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To avoid generating an undesirably large set of frequent itemsets for discovering all high confidence 
association rules, the problem of finding frequent closed itemsets in a formal mining context is proposed. 
In this paper, aiming to these shortcomings of typical algorithms for mining frequent closed itemsets, 
such as the algorithm A-close and CLOSET, we propose an efficient algorithm for mining frequent 
closed itemsets, which is based on Galois connection and granular computing. Firstly, we present the 
smallest frequent closed itemsets and its characters, contain some properties and theorems, then 
propose a novel notion, called the smallest frequent closed granule, which can help the algorithm save 
reading the database to reduce the costed I/O for discovering frequent closed itemsets. And then we 
propose a novel model for mining frequent closed itemsets based on the smallest frequent closed 
granules, and a connection function for generating the smallest frequent closed itemsets. The generator 
function create the power set of the smallest frequent closed itemsets in the enlarged frequent 1-item 
manner, which can efficiently avoid generating an undesirably large set of candidate smallest frequent 
closed itemsets to reduce the costed CPU and the occupied main memory for generating the smallest 
frequent closed granules. Finally, we describe the algorithm for the proposed model. On these different 
datasets, we report the performances of the algorithm and its trend of the performances to discover 
frequent closed itemsets, and further discuss how to solve the bottleneck of the algorithm. For mining 
frequent closed itemsets, all these experimental results indicate that the performances of the algorithm 
are better than the traditional and typical algorithms, and it also has a good scalability. It is suitable for 
mining dynamic transactions datasets. 
Povzetek: Opisan je nov algoritem asociativnega učenja za pogoste entitete. 

 

1 Introduction 
Association rules mining is introduced in [1], Agrawal et 
al. firstly propose a classic algorithm for discovering 
association rules in [2], namely, the Apriori algorithm. 
However, it is also well known that mining frequent 
patterns often generates a very large number of frequent 
itemsets and association rules, which reduces not only 
efficiency but also effectiveness of mining since users 
have to sift through a large number of mined rules to 
discover useful ones. In order to avoid the shortcoming, 
Pasquier et al. introduce the problems of mining frequent 
closed itemsets in [3], and propose an efficient Apriori-
based mining algorithm, called A-close. Subsequent, 
Zaki and Hsiao propose another mining algorithm in [4], 
called CHARM, which improves mining efficiency by 
exploring an item-based data structure. However, we find 
A-close and CHARM are still costly when mining long 
patterns or low minimum support thresholds in large 
database, especially, CHARM depends on the given data 
structure and need the overlarge memory. As a continued 
study on frequent patterns mining without candidate 
generation in [5], J. Pei et al. propose an efficient method 
for mining frequent closed itemsets without candidate 

generation in [6], called CLOSET. There are more study 
works for mining frequent closed itemsets in [7-13]. The 
familiar algorithms include MAFIA in [7], CLOSE+ in 
[8] and DCI-CLOSED in [9]. 

At present, for mining frequent closed itemsets, there 
are two types of main current methods as follows: 

The first is the method of mining frequent closed 
itemsets with candidate based on the Apriori algorithm in 
[3 and 14]. The A-close algorithm in [3] is a well-known 
typical algorithm for the first method, which adopts the 
bottom-up search strategy as the Apriori-like in [2], and 
constructs the set of generators in a level-wise manner: 
( 1)i generators+ − are created by joining i generators− . 
For the first method, the advantages are the less usage of 
memory, simple data structure, and easy implementing it 
and maintaining; its disadvantages are the more occupied 
CPU for matching candidate patterns, and the overlarge 
costed I/O for the repeatedly scanning the database to 
compute the support. 

The second is the method of mining frequent closed 
itemsets without candidate based on the FP-tree structure 
in [6, 15 and 16]. The CLOSET algorithm in [6] is an 
extended study of the FP-Growth for mining frequent 
patterns in [5]. For the second method, the advantages 
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are reducing the overlarge computing corresponding to 
the joined potential generators in the A-close algorithm, 
and saving the costed I/O of reading the database. But it 
has these disadvantages, such as complex data structure 
costs more memory, creating recursion FP-tree occupies 
more CPU, and implementing it is troublesome. 

Rough set theory in [17] and formal concept analysis 
in [18 and 19] are two efficient methods for the 
representation and discovery of knowledge in [20 and 
21]. Rough set theory and formal concept analysis are 
actually related and often complementary approaches to 
data analysis, but rough set models enable us to precisely 
define and analyse many notions of granular computing 
in [22 and 23].  

Reference [22] develops a general framework for the 
study of granular computing and knowledge reduction in 
formal concept analysis. In formal concept analysis, 
granulation of the universe of discourse, description of 
granules, relationship between granules, and computing 
with granules are issues that need further scrutiny. Since 
the basic structure of a concept lattice induced from a 
formal context is the set of object concepts and every 
formal concept in the concept lattice can be represented 
as a join of some object concepts, each object concept 
can be viewed as an information granule in the concept 
lattice. 

An important notion in formal concept analysis is 
thus a formal concept, which is a pair consisting of a set 
of objects (the extension) and a set of attributes (the 
intension) such that the intension consists of exactly 
those attributes that the objects in the extension have in 
common, and the extension contains exactly those 
objects that share all attributes in the intension in [22]. 
For the study of granular computing, the formal concept 
is defined as a granule, such as an information granule. 

Based on the notions of granularity in [24] and 
abstraction in [25], the ideas of granular computing have 
been widely investigated in artificial intelligence in [26], 
such as, granular computing has been applied to 
association rules mining in [27 and 28], where a partition 
model of granular computing is applied to constructing 
information granule in [26], which depends on rough set 
theory in [29] and quotient space theory in [30]. 

In this paper, we propose a novel model based on 
granular computing, namely, an efficient algorithm for 
mining frequent closed itemsets, which constructs the set 
of generators in the enlarged frequent1 item−  manner to 
reduce the costed CPU, and adopts granular computing to 
reduce the costed I/O. 

