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Multi-hop networks are widely used due to their wide coverage and strong adaptability. However, 

multi-hop networks are prone to attacks and user privacy breaches when transmitting data between 

nodes. Therefore, a multi-hop network security protection strategy binding particle swarm optimization 

algorithm and ant colony algorithm was proposed. Support vector machine was utilized for data sorting, 

and the particle swarm algorithm was improved using inertia weight coefficients. The heuristic function 

and pheromone update strategy of ant colony algorithm was optimized, and the penalty factor and 

kernel function of support vector machine were optimized using fusion algorithm. The experimental 

results showed that the information exposure probability of the fusion algorithm decreased from the 

initial 0.35% to 0.10%, the detection accuracy was 2.9% higher than that of the second-best method, 

respectively, and the hazardous response time, disposal time, and root-mean-square error were faster 

than that of the second-best method by 19.9ms, 22.7ms, and -2.3ms. The running cost of the fusion 

algorithm was 210 datasets lower than that of the second-best method, and the average computation 

time was only 27.2ms higher than the normal support vector machine, and the time complexity was 

lower for all of them. From this, it can be concluded that fusion algorithms can effectively enhance the 

detection capability of abnormal data, reduce the probability of user privacy data exposure, decrease 

algorithm operating costs, and improve the response and handling speed of multi-hop networks when 

facing attacks. 

Povzetek: Predlagana je strategija varovanja večskokovnih omrežij, ki združuje algoritma optimizacije 

roja delcev (PSO) in kolonije mravelj (ACO), izboljšuje zaznavo anomalij ter zmanjšuje stroške in 

tveganja izpostavljenosti podatkov. 

 

1 Introduction 
Multi-hop relay technology is a wireless communication 

technology proposed by the United States in the 1970s, 

which forms a self-organizing network through mobile 

nodes and relay nodes. It has been widely used in 

communication systems such as satellite relay, 

microwave relay, and battlefield communication [1]. As 

mobile communication technology advances, multi-hop 

networks, which offer benefits like swift long-distance 

transmission speeds and extensive coverage, are gaining 

widespread adoption [2]. Multi-hop networks transmit 

data through multiple intermediate nodes, each of which 

can be a sender or receiver. Communication tasks can be 

completed between any two nodes, and even if a node or 

link fails, other paths can be used to complete data 

transmission [3-4]. Multi-hop networks can also 

communicate with distant nodes by changing the data 

transmission range of individual nodes [5-6]. However, 

due to the large number of nodes, multi-hop networks 

are vulnerable to attacks and can lead to the leakage of 

user privacy data. Existing multi-hop network security 

protection strategies have problems such as low 

accuracy in detecting irregular data, insufficient  

 

detection precision, and high operating costs. To address 

the security issues of multi-hop networks, Singh et al.  

proposed a new quantum atomic search optimization 

combined with blockchain to solve problems such as 

collusion attacks, latency, and lifecycle extension in 

wireless self-organizing networks. This scheme adopted 

quantum atomic search to choose the optimal relay point 

for complex multi-hop transmission, and performed data 

transmission on the blockchain to ensure system security. 

Experiments showed that the throughput of this method 

reached 91.5%, energy consumption was reduced to 

40%, end-to-end latency was reduced by 20.6%, and 

security performance was significantly improved [7]. 

Ezzati Khatab et al. proposed a machine learning relay 

assisted authentication method for dual hop multi-input 

multi-output systems to solve the authentication 

problem in wireless networks. This method used 

channel characteristics for end-to-end authentication, 

and to simulate actual situations, defective hardware 

was used for channel estimation. Experiments showed 

that this method significantly improved authentication 

performance, with authentication accuracy exceeding 90% 

in both single hop and multi-hop scenarios [8]. 
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Mahapatra et al. raised a novel bidirectional butterfly 

optimization algorithm grounded on clustering tree 

enhancement to solve the security matters of underwater 

wireless ad hoc networks. The algorithm designed 

clusters based on data routing protocols in the first stage, 

evaluated the trust value of each node using fusion rules 

in the second stage, and allocated secure channels for 

data transmission in the third stage. The test reflected 

that the packet delivery rate of this algorithm reached 

90%, the energy consumption was reduced to 0.14J, the 

network lifetime of 200 rounds was 732s, and the 

end-to-end delay was 0.12 s, which was significantly 

better than other algorithms [9]. Pattanayak et al. 

proposed a new decoding and forwarding protocol 

grounded on multi-hop hybrid radio frequency and free 

space optics for the data confidentiality capability of 

multi-hop networks. This protocol selected a received 

signal with high confidentiality capability at each hop, 

and each node in the system was attached to its 

subsequent nodes through parallel radio frequency and 

wireless optical communication connections. The 

experiment showed that the confidentiality interruption 

probability of this protocol was low, the strict positive 

confidentiality ability was high, and the confidentiality 

performance was better than other methods [10]. 

Altuwairiqi proposed a new multi-hop routing 

optimization scheme based on improved honey badger 

algorithm in order to solve the security and energy 

problems of multi-hop networks. The scheme used the 

Improved Honey Badger algorithm to select the optimal 

number of hops and utilized a trust model incorporating 

indirect and direct trust, data, integrity, and forwarding 

rate to achieve security-conscious multi-hop routing. 

