
 Informatica 30 (2006) 73–82 73

Applications of Self-Organising Multi-Agent Systems: An Initial
Framework for Comparison
Carole Bernon
IRIT, University Paul Sabatier
31062 Toulouse Cedex 09, France
E-mail: bernon@irit.fr, http://www.irit.fr/SMAC

Vincent Chevrier
LORIA
BP 239
54506 Vandoeuvre Les Nancy Cedex, France
E-mail: chevrier@loria.fr, http://www.loria.fr/~chevrier/

Vincent Hilaire
SeT, UTBM
90010 Belfort Cedex, France
E-mail: Vincent.Hilaire@utbm.fr, http://set.utbm.fr/membres/hilaire/index.php

Paul Marrow
Pervasive ICT Research Centre, BT Group plc
Orion 1 PP 12, Adastral Park, Ipswich IP5 3RE, United Kingdom
E-mail: paul.marrow@bt.com, http://www.btplc.com/

Keywords: multi-agent system, self-organisation, applications, software

Received: April 18, 2005

A lot of work is devoted to formalizing and devising architectures for agents' cooperative behaviour, for
coordinating the behaviour of individual agents within groups, as well as to designing agent societies
using social laws. However, providing agents with abilities to automatically devise societies so as to
form coherent emergent groups that coordinate their behaviour via social laws, is highly challenging.
These systems are called self-organised. We are beginning to understand some of the ways in which self-
organised agent systems can be devised. In this perspective, this paper provides several examples of
multi-agent systems in which self-organisation, based on different mechanisms, is used to solve complex
problems. Several criteria for comparison of self-organisation between the different applications are
provided.
Povzetek: Članek opisuje primere in kriterije samoorgarnizacije v agentnih sistemih.

1 Introduction
Multi-Agent Systems (MAS) have attracted much
attention as means of developing applications where it is
beneficial to define function through many autonomous
elements. As multi-agent systems get more complex,
questions arise about the best way to control agent
activity, and thus application performance. Centralised
control of MAS is one approach, but is of limited use
because of the risk of dependency on the controlling
element, and the consequential lack of robustness. This
also makes little sense when agents have capabilities of
autonomy that can provide useful benefits in
applications. Partially or completely decentralised
control is an alternative, but means of implementing this
without disrupting agent performance in support of
applications are important. Mechanisms of self-
organisation [7] are useful because agents can be
organised into configurations for useful application
without imposing external centralised controls.

This paper discusses several different mechanisms
for generating self-organisation in multi-agent systems
[8]. Reactive multi-agent systems [29] provide the basis
for self-organisation in several examples as the
interaction between the agents and their environment
provides the flexibility for dynamic change. Cooperation
drives self-organisation in the AMAS agent modelling
theory [2][8]. The holon concept can also be used to
define and analyse self-organising agent systems [26]. In
this introductory part, these approaches are now
discussed in a more detailed way.

1.1 Self-organisation by Reactive Multi-
agent Systems

Reactive multi-agent systems [29] are systems made up
of simply behaving units with decentralized control.
Agents are situated in a dynamic environment through
which they interact. They are characterized by limited
(possibly no) representation of themselves, of others and

74 Informatica 30 (2006) 73–82 C. Bernon et al.

of the environment. Their behaviours are based on
stimulus-response rules. Decision-making is based on
limited information about the environment and on limited
internal states and does not refer to explicit deliberation.
The individuals do not have an explicit representation of
the collective task to be achieved because of their
simplicity. Therefore, the solution of the problem is a
consequence of successive interactions between agents
and the environment. Their characteristics enable them to
adapt dynamically their function or structure to changing
conditions without external intervention.

Using such a model to solve a given problem
requires designing a system as three components: the
environment, the agent behaviours and the dynamics of
the whole such that the agent society is able to fulfil its
requirements with a reasonable efficiency.

1.2 Self-organisation using Cooperative
Information Agents

A specific example of a platform for self-organisation
using reactive multi-agents is provided by the DIET
Agents platform. This platform [14][6] is a suitable basis
for self-organising applications using cooperative
information agents. This platform was developed as part
of the EU DIET project, inspired by the way that
complexity emerges in natural ecosystems.

The DIET Agents platform [14][6] is designed as a
three layer architecture: (1) core layer; (2) application
reusable component layer; (3) application layer. The core
layer provides the minimal software needed to implement
multi-agent functionality, through the DIET platform
kernel. It also provides basic support for debugging and
visualisation. The basic classes and elements in the DIET
platform kernel are arranged around an element
hierarchy: worlds, environments; agents; connections,
and messages.

Agents are located in environments, and can form
connections with each other through which messages can
be passed. Multiple environments can be situated in
worlds. Agents are initially created with only four
possible behaviours: creation (of other agents);
destruction (of itself); communication (with other
agents); migration (between environments). But they are
designed so that their properties can be extended.

The other two layers of the platform, the application
reusable component (ARC) layer, and application layer
support this extension. The ARC layer provides
functionality that can be shared between applications, but
is not essential for the DIET kernel, while the application
layer provides application-specific functionality.
Software for applications can be developed in this layer
without having to disrupt the core layer.

This platform is appropriate for applications
involving cooperative information exchange because
individual agents can take on cooperative behaviour by
extension of their autonomous capability. The platform is
designed that agent action is resource-constrained, so that
actions will stop if they start consuming too much system
resources. Actions are also fail-fast; they will fail if they
are not executed immediately. In this way applications
requiring the interaction of many agents can be supported
within realistic resource constraints.

This platform is also suitable for applications
involving self-organisation because no decisions have
been made about how agents should be organised, and
they are free to rearrange within and between
environments according to application requirements.

