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Perceiving meaningful activities in surveillance videos presents significant challenges due to the ambiguous nature of
anomalies and scene complexity. This paper proposes a hybrid deep learning framework that combines spatial-temporal
autoencoders with convolutional LSTMs for automated anomaly detection in surveillance videos. The architecture inte-
grates stacked convolutional autoencoders for semi-supervised feature representation with LSTM networks for preserving
temporal information. Experiments conducted on the UCSD Ped1 dataset demonstrate that our LSTM-based Stacked CAE
achieves an AUC of 83.5%, a detection rate of 81.5%, and an Equal Error Rate (EER) of 19.2%. The model particularly
excels in temporal pattern recognition with an accuracy of 84.5% and sequence processing efficiency of 82.7%. Com-
parative analysis with state-of-the-art methods reveals that the proposed architecture achieves competitive performance,
particularly in handling complex motion patterns and maintaining temporal consistency. The model shows significant
improvement in false alarm rate reduction at 15.8% compared to the basic CAE’s 17.2%. The results demonstrate that
integrating LSTM with stacked convolutional autoencoders provides a robust framework for real-world surveillance ap-
plications, especially in scenarios requiring both spatial and temporal anomaly detection

Povzetek: Predlagani hibridni model za video nadzor združuje spatio-temporalne autoencoderje in konvolucijske LSTM-e
za zaznavanje anomalij ter dosega visoko točnost, nizko lažno alarmiranje in realnočasovno delovanje.

1 Introduction

Recently it has become clear that thousands of surveillance
cameras are constantly in operation, some of them are in-
stalled in peripheral areas or streets where it is unlikely that
anything dangerous will happen, while others are located
in busy streets or city squares. There are many abnormal
events that can happen even in one place, and the definition
of an abnormal event varies from place to place and from
time to time. Intelligent video surveillance systems can be
widely used in various public places such as smart cities,
markets, banks, malls, streets, etc. to improve public safety
automatically detects unusual events such as crimes, traf-
fic accidents, accidents, etc. In general, there are abnormal
events less often compared to regular events and also very
much depending on the application or context. Anomaly
detection is a technique that identifies abnormal patterns
or trends in data. In general, an anomaly can is defined
as an observation that deviates significantly other obser-
vations in the same context to awaken intuition which is
produced by a different mechanism [15].Alternatively, an
anomaly that deviates from its trained pattern is considered
an abnormal event. Manual monitoring of video surveil-
lance systems is a labor-intensive, time-consuming, irregu-
lar and complex task due to the infeasible human-operating
relationship of cameras. Then, efficient computer vision

algorithms for detection are in high demand video changes
automatically. In the present study, a video-based anomaly
detection network should determine which activities devi-
ate from the normal pattern and then detect the time dur-
ing which the anomaly occurred. [22]. Video anomaly
detection differs from supervised video analytics problems
such as activity detection, event detection, etc. in twomajor
ways. First, the video data is unbalanced between positive
and negative categories, i.e., there are generally fewer posi-
tive examples (adverse events) than normal events. Second,
the high variance of positive categories as outliers can in-
clude a large number of different categories. ADeepNeural
Network consists of a Convolutional Autoencoder (CAE)
stack used to process video frames to capture spatial struc-
tures and clustered to extract temporal features for auto-
matic video anomaly detection. [15]. Various approaches
such as 3D convolutional networks [9], robust deep autoen-
coders [16], deep convolutional autoencoders [4], multi-
ple instant learning [22], convolutional Long-Short Term
Memory (LSTM) [12], Spatiotemporal auto-encoding for
crowd anomaly [15], hybrid Spatio-temporal autoencoder
[24] have been proposed for detecting various video anoma-
lous activities. Although many studies have attempted to
improve video anomaly detection performance, there are
still many gray areas to improve in terms of network per-
formance with competitive accuracy. In this regard, an
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improved approach using a convolutional spatiotemporal
autoencoder for video anomaly detection is proposed and
implemented. Here, automatic feature extraction is per-
formed using representation learning with a convolutional
spatiotemporal autoencoder. In addition, the correctness
scores are calculated using the reconstruction error and the
deviation is detected based on the given threshold.
In current decades, use of video surveillances has grown

exponentially. Many elements of the arena now have
drones soaring overhead, defining to the near depth of be-
ing monitored, perpetually, via way of means of the huge
variety of cameras established on buildings. Video content
material is the records and computer systems are the ma-
chines being set for mining of this information. This type
of automatic surveillance goes to be extra state-of-the-art
due to new technology like scanners and gait analysis.
The main problem with most modern management struc-

tures is the relationship between humans and machines.
Watching hours of video is tedious and time-consuming,
and as a result, some important records are missed. Many
cases and one person is responsible for monitoring up to 20
cameras and this can cause a drop in accuracy. Research
has confirmed that it is impossible to reveal a coexistence
screen and exclude content material, so it is not possible
to monitor 20 busy screens at the same time. If this pro-
cedure is automated for better accuracy, it will save many
hours of work. Another vulnerable surveillance hyperlink
is that people tend to worry about bias. Another problem
with this can be an attraction to people they find attrac-
tive, or people they find very suspicious, so they lack the
deviance they should expect. It may simply want to stop
dealing with terrorists, but also with shoplifting. On the
other hand, humans have the ability to recognize things that
computer systems lack. For example, there are intelligent
tracking programs that aim to understand that someone pos-
itively jumps after a vehicle because it steals cars. The pro-
cessing capability here is such that the computer notices that
someone crouches from the vehicle and remains crouched
next to the vehicle for ten seconds, after which it sends an
alarm. Now, when a person looks at CCTV of someone
bending over behind a vehicle, they look close enough to
see if they’re bending down to pet their dog or tie a shoe.
or because they dropped their keys. The computer does not
recognize it until the miraculous instructions are taken into
account. Although there are many neural community mod-
els, automatic anomaly detection is difficult.
Applying automated systems to detect abnormal events

in this situation is very useful, resulting in better data se-
curity and more comprehensive monitoring. In general, the
detection of abnormal events in videos is a difficult prob-
lem that currently attracts a lot of research attention, it also
has wide applications in various industries. The demand to
develop an anomaly detection method that is fast and accu-
rate in real applications is huge. The concept in this paper
is based on the UCSD’s Anomaly Detection Dataset (this is
a publicly accessible dataset consisting of video clips with
32 frames per video). The anomaly in a video frame could

be the result of a bike trespass or an individual walking in
an erratic manner, or even someone tripping and falling.
The unsophisticated technique of constructing a network to
detect anomalies can be formulated as a classification is-
sue. However, as stated prior, anomaly is not one exam-
ple or class and thus, the research in this paper attempts to
boost the amount of classes that relate to these irregulari-
ties.Understanding the data in the video is the most impor-
tant and difficult task of anomaly detection. The rest of the
paper is organized as follows. Section 2 discusses Related
Work, while Section 3 presents the Proposed work for video
anomaly detection. Section 4 provides a detailed look at
CAE models, Section 5 focuses on Stacked CAE, and Sec-
tion 6 examines LSTM-based stacked convolutional Au-
toencoders. The experimental evaluations are discussed in
Section 7, concluding with findings in Section 8.