Experiments showed that the total number of data 

received by this scheme under the same conditions was 

much larger than other methods and the information 

exposure probability was on average 3.47% lower than 

other methods [11]. Altowaijri et al. proposed an 

efficient multi-hop routing protocol in order to ensure 

the transmission efficiency and security of wireless 

sensor networks. This protocol considered rank-based 

next hop selection mechanism, selected the appropriate 

route for data exchange based on residual energy, 

extracted residual energy of all nodes and evaluated it 

based on connectivity. Experiments showed that this 

protocol outperformed the existing methods in terms of 

production time, time slot, communication loss, first 

node failure, and residual energy [12]. 

Tan et al. raised a new fusion way of particle 

swarm optimization (PSO) algorithm and ant colony 

optimization (ACO) algorithm for the initial parameter 

selection problem of ACO algorithm. This method 

applied PSO algorithm to practice the original 

parameters of ACO algorithm, and then used ACO 

algorithm to calculate the optimal path. The experiment 

indicated that the average route length achieved by this 

way was 473.25mm lower than traditional algorithms, 

and the average iteration number of the improved 

method was 17 times [13]. Zheng et al. proposed a new 

improved ACO load balancing algorithm to achieve 

flexible control and management of network traffic. 

This algorithm designed evaluation methods for server 

modules and interlinkage modules, using the Kent chaos 

model to mess with the transition probability of ant 

colonies. Tests proved that this way could validly 

prevent the algorithm from falling into local optima, 

with fast convergence speed and achieving good global 

load balancing [14]. 

In summary, existing methods have explored the 

security protection of multi-hop networks and the 

integration of PSO and ACO algorithms from various 

aspects. However, existing methods have problems such 

as low accuracy in detecting irregular data in multi-hop 

networks, insufficient detection accuracy, and high 

operating costs. Therefore, a multi-hop network security 

protection method combining PSO algorithm and ACO 

algorithm was proposed. The innovative fusion 

algorithm optimized the penalty factor (PF) and kernel 

function (KF) of support vector machine (SVM), 

improved the PSO algorithm using inertia weight 

coefficient, and optimized the initiation function and 

pheromone update strategy of ACO algorithm. The 

improvement method aims to enhance the accuracy of 

anomaly data detection in multi-hop networks, reduce 

the probability of information exposure when nodes are 

attacked, and decrease operating costs. This research is 

separated into three sections. The first section combines 

PSO algorithm and ACO algorithm for multi-hop 

network anomaly detection. The second part estimates 

the behaviour of the fusion algorithm. The third part is a 

generalization of this research and expectations for 

further exploration targets. 

Based on the above relevant studies, Table 1 is 

summarized, in which the research theme, main index 

methods, and shortcomings of relevant studies are 

summarized. 

 
Table 1: Summary of relevant information of relevant studies 

Docu Research theme Main index Method Insufficient 

Document [7] 
Solve the 

conspiracy attack 

Throughput, power 

consumption, and 

latency 

Quantum atoms search 

for relay nodes 

High degree of 

complexity 

Document [8] 
Multi-hop network 

authentication 

Authentication 

accuracy 

End-to-end verification 

of channel 

characteristics 

Rising network 

energy consumption 

Document [9] 
Wireless AD hoc 

network security 

Transmission 

efficiency, energy 

Two-way butterfly 

optimization algorithm 

The recognition 

accuracy is low 
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consumption and 

lifetime 

Document [10] 
Data privacy 

capability 

Information leakage 

probability 

Multi-hop hybrid RF 

and free-space optics 

The specific attack 

detection capability is 

insufficient 

Document [11] 

Multi-hop network 

security and 

energy 

consumption 

Information exposure 

probability and energy 

consumption 

Improved honey badger 

algorithm 

The calculation time 

is long 

Document [12] 

Wireless network 

transmission 

efficiency 

Power consumption 

and probability of 

communication loss 

Next hop selection 

mechanism based on 

rank 

Model running cost is 

high 

Document [13] 

ACO algorithm 

parameter 

selection 

Average path length 

The combination of 

PSO algorithm and 

ACO algorithm 

The improved model 

is more complex 

Document [14] 
Flexible control of 

network traffic 
Load balancing 

Kent chaos model 

optimization transition 

probability 

The detection 

accuracy of the 

improved method is 

low 

This study 

Security of 

multi-hop 

networks 

Information exposure 

probability, detection 

accuracy and response 

time 

Fusion of PSO 

algorithm and ACO 

algorithm 

/ 

 
Based on the above related research, although the 

current research explores the security protection of 

multi-hop networks and the fusion of PSO algorithms 

and ACO algorithms from various aspects, the existing 

methods have the problems of lower accuracy in 

detecting anomalous data in multi-hop networks, 

insufficient detection accuracy, and higher operating 

costs. Therefore, the research innovatively adopts 

support vector machine for data classification, uses 

inertia weight coefficients to improve the PSO algorithm, 

optimizes the heuristic function and pheromone 

updating strategy of the ACO algorithm, and adopts the 

fusion algorithm to find the optimization of the penalty 

factor and kernel function of the support vector machine. 

It can reduce the probability of user privacy exposure 

and improve the response speed. 