1.3 Self-organisation by Cooperation in
AMAS

For several years the SMAC (for Cooperative MAS)
team has studied self-organisation as a means to get rid
of the complexity and openness of computing
applications [2]. A theory has been proposed (called
AMAS for Adaptive Multi-Agent Systems) in which
cooperation is the engine thanks to which the system
self-organises for adapting to changes coming from its
environment (see [2] and section 4.4. in [8]). Cooperation
in this context is defined by three meta-rules: (1)
perceived signals are understood without ambiguity, (2)
received information is useful for the agent’s reasoning,
and (3) reasoning leads to useful actions toward other
agents. Interactions between agents of the system depend
only on the local view they have and their ability to
cooperate with each other. These modifications make the
organisation of the system also change and therefore
make the global behaviour of the system emerge. At the
agent level, cooperation is described in a proscriptive
way: an agent knows how to detect situations it judges
being non cooperative, from its point of view, and acts
for always trying to remain cooperative toward others but
also toward itself.

1.4 Self-organisation by Holons
According to Koestler, a holon is a self-similar structure
that may consist of several holons as sub-structures [17].
The hierarchical structure composed of holons is called a
holarchy. Holarchies allow the description of systems as
recursive self-similar entities which constitute the holons.

We have chosen to describe the behaviour of the
members of a holon and their interactions in terms of
roles and organisation. These roles represent the "status"
of the holon inside a specific holon. In our approach each
holon may play four roles: StandAlone, Head, Part and
Multi-Part. As a holon joins a HMAS (Holonic Multi-
Agent System) Organisation, it has no special bindings
and does not collaborate with any other holon.

This situation represents a Stand Alone Behaviour. In
this state, the agent's decisions are not attached to any
restriction but its own goals and objectives. The holon
will remain in this state as long as it is satisfied. The
Stand-Alone represents how "non-members" are seen by
an existing holon. Following the Holonic Paradigm, the
holon seen as a Stand-Alone can actually be the
Representative of a holon.

As the representative, the holon plays the Head role.
According to the objective and rules of the holon, the
Head responsibilities and rights may range from merely
administrative tasks to be able to take decisions
concerning all members. The head is not necessarily a
unique holon. After an holon starts performing the Head
Role, it will be the representative of the members of his
Holon at this level and therefore, able to engage the
holon in new tasks.

APPLICATION OF SELF-ORGANISING... Informatica 30 (2006) 73–82 75

Members not playing the Head role are considered as
Parts of the holon. Once a holon is accepted in a Holon,
its autonomy is reduced because of its obligations with
the Holon. The degree of this autonomy lost may vary
according to the holon's purpose.

The MultiPart Role is a special case of the Part Role.
This role is played by holons belonging to more than one
Holon. Interesting possibilities are available when a
holon is shared.
In order to enable holons to dynamically change their
roles, we define a notion of satisfaction. Each holon tries
to be self-satisfied. If it cannot reach a satisfaction
threshold it tries to change its role. Eventually the last
concept of the framework is affinity. The affinity enables
one StandAlone holon to choose with which holon to
merge. It measures the compatibility of the holon's goals
and services.

Self-organisation by holons uses direct interactions
and cooperation (see section 4.5 in [8]).

1.5 Overview
Given the existence of multiple mechanisms for
generating self-organisation in multi-agent systems, what
can self-organised systems be used for? Section 2
reviews a variety of examples of MAS applications
drawing upon self-organisation. Section 3 seeks to
compare these applications, by identifying some criteria
that are general to multi-agent systems. Section 4
provides a conclusion.

2 Applications
The diversity of approaches for stimulating self-
organisation within multi-agent systems means that MAS
have the potential to support a variety of applications.
This section describes some example applications using
MAS that draw upon self-organisation to make the
applications more effective.

Two applications address problems in information
retrieval, using middle agents (section 2.1) and
evolutionary algorithms (section 2.2). Further
applications are considered in the areas of timetabling
(section 2.3), flood forecasting (section 2.4), land use
allocation (section 2.5), localisation and tracking (section
2.6), adaptive meshing in wireless networks (section 2.7)
and traffic simulation (section 2.8). Other examples of
application can be found in [18].This wide range of
examples gives an indication of the usefulness of self-
organisation in achieving the complex behaviour
required for real-world applications.

2.1 Self-organisation of User Communities
using Middle Agents

Multi-agent systems can be used to support information
exchange within user communities by providing each
user with a user agent that represents their interests. But
how does a user agent make contact with other user
agents that represent users with common interests?
Assuming that not all users know each other, which is
probably realistic, a pure peer-to-peer network could be
used. This would involve flooding a network with
queries. But this is inefficient, and risks overloading the

system with queries. Middle agents or brokers are an
alternative - user agents communicate with middle agents
[5]. Multi-agent systems for information exchange using
middle agents have been proposed which are centralised
(e.g. [22]) - all queries go to one broker - but there is a
risk that they will not be so robust, if the middle agent
does not perform well. In this example we consider an
application where middle agents are used in a
decentralised configuration.

The self-organising communities application [31]
assigns each user a user agent. There are also multiple
middle agents in the system. User agents do not retain a
profile for their user, but they forward queries to the
middle agents. The user agents carry and seek to acquire
information for their users. Each user agent registers with
at least one middle agent. Once they are registered with
the middle agent, the middle agent can access
information that the user agent holds that may be of
interest to other user agents. Each middle agent receives
queries from multiple user agents. Given these queries
the middle agent carries out a search of the pool of
information it holds from user agents already registered
with it. If it can respond to the query using this
information then that information is dispatched to the
user agent that issued the original query and the search is
rapidly completed. If not, the middle agent can interact
with other middle agents to try and obtain information
from them. Once the middle agent has carried out this
search, it relays the result to the user agent.