The rest of the paper is organized as follows: 
In Section 2, we present the related concepts with 

closed itemset and granular computing; In Section 3, we 
propose a novel model for mining frequent closed 
itemsets based on granular computing; In Section 4, we 
describe the efficient mining algorithm; Section 5 reports 
the performance comparison of our with A-close and 
CLOSET. In Section 6, we summarize study work and 
discuss some future research directions. 

2 Related concepts 
In this section, referring to the definitions and theorems 
in [3, 4, 6, and 22], we present the following definitions, 
properties, theorems, and propositions with closed 
itemsets and granular computing. 

Definition 2.1 A formal context is a triplet ( ,D U=  
, )A R , where 

1 2{ , ,..., } ( )nU u u u n U= =  , called the universe of 
discourse, is a finite nonempty set of objects; 

1 2{ , ,..., } ( )mA a a a m A= =  , called the attributes 
set, is also a finite nonempty set of attributes; 

R U A⊆ × , called the relations, is a binary relation 
between objectsU and attributes A , where each couple 
( , )u a R∈  denotes the fact that the object  ( )u u U∈ is 
related to the attribute  ( )a a A∈ . 

Here, we make the following ratiocinations become 
concise, and then let the attribute ( )a a A∈ be Boolean, 
where each attribute is regarded as an item, i.e. the 
attributes set A is a general itemset. In fact, these 
ratiocinations are also suitable for the quantitative 
attributes. 

Definition 2.2 Galois connection, let ( , , )D U A R=  
be a formal context, for O U⊆ and I A⊆ , we define: 

( ) : ( ) ( )O P U P Aω → , namely 
( ) { | , ( , ) }O i A o O o i Rω = ∈ ∀ ∈ ∈ , which denotes the 

maximal set of items shared by all objects  ( )o o O∈ ; 
( ) : ( ) ( )I P A P Uϕ → , namely 
( ) { | , ( , ) }I o U i I o i Rϕ = ∈ ∀ ∈ ∈ , which denotes the 

maximal set of objects that have all items  ( )i i I∈ ; 
And the couple of applications ( , )ω ϕ is defined as a 

Galois connection between the power set of U (i.e. ( )P U ) 
and the power set of A (i.e. ( )P A ). 

Property 2.1 For a formal context ( , , )D U A R= , if 

1 2, ,O O O U⊆ and 1 2, ,I I I A⊆ , then we have: 
(1) 1 2 1 2( ) ( )I I I Iϕ ϕ⊆ ⇒ ⊇ ; 
(1*) 1 2 1 2( ) ( )O O O Oω ω⊆ ⇒ ⊇ ; 
(2) ( ) ( )I O O Iω ϕ⊆ ⇔ ⊆ . 
Definition 2.3 Galois closure operators are defined 

as the operators h ω ϕ=  in ( )P A and ϕ ω=  in ( )P U , 
where they are also expressed as the following notation: 

( ) ( ) ( ( )), ( ) ( ) ( ( ))h I I I O O Oω ϕ ω ϕ ϕ ω ϕ ω= = = =   . 
Property 2.2 For a formal context ( , , )D U A R= , let 

( , )ω ϕ be the Galois connection. If 1 2, ,O O O U⊆ and ,I   

1 2,I I A⊆ , then we have: 
Extension: (3) ( )I h I⊆ ;               (3*) ( )O O⊆  ; 
Idempotency: (4) ( ( )) ( )h h I h I= ; 

(4*) ( ( )) ( )O O=   ; 
Monotonicity: (5) 1 2 1 2( ) ( )I I h I h I⊆ ⇒ ⊆ ; 
                        (5*) 1 2 1 2( ) ( )O O O O⊆ ⇒ ⊆  ; 
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Definition 2.4 Closed itemsets, an itemsets C A⊆  
from D is a closed itemset if and only if ( )h C C= . The 
smallest (minimal) closed itemset containing an itemset 
I is obtained by applying h to I .  

Here, we call ( )h I the closure of I . 
Theorem 2.1 For a formal context ( , , )D U A R= , let 

1 2,I I A⊆ be two itemsets. We have: 

1 2 1 2( ) ( ( ) ( ))h I I h h I h I∪ = ∪ . 
Proof. Let 1 2,I I A⊆ be two itemsets. 

1 1 2 2( ), ( )I h I I h I⊆ ⊆ (Extension) 

1 2 1 2( ) ( )I I h I h I∴ ∪ ⊆ ∪  

1 2 1 2( ) ( ( ) ( ))h I I h h I h I∴ ∪ ⊆ ∪ (Monotonicity) 
And 1 1 2 2 1 2,I I I I I I⊆ ∪ ⊆ ∪  

1 1 2 2 1 2( ) ( ), ( ) ( )h I h I I h I h I I∴ ⊆ ∪ ⊆ ∪  

1 2 1 2( ( ) ( )) ( ( ))h h I h I h h I I∴ ∪ ⊆ ∪ (Monotonicity) 

1 2 1 2( ( ) ( )) ( )h h I h I h I I∴ ∪ ⊆ ∪ (Idempotency) 

1 2 1 2( ) ( ( ) ( ))h I I h h I h I∴ ∪ = ∪ . 
Proposition 2.1 For a formal context ( , , )D U A R= , 

the closed itemset ( )h I corresponding to the closure by h  
of the itemset ( )I I A⊆ is the intersection of all objects in 
U that contain I : 

( ) { ({ }) | ({ })}
o U

h I o I oω ω
∈

= ⊆ . 

Proof. Let ({ })
o S

H oω
∈

=  , where 

{ | ({ })}S o U I oω= ∈ ⊆ . And we have 

( )
( ) ( ( )) ({ }) ({ })

o I o S
h I I o o

ϕ
ω ϕ ω ω

∈ ∈ °
= = =  , where 

{ | ( )}S o U o Iϕ° = ∈ ∈ . 
Let’s show that S S° = , i.e. ({ }) ( )I o o Iω ϕ⊆ ⇔ ∈ . 

