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Due to threats caused by climate change and energy security, the attainment of adequate and 

sustainable energy resources is becoming of great importance. There exist promising alternatives to the 

traditional source, such as solar and wind. However, there are high obstacles to their penetration into a 

power grid because of the variability and uncertainty in renewable sources. In this regard, it becomes 

quite necessary to accurately forecast the models so that one can optimize energy generation and 

guarantee grid stability. This work studies the application of several machine learning algorithms, 

including Cat Boost, AdaBoost, and Light GBM, to solar energy generation forecasting. The approach 

has been applied based on data from two solar stations over a period of two years, where the 

performance of each stand-alone algorithm and a hybrid model that will be optimized with War SO 

optimizer is analyzed and presented. The standalone CatBoost model demonstrated superior 

performance, achieving an R² of 0.9106 and RMSE of 4.06 MW in the 30 MW farm. Hybrid models 

further improved accuracy, with the AdaBoost-War SO model reaching an R² of 0.9836 and RMSE of 

1.75 MW. These results confirm the efficiency of utilizing machine learning approaches toward 

enhancing accuracy in renewable energy forecasting, and therefore hybrid models play an important 

role in energy prediction with higher accuracy. 

Povzetek: Raziskava uvaja hibridne modele strojnega učenja, optimizirane z algoritmom War SO, ki  
kvalitetno napovedujejo proizvodnjo sončne energije.

1 Introduction 
The global community is confronted with several issues 

concerning the sustainability and security of energy. 

Failure to address these challenges promptly could result 

in economic and political turmoil. Depletion of fossil fuel 

reserves and the environmental consequences of their 

combustion have sparked greater attention towards the 

exploration of alternative, sustainable energy sources. 

Renewable energy technologies such as solar, wind, 

hydropower, geothermal, and biomass have experienced 

substantial growth during the last few years, reflective of 

increasing use in international energy markets [1]. 

Machine learning techniques have indicated promise in 

addressing the variability of renewable energy sources 

such as solar and wind [2]. 

Research and development in renewable energy have 

attracted considerable attention lately because of the 

increasing need for clean and sustainable energy sources 

[3][4]. Renewable energy therefore comes to the front in 

efforts to counter greenhouse gas emissions and change 

due to climatic factors [5–7]. RES offers an assortment 

of advantages that include a reduction in reliance on 

foreign sources of energy, jobs, and the possibility of 

saving money economically [8]. However, the intrinsic 

variability and unpredictability associated with RES have 

been a significant obstacle to their wide diffusion [9][10]. 

For instance, solar energy generation is still very 

sensitive to factors affecting cloud cover and the seasonal 

variation of sunlight intensity [11]. All these large 

variations and uncertainties in renewable energy 

generation make their smooth integration into the power 

grid challenging [12]. 

A necessary strategy to minimize this challenge 

emphasizes the development of accurate forecasting 

models in renewable energy generation. Such models are 

very important in minimizing the negative effects 

brought about by the variability and uncertainty of the 

electrical grid. Traditional energy generation forecasts 

have, for many years, employed techniques such as 

statistical and physical models [13]. While statistical 

approaches like the autoregressive integrated moving 

average model have shown some promise, they are 

limited in terms of modeling complex nonlinear 

relationships and high dimensionality inherent in 

renewable energy signals [14]. Physical models, such as 

NWP and solar radiation models, play a major role in 

renewable energy forecasting. However, physical models 

face serious problems in light of complex dynamics in 

the Earth's atmosphere and inherent uncertainties in 

weather prediction. Various research and development 

works need to be carried out to improve their accuracy. 

Machine learning algorithms open up a promising 

direction beyond the limitations of traditional methods 

that have been developed for forecasting renewable 

energies [15][16]. First, ML algorithms are excellent at 

finding complex nonlinear relationships that many big 

datasets exhibit. For this reason, ML is suitable to handle 

the multidimensional nature of renewable energy data. 
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Second, ML algorithms can be easily modified to fit 

different types of input data: time series, meteorological, 

and geographical. 

This has motivated many researchers to work on the 

development of machine learning algorithms in 

predicting solar radiation, one of the critical factors in 

evaluating the performance of a solar energy system [17]. 

Voyant et al. have reviewed several approaches to solar 

irradiation forecasting based on machine learning 

methods quite extensively. Techniques such as neural 

networks, support vector regression, regression trees, 

random forests, and gradient boosting were reviewed. 

Comparing many different works was challenging 

because of the characteristics of the diverse nature of the 

dataset and besides that different metrics of performance 

were applied. They found very similar errors of 

prediction overall, from which it follows that there is a 

huge potential for improving accuracy if hybrid models 

or ensemble forecasting approaches are implemented 

[18].   Suanpang and Jamjuntr (2024) benchmarked the 

Light Gradient Boosting Machine (LGBM) and K 

Nearest Neighbors (KNN) models for solar power 

generation forecasting in microgrids. Their results 

indicated that LGBM performed better than KNN in 

terms of accuracy (R² = 0.84 vs. 0.77) and error values 

(RMSE: 5.77 vs. 6.93; MAE: 3.93 vs. 4.34), although it 

took more computational power, i.e., longer training time 

(120 s vs. 90 s) and higher memory (500 MB vs. 300 

MB). LGBM was also more consistent over periods and 

seasons and dealt with outliers effectively. This paper 

emphasizes the significance of precise prediction in 

enhancing solar energy utilization in microgrids and 

elucidates the trade-offs between computational 

efficiency and prediction accuracy [19]. Singh et al. 