The middle agent then examines whether the search
was successful, and if so provides a positive mark to the
two user agents, both the requestor and the provider. If
the search was unsuccessful, the requestor gets a negative
mark, to indicate load on the system. After marks have
been assigned the middle agent checks the location of the
requestor and provider user agents. If the search has been
successful, and the requestor and provider agents are not
already registered with it, the middle agent requests the
middle agent with which the provider agent is currently
registered to transfer the provider agent to the group of
the requestor agent. Movement of agents between groups
is regulated by the awards given to user agents following
responses to queries, and designed to get user agents into
the same groups around middle agents where they often
have queries covering common areas. In this way user
communities can be built up using user agents and
middle agents, without any central control on agent
behaviour. This is a highly scalable process that
continues to operate highly efficiently even as the
number of users increases substantially.

2.2 Self-organisation through Evolving
Agent Populations

We can use a MAS to represent user interests through
user agents, but given that there may be many different
users in different locations there may be problem in
finding other users to interact with. The evolving
preferences application [18] considers an application
scenario where many users interact with each other via a
DIET Agents platform supporting user agents. Each user
deploys a user agent in a DIET environment, but because
users may interact with the system in different contexts,

76 Informatica 30 (2006) 73–82 C. Bernon et al.

there will be a lot of different environments. The
different environments are connected in a peer network.
User agents stay in their own environment, but create a
population of scout agents that they send through the
peer network to search out other user agents representing
users with common interests.

Each scout agent carries information representing the
interests of the user that it represents. It also has a
preference for environments determined by a bitstring
genome created when it is generated. Based on this
genome it will search out other environments and interact
with other scout agents in them. Scout agents then return
to their home environment and report back information
that they have gathered in other environments; both
about different environments and about their success in
interacting with other scout agents representing similar
interests. On return to their home environment scout
agents are destroyed, but their genome is used in an
evolutionary algorithm where the selection criteria is
defined by the success of the scout agent in locating
environments where there are other scout agents to
interact with that have similar interests. Over time the
evolutionary algorithm converges to a situation where
scout agents will converge in environments according to
their users' preferences, so that different environments
hold different user agents that can interact on behalf of
their users. This shows how an evolutionary algorithm
can be combined with agent interaction in a distributed
network to stimulate self-organisation of agents into
different environments, and thus to stimulate information
exchange between users in different environments.

2.3 Self-organisation for the School
Timetabling Problem

An example of a classical constraint-satisfaction problem
(CSP) is the school timetabling problem in which a
timetable for a certain duration must be found while
respecting the explicit constraints (availability,
specialisation, equipment needed…) of different
stakeholders (teachers, student groups and possibly
rooms) as well as their implicit constraints (for example,
impossibility to be in two places at the same time). The
inherent distributed aspect of the timetabling problem
explains a processing by a MAS. Unlike most of the
approaches using MAS (for instance [4]), agents do not
use negotiation to find a solution in ETTO (Emergent
Time Table Organisation), the problem solver presented
here [23].

The environment is made of a three-dimensional
virtual grid composed of cells. Each cell represents a
time slot for a given day, for a given hour, and for a
given lecture room.

Two kinds of cooperative agents were identified: a
Representative Agents (RA) and Booking Agents (BA).
A RA is associated with every human stakeholder,
manages its constraints and represents an interface with
the real world. RAs delegate time slot and room search to
Bas which are the actual self-organizing agents. A BA
explores the grid to find free cells and meet potential
partners in order to fulfil its aim: booking a time slot for
a given lecture to give (for a teacher) or to take (for a

student group) in accordance with constraints used by its
proxy RA.

The behavioural model is based on the AMAS
theory, the engine of self-organisation is cooperation.
Five different situations for reorganisation are identified
based on the three meta-rules ensuring cooperation (see
section 1.3) For instance, if a BA ba1 encounters, in a
given cell, another BA ba2 with which it cannot partner
(for example, two teachers meet), ba1 judges this
situation as incompetence and changes its location to find
a more relevant partner. Furthermore to enable a more
efficient exploration of partnership possibilities, ba1 will
memorise the location and the BAs it may know via ba2,
to exchange them during further encounters. In a
cooperative situation, a BA books the cell in which it is
situated, and partners with another BA.

The positive results obtained by now show that the
approach used is suited for this kind of problem. BAs are
able to relax constraints to find a solution. A solution is
found when constraints or stakeholders vary (added or
removed) in a dynamical way. Furthermore, the ability to
insert agents has enabled us to show that adding
supernumerary agents helps finding a solution and gives
better results. This can be explained by the fact that the
added agents can disrupt others which are satisfied with a
solution that could be optimised. However ETTO has
weaknesses. By nature, cooperative agents in AMAS
have only a limited knowledge about their environment
and do not know the global goal to achieve as well as the
global cost of the solution they may found. Thus they go
on exploring the grid to find a more relevant solution
even if the best solution is already found. An external
observer has to stop the solving process when the
organisation fits his requirements.

Many approaches have been used to try to solve such
a problem (see for example, the “Practice and Theory of
Automated Timetabling“ at the URL:
http://mat.gsia.cmu.edu/PATAT04/). Most of them are
(distributed) CSP-based solvers, some are agent-based
solutions, some use evolutionary approaches and others
ant algorithms [28]. Timetabling problems in the real
world are dynamic problems, restarting from scratch
each time a constraint is modified (added, removed)
would not be efficient and few works are interested in
this problem. Usually, the main objective is to have the
smallest impact possible on the current solution as in [21]
in which this is done by introducing a new search
algorithm that limits the number of additional
perturbations. In ETTO, self-organisation enables the
system to adapt to perturbations and changes in its
environment because modifying a stakeholder’s
constraint makes the corresponding BA question its
bookings and its possible partnership. If it judges that
they are inconsistent with its new state, it tries to find
new ones by roaming the grid and applying its usual
behaviour.