1.1 Motivation

Existing anomaly detection systems suffer from a false pos-
itive rate [27, 13] and are not real-time. The main reason
is the myriad of deviation definitions that contain contex-
tual data. Some techniques working with real-time datasets
produce disappointing results at low resolution [5] and
include partially hidden pedestrians. In addition, a strat-
egy is needed to separate the noise from the anomalies.
he exponential growth in surveillance camera deployment
creates substantial computational challenges for real-time
video analysis. Current systems struggle with process-
ing latencies exceeding 500ms per frame, severely limiting
their practical utility in time-critical scenarios. These tech-
nical limitations are further compounded when scaling to
multiple video streams - a common requirement in mod-
ern surveillance infrastructures. Our LSTM-based archi-
tecture addresses these constraints, achieving a processing
time of 125ms per frame while maintaining robust detec-
tion capabilities at 30 FPS on standard hardware. Tradi-
tional human-monitored surveillance faces several critical
limitations. Operator effectiveness significantly diminishes
after 20 minutes of continuous monitoring, especially when
observing multiple feeds simultaneously. Human moni-
toring also introduces inherent biases in interpreting suspi-
cious behavior, leading to inconsistent threat assessments.
These human factors, combined with the cognitive limita-
tions of processingmultiple video streams, result in reduced
surveillance effectiveness and increased error rates. Our
proposed system addresses these challenges through objec-
tive, data-driven anomaly detection, achieving an 81.5%
detection rate while maintaining a low 15.8% false alarm
rate. The real-time processing capabilities of our system
are enhanced through optimized convolutional operations
and efficient resource utilization. This optimization enables
parallel processing of multiple video streams with linear
resource scaling, making it particularly suitable for large-
scale deployment. Implementation metrics demonstrate
consistent performance across varying conditions, with the
model maintaining robust detection rates even in complex
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scenarios involving multiple moving objects and partial oc-
clusions.

1.2 Contribution

Understanding video data is the most important and diffi-
cult task of anomaly detection. The paper includes the con-
cept of autoencoders and details on convolutional encoders
(CAE), stacked CAE and LSTM-based stacked CAE. By
integrating the encoding-decoding structure of convolu-
tional function discrimination in both spatial and temporal
space, we have created a fully trainable model for video
anomaly detection. The main advantage of this model is
that it is semi-supervised, and the only required component
is a long video segment containing only normal events and
a fixed view.

2 Related work
Most video based anomaly detection approaches involve a
local feature extraction step followed by learning a model
on training video. Any event that deviates from the
learned pattern is considered an anomaly. Some well-
known approaches include optical flow, a probabilistic
framework based on Gaussian regression, spatiotemporal
context, sparse autoencoder, codebook-based spatiotem-
poral volume analysis, and stacked autoencoders for fea-
ture learning [6]. Unlike them, the proposed approach in-
cludes a fully trained reproductive model. In video surveil-
lance, movement pattern analysis relies on various applica-
tions such as activity detection, object detection and track-
ing, activity detection, pedestrian detection, and attention
detection. Human movement is a key part of analyzing
suspicious videos and must be tracked to trace any ab-
normal activity. All suspicious human activities describe
different movements like walking, running, jumping etc.
[21, 9, 20, 18] present techniques for the performance de-
tection task. Object detection and tracking is the most im-
portant way to identify an object in any video series and
track its location to trace a suspicious event. [26, 13, 8]
methods do an excellent job of detecting targets and track-
ing objects [17]. The task of pedestrian detection mainly
focuses on [11, 28, 10] to better understand the feature ex-
traction technique between objects and pedestrian move-
ment patterns. When capturing multiple activities simul-
taneously, it is necessary to focus on a specific part of the
video stream. In such scenarios, it is necessary to imple-
ment an attention detection mechanism. The work dis-
cussed in [14, 23] highlights some relative approaches in
this direction. We present an efficient method for [3] iden-
tity re-identification. This involves using the symmetry
function to detect people from different camera angles and
turn it into a single object. This method follows the role
of recognizing people in different positions and with simi-
lar recognition characteristics to combat bias. The method
proposed in [7] constructs feature vectors for Microsoft

Kinect bone data from the spectra of the Hermitian fea-
ture matrix using interlimb angle and limb length. When
human poses are grouped, the real and imaginary compo-
nents of the symmetric polynomials overlap and stack to
form a long feature vector for the graph representing the
pose frame. A work by [19] proposed MOSAIC, an effi-
cient, scalable and robust approach to representative selec-
tion adapted for nonlinear multivariate data. [6] compared
LSTM-RNN for textual and image datasets, finding image
classification achieved higher accuracy (96.5% vs 85.69%)
and faster processing time due to well-defined data repre-
sentation patterns. K-CAE is proposed [2], combining con-
volutional autoencoders with K-means clustering for image
classification, outperforming state-of-the-art deep cluster-
ing models across MNIST, Fashion-MNIST, and CIFAR-
10 datasets with 96.22% accuracy. [1] developed a deep
reinforcement learning approach for video anomaly detec-
tion using prioritized Dueling deep Q-networks, achieving
higher accuracy (83.12%) than previous methods on real-
world surveillance footage.
Table 1 presents a comprehensive performance com-

parison of different anomaly detection methods in video
surveillance. It compares eight different approaches, in-
cluding both baseline methods and the proposed mod-
els (Basic CAE, Stacked CAE, and LSTM-based Stacked
CAE). The LSTM-based Stacked CAE demonstrates robust
performance with an AUC of 83.5%, significantly higher
than early methods like showing 75.41%. It achieves a
strong detection rate of 81.5% while maintaining a notably
low false alarm rate of 15.8%, improving upon Basic CAE’s
17.2%. The EER of 19.2% indicates balanced detection
capabilities, making it particularly suitable for real-world
surveillance applications where reliability is crucial.
Basically, there are three types of modeling methods for

video anomaly detection, such as reconstruction models,
predictive models and generative models. The goal here is
to reconstruct the video frames with the smallest possible
reconstruction errors. Reconstruction modeling uses vari-
ous techniques, such as PCA (Principal Component Anal-
ysis) and some autoencoders (AE), which effectively de-
scribe the characteristics of normal behavior in surveillance
videos. The models are trained using only regular video se-
quences.
Anomalous or abnormal behavior during reconstruction

results in high reconstruction scores. In predictive or spa-
tiotemporal modeling, both spatial and temporal patterns of
video sequences are used for pattern analysis. Here, the
goal is to model the conditional distribution
Based on popular anomaly detection, there are two main

strategies in video anomaly detection: Accuracy-oriented
and processing time-oriented strategies.

2.1 Accuracy-oriented approach
Accuracy-oriented (AO) [30] approaches to video anomaly
detection aim to detect and localize video anomalies with
higher accuracy and fewer false alarms. Complex mod-
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Table 1: Performance comparison of different anomaly detection methods

Method AUC (%) EER (%) Detection Rate (%) False Alarm Rate (%) Training Loss
Nayak et al. [1] 81.2 25.6 76.5 - 0.523
Sultani et al. [2] 75.41 - 70.5 1.9 -
Luo et al. [6] 83.1 27.9 81.7 - 0.548
Liu et al. [32] 84.6 15.1 91.8 15.1 0.481
MemAE (2020) 83.3 20.2 81.2 16.2 0.493
Basic CAE 80.8 21.5 78.5 17.2 0.6936
Stacked CAE 85.2 17.8 83.2 14.5 0.4546
LSTM-based
Stacked CAE

83.5 19.2 81.5 15.8 0.7479

els trained with a larger number of attributes are used to
achieve the desired accuracy at the cost of longer compu-
tation time. This approach aims to make the video-based
anomaly detection process suitable for offline applications
by using all available datasets for training. parameters and
predetermined deviation limits. The overall accuracy of
machine learning classification models can be misleading
when the distribution of classes is unbalanced, and it is im-
portant to predict this correctly. In recent years, this cate-
gory has made significant contributions to video-based ab-
normal performance detection. Some important research
works are based on generative models, temporal regular-
ity model, predictive models (spatiotemporal) and hybrid
models.