(2023) introduced a robust hybrid deep learning approach 

for power prediction using PV, wind, and solar systems 

in large-scale systems. It uses preprocessing methods and 

K-means clustering to enhance deep learning training and 
eliminate noise. A GRU-based recurrent neural network 
yielded more accuracy than conventional approaches. 
Pearson coefficient analyses identified interrelations 
among power sources, with which hybrid renewable 
clusters were able to minimize forecasting errors and 
variability. Case studies highlighted the controllability of 
solar power and the model's success in boosting 
forecasting for mass systems[20].

Nguyen et al. (2025) identified ambient temperature 

and humidity as key predictors using SHAP analysis 

[21], while Zhu et al. (2025) demonstrated the efficacy of 

hybrid optimization models like HGBoost with satin 

bowerbird optimizers [22].  

 Huertas-Tato et al. (2020) blended the forecasts of four 

models using Support Vector Machines. They evaluated 

two methods for combining the forecasts and the impact 

of considering weather-type information in the blends. 

Results from evaluation at four Iberian Peninsula stations 

showed large performance gains due to blending, with up 

to 17% reduction in RRMSE for GHI (16% for DNI), 

and up to 15% in rMAE. Improvement was similar when 

evaluating regional forecast skills [23]. Four models 

were used by Gürel et al. (2020) in modeling solar 

radiation for the years 2008-2018 in Turkey. The feed-

forward neural network outperformed others, followed 

by Holt-Winters, RSM, and empirical models [24]. 

Alizamir et al. (2020) estimated the performance of six 

machine-learning models for solar radiation forecasting 

at selected stations in Turkey and the USA. These 

authors compared different models by applying several 

statistical indicators and pointed out that GBT 

outperformed the others. GBT decreased the average 

RMSE by 0.26% to 19.34% for one station and by 4% to 

54.8% for the other one, indicating an effective use of 

climatic parameters for solar radiation prediction [25]. 

Koo et al. developed a new methodology for estimating 

the monthly average daily solar radiation in China using 

different machine-learning techniques. Their approach 

was to use clustering and enhanced case-based reasoning 

models, which have given an average prediction 

accuracy of 93.23% when applied to data from 97 cities 

over a continuous period of 10 years. This may thus 

provide a very effective way of implementing solar 

energy systems, enabling decision-makers to determine 

the best locations and configurations [26]. Nath et al. 

(2020) discussed two machine-learning techniques for 

hourly solar power forecasting. Their work was focused 

on how to enhance energy grid integration and service 

quality by optimizing data preprocessing, feature 

selection, weather profiling, and choosing the algorithms 

that provide better accuracy and efficiency in the forecast 

of solar power, thus helping to meet global energy 

demands [27]. Kumar et al. (2020) suggested a short-

term solar energy forecast using PI-based machine 

learning. The authors support the fact that their approach 

makes the forecast more accurate and reliable than in the 

case of deterministic methods, which is urgent for grid 

stability and reliability, considering the stochastic nature 

of photovoltaic power generation [28]. Jebli et al. (2021) 

introduced a machine and deep learning-based solar 

energy forecasting approach critical to increasing 

competitiveness for solar power plants and reducing 

reliance on fossil fuels. The authors conducted their 

research on Errachidia, Morocco, for data from 2016 to 

2018, using RF and ANN models, outperforming other 

methods such as LR and SVR. Comparisons with 

Pirapora, Brazil, enhanced the quality and reproducibility 

of this study [29]. In this regard, Abualigah et al. (2022) 

reviewed all kinds of learning-based modeling for 

renewable power source estimation by focusing on recent 

deep learning and machine learning algorithms. Then 

they discussed the performance analysis based on the 

new taxonomy, challenge, and possibility for the future 

research direction. Based on this, the paper has 

highlighted that hybrid learning techniques were 

effective in addressing energy generation problems and 

thus suggested using these techniques for improvement 

in forecasting accuracy [30]. 

 Nevertheless, it is noted that other well-known 

algorithms, i.e., XGBoost and neural networks, are 

widely used in the renewable energy forecasting 

literature. The exclusion of XGBoost is mainly due to its 

similarity to LightGBM, which is more computationally 

efficient and tailor-made for big datasets. Neural 
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networks, including recurrent and convolutional 

architectures, offer significant advantages to their ability 

to capture temporal and spatial patterns; yet, they are 

computationally intensive and need big datasets. By the 

above study's emphasis on high-frequency but site-

specific data, gradient-boosting models were preferred as 

they can balance accuracy, computational cost, and 

interpretability. Subsequent studies can be focused on 

using neural networks or hybrid models, for instance, the 

integration of gradient-boosting methods and deep 

learning, to leverage their respective strengths. 

