and environments to es-
tablish standardized protocols for real-world applica-
tions.

3. Develop intelligent automation frameworks that inte-
grate preprocessing selection, feature engineering, and
model optimization. These frameworks should adapt
to different device types and measurement conditions
while maintaining the interpretability of results. The
systems should include standardized evaluation met-
rics and clear protocols to enable seamless integration
across NIR platforms in real-world applications.

These proposals aim to establish standardized approaches
for NIR spectroscopy with machine learning, improving
both the efficiency and reliability of food quality assess-
ment processes. The implementation of these directions
will help bridge the gap between theoretical advances and
practical applications while addressing current challenges
in real-world deployment.
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