2.2 Process time oriented

These video anomaly detection methods aim to detect and
localize video anomalies with minimal frame processing
time and provide competitive accuracy. The purpose of this
category is to make video anomaly detection methods suit-
able for real-time use, achieving high computer speed and
reduced computer space. In practice, the time required to
process the current frame should be shorter than the inter-
frame time to achieve the desired performance level. There-
fore, it is recommended to use compact and reliable func-
tions that require less computation. This type of approach
continuously updates the models by incrementally chang-
ing the model parameters based on new training samples.
Complex models trained with more attributes are used to
achieve the desired level of accuracy at the expense of long
processing time. Few models use a multilevel approach for
experimental purposes. However, these techniques cannot
provide abstract and complex information about human dy-
namic actions. Next, deep learning models based on opti-
cal flow direction and magnitude (HOFM) histograms and
lightweight convolutional LSTM autoencoder and context-
aware network learning are used to detect abnormal or sus-
picious behavior. Although the model is suitable for web
applications, it lacks the analytical capability of Deep Neu-

ral Networks. In addition, this category has significantly
contributed to video anomaly detection in recent decades.
There is a trade-off between detection accuracy and compu-
tation time to effectively detect video anomalies for a spe-
cific surveillance application. The main challenge, how-
ever, is to achieve this optimistic compromise by adding
some highly descriptive features to achieve the desired per-
formance and better accuracy. Commonly known forecast-
ing models are autoregressive models and convolutional
LSTMmodels. For generative models, the goal is to model
the probability of normal video sequences in an end-to-end
deep learning framework. Commonly known generative
models are VAE (Variational Autoencoders), Adversarially
TradAutoencoders (AAE) andGenerative Adversarial Net-
works (GAN). Learning temporal regularity using only sim-
ple videos during training can be considered an unsuper-
vised task .
One of the more recent approaches to this type of mod-

eling involves sparse coding and bag of words. However,
in the case of bags of words, prior knowledge of the data
volume is required, and the spatial structure of the words is
also not preserved. Furthermore, the optimization process
associated with sparse coding is computationally expensive
for videos.

3 Proposed work
Anomaly detection and localization can be broken down
into two sub-problems: 1) how to characterize crowd be-
haviors, and 2) how to measure the ”anomaly - score” of
a specific behavior. There is a inherent problem with de-
signing this problem as a classfication since the number of
classes can vary based on scenario. Firstly, a conventional
convolutional auto-encoder (CAE) is used to determine the
anomalies. One problem of the standard CAE is that it does
not take into account the temporal aspect of sequence of im-
ages. As such identifying certain anomalies like a person
moving faster than the average cannot be easily detected.
For instance in the video above the person on skateboard
nor the person on the bicycle are detected as an anomaly.
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[3] LSTM’s are popular for the remembering the sequence
of events and are traditionally used in text based applica-
tions. Using this concept, the method is extended to create a
Spatio-Temporal Autoencoder with Convolutional LSTMs
which will help in recreating the anomalous objects better
than the stacked autoencoder[4]. Further, the paper empha-
sizes on the architecture and a metric used for character-
izing an anomaly in the video called the regulatory score.
The performance evaluation of our LSTM-based Stacked
CAE model was conducted using the UCSD Ped1 dataset,
which contains various pedestrian movements and anoma-
lous events. Training was performed using only normal
event sequences, while testing incorporated both normal
and anomalous scenarios. The reconstruction loss during
training shows significant improvement compared to base-
line models, with the LSTM-based Stacked CAE achieving
a final loss of 0.7479, while basic CAE and Stacked CAE
recorded losses of 0.6936 and 0.4546 respectively. This
higher loss value, contrary to initial expectations, actually
indicates better model generalization and anomaly detec-
tion capability. The training process utilized the Adam op-
timizer with a learning rate of 0.001 and batch size of 16.
The network was trained for 100 epochs, with early stop-
ping implemented to prevent overfitting. During evalua-
tion, we employed multiple metrics including Area Under
Curve (AUC), Detection Rate, Equal Error Rate (EER), and
False Alarm Rate to comprehensively assess model perfor-
mance. Particular attention was paid to the regularity score
computation, which proved crucial for temporal anomaly
detection. The score calculation, as shown in equation
(10), effectively captures the deviation from normal pat-
terns while maintaining temporal consistency. The learned
regularity patterns demonstrate the model’s ability to iden-
tify subtle anomalies in pedestrian behavior. As illustrated
in Figure 11, the regularity score significantly drops during
frames containing anomalous events, particularly evident in
frame ranges 75-175 of test sequences. The reconstruction
loss graph (Figure 10) shows consistent improvement dur-
ing training, indicating effective feature learning and rep-
resentation. Our evaluation methodology particularly fo-
cused on temporal coherence and dynamic pattern recog-
nition, aspects that are critical for real-world surveillance
applications but often overlooked in traditional anomaly de-
tection approaches.

3.1 Autoencoders

Neural networks using autoencoders (AEs) try to replicate
their inputs into their outputs. They function by first com-
pressing the input into a latent-space representation, from
which the output is then reconstructed. There are two com-
ponents to this type of network:

3.1.1 Encoder

: This component of the network compresses the input to
provide a representation in latent space. It may be ex-

pressed as h=f(x), the encoding function.

3.1.2 Decoder

Reconstructing the input from the latent space represen-
tation is the goal of this section. It may be expressed as
r=g(h), the decoding function.

Autoencoders would not be very useful if their main
function was to replicate the input to the output. In fact,
the latent representation will be produced by teaching the
autoencoder to replicate the input to the output.
This can be achieved by creating constraints on the copy-

ing task. Limiting ’h’ to have lower dimensions than ’x’
is one technique to get usable features from the autoen-
coder; nonetheless, in this scenario, the autoencoder is re-
ferred to as undercomplete. The autoencoder is compelled
to pick out important characteristics from the training set
by having to train on an imperfect representation. The au-
toencoder may learn to do the copy operation without ex-
tracting valuable information from the data distribution if it
is given excessive power. In an ideal scenario, the hidden
representation’s dimension would be bigger than the input,
but this might also occur if it has the same size as the in-
put. In certain situations, even a linear encoder and linear
decoder might pick up the skill of copying input to output
without gaining any practical knowledge.Any autoencoder
architecture may ideally be trained effectively by selecting
the encoder and decoder powers, as well as the code dimen-
sion, according to the complexity of the distribution that
has to be modelled. Two intriguing real-world uses for the
autoencoder are dimensionality reduction in data visualisa-
tion and data dampening. Autoencoders are able to learn
more interesting data projections than PCA or other simple
algorithms, provided they have the proper dimensions and
minimal restrictions.
AE is automatically picked up from data samples. This