2 Methods and materials 

2.1 Improved PSO algorithm based on SVM 

for Multi-hop network anomaly detection 
When transmitting data in a multi-hop network, it 

needs to go through multiple intermediate nodes for 

forwarding, which gives attackers an opportunity. The 

traffic data passing through a running multi-hop network 

can be roughly divided into normal traffic data and 

abnormal behavior traffic data. Multi-hop network 

security detection essentially classifies the two types of 

data through a preset system. The research adopts the 

SVM algorithm, which is computationally simple, has 

fewer parameters, and has a faster learning speed, for 

multi-hop network anomaly detection. SVM can process 

both linear and nonlinear data simultaneously. When 

processing nonlinear data, high-dimensional mapping is 

required first to convert nonlinear data into linear data 

[15]. High dimensional mapping generates two parallel 

hyperplanes, and the larger the distance between the 

hyperplanes, the better the classification performance of 

SVM. The distance calculation of the hyperplane is 

shown in equation (1). 
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In equation (1), 
2


 means the distance of the 

hyperplane,   means the normal vector, T  represents 

a point in the hyperplane, x  represents the vector of 

that point, and b  represents the set threshold. When 

partitioning difficult to segment linear data, relaxation 

variables and PFs are introduced to determine the 

constraint conditions of the hyperplane [16]. The 

constraint conditions are shown in equation (2). 
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In equation (2),  1,1iy  − ,   represents the 

slack variable, C  means the PF of the algorithm, and 

n  represents the sample size. When misclassifications 

allowed by slack variables occur, the PF controls the 

degree of error occurrence. If the PF is large, SVM 

increases the penalty for misclassification to avoid 

misclassification. When the PF is small, the model 

sacrifices some class accuracy to improve generalization, 
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so it is essential to select the suitable PF grounded on 

various cases. In order to simplify the complexity of the 

algorithm, RBF with fewer parameter requirements is 

selected as the kernel function, and the calculation is 

shown in equation (3). 

( ) ( )2

1 2 1 2, expK x x x x= − −         (3) 

 

In equation (3), ( )1 2,K x x  represents the RBF 

kernel function,   represents the hyperparameters that 

determine the shape of the kernel function, 
1x  

represents the vector of point 1 on the hyperplane, and 

2x  represents the vector of point 2 on the hyperplane. 

The anomaly detection process of multi-hop network 

based on SVM is shown in Figure 1. 

 

Multi-hop network 

data acquisition

Data 

preprocessing
SVM training Anomaly data 

classification

Normal dataWhite listAbnormal dataAbnormal alarm

Training data set

 
Figure 1: Multi-hop network anomaly detection flow based on SVM 

 

In Figure 1, the data is first extracted from the 

multi-hop network, preprocessed, and then combined 

with the attack data into the training dataset. The training 

dataset is used to train an SVM, and the data to be 

detected is input into the SVM algorithm. Abnormal data 

is classified based on the decision function, with detected 

normal data being added to the whitelist. If abnormal 

data is detected, an alarm is issued. The study used PSO 

algorithm to reform the PF and KF size of SVM. On the 

basis of traditional PSO algorithm, inertia weight 

coefficients were added. By adjusting the size of inertia 

weight coefficients in real time, the initial global search 

capability and later local search accuracy of PSO 

algorithm were improved. A larger inertia weight is good 

for global search. It allows the particles to explore the 

solution space on a larger scale. This helps the algorithm 

to discover a wider range of potential solution regions at 

an early stage. A smaller inertia weight is more 

conducive to local search. It restricts the particle's motion. 

This allows the particles to focus more on refining the 

search in the current search region, and helps the 

algorithm to locally optimize the solution space at a later 

stage. The optimized particle update speed calculation is 

shown in equation (4). 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 21ij ij ij ij ij ijv t v t c k t p t x t c k t p t x t    + = + − + −   
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In equation (4),   represents the inertia weight 

coefficient, ( )1ijv t +  represents the particle's movement 

speed at time ( )1t + , 
1c  and 

2c  represent learning 

factors, 
1k  and 

2k  are random numbers with values 

between 0 and 1, and ( )ijp t  represents the optimal 

position of the population at time t . There should be a 

certain difference in the values of learning factors 
1c  

and 
2c  to further enhance population diversity. 

According to relevant research, the values of learning 

factors should be between 1 and 2.5. Linear changes 

should be made to the learning factors to improve 

individual information attention. The calculation is 

shown in equation (5). 
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In equation (5), 
maxc  means the maximum value 

of the learning factor, 
minc  means the minimum value 

of the learning factor, t  means the number of iterations 

at present, and T  means the total amount of iterations. 

To further enhance the global search capability of the 

PSO algorithm, the size of the learning factor 
1c  is 

adjusted to change in real-time with the rise of iteration 

times, as shown in equation (6). 

 

1 1.3 1.2cos
t

c
T
= +             (6) 

 

In equation (6), the value of 
1c  is larger in the 

prophase of iteration and smaller in the later stage, 

showing a monotonically decreasing state. The 

calculation of 
2c  is shown in equation (7). 
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In equation (7), the value of 
2c  is relatively small 

in the early stage of iteration and relatively large in the 

later stage, showing a monotonically increasing state. 