( ) { };   ( ( )) ({ })I o I oϕ ω ϕ ω⊇ ∴ ⊆ (Property 2.1) 
( ( ))I Iω ϕ⊆ (Extension) 

( ) ( ( )) ({ })o I I I oϕ ω ϕ ω∴ ∈ ⇔ ⊆ ⊆  
We have S S= ° , and also have ( )h I H= . 
Definition 2.5 Formal granule, for a formal context 
( , , )D U A R= , a two-tuple , ( )G I Iϕ=< > is defined as a 

formal granule of the context ( , , )D U A R= , where 
I , called the intension of formal granule, is an 

abstract description of common features or properties 
shared by objects in the extension, which is expressed as 

1 2{ , ,..., }( , )kI i i i I A k I= ⊆ =  . 
( )Iϕ , called the extension of formal granule, is the 

maximal set of objects that have all items  ( )i i I∈ , which 
is expressed as ( ) { | , ( , ) }I o U i I o i Rϕ = ∈ ∀ ∈ ∈ . 

Definition 2.6 Intersection operation of two formal 
granules is denoted by⊗ , which is described as follows: 

 There are two formal granules , ( )G I Iα α αϕ=< > and 
, ( )G I Iβ β βϕ=< > , respectively; then we have: 

, ( ) , ( ) ( )G I I G G I I I Iα β α β α βϕ ϕ ϕ=< >= ⊗ =< ∪ ∩ > . 

3 A novel mining model 
Firstly, we present some definitions, properties, theorems, 
and corollaries from the Galois connection and granular 
computing. And propose a novel model for mining 
frequent closed itemsets based on granule computing. 

3.1 Basic concepts 
Definition 3.1 Itemset support, for a formal context 

( , , )D U A R= , the support of the itemset I  is expressed 
as ( ) ( ) /support I I Uϕ=    .  

Definition 3.2 Frequent itemsets, the itemset I is said 
to be frequent if the support of I in D is at least the given 
minsupport . The set FI of frequent itemsets in D is 
defined as { | ( ) }FI I A support I minsupport= ⊆ ≥ . 

Property 3.1 All subsets of a frequent itemset are 
frequent; all supersets of an infrequent itemset are 
infrequent. (Intuitive in [2]) 

Definition 3.3 Frequent closed itemsets, the closed 
itemset C is said to be frequent if the support of C in D is 
at least the given minsupport . The set FCI of frequent 
closed itemsets in D is defined as follows: 

{ | ( ) ( ) }FCI C A C h C support C minsupport= ⊆ = ∧ ≥ . 
Property 3.2 Frequent closed itemsets FCI is the 

subset of frequent itemset FI , namely FCI FI⊆ . 
Definition 3.4 The smallest frequent closed itemsets, 

the frequent itemset I is said to be the smallest frequent 
closed itemset if , ( ) ( )I I support I support I∀ ° ⊂ < ° . The 
set minFC of the smallest frequent closed itemsets in D is 

{ | ( ) ( )}minFC I FI I I support I support I= ∈ ∀ ° ⊂ ∧ < ° . 
Theorem 3.1 For a formal context ( , , )D U A R= , 

if I be a frequent closed itemset, and there is the smallest 
frequent closed itemset '( ( ) ( '))I I Iϕ ϕ= , i.e. 

 ' ( ) ( ')minI FCI I FC I Iϕ ϕ∀ ∈ ⇒ ∃ ∈ ∧ = . 
Proof. Let I k=  , there are two cases as follows: 
(1) If 1 1  ( 1)I I I k∀ ⊂ = −  , and have ( )support I <  

1 1( )  ( ) ( )support I I I I support I support I⇒∀ ° ⊂ ⊂ ∧ < ° . 
Since I FCI FI∈ ⊆ , we have minI FC∈ . Let 'I I= , and 
we have ' ( ) ( ')minI FC I Iϕ ϕ∈ ∧ = . 

(2) If 1 1  ( 1)I I I k∃ ⊂ = −  , and have ( )support I =  

1 1( ) ( ) ( )support I I Iϕ ϕ⇒ = . 
(i) If 2 1 2  ( 2)I I I I k∀ ⊂ ⊂ = −  , and 1( )support I <  

2 2 1 1( ) ( ) ( ).support I I I I support I support I⇒∀ ° ⊂ ⊂ ∧ < °
 Since 1I I FCI FI⊂ ∈ ⊆ , we have 1 minI FC∈ . Let 1'I I= , 
and we have 1' ( ) ( ) ( ')minI FC I I Iϕ ϕ ϕ∈ ∧ = = . 

(ii) Otherwise 2 1 2  ( 2)I I I I k∃ ⊂ ⊂ = −  , and have 

1 2 1 2( ) ( ) ( ) ( )support I support I I Iϕ ϕ= ⇒ = ... 
Go on doing until the thk step, and  ( )support I∃ =  

( )k k minsupport I I FC∧ ∈ . Let ' kI I= , and we have 'I ∈   

1( ) ( ) ... ( ) ( ')min kFC I I I Iϕ ϕ ϕ ϕ∧ = = = = . 
Based on definition 2.4 and theorem 3.1, we have: 



90 Informatica 39 (2015) 87–98 G. Fang et al.  
 

Corollary 3.1 Let I be the smallest frequent closed 
itemset, i.e. minI FC∈ . And the frequent closed itemset 
corresponding to I is ( ) ( ( ))h I Iω ϕ= . 

Corollary 3.2 For a formal context ( , , )D U A R= , 
the set FCI of frequent closed itemsets in D is expressed 
as { ( ) | }minFCI h I I FC= ∈ . 

Theorem 3.2 Let I I Aα β⊆ ⊆ , where ( )support Iα =  
( )support Iβ . Then we have ( ) ( )h I h Iα β= and ,I A∀ ⊆  

( ) ( )h I I h I Iα β∪ = ∪ . 
Proof. ( ) ( )I I A support I support Iα β α β⊂ ⊆ ∧ =  

 ( ) ( )I Iα βϕ ϕ∴ =     
 ( ) ( )I Iα βϕ ϕ∴ =  

( ( )) ( ( )),  . . ( ) ( )I I i e h I h Iα β α βω ϕ ω ϕ∴ = =  
I A⊆  
( ) ( ( ) ( ))h I I h h I h Iα α∴ ∪ = ∪ (Theorem 2.1) 

 ( ) ( )h I h Iα β=  
( ) ( ( ) ( )) ( )h I I h h I h I h I Iα β β∴ ∪ = ∪ = ∪ . 