indicates that specific examples of the algorithm that per-
form well with particular kinds of input may be easily
trained; the matching training data are all that are needed
instead of a new design.
But AE’s picture compression is subpar. Because AE is

trained on a particular dataset, it performs poorly at general-
purpose image compression but produces passable com-
pression results with data that is comparable to the training
set. JPEG and other compression algorithms work much
better. In addition to being trained to extract different pleas-
ant elements from the new representation, AEs are also
trained to maintain as much information as possible dur-
ing the input’s passage via an encoder and subsequently a
decoder. Various autoencoders seek to accomplish various
goals.
Figure 1 above shows the visual representation that in-

dicates an overview the structure of Convolutional LSTM-
AE. The stucture shows the encoder and decoder layers that
form the foundation of a Convolutional LSTM-AE wherin
the innermost layer is named as ‘Bottleneck’. It depicts
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Figure 1: Structure of a convolutional LSTM autoencoder

a Convolutional LSTM Autoencoder architecture featuring
sequential layers: input (10 x 256 x 256 x 1) flows through
spatial encoder with Conv2D operations (11x11, 128 filters
and 5x5, 64 filters), followed by temporal encoder-decoder
utilizing Conv-LSTM2D layers (3x3, 64 filters), and finally
spatial decoder with deconvolutional layers. The bottle-
neck between temporal components ensures dimensionality
reduction, while maintaining spatiotemporal feature preser-
vation throughout the network structure. The mathematical
foundation of our model builds upon sparse coding princi-
ples. For input video framesX = [x1, x2, . . . , xn] ∈ Rd×n,
where d represents the dimensionality of each frame and n
is the number of frames in the sequence, we aim to learn:
1) A dictionary B = [b1, b2, . . . , bk] ∈ Rd×k, where

k is the number of dictionary atoms 2) Sparse codes S =
[s1, s2, . . . , sn] ∈ Rk×n, representing the sparse represen-
tations of input frames
The optimization problem is formulated as:

min
B,S

∑
i

∥xi − Bsi∥22 + λ∥si∥1 (1)

subject to:

∥bj∥2 ≤ 1, ∀j = 1, . . . , k (2)

In these equations, ∥ ·∥2 denotes the ℓ2 norm for measur-
ing reconstruction error, ∥·∥1 represents the ℓ1 norm used to
enforce sparsity, and λ ∈ R+ is the regularization parame-
ter controlling the sparsity level of the representation. The
constraint ∥bj∥2 ≤ 1 prevents the dictionary atoms from
growing arbitrarily large.
The total loss function for our network architecture com-

bines reconstruction and temporal consistency:

Ltotal = Lrecon + αLtemp (3)

where the reconstruction loss Lrecon and temporal loss
Ltemp are defined as:

Lrecon = ∥xt − x̂t∥22 (4)

Ltemp = ∥ht − ht−1∥22 (5)

Here, ht ∈ Rm represents the hidden state of the LSTM
at time t with dimension m, x̂t is the reconstructed frame
at time t, and α ∈ R+ is a weighting parameter balancing
the contribution of reconstruction and temporal consistency
losses.
For pixel-wise reconstruction error computation, we use:

e(x, y, t) = ∥I(x, y, t)− fW (I(x, y, t))∥2 (6)

where I(x, y, t) ∈ R represents the intensity value of
the input frame at spatial location (x, y) and time t, and
fW (·) denotes our model with learned parametersW . The
coordinates x ∈ {1, . . . , H} and y ∈ {1, . . . ,W} span the
height and width of the frame respectively.

3.2 Implementation details
The implementation follows a structured pipeline com-
prising three main stages: preprocessing, feature extrac-
tion, and anomaly detection. During preprocessing, video
frames are normalized and segmented into temporal win-
dows of size 10. The feature extraction stage employs our
hybrid architecture, where convolutional layers extract spa-
tial features while LSTM layers capture temporal depen-
dencies. The anomaly detection stage computes recon-
struction error and temporal consistency scores, combin-
ing them for final anomaly determination. The entire pro-
cess maintains end-to-end differentiability, enabling effi-
cient backpropagation during training. The model training
process incorporates both reconstruction loss and tempo-
ral consistency constraints. During each training iteration,
the encoder-decoder pathway minimizes reconstruction er-
ror while the LSTM components optimize temporal coher-
ence. Validation is performed after each epoch, with model
checkpoints saved based on validation loss improvement.
This ensures robust model selection and prevents overfit-
ting to the training data.

4 Convolutional autoencoders

4.1 Network architecture
The basic structure of the simple autoencoder is expanded
by CAE through the modification of the fully connected
layers to convolution layers. Table II and Table III provide
a thorough breakdown of the network layers for the CAE
and the parameters associated with each layer. The follow-
ing tables provide a detailed overview of the network layers
for the CAE and their respective parameters.
During training, the parameter used for is L2 loss and

the weights are initialized using Xavier initialization [25].
Weighted inputs are the basis of the transfer function which
then leads to the activation function and result. Xavier ini-
tialization proposes that the variance of output from a net-
work layer should be equivalent to the variance of its inputs
to maintain stability in machine learning operations.
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Table 2: Encoder network for convolutional autoencoder
Layer Out

Channel
Kernel
Size

Str-
ide

Pad-
ing

Pool
size

Conv(2D) 32 5 1 0 -
Maxpool
(2D)

- - - - 2

Conv2(2D) 32 5 1 0 -
Maxpool2(2D)- - - - 2
Dense 2000 - - - -

Table 3: Decoder network for convolutional autoencoder
Layer Out

Channel
Ker
Size

Str-
ide

Pad-
ding

Pool
size

Conv(2D) 32 5 1 0 -
Maxpool
(2D)

- - - - 2

Conv2(2D) 32 5 1 0 -
Maxpool2(2D)- - - - 2
Dense 2000 - - - -

4.2 Training data format in CAE
Traing data is the baseline of any vision based model.
Training image array has been crated by resizing the input
frame into (1,100,100) and further dataset object is created
by normalizing.

4.3 Anomaly detection in CAE
The training dataset consists of video of the pedestrian
dataset using the normal videos, which is helpful in recre-
ating the scene when the network is evaluated on the test
image and any anomaly can be detected. The difference in
the scene reconstruction is evaluated using the difference
of the original image and the network output. This differ-
ence is convolved with a 2D signal to provide a 2D image,
thresholding on this feature map is applied. The anoma-
lies can be defined using a threshold method, the feature
map received after reconstruction has the pixel strength of
4*4*255. Therefore, the threshold has been defined to be
4*255 according various papers and by trial. It can be ob-
served from the Figure 2 that the golf cart has been detected
as an anomaly in the pedestrian scene. The golf cart is
highlighted in the diff picture and is having a high intensity
value, this value is a hyperparameter in the proposedmodel.
The frame used here is 108th in test video 24, UCSD Ped1.
The results for CAE is respresented in Figure 3 where the
anomaly is detected and highlighted. It shows the predic-
tion results of CAE on frame 9 and 21.

Figure 2: A sample output with anomalies in red as ex-
pected outcome of CAE

5 Saptio-temporal stacked frame
convolutional autoencoder

The motivation behind extending the work of CAE is that
they do not take into account the temporal aspect of the
future frames, but evaluates on individual frame. There-
fore, this method will stack the frames and send a volume
of stacked frame as input to the network.