2.4 Self-organisation for Flood Forecasting
Flood forecasting is a complex dynamic problem,
parameters that can explain this phenomenon are
numerous and heterogeneous: including hygrometry,
declivity, surface, nature and permeability of the ground,

APPLICATION OF SELF-ORGANISING... Informatica 30 (2006) 73–82 77

rain heights, stations topologies, … Current forecasting
systems have a physical approach of this phenomenon:
the better these parameters are known, the better results
are. Tuning these parameters for a forecast station take
several months and they have to be adjusted when
environmental conditions evolve.

The STAFF real-time simulator uses an adaptive
model for flood forecasting, which is composed of two
levels of self-organizing multi-agent systems [13].

The environment is made of the sensors of the
Garonne river basin.

Agents of the lower level represent each physical
sensor. Such an agent has to encapsulate its datum for
determining its influence on the forecast that the system
has to model. The goal of each upper level agent is to
compute the water level variation during a unitary period
(typically an hour); for that, it uses a weighted sum of
agents in the lower level.

The behavioural model is based on the AMAS
theory. The hydrological model's adaptive nature is
obtained by adjustment of these weights, decided from
cooperation between the agents. Agents do not know the
objective of the global system, the self-organisation by
cooperation between agents defines how the model has to
be adjusted according to the input data, the results
coming from other agents and the error made on the
forecast. This makes the model generic and improves its
performances.

Positive results were obtained showing that the
model correctly followed the real evolution of the flood
even in limit use cases (such as noisy and missing data,
totally upstream stations or real-time learning) in which
usual hydrological models are inadequate. The model
does not need any predefined parameters because it is
adjusted just once, when installed, using historical flood
data. For example, one week was sufficient to adjust the
24 models currently used for the stations making flood
forecasting in the Garonne river basin.

Classical physic-hydrological forecasting models are
mathematical approaches that consist in generic formula
which parameters are tuned from measures on ground
and from historical account of flood. Neural networks
have been used in flood forecasting, for instance in [30]
or used with self-organising feature map [15]. In the
former approach, relevant stations must be selected by
hand and the learning algorithm is not a generic one. In
both approaches, contrary to STAFF, there is no real-
time learning.

2.5 Self-organisation for Land Use
Allocation

Based on a real-world problem, we applied a self-
organising approach to simulate the assignment of land-
use categories in a farming territory, in the north-east of
France [9][8]. This problem exhibits a function to
optimise, while respecting a set of constraints, both local
(compatibility of grounds and land-use categories) and
global (ratio of production between land-use categories).
This problem is one instance of quadratic assignment
problem.

The environment is the set of available zones in the
farming territory, each zone is featured by its surface, its
distance to the village, the kind of soil, etc.

Agents are gathered into groups, each being
associated to a land-use category. A group has a goal to
satisfy by conquering spatial zones in the environment
while respecting some constraints.

The behavioural model is based on a few principles
inspired by the eco-problem solving approach [11]. An
agent can conquer a zone in the environment and then
contribute to the satisfaction of its group; the zones are
more or less attractive for an agent; when searching for a
zone, an agent chooses the most attractive one. If the
zone is free the agent occupies it; if it is already
occupied, the two agents have to fight, and the outcome
is determined by the respective strengths of their groups.
Finally, the strength of a group decreases while its
satisfaction increases, in order to ensure that groups
farther from their objectives gain an advantage over
those closer.

The problem-solving process exhibits interesting
properties. The system produces results that fit the
expert's requirements and that are comparable with
results obtained by simulated annealing.

The dynamic of the problem-solving process is
convergent to a stable state (which is a solution to the
problem); is an anytime process (the system can be
stopped at any step and is able to produce a solution the
quality of which is dependent of the number of steps).
Furthermore, the model exhibits self-adaptation
properties: at runtime we can add or remove zones or
land-use category and the system stabilises again to a
solution. We obtained the same properties when
modifying a group's goal.

A lot of works on optimisation problems exist (e.g.
[3]), however most of them are not self-organizing; two
exceptions are built on reactive agents that self-organize.
The first (Ant Colony Optimisation) is inspired by the
foraging behaviour of ants [1] and the second (Particle
Swarm Optimisation) by flocking [10]. Both provide
results comparable to more conventional optimisation
methods.

In our case, we compared our system with simulated
annealing. Simulated annealing provided better mean
results even if the best solutions were found by the MAS
approach.

2.6 Localisation and Tracking using Self-
organisation

The localisation task can be defined as finding the
position of an object (or more than one), mobile or not, in
a well defined referential location. The tracking problem
is to provide a succession of positions that are spatially
and temporally coherent. We proposed a reactive model
to tackle this issue [12].

The environment of the agents is a representation of
the real world. It is a square grid in which each state
represents a target's possible position and is featured by
an altitude that represents the possibility of presence of a
target at this position and is provided by sensors.
Environment dynamics is determined by accumulation
and evaporation principles. The altitudes are refreshed

78 Informatica 30 (2006) 73–82 C. Bernon et al.

(accumulation) continuously as soon as sensors can
furnish data. In the absence of data, altitude is decreasing
(evaporation).

Agents are equivalent to weighted particles evolving
in an environment of force field.

The behavioural model used is inspired by a model
of flocking [24] but is expressed through a formulation
taken from Newtonian physics (i.e. all behaviours are
expressed as a combination of classical forces). Agents
are attracted by position according to their altitude and
are mutually repulse each other. Agents' movements are
the consequence of these forces.

We designed these antagonist behaviours to obtain a
focusing of the agents on the position of highest altitude
and a homogeneous spatial distribution of them in the
rest of the environment (where there is a null altitude).
Focusing is an emergent phenomenon, and is the solution
of the problem: a group corresponds to the detection of a
target.

We compare our proposition with the Kalman filter
in case of real robots' localisation [27]. The Kalman filter
is better than the agent-based method when there is no
noise. This advantage decreases when noise is
introduced. Furthermore, the agent-based approach
requires less knowledge about the problem than the
Kalman one.