Theorem 3.3  min minI FC I I I FC∈ ⇒∀ ° ⊂ ∧ °∈ . 
Proof. Suppose 1 1 min minI FC I I I FC∈ ⇒ ∃ ⊂ ∧ ∉ . 

1 1 minI I I FC⊂ ∧ ∉  

2 1 1 2 ( ) ( )I I support I support I∴∃ ⊂ ∧ =  

2 1 ( ) ( )I Iϕ ϕ∴ =  

1 2 3 2 ( ' ) ( ' )  ( ' )I I I I I I I I I∃ = − ∧ ∪ ⊂ = ∪  

3 ( ') ( ) ( )I I Iϕ ϕ ϕ∴ ⊇ ⊇  

3 2 3 2,  . . ( ) ( )I I i e I Iϕ ϕ⊃ ⊆  
∴ 3 1( ) ( )I Iϕ ϕ⊆  

1 3( ) ( ') ( )I I Iϕ ϕ ϕ∴ ∩ ⊇  

1 1( ) ( ') ( ) ( ')I I I I Iϕ ϕ ϕ ϕ= ∪ = ∩ (Definition 2.6) 

3( ) ( )I Iϕ ϕ∴ ⊆  

3 3( ) ( ),  . . ( ) ( )I I i e support I support Iϕ ϕ∴ = =  

3 3 ( ) ( )I I support I support I∴∃ ⊂ ∧ =  

minI FC∴ ∉ . However, the itemset I is the smallest 
frequent closed itemset, namely minI FC∈ . 

1 1 min minI FC I I I FC∴ ∈ ⇒ ∃ ⊂ ∧ ∉  
 min minI FC I I I FC∴ ∈ ⇒∀ ° ⊂ ∧ °∈ . 

Corollary 3.3  ,min minI FC I I I FC∈ ⇒∀ ° ⊂ ∧ °∈  
( 1)I I° = −     

Definition 3.5 The smallest frequent closed granules 
set, the formal granule , ( )G I Iϕ=< > is said to be the 
smallest frequent closed granule minG if the intension I of 
G is the smallest frequent closed itemset. The set minFG  
of the smallest frequent closed granules is defined as: 

{ , ( ) | }min minFG G I I I FCϕ= =< > ∈  

3.2 Frequent closed itemsets mining 
In this section, we propose a novel model for mining 
frequent closed itemsets based on granule computing, a 
formal statement of which is described as follows. 

For a ( , , )D U A R= , discovering all frequent closed 
itemsets in D can be divided into two steps as follows: 

(1)According to the minimal support given by user, 
mining the smallest frequent closed granules set in D . 
(Details in the steps from (1) to (18) from Section 4.2) 

(2)Based on the smallest frequent closed granules set, 
discovering all frequent closed itemsets in D . (Details in 
the steps from (19) to (21) from Section 4.2) 

Here the first step is based on definition 3.5, theorem 
2.1, and theorem 3.2; the second step refers to Definition 
2.4, Proposition 2.1, and Theorem 3.1(Corollary 3.1).  

4 The efficient mining algorithm 
In this section, we use an efficient mining algorithm to 
describe the novel model, which is denoted by EMFCI. 

4.1 Generator function 
Here, we propose a function for generating the intension 
of the smallest frequent closed granules. 

Definition 4.1 Set vector operation for two sets is 
defined as follows: 

Let 1 2 1 2{ , ,..., }, { , ,..., }m nP p p p Q q q q= = be two sets, 
and then the set vector operation is expressed as TP Q  

( )

1

2
1 2

{ }
{ }

0 { } { } ... { }
...

{ }

n

m

p
p

q q q

p

 
 
 = /
 
 
 

  

1 1 1 1 2 1

2 2 1 2 2 2

1 2

{ } { , } { , } ... { , }
{ } { , } { , } ... { , }

... ... ... ... ...
{ } { , } { , } ... { , }

n

n

m m m m n

p p q p q p q
p p q p q p q

p p q p q p q

 
 
 =
 
 
 

 

1 1 1 1 2 1 2 2 1{{ },{ , },{ , },...,{ , },{ },{ , },np p q p q p q p p q=  

2 2 2 1 2  { , },...,{ , },...,{ },{ , },{ , },n m m mp q p q p p q p q  
  ...,{ , }m np q (Formal notation) 

1 1 1 1 2 1 2 2 1 2 2{{ },{ },{ },...,{ },{ },{ },{ },np p q p q p q p p q p q=  

2 1 2  ...,{ },...,{ },{ },{ },...,{ }n m m m m np q p p q p q p q . 
 (Simple notation) 
The operation is the main idea of generator function, 

let ,P Q be two sets, it is expressed as ( , ) Tf P Q P Q=  . 
The application of ( , )f P Q refers to Section 4.2. 

For example, for a ( , , )D U A R= , let A be a general 
itemset{ , , }a b c , and then we use the set vector operation 
to generate ( ) ( ( ) 0)P A p P A p∀ ∈ ∧ ≠ / as follows:  

(1) ( ) 0P A = / ; 
(2) { } ( ) ( ) ( ( ))T

x xI a P A P A I P A= ⇒ = ∪   

( ) ( ){ } 0 {{ }}a a= / = ; 

(3) { } ( ) ( ) ( ( ))T
x xI b P A P A I P A= ⇒ = ∪   

( ) ( ){{ }} ( { } 0 { } )a b a= ∪ /  
{{ },{ },{ }}a b ab= ; 

(4) { } ( ) ( ) ( ( ))T
x xI c P A P A I P A= ⇒ = ∪   
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( ) ( ){{ },{ },{ }} ( { } 0 { } { } { }a b ab c a b ab= ∪ /  
{{ },{ },{ },{ },{ },{ },{ }}a b ab c ac bc abc= . 