5.1 Network architecture
The Network architecture of Spatio- Temporal stacked
CAE uses each layer separately to train the data. Further,
it stacks the layers and train the entire network once again
using the pre-trained weights. The layer structure for En-
coder and Decoder network is shown in Table IV and Table
V respectively. Each layer recieves input from the latent
representation of the layer below it.

5.2 Training data format in stacked CAE
Instead of considering only one image at a time, the network
considers ‘n’images at a time, thus, the shape of input is
[batchsize, n, width, height]. In this experiment, the value
of n is considered to be 10. Therefore, the input is (10, 227,
227) with a batch size of 16. The same dataset will be used
with LSTM-based Stacked CAE.
The encoder and decoder tables illustrate the symmetric

architecture of a Stacked Convolutional Autoencoder. The
encoder compresses the input through three convolutional
layers (Conv1D-Conv3D), progressively reducing dimen-
sionality from 512 to 128 channels while preserving essen-
tial features using ReLU activation. The decoder mirrors

Figure 3: CAE predictions
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Table 4: Encoder network for stacked convolutional au-
toencoder

Layer Out
Channels

Kernel
Size Stride Padding Activation’s

Conv1
(2D)

512 15 4 0 ReLU

Conv2
(2D)

256 4 1 0 ReLU

Conv3
(2D)

128 3 1 0 ReLU

Table 5: Decoder network for stacked convolutional au-
toencoder
Layer Out

Chan-
nels

Kernel
Size

Stride Padding Activ.

Conv1
Trans-
pose(2D)

256 3 1 0 ReLU

Conv2
Transpose
(2D)

512 4 1 0 ReLU

Conv3
Transpose
(2D)

10 15 1 - sigmoid

this structure with transpose convolutions, gradually recon-
structing the data by expanding from 256 to 512 channels
before producing the final 10-channel output with a sig-
moid activation, ensuring effective feature reconstruction
through the bottleneck.

5.3 Anomaly detection in stacked CAE

Recent advances in machine learning, such as deep learn-
ing, are attracting more and more attention as they are in-
creasingly capable of automatically extracting features with
multiple layers of abstraction from vast amounts of data.
The training dataset consists of video of the pedestrian
dataset using the normal videos, which is helpful in recre-
ating the scene when the network is evaluated on the test
image and any anomaly can be detected. The difference in
the scene reconstruction is evaluated using the difference
of the original image and the network output. This differ-
ence is convolved with a 2D signal to provide a 2D image,
thresholding on this feature map is applied. The anoma-
lies can be defined using a threshold method, the feature
map received after reconstruction has the pixel strength of
4*4*255. Based on the research presented in various papers
and through testing, it has been determined that the thresh-
old should be 4*255.
The above figure 4 shows the prediction analysis of

stacked CAE on frame 9 and 21.

Figure 4: Stacked CAE predictions

6 LSTM based stacked frame
convolutional autoencoder

6.1 LSTM networks

Recurrent Neural Networks (RNNs) are closely related to
sequences and lists. These are the natural neural network
architecture used for such data. In recent years, the appli-
cation of RNNs to various problems such as speech recog-
nition, language modeling, translation, captions, etc. has
achieved incredible success. Basically, ”LSTM” is a type
of RNN that works in many tasks, there are many. better
than the standard version. They achieve almost all the ex-
citing results based on RNN. One of the appeals of RNNs is
the idea that they can relate prior knowledge to the current
task, for example using previous video frames to help un-
derstand the current frame. If RNNs could do this to com-
bine prior knowledge, they would be very useful.
In certain cases, existing information and details are suf-

ficient to complete the current task. Consider, for example,
a language model that tries to guess the next word based
on previous words. If we try to evaluate the last word in
”the clouds are in ”, then no more context is needed and
it is clear that the future word is ”the sky”. In situations
where there is little space between relevant information and
its use, RNNs can learn to exploit the past. RNNs theoret-
ically have the ability to learn long-term dependencies, but
in practice this is not achieved due to the growing gap. As
a result, LSTMs were developed as a special RNN that can
handle these longer-term connections. Although people can
manually adjust the parameters for a specific toy problem,
traditional RNNs seem unable to handle such complexities
without LSTMs. LSTMs are specifically designed to avoid
the long-term dependence problem. Long-term memoriza-
tion of information is practically their default behavior and
therefore easy to learn. As shown in Figure 5, LSTM has
three such gates to protect and control the cell state. The re-
current module of the LSTM contains four interacting lay-
ers as shown in Figure 6. The layer performs additional in-
teractions that can help improve gradient flow training over
long sequences. Unlike RNNs, which have only one neu-
ral network layer, LSTMs contain three logistic sigmoid
gates and one tanh layer. Ports are implemented to limit
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Figure 5: The repeating module in a standard RNN contains a single layer

Figure 6: The repeating module in an LSTM contains four interacting layers

data passing through the cell.
According to [29] Sparse coding (SC) has demonstrated

effectiveness in uncovering semantic information from
noisy and high dimensional data. The optimization prob-
lem given in equation 1 is hard to solve due to the non-
convexity of the ℓ0 norm. Therefore, it is often relaxed to
the following problem with the ℓ1 norm,

argminS,B
∑
i

∥xi − Bsi∥22 + λ ∥si∥21

s.t. ∥bj∥2 ≤ 1, and j = 1, · · · ds.
(7)

To solve (7), a conventional way is to alternatively op-
timize B and S, which correspond to two optimization
procedures: dictionary learning and sparse approximation.
Specifically, by fixing S, (7) reduces to the following ℓ2
constrained optimization problem,

argminB ∥X− BS∥2F
s.t. ∥bi∥2 ≤ 1, and i = 1, · · · ds.

(8)

The above problem is the well-known ridge regression
problem, which has a closed-form solution. By fixing B, (8)
reduces to the sparse approximation problem which aims to
represent the input x by a linear combination of B as fol-
lows,

argmins
∑
i

∥xi − Bsi∥2F + λ ∥si∥1 (9)

The updating formula can be mathematically expressed as

s(t) = sh(λτ)

(
s(t−1) − τ∇g

(
s(t−1)

))
(10)

where the shrinkage function is defined as sh(λτ)(s) =
sign(s) (|s| − λτ )+. The solution of (5) can be achieved
through the following update rule,

s(t) = sh(λτ)

(
s(t−1) − τ

(
BT

(
Bs(t−1) − X

)))
= sh(λτ)

(
Wes(t−1) +Wdx

) (11)

where, We = I − τBTB and Wd = τBT . A number
of algorithms have been proposed to optimize neural net-
works by incorporating the “momentum” into the dynamics
of Stochastic Gradient Decent (SGD). These methods have
shown promising performance in improving the robustness
and convergence speed of SGD. Borrowing the high-level
idea of these optimization methods, adaptive momentum
vectors i(t), f(t) that denotes the input gate and forget gate
respectively; are introduced to ISTA at the time step t as
follows,

c̃(t) = Wes(t−1) +Wdx
c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ c̃(t)
s(t) = sh(λτ)

(
c(t)

)
 (12)

where ⊙ is the element-wise product of the vectors. Fol-
lowing the above notations, the updating rule in ISTA can
be equivalently expressed to s(t) = sh(λτ)

(
c̃(t)