The approach is able, at runtime, to deal with a
variable number of targets and it is possible to add or
remove sensors which is very difficult to take into
account with classical algorithms. As far as we know
there is no self-organized approach for localization.

2.7 Self-organisation for Adaptive
Meshing in Cellular Radio Networks

A distinguishing feature of cellular radio mobile
networks is the rapid increase of the consumer demand
and the ensuing complexity in their design and
management. Responding to this demand requires the
space to be partitioned between a large amount of service
units or cells. The adaptive meshing problem for
dimensioning considers traffic statistics as a predefined
resource that must be attributed to many adaptive low
power Base Transceiver Stations. The environment is
discretized in meshes which contains a number of
resources according to traffic statistics. Each mesh will
be assigned an agent whose main and unique goal is to
cover the traffic in that mesh [26]. This goal must be
accomplished respecting certain constraints like
geometry and the maximal traffic that an antenna can
cover. The problem solving is done by building up
holons which cover a resource.

In the adaptive mesh problem, a stand-alone holon
must ensure the coverage of its resource, then it will try
to join a mesh immediately. The only situation where it
remains in a stand-alone role is when its resource can get
an antenna for it alone. A holon that performs the head
role will be responsible for respecting the constraints of a
mesh. It will be representing a possible mesh in the
system, and will accept or refuse other holon's requests to
fusion according the constraints. Although all heads
represent possible meshes in the system, a Holon Head
can decide to leave its role if, after trying to improve the

Holon's satisfaction, the satisfaction is insufficient to
remain as a Holon. In order to improve the Holon's
satisfaction, will accept new holons to increase the Holon
covered resource, or will command member holons to
leave the Holon if they don't respect the geometrical
constraints or if the covered resource has exceeded the
maximum.

A holon gets the Part role if negotiations with a
Holon succeed. It will remain in the Holon if its
satisfaction level is raising. However, it is also possible
that the agent receives a command to leave the holon, in
that case, it must return to Stand-Alone and restart the
merging process.

The holon's identifier should give the position of the
holon's resource (X, Y coordinates) and the traffic it
contains.

Using these values, a holon can determine whether
or not to merge. As explained before, the affinity should
give a measure of the compatibility of the holon's goal
and services. In this particular case, both holons will
have the same goal, to ensure the coverage of their
resources. Therefore, the main problem is to ensure that
the geometrical constraints are respected. The affinity
could be decomposed in two main parts: the distance
affinity will provide a geometry dependent value used to
ensure that the geometrical constraints are respected. As
we need square meshes, we will use two parameters to
test the distance affinity. First, we will check if the holon
trying to merge is inside the acceptance distance. The
Resource affinity is used to ensure that the limits of an
antenna are not exceeded.

2.8 Self-organisation for Traffic
Simulation

Multi-agent Systems operate within an environment and
therefore, in an Agent Based Simulation (ABS) special
attention must go to the analysis, model and
implementation of the environment [20].

We propose the use of holarchies for the modelling
of environments [25]. We simulate traffic within an
industrial plant. The environment of this simulation is
defined by the topology and road network of the plant.
The concept of road is divided into links. A link
represents a one-way lane of a road. A segment is
composed of two exchange points, called input and
output exchange points, and a link. Exchange points let
vehicles pass from one link to the other. An exchange
point is always shared by at least two segments and thus
plays the multi-part role. The industrial plant is
composed of a set of zones, that in turn contain Buildings
and Segments. Buildings and Segments can also
communicate through shared exchange points. Usually
an exchange point represents a crossroad, but in can also
represent an entrance used by trucks to access buildings.
The agents will be the different vehicles driving through
the plant. Each holon of the holarchy represents a
specific context. For this simulation (HTS in the sequel)
it's a specific place in the plant. These places have
different granularity levels according to their level in the
holarchy. During the simulation vehicle agents move
from one holon to another and the granularity is chosen
by execution or simulation constraints such as which

APPLICATION OF SELF-ORGANISING... Informatica 30 (2006) 73–82 79

features can be observed. The dynamic choice of the
environment granularity level during the simulation is
transparent for the agents. The problem here is the
simulation of traffic and the solving process is again
based upon building and re-organisation of holarchies as
vehicles drive through the plant and change the holon
they belong to.

This holarchy defines the organisational and
topological structure in which agents will evolve. Each
environmental holon will enforce contextual physical
laws and represent a specific granularity level of the real
plant topology. This holarchy is predefined as it
represents the real plant environment. Indeed, the latter
can't evolve and the physical laws we need to enforce are
known a priori. All necessary information to simulate the
traffic inside a link is local (other vehicles, road signs,
etc). This makes the model easier to distribute in a
network and leaves the door open to Real-time
applications as well as Virtual Reality implementations.

This approach has many advantages for the
simulation. Indeed, such a definition of the environment
allows the progressive decomposition of the environment
complexity and enables to assign environmental laws to
the pertinent holon.

3 Comparison and Discussion
This part is an attempt to compare self-organised systems
presented above using a list of criteria inspired by the
work done in the AgentLinkIII “Self-organisation in
MAS” Technical Forum Group. The first paragraph of
this section lists all the criteria we use along a
classification based on the level at which they can be
expressed. In the next section, each criterion is discussed
in more detail with regard to our different approaches.

3.1 Criteria Used
Some of the criteria we use can be considered as
descriptive/static criteria of the approach whilst others
are related to the dynamical aspects of the problem
solving process. Criteria belonging to the first group can
be stated without running the system but by “simply”
looking at its description:

• Absence of external or of centralised control: no
entity, external or internal to the system, is
explicitly responsible for the actions of agents or
for centralising information flow.