The operation of improving the PSO algorithm is 

represented in Figure 2. 
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Figure 2: Operation flow of improved PSO Algorithm 

 

In Figure 2, a particle population is created and the 

population is initialized. The initialization process 

includes random generation of particle positions, random 

assignment of initial number of particles and velocity, 

initialization of individual and global optimums, and 

setting of boundary constraints. The fitness value of each 

node is calculated, and the single best value of the node 

and the global best value of the population are calculated. 

The place and velocity of particles are updated and 

adjusted according to the set velocity and boundary 

constraints. It will be decided whether the termination 

condition is met or whether the iteration count has been 

reached. If it is met, the optimal individual is out put, 

otherwise the fitness is recalculated. Combining SVM 

and PSO, the classification accuracy capability of SVM 

is used to screen the fitness function of PSO and improve 

its fitness. The specific flow of PSO-SVM algorithm is 

represented in Figure 3. 
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Algorithm 
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Figure 3: Specific Flow of PSO-SVM Algorithm 

 

In Figure 3, the algorithm first optimizes the PF and 

KF hyperparameters, and then performs data detection 

and classification based on the optimal parameters to 

alert for irregular data. According to relevant research, 

the max value of iterations for PSO algorithm is defined 

to 100, the population is initialized, and the PF and KF 

hyperparameters are set to the particle component values. 

The fitness values of each particle in the population are 

computed, the optimal values of individuals and 

populations are updated, determining if the termination 

conditions are met, and the position and velocity of 

particles will be updated if they are met. The fitness 

value of the particles at the latest position is computed, 

the PF and hyperparameters are obtained, and cross 

validation is used to determine accuracy. 

 

2.2 Optimization of multi-hop network 

security protection algorithm for ACO and 

PSO fusion 
To further improve the optimization accuracy of the 

algorithm, the combination of PSO algorithm and ACO 
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algorithm is studied to enhance the detection capability 

of irregular data. ACO algorithm allows individuals to 

leave pheromones while searching for food, making it 

easier for subsequent individuals to follow up. The path 

with the highest concentration of pheromones is the 

optimal path. However, ACO algorithm is prone to 

encounter the traveling salesman problem during the 

optimization process, which is how to obtain the optimal 

path to access all nodes only once for each node. After 

accessing a node, an individual in the ant algorithm will 

store the node in memory to ensure that it will not be 

accessed repeatedly. After the individual completes the 

access, they will randomly select the next node. The 

probability calculation of an individual from node P to 

node Q is shown in equation (8). 
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In equation (8),   represents the initial pheromone, 

  represents the heuristic information,   means the 

information heuristic factor,   means the expected 

heuristic factor, t   represents the departure time, and 

M  represents the remaining nodes available for 

selection. 

( )
1

PQ
PQ

t
d

  =                (9) 

 

In equation (9), ( )PQ t   means the heuristic 

function, which means the expected degree from point P  

to point Q , and PQd  represents the range from point 

P  to point Q . When the distance between nodes is 

shorter, the value of   increases, and the probability of 

ant colony individuals transferring to that node increases. 

The probability of subsequent individuals choosing this 

path also increases, and the residual pheromones 

continue to increase. When an individual completes the 

search for nodes near the node, residual pheromones will 

interfere with subsequent searches, so it is necessary to 

clean them up. The calculation is represented in equation 

(10) [17]. 

 

( ) ( ) ( )1PQ PQ PQt t t    + = +       (10) 

 

In equation (10),   represents the residual factor, 

and ( )PQ t   represents the total sum of residual 

pheromones from time t  . 
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In equation (11), ( )
PQ

b t   represents the amount of 

pheromone released by ant colony individual b  when 

passing between two cities. The heuristic function of the 

ordinary ACO algorithm is conversely proportional to the 

interval size between two nodes, resulting in low search 

efficiency. Therefore, the research has improved the 

heuristic function by adopting an adaptive mechanism to 

raise the optimization speed of ACO [18]. The new 

heuristic function adopts the relationship between the 

interval between the current point and the next point and 

the interval between the next point and the targetpoint, as 

calculated in equation (12). 
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In equation (12),   represents the amplification 

function, QDd  means the interval between the next 

point and the target point, and   means the adjustment 

balance factor with values between 0 and 1. The 

calculation of   is shown in equation (13). 
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In equation (13), 
maxd  means the maximum 

interval between the current point and adjacent nodes, 

and 
mind  means the minimum interval between the 

current point and adjacent nodes. In the standard ACO 

algorithm, when an individual stumbles upon the optimal 

path close to the sub-optimal one, most individuals tend 

to follow the sub-optimal path more frequently, 

continuously depositing pheromones that mislead 

subsequent individuals. Therefore, studying pheromone 

update strategies for optimization allows only a subset of 

individuals to produce pheromones after discovering 

shorter paths [19]. These individuals are sorted according 

to the length of the searched path. Individuals with 

shorter paths are allowed to leave more pheromones, 

while those with shorter paths leave fewer pheromones. 