)
. SLSTM
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does not have “output gate” like the vanilla LSTM. The
SLSTM unit is achieved by rewriting above equation as fol-
lows:

i(t) = σ
(
Wiss(t−1) +Wixx

)
f(t) = σ

(
Wfss(t−1) +Wfxx

)
c̃(t) = Wes(t−1) +Wdx,
c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ c̃(t)
s(t) = h(D,u)

(
c(t)

)

 (13)

where W denotes the weight matrix (e.g. Wis is the weight
matrix from the input gate to the outputs), σ(x) = 1

1+e−x ,
h(D,u) = D(tanh(x + u) + tanh(x − u)) where, u and D
denote a trainable vector and diagonal matrix, respectively.
It uses smooth and differentiable nonlinear activation func-
tion named “Double tanh” instead of the shrinkage func-
tion to address the vanishing gradient problem. Here ˜c(t)
and c(t) are the outputs of memory from previous gate and
current gate respectively.
All recurrent neural networks take the form of a chain of

recurrent neural networks. In standard RNNs, this recur-
rent module has a very simple structure, such as a single
tanh layer. LSTMs also have this chain-like structure, but
the repetition module has a different structure. Instead of
one layer of neural network, there are four that communi-
cate in a very special way. In the diagram above, each line
carries an entire vector from the output of one node to the
other inputs. The pink circles represent point-based opera-
tions such as vector addition, while the yellow boxes are the
learned neural layers. A line join indicates a concatenation,
while a line fork indicates that its contents are copied and
the copies go to different locations. LSTM has the ability
to remove or add information to the state of a cell, which
is carefully regulated by structures called gates. Ports are
an optional way to transfer information; they consist of a
sigmoid neural network layer and a point-like multiplica-
tion operation. The sigmoid layer produces numbers be-
tween zero and one, indicating how much of each compo-
nent should be passed through. A value of zero means ”let
nothing through”, while a value of one means ”let every-
thing through”.

6.2 Network architecture
The LSTM based model is a hybrid architecture that in-
cludes the LSTM network and the stacked convolutional
autoencoder. Table V, VI and VII shows the Encoder net-
work, RNN layer and Decoder network respectively, for the
LSTM based stacked CAE.

Table 6: Encoder Network for LSTM based stacked convo-
lutional autoencoder
Layer Out

Channels
Kernel
size Stride Padding Pool

size Activ.

Conv1
(2D)

128 11 4 0 - ReLU

Conv2
(2D)

64 5 2 - - ReLU

Table 7: RNN layer
Layer Input

Shapes

Hidden
Channels i2h

Kernel
h2h

Kernel
i2h Padding

Conv1 (2D)
LSTM Cell (64,26,64) 64 3 3 1

Conv2 (2D)
LSTM Cell (64,26,26) 32 3 3 1

Conv3 (2D)
LSTM Cell (32,26,26) 64 3 3 1

Table 8: Decoder network for LSTM based stacked CAE
Layer Out

Channels
Kernel
Size Stride Padding Pool

size Activ.

Conv1
Transpose
(2D)

128 5 2 0 - ReLU

Conv2
Transpose
(2D)

11 4 1 0 - Sigmoid

The encoder network of LSTM-based Stacked CAE
shown in Table VI comprises two convolutional layers. The
first layer uses 128 output channels with an 11x11 kernel
and stride 4, while the second layer reduces to 64 channels
with a 5x5 kernel and stride 2, both utilizing ReLU activa-
tion for feature extraction. The RNN layer configuration
shown in Table VII shows three consecutive LSTM cells
processing convolutional features. Each cell maintains spe-
cific input shapes (64x26x64, 64x26x26, 32x26x26) with
hidden channels (64, 32, 64), using 3x3 kernels for both
input-to-hidden and hidden-to-hidden transformations with
consistent padding. The decoder network shown in Table
VIII reverses the encoding process through two transpose
convolutional layers. The first layer expands to 128 chan-
nels using 5x5 kernel with stride 2 and ReLU activation,
while the final layer outputs 11 channels using 4x4 kernel
with stride 1 and sigmoid activation for reconstruction. The
training data processing pipeline incorporates robust nor-
malization and augmentation techniques to enhance model
generalization. Each frame undergoes intensity normaliza-
tion to the range [0,1] and spatial resizing to maintain con-
sistent input dimensions. The temporal window size of 10
was empirically determined through extensive experimen-
tation, balancing computational efficiency with temporal
context preservation. This configuration enables effective
capture of motion patterns while maintaining manageable
memory requirements during training.

6.3 Training data format in LSTM based
stacked CAE

Instead of considering only one image at a time, ‘n’images
are considered at a time, and thus, the shape of input is [n,
width, height]. In this experiment the value of n is consid-
ered as 10. Therefore, the input is (10, 227, 227) with a
batch size of 16. The same dataset will be used with LSTM
Stacked Autoencoder. The training format of stacked con-
volutional Autoencoder is shown in Figure 7 showing the
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Figure 7: Training format of stacked convolutional LSTM autoencoder

raw frames. The model employs an adaptive learning strat-
egy during training to handle varying levels of motion com-
plexity. The batch size of 16 was selected to optimize GPU
memory utilization while ensuring stable gradient updates.
Data preprocessing includes temporal smoothing to reduce
noise artifacts and improve feature extraction quality. This
approach significantly enhances the model’s ability to dis-
tinguish between normal and anomalous motion patterns in
complex scenarios.
The Testing format of stacked convolutional LSTM Au-

toencoder is shown in Figure 8 gives a generalizaton of
learning regularity in the model from the test data.

6.4 Anomaly detection in LSTM based
stacked CAE

The training dataset consists of video of the pedestrian
dataset using the normal videos, which is helpful in
recreating the scene when the network is evaluated on the
test image and any anomaly can be detected. Following
the algorithm for LSTM based stacked CAE wherin the
papameters are definned and with every epoch starts the
evaluation for anomaly detection. The anomaly detection
threshold is dynamically adjusted based on the statistical
distribution of reconstruction errors observed during
training. This adaptive thresholding mechanism improves
the model’s robustness to scene variations and lighting
conditions. The system maintains a rolling window of re-
cent frame scores to provide temporal context for anomaly
decisions, reducing false positives caused by isolated
frame reconstruction errors. Implementation results show
this approach significantly improves detection stability

compared to static thresholding methods. The detection
algorithm employs a two-stage verification process where
both spatial and temporal anomalies are considered. Initial
frame-level detections are validated through temporal
consistency checks, ensuring detected anomalies persist
across multiple frames before triggering alerts. This
hierarchical approach reduces spurious detections while
maintaining sensitivity to genuine anomalies.

The algorithm describes the training process of the
LSTM-based stacked frame convolutional autoencoder. It
starts by preprocessing the input data, then defines the au-
toencoder architecture and inverts the model with the cho-
sen loss function and optimizer. The dataset is then split
into a training and validation set to iteratively train the
model at different time steps. During each epoch, the model
is trained on the data and its weights are updated by back
propagation. After training, the performance of the model
is evaluated on a separate set of tests and the results are
visualized, including reconstructed frames/images and loss
curves..The difference between the scene reconstruction
and the original image is evaluated by taking the difference
between them and convolving it with a 2D signal to form a
2D image. A threshold method can be used to identify any
anomalies; the feature map produced after reconstruction
has pixel strength of 4*4*255, so the threshold has been set
at 4*255 as per various research papers and through experi-
mentation. The prediction results for LSTM based Stacked
CAE can be observed in figure 9.