• Dynamic operation: the solution is built in a
dynamic way and not by applying a predefined
plan or by instantiating a predefined solution.

• Emergent properties: properties that emerge from
local interactions within the system and that
cannot be deduced by simply observing
individual behaviours (see section 3 in [8]).

• Simple local rules: do simple individual
behavioural rules lead to complex patterns?

• Reusability: is the solution (or part of it) reusable
in other contexts?

On the contrary, criteria found in the second group need
experiments to be tested:

• Anytime property: the system can be stopped at
any step and is able to produce a solution the

quality of which is dependent of the number of
steps.

• Instability: is the system non-linear, is it sensitive
to parameters variations?

• Adaptation: how does the system react to
changes coming from the environment of the
system?

3.2 Discussion
In some applications, the absence of external control
may not exist and some entities may centralise
information or decision. Therefore, applications can be
classified from fully decentralised to partially centralised.

For example, localisation application is fully
decentralised, as well as timetabling or flood forecasting.

On the contrary, in the holonic approach, Head role
refers to a partial centralisation of decisions. This loss of
autonomy corresponds to the holarchy handling.
Moreover, the Head role may be played by the entire
holon as a group.

The self-organising communities application, using
middle agents, is decentralised in that information
retrieval is distributed across multiple middle agents. But
the evolving preferences application, which evolves
environmental preferences for information exchange,
includes an element of centralisation through the use of
selection on scout agent populations; although this is
only partial as multiple populations are selected in
parallel.

In all the applications presented above, the solution is
built dynamically.

Emergent properties refer to simplicity of individuals, in
terms of local rules or behaviours, despite their collective
ability to produce a complex pattern. In other words the
concepts needed to explain the global properties are not
present at agents' level.
For example, in the land use allocation problem, the
global constraint (ratio of production between land-use
categories) is not explicitly represented at the agent level
but implicitly formulated through the groups' goal and
the strength of groups that affect the conflict's outcome.
In the localisation problem, we need to interpret the
spatial positions of the agents in order to detect groups
and then obtaining the target position. In the examples of
allocation and localisation, the agents' behaviour is
equivalent to stimulus-response rules and therefore is
simple (at least simpler than the collective patterns that
emerge).

In all problems solved with self-organisation by
cooperation, and following the AMAS theory, the
function of the system is not known by the agents which
only know their own local and simple function led by
cooperation rules. By not being able to have a global
knowledge, agents do not know when a solution is found,
and an external observer is needed to make this
detection.

For the holonic approach since holons are recursive
structures the behaviour of a holon may be the result of
interaction of sub-holons. Indeed, a holon which is

80 Informatica 30 (2006) 73–82 C. Bernon et al.

unable to accomplish its goal will try to merge with a
holon with complementary capabilities.

Emergent properties are also apparent in the self-
organising communities application, which converges to
a situation where groups of user agents with common
interests can interact despite an arbitrary configuration of
agents initially.

Following the anytime property, experiments have
shown that the main feature of the timetabling
application is that modifications can be done without
stopping the search for a solution (the schedule) while
this latter is in progress, unexpected events are processed
while actors are changing their constraints. The schedule
is constantly changing as agents are searching for better
bookings and partnerships and it becomes better as the
solving makes progress. In the flood forecasting, a
current solution (model) is given also at anytime, it
becomes better as the learning process progresses.
However, if disturbances appear, in both cases, the
current solution may be questioned by agents for which
unpredictable changes create non cooperative situations.
Therefore the solution may be totally changed, may
become totally “false” before converging again towards a
good solution in a more or less great time.

In the AM there is a first step which is the
construction of holarchies. After then the solution
improves as the time allocated grows.

All applications based on reactive agents
experimentally show their anytime ability.

In the self-organising communities application, user
agents and middle agents rearrange user communities
dynamically depending upon queries, and this can be
stopped and resumed at any time, and thus support the
anytime property. The evolving preferences application
uses an evolutionary algorithm to stimulate preferences
in populations of scout agents; the algorithm can be
stopped and restarted but it will not continue changing
for ever as an optimum will be reached.

Some solutions are reusable like the application
independent framework of the holonic approach which
can be applied to problem solving or simulation in
different contexts. The general framework of the solution
built for the timetabling problem can be also reused in
other constraint satisfaction problems (such as supply
chain management, for example) but rules enabling
agents to detect and solve non cooperative situations are
specifically suited to the problem.

Reaction to perturbations (sensitivity, robustness,
adaptation or instability). Given a system that stabilizes
on a state (solution), when a perturbation occurs the
system can i) escape from this state and potentially reach
another stable one (this is adaptation); ii) temporarily
change its state and come back to the initial stable state
(this is robustness), iii) change from state to state without
stabilizing (instability), or iv) change of state even in
case of small perturbations (sensitivity). To assess these
criteria, we need to perturb the system at runtime. A
perturbation can be viewed as an external event on the
system in relation with the unpredictable and dynamic
features of the application domain. In the timetabling

application, perturbations come from the stakeholders
that may change their constraints in a dynamic way, new
actors can also vary at runtime. Failures of sensors can
also be viewed as unexpected events for the flood
forecasting application.

In land-use assignment, we did successful
experiments where at runtime we changed the number of
zones, the number of land use categories or by changing
the goal of groups. In localization application, the system
can successfully deal with situations where the number
of targets and of sensors can vary at runtime. In all these
situations, the systems were robust or adaptive according
to the degree of the perturbation.

The timetabling application is a good example of a
non-linear complex system in which simple and small
variations (personal constraints, for example) may imply
major changes in the problem solution. Partnerships an
agent makes can disturb other agents, thus a little
modification in the timetable can question the current
solution which may vary greatly. The system is sensitive
to perturbations, but is also able to adapt to these
changes. Indeed, the very essence of systems built by
applying the AMAS theory is adaptation which is
obtained by enabling agents to locally decide to change
their interactions with each others using cooperation as a
local criterion.