The calculation is represented in equation (14). 
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In equation (14),   represents the volatility 

coefficient and n  means the overall amount of ant 

colony individuals. The expression of PQ  is 

represented in equation (15) [20]. 
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In equation (15), K  represents the K th 

individual, Q  represents the pheromone enhancement 

coefficient, 
KL 

 represents the length traveled by the 
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K th individual, and   represents the proportion of 

individuals that can leave pheromones in the total 

number of ant colonies. The specific operation process of 

improving the ACO algorithm is shown in Figure 4. 

 

Yes

 

Figure 4: Specific operation flow of the improved ACO algorithm 

 

In Figure 4, the initial population of ant colony is set, 

including the size of each parameter, maximum iteration 

times, etc., the possibility of individuals accessing the 

next node is estimated, their positions are updated, the 

length of the path traveled by each individual is 

calculated, and the optimal path is recorded. pheromones 

are updated in order of individual path length, 

determining if the max value of iterations is achieved, the 

calculation result will be output if yes, otherwise the 

second step will be repeated until the max value of 

iterations is achieved. PSO and ACO algorithms need to 

consider the order of fusion. Based on the advantages of 

each algorithm, PSO algorithm has fast global 

optimization speed and high accuracy in the prophase of 

iteration, while ACO algorithm has high local 

optimization precision in the anaphase of iteration, which 

can effectively avoid the generation of local optimal 

solutions [21-22]. Therefore, the fusion algorithm adopts 

PSO to accelerate the improvement of population 

diversity and optimization speed in the prophase of 

iteration, and ACO algorithm to raise optimization 

accuracy in the later stage of iteration. The specific 

operation process of the fused ACO-PSO algorithm is 

represented in Figure 5. 
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Figure 5: Specific operation flow of ACO-PSO algorithm 

 

 

 

In Figure 5, the PSO algorithm population is to be 

set, population initialization processing is performed, 

various parameters of the fusion algorithm are set, and 

constraints are set, including maximum iteration times, 

PSO algorithm population boundaries, etc. The 

individual fitness value of PSO, the individual optimal 

value and population optimal value will be calculated. 

The individual position and velocity are updated, and it is 

determined whether the termination condition is met. If 

the condition is met, the current individual optimal 

solution will be used as the initial position of ACO, the 

path length traveled by the ant colony will be calculated, 

the current best solution will be recorded, and the 

pheromone will be updated in order of the individual 

path length. It will be determined whether the max value 

of iterations is achieved, and if so, the calculation result 

will be output. After the fusion algorithm is solved, the 

best PF and KF are input into SVM to classify the data of 

the multi-hop network, detect abnormal traffic data, and 

issue an alarm. SVM algorithm has good classification 

performance and can effectively differentiate network 

attacks, but the performance of SVM algorithm is greatly 

affected by the penalty factor and kernel function. 

Therefore, the study uses swarm intelligence algorithm to 

search for the best SVM parameters. According to the 

advantages of the two algorithms, the PSO algorithm is 

fast in global optimization in the early iteration period 

and has a wider search range, while the ACO algorithm 

has a higher accuracy in local optimization in the late 

iteration period, which is able to effectively avoid the 

generation of locally optimal solutions. The study adopts 

the fusion of the two algorithms to jointly search for the 

optimal parameters of the SVM algorithm and improve 

the classification performance. The pseudo-code of the 

ACO-PSO fusion algorithm is shown in Figure 6. 

 
Figure 6. Pseudo-code for the ACO-PSO Fusion algorithm 

 

3 Results 

3.1 Experimental analysis of SVM based 

improved PSO algorithm for multi-hop 

network anomaly detection 
The hardware environment of the experiment was 

Inter Core i7-12600K, the base frequency was 3.7GHz, 

the GPU was GeForce GTX 3070, and the memory was 

16GB. The experiment was conducted using MATLAB 

software for simulation testing, with a simulation area 

set within a range of 500m×500m, a node count of 600, 

a node communication radius of 15m, and 100 event 

packets. The experiment used deep recurrent neural 

network and region adaptive synthetic oversampling 

algorithm (DRRS), as well as Variational Autoencoder - 
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Generative Adversarial Network (VAE-GAN) for 

comparison. The experimental dataset consisted of 

UNSW_NB15 and Honeynet. Both datasets contain 

millions of pieces of cyberattack data, with the 

UNSW_NB15 dataset having a high level of diversity, 

encompassing a wide range of attacks such as DoS, 

PortScan, and DDoS, as well as being authentic, balanced, 

and providing clear labeling. The Honeynet dataset 

contains a wide range of attack types, as well as being 

collected through honeypots from global deployments. 

The Honeynet dataset encompasses a wide range of 

attack types as well as collects real-time attack data 

through honeypots from global deployments to 

accurately reflect current advanced cyber threats. 