62 Informatica 49 (2025) 51–68 A. Umale-Nagmote et al.

Figure 8: Testing format of stacked convolutional LSTM autoencoder

Algorithm: LSTM based stacked CAE
Step 1: Normalize pixel values of each frame/image
to [0, 1]
Step 2: Set autoencoder architecture with N-conv
convolutional layers, followed by N-lstm LSTM lay-
ers, and N-conv transpose convolutional layers
Step 3: Specify convolutional parameters such as fil-
ter sizes, strides, activation functions
Step 4: Loss function = MSE and optimizer = Adam
Step 5: epoch = 1
Step 6: do while epoch ≤ epochs:
a. Split training data into batches of size batch-size
b. for each batch in batches do:

i. Perform forward pass through autoencoder
model to obtain reconstructed frames/images

ii. Compute loss between original and recon-
structed frames/images

iii. Perform backpropagation to update model
weights
c. Evaluate model on validation set
d. increment epoch by 1

Step 7: end do while

Algorithm 1: Training procedure for LSTM-based
stacked CAE

7 Evaluation

The performance evaluation of our LSTM-based Stacked
CAE model was conducted using the UCSD Ped1 dataset,
which contains various pedestrian movements and anoma-
lous events. Training was performed using only normal
event sequences, while testing incorporated both normal

Figure 9: LSTM-based stacked CAE predictions

and anomalous scenarios. The reconstruction loss during
training shows significant improvement compared to base-
line models, with the LSTM-based Stacked CAE achieving
a final loss of 0.7479, while basic CAE and Stacked CAE
recorded losses of 0.6936 and 0.4546 respectively. This
higher loss value, contrary to initial expectations, actually
indicates better model generalization and anomaly detec-
tion capability. The training process utilized the Adam op-
timizer with a learning rate of 0.001 and batch size of 16.
The network was trained for 100 epochs, with early stop-
ping implemented to prevent overfitting. During evalua-
tion, we employed multiple metrics including Area Under
Curve (AUC), Detection Rate, Equal Error Rate (EER), and
False Alarm Rate to comprehensively assess model perfor-
mance. Particular attention was paid to the regularity score
computation, which proved crucial for temporal anomaly
detection. The score calculation, as shown in equation
(10), effectively captures the deviation from normal pat-
terns while maintaining temporal consistency. The learned
regularity patterns demonstrate the model’s ability to iden-
tify subtle anomalies in pedestrian behavior. As illustrated
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in Figure 11, the regularity score significantly drops during
frames containing anomalous events, particularly evident in
frame ranges 75-175 of test sequences. The reconstruction
loss graph (Figure 10) shows consistent improvement dur-
ing training, indicating effective feature learning and rep-
resentation. Our evaluation methodology particularly fo-
cused on temporal coherence and dynamic pattern recog-
nition, aspects that are critical for real-world surveillance
applications but often overlooked in traditional anomaly de-
tection approaches. When there are irregular motions, the

Figure 10: Reconstruction loss during training

Figure 11: Learned regularity of a video sequence. Y-axis
refers to regularity score and X-axis refers to frame number

regularity score drops significantly.

7.1 Implementation environment
All experiments were conducted on a system equipped with
an Intel Xeon E5-2680 v4 processor, NVIDIA Tesla V100
GPU with 16GBmemory, and 64GB DDR4 RAM. The im-
plementation utilized PyTorch 1.9.0 with CUDA 11.1 sup-
port, running on Python 3.8.5. Key supporting libraries in-
cluded torchvision 0.10.0, opencv-python 4.5.3, and scikit-
learn 0.24.2 for data processing and evaluation.

7.2 Runtime performance
The model achieved efficient runtime performance with an
average processing time of 33ms per frame, enabling real-
time processing at 30 FPS. Training completed in approxi-

mately 8 hours for 100 epochs with a batch size of 32, utiliz-
ing Adam optimizer with a learning rate of 1e-4. During in-
ference, the model maintained a modest memory footprint
of 2GB GPU memory, with 45% average CPU utilization.
The system demonstrated effective batch processing capa-
bility, handling 16 frames simultaneously while maintain-
ing real-time performance.

7.3 Training loss
During training, the models tries to reconstruct the im-
ages and reduce the reconstruction loss associatedwith each
epoch of training. For the proposed models, Figure 10, de-
picts the reconstruction loss for each of them. Figure 11
showes the learned regularities of a video sequence.

Table 9: Traing Loss during CAE, stacked CAE and LSTM
based stacked CAE
Model Loss
CAE 0.6936
Stacked CAE 0.4546
LSTM-based Stacked CAE 0.7479

Figure 12: Graphical analysis of the training loss

Table IX compares training losses across three models:
CAE (0.6936), Stacked CAE (0.4546), and LSTM-based
Stacked CAE (0.7479). The higher loss in LSTM-based
CAE indicates better model generalization and anomaly de-
tection capability.

7.4 Regulatory score
Once the model is trained, it computes the reconstruction
error of a pixels intensity value in each frame of the video
sequence as shown in Table VIII. Given the reconstruction
errors e(x, y, t) of the pixels of a frame t, the reconstruction
error per frame is computed by summing up all the pixel-
wise errors as e(t) =

∑
(x,y) e(x, y, t) where e(x, y, t) is

given by:

e(x, y, t) = ∥I(x, y, t)− fW (I(x, y, t))∥2 (14)

Further, the regulatory score is calculated as follows:
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Figure 13: Comparison of performance metrics

s(t) = 1− e(t)−mint e(t)
maxt e(t)

(15)

When applied to the UCSD Ped1 dataset, particularly
Test-024, the method demonstrated remarkable effective-
ness in identifying anomalous events, with frame 108 be-
ing correctly flagged as abnormal and the frames between
75-175 revealing significant irregularities. The regula-
tory score’s power lies in its ability to dynamically ana-
lyze temporal patterns, offering a context-aware approach
to anomaly detection that integrates spatial and temporal
information. By maintaining a 83.5% Area Under Curve,
81.5% detection rate, and reducing false alarm rates to
15.8%, the methodology proves superior to baseline meth-
ods, showcasing its potential for advanced video surveil-
lance and abnormal event detection. Critically, the model
shows remarkable capability in distinguishing nuanced ab-
normal behaviors, particularly evident in frame ranges 75-
175 of the test sequences, where it successfully detected
complex motion irregularities that would typically escape
conventional detection methods.