In the AM and HTS the adaptation is done by the
reorganisation of holarchies and is the basis of the
approach.

In the self-organising communities application, the
behaviour of middle agents is designed to respond to
perturbations from users introduced via their user agents.
In this example a perturbation is in the form of a novel
query. This may provide information about a change of
interests of the user and hence of the user agent, and as a
result the user agent may move from one community
around a middle agent to another. The use of rewards for
successful responses to queries provides a mechanism to
react to perturbations. In the evolving preferences
application such response to perturbation is reflected in
changes in selection pressure on the scout agent
population, and hence changes in the outcome of the
evolutionary algorithm.

This framework is still a tentative way to compare self-
organised applications and it can be improved in two
directions.

The first is the criteria list itself: it is still subject to
discussion as the definition of criteria can be questioned
and other criteria can be added to refine this comparison
framework.

The second is related to the kind of answer for each
criterion; it is currently subjective according to the
interpretation of the definition. It would be of interest,
when criteria are well established, to provide
measurements of them. For example, measuring the
decentralisation degree by the percentage of agents in the
system that are directly involved by the decision of
another one (this can be measured by the number of
agent in a holon when the head agent takes a decision).

APPLICATION OF SELF-ORGANISING... Informatica 30 (2006) 73–82 81

4 Conclusion
Multi-agent systems can be developed in many different
ways. The autonomous nature of individual agents means
that complex properties can emerge at the multi-agent
system level. Self-organisation can be a useful way of
controlling and regulating this complexity, especially
when seeking to support an application. In a general way,
applications that are too complex to give an a priori
algorithm, that are plunged into open and real
environments (the Internet, for instance) and for which a
perfect design cannot be guaranteed can benefit from
self-organisation.

This paper has presented several examples of
applications based on multi-agent systems that use self-
organising behaviour among the agents to facilitate
application properties. The AMAS theory which uses
self-organisation by cooperation has been successfully
applied to various application domains: simulation, e-
commerce, network management, collective robotics,
mechanical design in avionics, flood forecasting, and
biological modelling. Reactive multi-agent systems have
proved useful in diverse application areas such as
localisation in mobile robotics They have also provided
the basis for cooperative information agents for
information retrieval. Agents based on self-organisation
through holons have been useful in meshing for cellular
networks, and in traffic simulation, for example.

Self-organising multi-agent systems are at an early

stage of development, with many different mechanisms
of self-organisation to be explored. Despite this a number
of examples have been outlined here, and already a
diversity of application areas are being explored. We can
anticipate self-organisation being of further relevance for
applications of multi-agent systems in the future.

The framework of comparison we have provided has
proven its usefulness to understand these approaches
even if it has to be considered as a first and tentative
approach that needs to be improved. It is obvious that the
choice of one approach is application-dependent and
these criteria may be of some help in this choice.

The authors would like to thank the participants of the
two meetings of the AgentLinkIII “Self-organisation in
MAS” TFG for their fruitful discussions.

References
[1] Bonabeau E., Dorigo M., and Théraulaz G. (1999)

Swarm Intelligence: From Natural to Artificial
Systems. Santa Fe Institute Studies on the Sciences
of Complexity. Oxford University Press, New
York, NY, USA.

[2] Gleizes M.-P., Camp, V. and Glize P. (1999) A
Theory of Emergent Computation Based on
Cooperative Self-Organisation for Adaptive
Artificial Systems, 4th European Congress of
Systems Science, Valencia.

[3] Corne D., Dorigo M., and Glover F. (1999) New
Ideas in Optimization, Mac Graw Hill.

[4] De Causmaecker P., Ouelhadj D., and Vanden
Berghe G. (2003) Agents in Timetabling Problems.
Proc. of the 1st Multidisciplinary International

Conference on Scheduling Theory and
Applications, pp. 67-71, UK.

[5] Decker K., Sycara K. and Williamson M. (1997)
Middle-Agents for the Internet. Proc. of
International Joint Conference on Artificial
Intelligence (IJCAI-97), Japan, pp. 172-175.

[6] DIET Agents platform: http://diet-
agents.sourceforge.net/index.html

[7] Di Marzo Serugendo G., Foukia N., Hassas S.,
Karageorgos A., Kouadri Mostéfaoui S., Rana O.
F., Ulieru M., Valckenaers P., and Van Aart C.,
(2004) Self-Organising Applications: Paradigms
and Applications. Engineering Self-Organising
Systems: Nature-Inspired Approaches to Software
Engineering, G. Di Marzo Serugendo, A.
Karageorgos, O. F. Rana, F. Zambonelli (Eds),
Lecture Notes in Artificial Intelligence 2977,
Springer-Verlag, Berlin, pp. 1-19.

[8] Di Marzo Serugendo G., Gleizes M-P., and
Karageorgos A., (2005) Self-Organisation and
Emergence in MAS: An Overview, Informatica,
this issue, Ljubljana, Slovenia.

[9] Dury A., Le Ber F., and Chevrier V. (1998) A
Reactive Approach for Solving Constraint
Satisfaction Problems: Assigning Land Use to
Farming Territories, In Proc. of Agents Theories,
Architectures and Languages 98 (ATAL’98),
Lecture Notes in Artificial Intelligence 1555
“Intelligent Agents V”, J.P. Muller, M.P. Singh et
A. S. Rao (eds), Springer-Verlag, pp. 397-412.

[10] Eberhart R., Kennedy J., and Shi Y. (2001) Swarm
Intelligence, Morgan Kaufmann Publishers.

[11] Ferber J., and Jacopin E. (1990) The Framework of
Eco-problem Solving. In Proceedings of the
European Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW'90), pp.
181-193.