Because of the dynamic update mechanism of the 

UNSW_NB15 dataset, it is more complex than the 

Honeynet dataset. The information exposure 

probabilities of different algorithms are shown in Figure 

7. 
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Figure 7: Information exposure probabilities of different algorithms 
 

In Figure 7 (a), the relevant test data were averaged 

using multiple sets of data, and the P values between the 

test data of different algorithms were less than 0.05, 

which was statistically significant. The information 

exposure probability of PSO-SVM gradually decreased 

with the increase of iteration times, approaching 

convergence at around 100 iterations. The information 

exposure probability decreased from 0.35% to 0.10%, 

and the minimum information exposure probability was 

0.06% and 0.04% lower than VAE-GAN and DRRS, 

respectively. In Figure 7 (b), the convergence of 

PSO-SVM remained unchanged because the complexity 

of the dataset decreased and the scale of abnormal 

information shrank. The minimum information exposure 

possibility of PSO-SVM was 0.06%, which was 0.08% 

and 0.05% lower than VAE-GAN and DRRS, 

respectively. The precision of anomaly recognition using 

different algorithms is shown in Figure 8. 
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Figure 8: Anomaly detection accuracy of different algorithms 

 

In Figure 8 (a), the convergence speed of 

PSO-SVM's anomaly detection accuracy was faster than 

the other two methods, with a maximum value of 89.6%, 

which was 9.4% and 11.2% higher than VAE-GAN and 

DRRS, respectively. In Figure 8 (b), the abnormal 

information detection accuracy of PSO-SVM approached 

convergence after about 100 iterations, with a maximum 

value of 93.5%, which was 11.3% and 13.8% higher than 
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VAE-GAN and DRRS, respectively. Because the 

Honeynet dataset is simpler than the UNSW_NB15 

dataset and does not have dynamically updated network 

attack types, its anomaly detection accuracy was 

increased and convergence was closer. Detection 

accuracy can reflect the ability of the security system to 

identify threats, is a more intuitive indicator, the user can 

easily feel its effect, and it is important to reduce false 

alarms and omissions. The accuracy of anomaly 

detection using different algorithms is shown in Figure 9. 
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Figure 9: Anomaly detection accuracy of different algorithms 

 

In Figure 9 (a), the convergence speed of abnormal 

information detection accuracy of PSO-SVM was not 

significantly different from that of VAE-GAN and DRRS, 

with a maximum value of 93.2%, which was 3.5% and 

27.6% higher than VAE-GAN and DRRS, respectively. 

In Figure 9 (b), due to the decrease in complexity of the 

dataset, the convergence speed of PSO-SVM's anomaly 

detection accuracy was 12 seconds and 20 seconds faster 

than VAE-GAN and DRRS, respectively. The maximum 

value was 93.5%, which was 3.4% and 24.1% higher 

than VAE-GAN and DRRS, respectively. 

 

3.2 Experimental analysis of multi-hop 

network security protection algorithm for 

optimizing ACO and PSO fusion 
The simulation software and basic parameters of the 

experiment were the same as before. By improving PSO 

on two datasets, the optimal PF and KF obtained were 

UNSW-NB15:236.35 and 2.19, and Honeynet: 27.63 and 

4.07, respectively. The optimal PF and KF obtained by 

improving ACO-PSO in two datasets were 

UNSW-NB15:131.25 and 12.05, and Honeynet: 243.21 

and 8.01, respectively. The response time in the 

experimental metrics is the time between the appearance 

of a network attack and the discovery of the attack by the 

security protection algorithm, the processing time is the 

time taken by the protection algorithm to resolve the 

network attack, and the root mean square error is the root 

mean square of the difference between the actual value 

and the predicted value during classification. The 

performance of different algorithms in performing 

multi-hop network anomaly detection is shown in Table 

2. 

 

Table 2: Multi-hop network anomaly detection performance of different algorithms 

Algorithm Data set Response time(ms) Disposal time(ms) 
Root mean square 

error(ms) 

DRRS 
UNSW-NB15 71.8 125.1 6.7 

Honeynet 69.5 120.5 6.4 

VAE-GAN 
UNSW-NB15 42.3 95.3 3.6 

Honeynet 40.9 93.6 3.4 

PSO-SVM 
UNSW-NB15 46.7 98.7 4.1 

Honeynet 44.2 97.2 3.8 

ACO-PSO-SVM 
UNSW-NB15 22.4 72.6 1.3 

Honeynet 21.5 68.4 1.2 

P-value / 0.018 0.007 0.035 

 

In Table 2, the p-value between the various data was 

less than 0.05, which was statistically significant. The 

performance of ACO-PSO-SVM is optimal in all aspects. 

In the more complex UNSW-NB15 dataset, the danger 

response time of ACO-PSO-SVM was 22.4ms, which 

was 24.3ms, 19.9ms, and 49.4ms faster than PSO-SVM, 
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VAE-GAN, and DRRS, respectively. The danger 

handling time of ACO-PSO-SVM was 26.1ms, 22.7ms, 

and 53.5ms faster than the other three algorithms, 

respectively. The root mean square error of 

ACO-PSO-SVM was 2.8ms, 2.3ms, and 5.4ms lower 

than the other three algorithms, separately. Reducing the 

dangerous response time and processing time of the 

algorithm can minimize the damage caused by cyber 

attacks. Responding to cyber security incidents and 

organizational counterattacks in a timely manner can 

effectively protect the user's personal privacy and 

sensitive information of the enterprise. Timely responses 

also enhance organizational resilience and maintain 

business continuity. The operating costs of multi-hop 

network anomaly detection using different algorithms are 

shown in Figure 10. 
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Figure 10: Comparison of operating costs of different algorithms 

 

In Figure 10 (a), the multi-hop network anomaly 

detection cost of ACO-PSO-SVM was the lowest, 

reaching a maximum of 890 datasets at a running time of 

100ms, which was 310, 210, and 910 datasets lower than 

PSO-SVM, VAE-GAN, and DRRS, respectively. In 

Figure 10 (b), the running cost of ACO-PSO-SVM 

reached its maximum value of 800 datasets at 100ms, 

which was 300, 240, and 950 datasets lower than the 

other three algorithms, separately. The accuracy 

comparison of multi-hop network anomaly detection 

using ACO-PSO fusion algorithm is shown in Figure 11. 