For a formal context ( , , )D U A R= , if A is a general 
itemsets, namely, it is a set of Boolean attributes, ( )P A  is 
general the power set where ( ) 2 1AP A = − 

  . But if A is 
a set of quantitative attributes, where ( )P A is called the 
extended power set of A , and ( )P A  is expressed as: 

( ) ( 1) 1a
a A

P A V
∈

= + −∏     , here aV is a reprocessed 

discrete range of attribute a A∈ . 

4.2 An algorithm for mining frequent 
closed itemsets 

Here, we describe the efficient algorithm based on the 
novel model in Section 3 via the following pseudo code. 

Algorithm: EMFCI 
Input: a formal context ( , , )D U A R= , the minimal 

support minsupport . 
Output: frequent closed itemsets FCI . 

(1)Read D ; 
(2)Construct { |  , ( )a aFG FG a A G I I FGϕ= ∈ ∧∀ =< >∈  

1 ( ) }aI V I I minsupportϕ∧ ⊂ ∧ = ∧ ≥    ; 
(3) { | { }, ({ })a a a aF F V v F G v v FGϕ= ⊂ ∀ ∈ ∧ =< >∈ ∧  

}aFG FG a A∈ ∧ ∈ ; // aV is the range of attribute a A∈ . 
(4) 0minFC = / ;  
(5)For ( )Fα∀ ∈ do begin 
(6) c minS FCα=  ; //Generate the candidate 
(7) For ( )cs S∀ ∈ do begin 
(8)  If 1 1 2 2(( ) ( ))FI FCmint N t s t N t s∀ ∈ ∧ ⊄ ∧ ∀ ∈ ∧ ⊄ then 
(9)       Construct , ( )G s sϕ=< > ; 
(10)       If ( ( ) )s minsupportϕ ≥  then 
(11)           If ( ( )) ( )) )t s s tϕ ϕ∀ ⊂ ∧ <    then 
(12)               Write , ( )G s sϕ=< > to minFG ; 
(13)               Write s to minFC ; 
(14)           else 
(15)               Write s to FCminN ; 
(16)     else 
(17)             Write s to FIN ; 
(18)End 
(19)For ( , ( ) )minG I I FGϕ∀ =< >∈ do begin 
(20)   Write ( ) ( ( ))h I Iω ϕ= to FCI ; 
(21)End 
(22)Answer FCI ; 

These steps from (1) to (18) in the algorithm extract 
the smallest frequent closed granules set. And these steps 
from (19) to (21) generate all frequent closed itemsets. 

4.3 Example and analysis 
Here, we firstly provide an example for the algorithm, 
and then analyse the pruning strategies in the algorithm. 

For a formal context ( , , )D U A R= , where { , ,A a b=   

1 2 3 4 5 1 2 3, , }, { , , , , }, { }, { },c d e U u u u u u u acd u bc u= = = =

4 5{ }, { }, { }abe u be u ace= = ; and 40%minsupport = . The 
course of discovering frequent closed itemsets is 
described as table 1. 

 
No. Operation 

1 
{ { },{1,3,5} , { },{2,3,4} ,FG a b= < > < >  

{ },{1,2,5} , { },{3,4,5} }c e< > < >  
(Pruning { }d by property 3.1and definition 3.3) 

2 {{ },{ },{ },{ }}F a b c e=  

3 
{ } {{ }}ca S aα = ⇒ =  

{ { },{1,3,5} }minFG a= < > , {{ }}minFC a=  

4 

{ } {{ },{ }}cb S b abα = ⇒ =
{ { },{1,3,5} , { },{2,3,4} }minFG a b= < > < >  
{{ },{ }}minFC a b=  

(Pruning{ }ab  by property 3.1and definition 3.3) 

5 

{ } {{ },{ },{ }}cc S c ac bcα = ⇒ =  
{ { },{1,3,5} , { },{2,3,4} }minFG a b= < > < >  

{ },{1,2,5} , { },{1,5} }c ac< > < >  
{{ },{ },{ },{ }}minFC a b c ac=  

(Pruning{ }bc  by property 3.1and definition 3.3) 

6 

{ } {{ },{ },{ },{ },{ }}ce S e ae be ce aceα = ⇒ =  
{ { },{1,3,5} , { },{2,3,4} }minFG a b= < > < >  

{ },{1,2,5} , { },{1,5} , { },{3,4,5} ,c ac e< > < > < >  
{ },{3,5} , { },{3,4} }ae be< > < >  

{{ },{ },{ },{ },{ },{ },{ }}minFC a b c ac e ae be=  
(Pruning{ , }ce ace  by property 3.1and definition 
3.3)` 
Note: the search course is ended, discovering all 
the smallest frequent closed granules minFC  

7 

1 3 5({ }) { } { }h a u u u a= ∩ ∩ =  

2 3 4({ }) { } { }h b u u u b= ∩ ∩ =  

1 2 5({ }) { } { }h c u u u c= ∩ ∩ =  

1 5({ }) { } { }h ac u u ac= ∩ =  

3 4 5({ }) { } { }h e u u u e= ∩ ∩ =  

3 5({ }) { } { }h ae u u ae= ∩ =  

3 4({ }) { } { }h be u u be= ∩ =  
Note: based on the smallest frequent closed 
granules set minFC , getting all frequent closed 
itemsets 

8 
Answer 

{{ },{ },{ },{ },{ },{ },{ }}FCI a b c ac e ae be=  

Table 1: Frequent closed itemsets mining 
for 40%minsupport = . 

For mining frequent closed itemsets, the algorithm 
adopts some pruning strategies as follows, property 3.1, 
definition 3.3 and 3.4, and theorem 3.3. They can help 
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the algorithm efficiently reduce the search space for 
mining frequent closed itemsets. 

5 Performance and scalability study 
In this section, we design the following experiments on 
these different datasets: 

Firstly, we report the performances of the algorithm 
EMFCI with A-Close and CLOSET on the six different 
datasets. 