[12] Gechter F., Chevrier V., and Charpillet F. (2004)
Localizing and Tracking Targets with a Reactive
Multi-Agent System, In Second European
Workshop on Multi-Agent Systems (EUMAS'04),
pp. 255-262.

[13] Georgé J.-P., Gleizes M.-P. Glize P., and Régis C.
(2003) Real-time Simulation for Flood Forecast: an
Adaptive Multi-Agent System STAFF, Proceedings
of the AISB'03 Symposium on Adaptive Agents and
Multi-Agent Systems, University of Wales,
Aberystwyth, pp. 7-11.

[14] Hoile C., Wang F., Bonsma E., and Marrow P.
(2002) Core Specification and Experiments in
DIET: a Decentralised Ecosystem-Inspired Mobile
Agent System, Proc. 1st Intl. Conf. Autonomous
Agents and Multi-Agent Systems (AAMAS’02), pp.
623-630.

[15] Hsu K., Sorooshian S., Gupta H. Y., Gao X., and
Imam B. (2002) Hydrologic Modeling and Analysis
Using a Self-Organizing Linear Output Network, In
Rizzoli A.E. and Jakeman A.J. (eds), Integrated
Assessment and Decision Support, Proceedings of
the First Biennial Meeting of the International
Environmental Modelling and Software Society
(iEMSs’0), Manno, Switzerland, pp. 172-177.

82 Informatica 30 (2006) 73–82 C. Bernon et al.

[16] Kaplansky E., Kendall G., Meisels A., and Hussin
N. (2004) Distributed Examination Timetabling, In
Proc. of the 5th International Conference of the
Practice and Theory of Automated Timetabling
(PATAT), Pittsburg, USA, pp. 511-516.

[17] Koestler A. (1990) The Ghost in the Machine,
Reprint edition, Penguin, East Rutherford, NJ,
USA.

[18] Mano J.-P., Bourjot C., Lopardo G., and Glize P.
(2005) Bio-inspired Mechanisms for Artificial Self-
organised Systems, Informatica, this issue,
Ljubljana, Slovenia.

[19] Marrow P., Hoile C., Wang F., and Bonsma E.
(2003) Evolving Preferences among Emergent
Groups of Agents, In Adaptive Agents and Multi-
Agent Systems, E. Alonso, D. Kudenko & D.
Kazakov (eds.), Lecture Notes in Artificial
Intelligence 2636, Springer-Verlag, Berlin, pp.
157-173.

[20] Michel F., Gouaich A., and Ferber J. (2003) Weak
Interaction and Strong Interaction in Agent Based
Simulations. Multi-Agent Based Simulation III. D.
Hales et al. (Eds), Lecture Notes in Artificial
Intelligence 2927, Springer-Verlag, Berlin, pp. 43-
56.

[21] Müller T., and Rudova H. (2004) Minimal
Perturbation Problem in Course Timetabling, In
Proc. of the 5th International Conference of the
Practice and Theory of Automated Timetabling
(PATAT’04), Pittsburg, USA, pp. 283-304.

[22] Paolucci, M., Niu Z., Sycara C., Domashev S.,
Owens S. and Van Velsen, M. (2000) Matchmaking
to Support Intelligent Agents for Portfolio
Management, In Proc. of the 17th National
Conference on Artificial Intelligence and 12th
Conference on Innovative Applications of Artificial
Intelligence, Calif., AAAI Press, pp. 1125-1126.

[23] Picard G., Bernon C., and Gleizes M.-P., (2005)
ETTO: Emergent Timetabling by Cooperative Self-
Organisation, Third International Workshop on
Engineering Self-Organising Applications
(ESOA’05), Utrecht, The Netherlands, pp. 31-45.

[24] Reynolds C. W. (1987) Flocks, Herds, and Schools:
A Distributed Behavioral Model, In Computer
Graphics, SIGGRAPH Conference Proceedings, pp.
25–34.

[25] Rodriguez S., Hilaire V., and Koukam (2005) A.
Holonic Modelling of Environments for Situated
Multi-Agent Systems, Submitted to E4MAS’05.

[26] Rodriguez S., Hilaire V., and Koukam A. (2003)
Towards a Methodological Framework for Holonic
Multi-agent Systems, In Proceedings of the Fourth
Workshop on Engineering Societies in the Agents
World (ESAW’03), pp. 31-45.

[27] Roumeliotis S.I., Sukhatme G.S., and Bekey G.
(1999) Circumventing Dynamic Modeling:
Evaluation of the Error-State Kalman Filter applied
to Mobile Robot Localization, IEEE International
Conference on Robotics and Automation, IEEE
Computer Society Press, Los Alamitos, CA, USA,
pp. 1656-1663.

[28] Socha K., Sampels M., and Manfrin M. (2003) Ant
Algorithms for the University Timetabling Problem

with Regard to The-State-of-the-Art, In
Proceedings of the 3rd European Workshop on
Evolutionary Computation in Combinatorial
Optimization (EvoCOP’03), Essex, UK, pp. 334-
345.

[29] Van Parunak H. (1997) Go to the Ant: Engineering
Principles from Natural Multi-Agent Systems,
Annals of Operations Research 75, pp. 69-101.

[30] Vergnes J.-C. (1995) Etude de modèles de prévision
à la station de Nant - Exploitation de l’utilisation
des réseaux neuronaux en prévision de crues,
Report ENSEEIHT/DIREN.

[31] Wang F. (2002) Self-organising Communities
Formed by Middle Agents, Proc. 1st Intl. Conf.
Autonomous Agents and Multi-Agent Systems
(AAMAS’02), pp. 1333-1339.

[32] Yokoo M., Durfee E., Ishida Y., and Kubawara K.
(1998) The Distributed Constraint Satisfaction
Problem: Formalization and Algorithms, IEEE
Transactions on Knowledge and Data Engineering,
10, pp. 673-685.