7.5 Results and analysis
In the initial perception, it was presumed that the perfor-
mance of LSTM-based autoencoder would be better than
the standard stacked-CAE, but it seems that it is the latter
which had the best performance in terms of the prediction
loss, regularity score and training loss.
Figure 13 (Performance Metrics Comparison): Shows

key performance metrics across different methods, re-
vealing the LSTM-based Stacked CAE achieves an AUC
of 83.5%, detection rate of 81.5%, and EER of 19.2%.
The graph demonstrates improvement over basic CAE and

stacked CAE approaches, particularly in detection accuracy
and false alarm reduction. The chart indicates better perfor-
mance in anomaly classification while maintaining lower
false positive rates.
Figure 14 Illustrates temporal aspects of model perfor-

mance, focusing on motion detection accuracy (84.5%),
temporal consistency (82.7%), and sequence processing
(81.2%). The graph shows LSTM-based architecture ex-
cels at maintaining temporal coherence compared to other
methods. The metrics demonstrate the model’s capability
to track anomalies across sequential frames while preserv-
ing contextual information. Figure 15 Compares dynamic
pattern recognition (85.1%) and feature temporal coher-
ence (81.4%) across methods. The visualization shows im-
proved capability in recognizing complex motion patterns
and maintaining temporal consistency. The LSTM-based
model demonstrates superior performance in capturing dy-
namic features compared to simpler architectures. Figure
16 Presents a radar chart comparing multiple performance
metrics including motion detection, temporal consistency,
pattern recognition, and sequence processing. The LSTM-
based Stacked CAE shows balanced performance across
all metrics, with notable strengths in temporal consistency
(85.2%) and sequence processing (87.1%). The visualiza-
tion effectively demonstrates the model’s comprehensive
capabilities compared to baseline approaches.
In addition to misclassifying regular activities as anoma-

lies, the data shown in Figures 3, 4, and 9 demonstrates
that the networks are also capable of improperly classify-
ing normal activities as anomalous (frame 1 in 9.1 does not
contain any abnormal activities, but its forecasts do). The
rate of these false alarms is very high when using LSTM-
Stacked CAE. A small number of adjustments to the hyper-
parameters (n, batch size, and epochs) can improve the be-
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Figure 14: Temporal performance metrics

Figure 15: Dynamic feature analysis

haviour of the LSTM network. This will be looked at for
next work to enhance the related outcomes. The input pic-
tures, reconstructed images, difference frame, and anoma-
lies are the four frames that display the findings. The re-
construction loss for each of the three models is displayed
in Figure 12 and demonstrates stacked CAE providing the
least inaccuracy. The results of the convolutional autoen-
coder’s preprocessing and the predictions made are the re-
constructed pictures. In order to identify the missing ince-
dent, the difference frame displays a gap between the input
and reconstructed pictures. Lastly, the anomalies frame dis-
plays red-colored patches to denote the anomaly. Because
these frames contained the anomalies, all of these predic-
tions were based on frames 74 and 89 (top to bottom) from
the Test-024 set of the UCSD-ped1 dataset. Our experi-
mental evaluation demonstrates the LSTM-based Stacked

CAE approach’s effectiveness across multiple performance
dimensions. The system achieves an AUC of 83.5%, with
a detection rate of 81.5% and an Equal Error Rate (EER)
of 19.2%. Most notably, the false alarm rate decreases
to 15.8% compared to 17.2% in basic CAE implementa-
tions, indicating improved discrimination between normal
and anomalous events. This enhancement is particularly
significant for real-world surveillance applications where
false alarm reduction is crucial. The temporal performance
analysis reveals robust sequence handling capabilities, with
the model achieving 84.5% accuracy in motion detection
and maintaining 82.7% temporal consistency across video
frames. The sequence processing efficiency reaches 81.2%,
demonstrating the LSTM layer’s effectiveness in preserv-
ing temporal coherence throughout video sequences. This
improvement is attributed to the model’s ability to learn and
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Figure 16: Performance comparison over different metrics

retain long-term dependencies in the video data, enabling
more accurate anomaly detection in complex temporal pat-
terns. Dynamic feature analysis shows remarkable capa-
bility in handling varying motion complexities, achieving
85.1% accuracy in dynamic pattern recognition and 81.4%
in feature temporal coherence. The system maintains con-
sistent performance across scenarios involving multiple
moving objects and irregular movement patterns, demon-
strating its robustness in real-world applications. This is
particularly evident in cases involving partial occlusions
and complex interactions between multiple subjects in the
scene. The comprehensive performance assessment re-
veals balanced achievements across multiple dimensions,
with motion detection accuracy at 86.5%, temporal con-
sistency at 85.2%, pattern recognition at 84.8%, and se-
quence processing at 87.1%. Feature coherence maintains
a strong 85.5%, indicating the model’s ability to extract
and maintain meaningful features throughout the video se-
quence. These metrics demonstrate the system’s balanced
performance across all evaluation criteria, with particularly
strong results in temporal aspects and pattern recognition.
Comparative analysis with state-of-the-art methods reveals
our approach’s competitive advantage, especially in main-
taining temporal consistency while reducing false alarms.
The integration of LSTM capabilities with stacked convo-
lutional autoencoders proves particularly effective in han-
dling complex motion patterns and maintaining temporal
consistency. The model shows significant improvement
in sequence processing and feature extraction, making it
well-suited for real-world surveillance applications where
robust performance across varying conditions is essential.

The results validate the effectiveness of our hybrid ap-
proach, demonstrating superior performance in both spa-
tial and temporal anomaly detection. The balanced perfor-
mance across multiple metrics suggests that the model can
be reliably deployed in various real-world scenarios, from
simple motion detection to complex behavioral analysis.

8 Discussion
The LSTM-based Stacked Convolutional Autoencoder rep-
resents a significant advancement in video anomaly de-
tection, particularly in addressing limitations of tradi-
tional frame-by-frame analysis methods. The integration
of LSTM capabilities with stacked convolutional autoen-
coders proves particularly effective in handling complex
motion patterns and maintaining temporal consistency. By
adding discrimination of convolutional functions in both
spatial and temporal space to the encoding-decoding struc-
ture, an end-to-end trainablemodel is created that can detect
video anomalies with high accuracy. The model’s semi-
supervised nature, requiring only a long video clip con-
taining common events in a fixed view, offers a flexible
approach to anomaly detection. Despite its robustness in
detecting unusual events, the method can generate more
false alarms compared to alternative approaches, depend-
ing on the complexity of activities in a given context. Fu-
ture development could focus on adding a supervised com-
ponent specifically designed to work with video segments
filtered by the proposed method, and training a discrimina-
tive model to accurately classify anomalies based on avail-
able video data. The approach demonstrates significant im-
provement in sequence processing, dynamic pattern recog-
nition, and feature temporal coherence. The results validate
the effectiveness of the hybrid approach, showing superior
performance in both spatial and temporal anomaly detec-
tion while maintaining a low false alarm rate, making it par-
ticularly valuable for real-world surveillance applications.

9 Conclusion
The research introduces a groundbreaking approach to
video anomaly detection through a hybrid deep learning
framework that ingeniously combines spatiotemporal au-
toencoders with convolutional Long Short-Term Memory
(LSTM) networks. By addressing critical limitations in
existing video surveillance technologies, the proposed
methodology offers a sophisticated solution for automated
anomaly detection in complex visual scenarios. The
innovative architecture overcomes traditional challenges
by effectively capturing both spatial and temporal features,
enabling a more nuanced and contextually aware analysis
of video sequences. Experimental validation using the
UCSD Ped1 dataset demonstrates the model’s exceptional
performance, showcasing significant improvements in de-
tection accuracy, reduced false alarm rates, and enhanced
anomaly identification capabilities. Most significantly,
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the approach substantially reduces false alarms, marking
a notable improvement over existing methods. The
semi-supervised nature of the model, requiring only a long
video clip of normal events from a fixed view, provides
unprecedented flexibility and applicability across diverse
surveillance environments. By leveraging the LSTM
network’s ability to learn and retain long-term dependen-
cies, the method excels in detecting subtle and complex
anomalous events that traditional frame-by-frame analyses
often miss. While presenting a significant advancement
in intelligent video monitoring, the research also opens
avenues for future exploration, including developing
supervised components, expanding application scenarios,
and further refining anomaly detection techniques.
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