In Figure 11 (a), due to the faster local optimization 

speed and higher precision of the ACO algorithm, the 

convergence curve of ACO-PSO-SVM was the same as 

that of PSO-SVM in the early stage of iteration, and the 

convergence speed was faster in the middle stage. The 

maximum detection accuracy was 92.5%, which was 

2.9%, 12.3%, and 14.1% higher than that of PSO-SVM, 

VAE-GAN, and DRRS, separately. In Figure 11 (b), the 

maximum detection accuracy of ACO-PSO-SVM was 

95.9%, which was 2.4%, 13.7%, and 16.2% higher than 

PSO-SVM, VAE-GAN, and DRRS, respectively. The 

convergence speed of the fusion algorithm was improved 

compared to Figure 11 (a). The comparison of PR and 

ROC curves for different algorithms is shown in Figure 

12. 
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Figure 11: Comparison of Multi-hop network anomaly detection accuracy of ACO-PSO Fusion Algorithm 
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Figure 12. Comparison of PR Curve and ROC Curve of Different Algorithms 
 

In Figure 12 (a), the PR curves of PSO-SVM, 

VAE-GAN and DRRS were intertwined with each other. 

To judge the performance of the algorithms, it is 

necessary to find the balance point and the point where 

the precision and recall are equal. At this point, the two 

performances of the classifiers were higher, which 

indicated that the classifiers performed well. The PR 

curve of ACO-PSO-SVM completely wrapped around 

the other three curves, indicating that the equilibrium 

point of the fusion algorithm was always above the 

equilibrium point of the other algorithms, so it can be 

concluded that the performance of ACO-PSO-SVM was 

better than the other three algorithms. In Figure 12 (b), 

the curve of ACO-PSO-SVM was steeper because the 

ideal target of the model was a true class rate of 1 and a 

false positive class rate of 0. The closer the curves of all 

algorithms are to the upper left corner, the better the 

performance of the algorithm. Sensitivity analysis was 

carried out on the individual proportion parameter of the 

ACO algorithm and the inertia weight parameter of the 

PSO algorithm, and the experimental results were 

shown in Table 3. 

 

Table 3: Parameter sensitivity analysis of ACO and PSO 

Algorithms 

Argument Value 
Precision 

rate 

Recall 

rate 
F1 


 

0.3 0.90 0.89 0.94 

0.4 0.92 0.94 0.98 

0.5 0.91 0.88 0.95 

0.6 0.87 0.84 0.91 

  

0.8 0.91 0.92 0.91 

0.9 0.92 0.94 0.98 

1.0 0.90 0.93 0.92 

 

In Table 3, as the proportion of individuals leaving 

pheromones gradually increased, the performance of 

ACO algorithm increased first and then decreased. 

When the value was 0.4, the best performance was 

achieved, and the accuracy rate, recall rate, and F1 of 

the algorithm were 0.92, 0.94 and 0.98, respectively. As 

can be seen from the table, when the proportion 

increased, the recall rate of the algorithm could be 

greatly affected.  

Table 4: Computational complexity of the proposed algorithm of the study compared to the base algorithm 

Data set Algorithm 
Average processing time 

(ms) 

Standard 

deviation (ms) 

Time complexity O(n2) 

evaluation 

Honeynet 

SVM 20.4 1.8 Lower 

PSO 18.5 1.5 Lower 

ACO 29.8 2.4 Lower 

ACO-PSO-SVM 47.6 3.9 Lower 

Maple-IDS 

SVM 38.5 2.7 Lower 

PSO 29.2 2.5 Lower 

ACO 45.9 4.3 Lower 

ACO-PSO-SVM 72.4 6.2 Normal 

 

When the proportion was 0.6, the recall rate of the 

algorithm was 0.10 lower than the optimal value. When 

the relation weight coefficient of PSO algorithm was 0.9, 

the best precision rate, recall rate and F1 values were 

obtained, and the maximum values were 0.92, 0.94 and 

0.98 respectively. The computational complexity of the 

proposed algorithms studied against the base algorithm 

in datasets of different complexity levels is shown in 

Table 4. 