Secondly, we report the relationships between some 
parameters of the datasets and the performances of the 
algorithm EMFCI for mining frequent closed itemsets. 

Finally, for the bottleneck of the algorithm EMFCI, 
we improve it to get the algorithm IEMFCI, and report its 
performances on the extended high dimension dataset to 
show the scalability of the algorithm EMFCI. 

There are two original datasets as follows: 
The first is the Food Mart 2000 retail dataset, which 

comes from SQL Server 2000. It contains 164558 
records in 1998. By the same customer at the same time 
as a basket, we take items purchased from these records. 
Because the supports of the bottom items are small, we 
generalize the bottom items to the product department. 
Finally, we obtain 34015 transactions with time-stamps. 
It is a dataset with the Boolean attributes. 

The second is from a Web log data, which is a real 
data that expresses some behaviour of students browsing, 
where the attributes set is made of  , ,login time duration  

 , ,  network flow IDtype and sex . The dataset with the 
discrete quantitative attributes has 296031 transactions. 

Now, we generalize attributes, and replicate some 
attributes or transactions to create the following extended 
datasets described as table 2, where each dataset can be 
defined as a formal mining context ( , , )D U A R= . 
 

Name Descriptions ( ) ;P A U     
Dataset 

1 
The first original 
dataset 

222 1− ; 
34015 

Dataset 
2 

Replicating dataset 1 
three attributes 

252 1− ; 
34015 

Dataset 
3 

Replicating dataset 1 
four times 

222 1− ; 
5*34015 

Dataset 
4 

The second 
 original dataset 

5*4*4*14*3-1; 
296031 

Dataset 
5 

Replicating dataset 1 
one attribute 

5*4*4*14*3*5-1; 
296031 

Dataset 
6 

Replicating dataset 4 
one time 

5*4*4*14*3-1; 
2*296031 

Dataset 
7 

For the Food Mart 
2000, we regard the 
same customer at the 
same time as a basket 
and generalize the 
bottom items to the 
product subcategory 

1022 1− ; 
34015 

Table 2:  The datasets used in the experiments. 

All the experiments are performed on an Intel (R) 
Core (TM)2 Duo CPU (T6570 @) 2.10 GHz 1.19GHz) 
PC with 1.99 GB main memory, running on Microsoft 
Window XP Professional. All the programs are written in 
C# with Microsoft Visual Studio 2008. The algorithm A-
close and CLOSET are implemented as described in [3] 
and [6]. 

5.1 The experiments of performance 
comparison 

In this section, for discovering frequent closed itemsets 
on these different datasets, we compare the algorithm 
EMFCI with the algorithm A-close and CLOSET from 
the following two aspects, namely, one is comparing the 
performances among them as the minimal support is 
added; the other is comparing them as the number of 
frequent closed itemsets is added. 

1. Testing on the original datasets 
For the two original datasets, we firstly compare the 

algorithm EMFCI with the A-close and CLOSET based 
on the varying minimal support and the number of 
frequent closed itemsets. These experimental results are 
described as figure 1, 2, 3, and 4, respectively. 

 

Figure 1: Performance comparison with the support on 
dataset 1. 

 

Figure 2: Performance comparison with the number of 
frequent closed itemsets on dataset 1. 

 

Figure 3: Performance comparison with the support on 
dataset 4. 

 

Figure 4: Performance comparison with the number of 
frequent closed itemsets on dataset 4. 
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Based on the comparison results from figure 1, 2, 3, 
and 4, we know that the performances of the algorithm 
EMFCI are better than the A-close and CLOSET. 

Obviously, the algorithm CLOSET is also superior to 
the A-close. Hence, we don’t compare the EMFCI with 
the A-close in the following experiments. 

2. Testing on the extended datasets 
We further report the performances of the algorithm 

EMFCI on the extended datasets. Based on the different 
minimal support and the number of frequent closed 
itemsets, we compare the EMFCI with the CLOSET, the 
experimental results are described as figure 5 to 12. 

 

Figure 5: Performance comparison with the support on 
dataset 2. 

 

Figure 6: Performance comparison with the number of 
frequent closed itemsets on dataset 2. 

 

Figure 7: Performance comparison with the support on 
dataset 3. 

 

Figure 8: Performance comparison with the number of 
frequent closed itemsets on dataset 3. 

 

Figure 9: Performance comparison with the support on 
dataset 5. 

 

Figure 10: Performance comparison with the number of 
frequent closed itemsets on dataset 5. 

 

Figure 11: Performance comparison with the support on 
dataset 6. 

 

Figure 12: Performance comparison with the number of 
frequent closed itemsets on dataset 6. 

Based on the comparison results from figure 5 to 12, 
we know that the performances of the algorithm EMFCI 
are also better than the CLOSET on the datasets with the 
Boolean or quantitative attributes. 

5.2 The relationships between these 
parameters and performances 

In this part, we mainly discuss the relationships between 
the performances and the following parameters: 

U  , is the number of objects in the formal mining 
context ( , , )D U A R= , in other word, it is the number of 
transactions in the mining database. 

( )P I  , is the number of nonempty power sets for 
attribute values, called the search space of the algorithm, 
where I is the smallest frequent closed itemsets from the 
attribute set A , ( )P I is defined as the power set of I . 
(Refer to section 4.1) 

Here, the representation of the performances has two 
kinds of parameters as follows: 

( )t x : is the runtime of algorithm x , which is from 
input to output for mining frequent closed itemsets. 

p , is defined as the improved ratio of the runtime 
between the algorithm EMFCI and CLOSET, which is 
denoted by the following equation: 

1 ( ) / ( )p t EMFCI t CLOSET= − . 
1. The relationships between the performances 

and the search space 
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(1)Reporting the relationships on the extended 
dataset of the first original dataset 

For the first original dataset, namely, dataset 1, we 
test the trend of the performances as the search space is 
increasing on dataset 2, which is the extended dataset 
with replicating three attributes of the first dataset. As the 
search space is varying, the trend of the runtime for the 
algorithm EMFCI is expressed as figure 13, the trend of 
the improved ratio between the algorithm EMFCI and 
CLOSET is expressed as figure 14. 

 

Figure 13: The trend of the runtime on dataset 2 

 

Figure 14: The trend of the improved ratio on dataset 2 

Based on figure 13, we know that the runtime is 
added as the search space is increasing. Based on figure 
14, we find that the improved ratio is reduced as the 
search space is increasing. 

(2)Reporting the relationships on the extended 
dataset of the second original dataset 

For the second original dataset, namely, dataset 4, 
we extend an attribute to get dataset 5, and test the trend 
of the performances on the dataset. The experimental 
results are expressed as figure 15 and 16, respectively. 

 

Figure 15: The trend of the runtime on dataset 5 

 

Figure 16: The trend of the improved ratio on dataset 5 

According to figure 15 and 16, we get the similar 
comparisons results as above. Hence, we can draw the 
following conclusions: 

The runtime of the algorithm EMFCI is added as the 
search space is increasing; on the contrary, the improved 
ratio is reduced. Namely, if the search space is increasing, 
the performances of the algorithm EMFCI will become 
worse and worse. In other word, the algorithm is not 
suitable for mining the dataset with too many smallest 
frequent closed itemsets. 

2. The relationships among the performances, the 
search space and the number of objects 

(1)Reporting the relationships on the first original 
dataset and its extended dataset 

For the first original dataset (dataset 1), and its 
extended dataset, dataset 3 with replicating its objects 
four times, we test the trend of the performances as the 
search space is increasing on the two datasets. As the 
search space is varying, the trend of the runtime for the 
algorithm EMFCI is expressed as figure 17, the trend of 
the improved ratio between the algorithm EMFCI and 
CLOSET is expressed as figure 18. 

 

Figure 17: The trend of the runtime on dataset 1 and 3 

 

Figure 18: The trend of the improved ratio on dataset 1 
and 3 

Based on figure17, we know that the runtime of the 
algorithm is added as the search space or the number of 
objects is increasing. 

Based on figure18, we find that the improved ratio of 
the algorithm is reduced as the search space is increasing, 
but it become relatively stable as the number of objects is 
increasing. 

(2)Reporting the relationships on the second original 
dataset and its extended dataset 

For the second original dataset, namely, dataset 4, 
we replicate its objects one time to get dataset 6, and test 
the trend of the performances on the dataset 4 and 6. The 
experimental results are expressed as figure 19 and 20, 
respectively. 
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Figure 19: The trend of the runtime on dataset 4 and 6 

 

Figure 20: The trend of the improved ratio on dataset 4 
and 6 

According to figure 19 and 20, we draw the same 
conclusions as follows: 

The runtime of the algorithm EMFCI is added as the 
search space or the number of objects is increasing, the 
improved ratio of the algorithm is reduced as the search 
space is increasing, but it become relatively stable as the 
number of objects is adding. Namely, the performances 
of the algorithm EMFCI will become relatively stable as 
the number of objects is increasing. Hence, it is suitable 
for mining dynamic transactions datasets. 

According to all these experimental results, we can 
draw the following conclusions: 

(1) The performances of the algorithm EMFCI are 
better than the traditional typical algorithms for mining 
frequent closed itemsets on the datasets with the Boolean 
attributes or the 1uantitative attributes. 

(2) The runtime of the algorithm EMFCI is added as 
the search space. If the search space is too large, its 
performances will become worse and worse. This is the 
bottleneck of the algorithm. 

(3) The runtime of the EMFCI is also added as the 
number of objects is increasing. 

(4) For the algorithm CLOSET, the improved ratio 
of the algorithm is reduced as the search space is adding, 
but it become relatively stable as the number of objects is 
increasing. Namely, the performances of the EMFCI will 
become relatively stable as the number of objects is 
increasing. It is suitable for mining dynamic transactions 
datasets. 

5.3 A further discussion for solving the 
bottleneck of the algorithm 

Based on these conclusions in section 5.2, for the formal 
mining context ( , , )D U A R= , if the search space ( )P I   
is overlarge, where ( )I I A⊆ is the smallest frequent 
closed itemsets, ( )P I is defined as the power set of I , the 
performance of EMFCI will become worse and worse. 

In this section, we adopt a partitioning method to 
avoid the bottleneck. In other word, the overlarge search 

space is divided into some smaller search spaces. The 
theoretical basis can be described as follows: 

Let 1 2{ }( )mtt tI a ,a ,...,a I A= ⊆ , and then we have the 
following 11|| ( ) || (|| || 1) 1t

m
i a

P I V== ∏ + − , namely, 

11|| ( ) || 1 (|| || 1)t
m
i a

P I V=+ = ∏ + =  

1 2 1

1

(|| || 1) (|| || 1) ... (|| || 1)t t tma a a

m

V V V+ ⋅ + ⋅ ⋅ + ⋅
((((((((((((((

 

1 21 1 1 2

2

(|| || 1) (|| || 1) ... (|| || 1) ...t t tm m m ma a a

m

V V V+ + ++ ⋅ + ⋅ ⋅ + ⋅ ⋅
((((((((((((((((

 

... 1 ...1 2 ( 1) 1 2 ( 1)
(|| || 1) ... (|| || 1)t tm m m m m m mk k k

k

a a

m

V V+ + + + + + + +− −
+ ⋅ ⋅ +

((((((((((((((((

; 

1 2( )km m ... m m+ + + = . 
Obviously, we also have || ( ) || 1P I + =  

1 2
(|| ( ) || 1) (|| ( ) || 1) ... (|| ( ) || 1)

km m mP I P I P I+ ⋅ + ⋅ ⋅ + ; 

Where 1 2 1

1
{ }mtt t

mI a ,a ,...,a= , 
1 21 1 1 2

2
{ }m m m mt t t

mI a ,a ,...,a+ + += ,…, 
11 2 ( 1) 1 2 ( 1){ }m m ... m m m ... m mk k k

k

t t
mI a ,...,a+ + + + + + + +− −= . 