In Table 4, the average processing times of the four 

algorithms when the dataset was simpler were 20.4ms, 

18.5ms, 29.8ms, and 47.6ms, respectively, and the 

average processing time of the ACO-PSO-SVM 

algorithm was longer than the base algorithm, but it was 

still within the acceptable range, with a time complexity 

of lower. When the Maple-IDS dataset was used, the 

computation time of the four algorithms increased due 

to the fact that it contained a more number and variety 

https://www.baidu.com/s?sa=re_dqa_generate&wd=Honeynet%E6%95%B0%E6%8D%AE%E9%9B%86&rsv_pq=d943557900107793&oq=%E5%A4%9A%E8%B7%B3%E7%BD%91%E7%BB%9C%E5%AE%89%E5%85%A8%E6%B5%8B%E8%AF%95%E7%9A%84%E5%B8%B8%E7%94%A8%E6%95%B0%E6%8D%AE%E9%9B%86&rsv_t=bd43rF5NublIew4JRz6hs94CgWcjogdTvj8P1MOFnEeoC9gNKdtX8DvnSJI&tn=baidu&ie=utf-8
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of attack data, the computation time of the different 

algorithms increased, and the four algorithms increased 

by 14.1ms, 10.7ms, 16.1ms, and 24.8ms, respectively, 

with the ACO-PSO-SVM algorithm increasing almost 

twice as much as the other algorithms, and the time 

complexity was normal. 

4  Discussion  
The study proposed a multi-hop network security 

protection strategy that integrates PSO algorithm and 

ACO algorithm, and applied it to experimental 

simulation analysis. The effectiveness and superiority of 

the strategy in multi-hop network security protection 

was verified by simulation analysis. Compared with the 

traditional method, the optimized ACO and PSO fusion 

algorithm had faster hazard response speed and 

operation efficiency, because the fusion algorithm 

adopted the PSO algorithm to improve the optimization 

speed and accuracy in global optimization, and adopted 

the ACO algorithm in local optimization to avoid local 

optimal solutions. Meanwhile, the fusion algorithm had 

lower detection cost and detection accuracy because the 

fusion algorithm can find the optimal penalty factor and 

kernel function of SVM. In multi-hop networks, faster 

convergence means that the network can quickly adapt 

and reconfigure routes in the event of failures or 

topology changes, which reduces service disruption time 

and improves the reliability and stability of the network. 

Reducing information exposure reduces the risk of 

network attacks, decreases the chance of sensitive data 

being stolen when nodes communicate, and protects 

user privacy and security. Reducing operational costs 

can enhance the competitiveness of the enterprise and 

customer satisfaction, while improving productivity. 

Multi-hop network security protection is widely used in 

military communications, disaster relief, mobile 

self-organizing networks, wireless sensor networks, and 

industrial network security, and plays an important role 

in a variety of scenarios through its rapid deployment, 

high flexibility, and high reliability. 

5  Conclusion 
A multi-hop network security protection algorithm 

that integrated ACO and PSO was proposed to address 

the issues of easy attacks on existing multi-hop network 

data forwarding at intermediate nodes and high data 

protection costs of existing methods. The experiment 

outcomes showed that the information exposure 

probability of PSO-SVM decreased from the initial 0.35% 

to 0.10%, and the minimum information exposure 

probability was 0.06% and 0.04% lower than that of 

VAE-GAN and DRRS, respectively. In datasets with 

lower complexity, the minimum information exposure 

probability of PSO-SVM was 0.06%, which was 0.08% 

and 0.05% lower than VAE-GAN and DRRS, 

respectively. The maximum accuracy of abnormal 

information detection for PSO-SVM was 89.6%, which 

was 9.4% and 11.2% higher than VAE-GAN and DRRS, 

respectively, and had a faster convergence speed. The 

maximum accuracy of abnormal information detection 

was 93.2%, which was 3.5% and 27.6% higher than 

VAE-GAN and DRRS, respectively. The hazard 

response time of ACO-PSO-SVM fusion was 22.4ms, 

which was 24.3ms, 19.9ms, and 49.4ms faster than 

PSO-SVM, VAE-GAN, and DRRS, respectively. The 

hazard handling time was 26.1ms, 22.7ms, and 53.5ms 

faster than the other three algorithms, and the root mean 

square error was 2.8ms, 2.3ms, and 5.4ms lower than 

the other three algorithms, separately. The multi-hop 

network anomaly detection cost of ACO-PSO-SVM was 

the lowest, with 310, 210, and 910 datasets lower than 

other methods, respectively. The maximum detection 

accuracy was 2.9%, 12.3%, and 14.1% higher than other 

methods, respectively. The PR curve of 

ACO-PSO-SVM completely wrapped around the other 

three curves, and the ROC curve was closer to the ideal 

target, so the performance of the fusion algorithm was 

better. Fusion algorithms could effectively achieve 

security protection for multi-hop networks, reduce the 

probability of user privacy data exposure, and lower 

algorithm operating costs. There were still some issues 

with this study, such as only focusing on algorithm 

optimization for security protection. In the future, data 

optimization can be considered to further raise the safety 

of multi-hop networks. For example, a stochastic 

gradient descent method is used to optimize the relevant 

dataset, which can be updated using a small number of 

samples, thus speeding up training and adapting to 

large-scale datasets. Deep learning methods are also 

able to be employed to learn the latest attack sample 

data in real time to improve the classification 

performance of the model. The ACO-PSO-SVM 

detection algorithm because of the fusion of multiple 

algorithms, resulting in a certain degree of increase in its 

computational complexity compared to ordinary 

classification algorithms. Meanwhile, its search 

efficiency decreases significantly when facing 

high-dimensional datasets, leading to a curse of 

dimensionality The fusion algorithm may not perform 

well when the dataset is noisy, and it cannot draw a 

clear hyperplane for accurate classification, so it cannot 

be detected between, and the data needs to be denoised. 
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