In this paper, we let 19|| ( ) || 2
imP I λ< = . If λ is too big, 

the method also has the same bottleneck; if λ is too 
small, the cost of partitioning search space is expensive. 
For these two cases, their performances are expressed as 
figure 23. 

The partitioning method is used in the algorithm 
EMFCI, which is called improved EMFCI, i.e. IEMFCI. 

5.3.1 Example 
For the example in section 4.3, we use the algorithm 

IEMFCI to discover frequent closed itemsets, the course 
of which is described as follows, where 4λ = .  

(Note: 4λ = used in the example, 192λ = used in the 
following experiments) 

Step1. { { },{1,3,5} , { },{2,3, 4} ,FG a b= < > < >  
{ },{1,2,5} , { },{3,4,5} }c e< > < > . 

Step2. {{ },{ },{ },{ }},|| ( ) || 15 4F a b c e P F λ= = > = . 
Step3. Partitioning the search space, get two search 

spaces 1 2{{ },{ }}, {{ },{ }}F a b F c e= = , where || ( ) || 4iP F < . 
Step4. For the first search space 1 {{ },{ }}F a b= , have 
① { } {{ }}ca S aα = ⇒ =  

1 { { },{1,3,5} }minFG a= < > , 1 {{ }}minFC a= ; 
② { } {{ },{ }}cb S b abα = ⇒ =  

1 { { },{1,3,5} , { },{2,3,4} }minFG a b= < > < > , 
1 {{ },{ }}minFC a b= . 

For the second search space 2 {{ },{ }}F c e= , have 
① { } {{ }}cc S cα = ⇒ =  

2 { { },{1,2,5} }minFG c= < > , 2 {{ }}minFC c= ; 
② { } {{ },{ }}ce S e ceα = ⇒ =  

2 { { },{1,2,5} , { },{3,4,5} }minFG c e= < > < > , 
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2 {{ },{ }}minFC c e= . 
Step5. 1 2{ , }min minF FC FC= , repeating the step2, 

where || ( ) || 15 4P F = > , but || || 2F = , the partitioning 
operation must be ended; otherwise, the algorithm need 
to continue to partition the search space. 

1 {{ },{ }}min cFC S a bα = ⇒ = , 
{ { },{1,3,5} , { },{2,3,4} }minFG a b= < > < > , 
{{ },{ }}minFC a b= ; 

( )2 { }
0 { } { }

{ }min c

c
FC S a b

e
α

 
= ⇒ = = 

 
 

{{ },{ },{ },{ },{ },{ }}c ac bc e ae be ; 
{ { },{1,3,5} , { },{2,3,4} }minFG a b= < > < >  

{ },{1, 2,5} , { },{1,5} , { },{3,4,5} ,c ac e< > < > < >  
{ },{3,5} , { },{3, 4} }ae be< > < >  

{{ },{ },{ },{ },{ },{ },{ }}minFC a b c ac e ae be=  
The rest of steps are the same as the example in 

section 4.3. The algorithm IEMFCI reduces the checking 
of itemset{ }ace , but adds the task of partitioning. As the 
number of transactions is lesser, the example does not 
show its advantage, please see the experiments in section 
5.3.3. Here, the example only describes the execution 
course of IEMFCI. 

5.3.2 Comparisons of the time and space 
complexity 

For ( , , )D U A R= , let C be a set of frequent closed 
itemsets, and let L be the average length of frequent 
closed itemsets, 2k ≥ is a parameter with partitioning the 
search space. The comparisons are expressed as table 3. 

 
Items Time complexity Space complexity 

A-close (|| || )LO C  (|| || / || ||)O C A  

CLOSET 2(|| || )O C  (|| ||)O C  
IEMFCI (( / 1) || ||)O L k C+ ⋅  (|| || / || ||)O C k A⋅  

Table 3:  Comparisons of the time and space complexity. 

5.3.3 Test on the high dimension datasets 
In this section, to show the scalability of the algorithm 
EMFCI, firstly, we compare the improved algorithm 
IEMFCI with EMFCI, A-close and CLOSET on the high 
dimension dataset (dataset 7 as table 1), which is an 
extended dataset based on the first original dataset. The 
comparison results are expressed as figure 21 and 22, 
where the parameter (2, ) 2mp m =  on the abscissa shows 
the search space ( )P I  of the given support. 

 
Figure 21: Performance comparison with the lower 
support on dataset 7 

 
Figure 22: Performance comparison with the higher 
support on dataset 7 

Then, for the improved algorithm IEMFCI, we adopt 
different parameters λ to test its trend of performance, 
where 52λ = , 192λ = and 222λ = . The comparison result 
is expressed as figure 23, where IEMFCI ( (2, )p nλ = ) is 
the improved algorithm IEMFCI when the parameter of 
partitioning the search space is (2, ) 2np nλ = = . 

 
Figure 23: The trend of performance with the different 
parameter on dataset 7 

Based on these comparisons, we draw the following 
conclusions: 

Firstly, the improved algorithm IEMFCI is better 
than the algorithms EMFCI, A-close and CLOSET. 

Secondly, the improved algorithm IEMFCI gets rid 
of the bottleneck in the algorithms EMFCI, especially, 
when the search space ( )P I  is overlarge, the advantage 
of IEMFCI is very distinct. 

Finally, for the improved algorithm IEMFCI, the 
parameter of partitioning the search space is not too big, 
but it is not too small. 

6 Conclusion 
In this paper, for the shortcomings of typical algorithms 
for mining frequent closed itemsets, we propose an 
efficient algorithm for mining frequent closed itemsets, 
which is based on Galois connection and granular 
computing. We present the notion of smallest frequent 
closed granule to reduce the costed I/O for discovering 
frequent closed itemsets. And we propose a connection 
function for generating the smallest frequent closed 
itemsets in the enlarged frequent 1-item manner to 
reduce the costed CPU and the occupied main memory. 
But the number of the smallest frequent closed itemsets 
is too many, the performances of the algorithm become 
worse and worse, so we further discuss how to solve the 
bottleneck, namely, propose its improved algorithm on 
high dimension dataset. The algorithm is also suitable for 
mining dynamic transaction datasets. 
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