Moreover, a finer comparative study between XGBoost 

and different neural network configurations can provide 

further clarity into their utility to solar power forecasting 

projects in comparable situations. 

Notwithstanding improvements in solar forecasting, 

significant gaps exist in current methods. Most research 

uses low-resolution data sets, i.e., hourly or daily 

measurements, that are incapable of recording short-term 

variability important for real-time grid integration. This 

research bridges this gap by using high-frequency, 15-

minute interval data from two solar farms to enable better 

modeling of dynamic conditions. 

Feature selection in modern state-of-the-art (SOTA) 

techniques has the tendency to apply simple methods that 

do not consider non-linear variable interactions. The 

Delta Moment Independent Measure (DMIM) introduced 

in this paper is utilized in the identification of vital 

predictors like solar irradiance, and it offers improved 

input selection for prediction purposes. Additionally, 

although hybrid models have been promising, standard 

optimization techniques like grid search or genetic 

algorithms hinder their potential. The employment of the 

War SO optimizer in this research surpasses these 

constraints by improving model accuracy and 

computation time. 

One of the most prominent limitations seen in existing 

work is the lack of multi-site validation, which casts 

doubt on results. The work demonstrates the generality of 

the models suggested by validation with data from two 

farms with capacities of 30 MW and 130 MW. Besides, 

the majority of SOTA work relies on a limited collection 

of performance measures such as RMSE or R². 

Nevertheless, this work applies a comprehensive 

evaluation framework including MAE, runtime, and 

convergence analysis to enable thorough inspection. 

By bridging these gaps, this research establishes a 

new standard in solar forecasting, pushing the boundaries 

of high-resolution data use, robust feature engineering, 

hybrid optimization, and generalizable model 

development.  

Despite the huge advancements in the prediction of 

renewable energy, there are several challenges to limit 

the scalability and viability of machine learning models 

in the same. Most notable are the data security and 

privacy concerns, since the collection of sensitive 

operational data from solar farms is usually an essential 

stepping stone for model development; however, sharing 

the same is fraught with risks and dissuades 

collaboration. Also, integrating advanced machine 

learning models into existing energy systems, 

particularly legacy-based ones, is extremely challenging 

and must be harmonized with existing solar forecasting 

methods to facilitate easy implementation. Hybrid 

models improve forecast accuracy but often come with 

maintenance and integration issues with operational 

systems, which could deter use. These research gaps are 

overcome by this research using high-frequency 15-

minute interval data to raise the level of granularity and 

predictive accuracy of the models beyond what has been 

possible using hourly or daily data. The use of hybrid 

machine learning models that have been optimized with 

the War Strategy Optimizer generates superior predictive 

capacity and computational efficacy than standard 

procedures. Feature robustness through strong feature 

selection further secures model stability against 

overfitting, contributing to methodological robustness. 

By highlighting the scalability of the hybrid models, 

computational efficiency, and integrability feasibility, the 

research translates theoretical findings toward practical 

realization for solar energy prediction. Problems of data 

privacy, system compatibility, and real-time 

deployments, further improving scalable and actionable 

models, are to be addressed in follow-up studies. Table 1 

indicates the comparing the results of the discussed 

studies. 

Table 1: Comparison of the results of the discussed 

studies 

Study Models Used Metrics Key 

Contributions 

Suanpang 
& 

Jamjuntr 

(2024)[19] 

LGBM, KNN R² = 0.84 
(LGBM), 

RMSE = 5.77 

W (LGBM) 

Benchmarking 
LGBM and KNN 

for microgrid 

forecasting; 

LGBM showed 

superior 

accuracy. 

Singh et 

al. 

(2023)[20] 

GRU-based 

hybrid deep 

learning model 

Improved 

accuracy over 

conventional 
models 

Use of K-means 

preprocessing 

and GRU for 
large-scale 

systems. 

Nguyen et 

al. 
(2025)[21] 

CatBoost, 

SHAP 
Analysis 

R² = 0.46, 

RMSE = 4.748 
W (CatBoost) 

Identified 

ambient 
temperature and 

humidity as key 
predictors. 

Zhu et al. 

(2025)[22] 

Hybrid models 

(HGBoost + 

optimizers) 

R² = 0.9907 Hybrid 

optimization 

with satin 
bowerbird 

optimizer. 

Huertas-
Tato et al. 

(2020)[31] 

Blending ML 
models 

Up to 17% 
RRMSE 

reduction 

Blended 
forecasts using 

SVM, leveraging 

weather-type 
information. 

Alizamir 

et al. 

(2020)[32] 

Gradient 

Boosting Trees 

(GBT) 

RMSE 

reduction: 

0.26%–
19.34% 

GBT 

demonstrated 

superior 

2 Methodology 
The research methodology is divided into two main 

sections. Firstly, the data acquisition process is outlined, 

detailing how the relevant data was collected and 
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sourced. Following this, the second part delves into the 

machine-learning algorithms utilized in the study, 

providing an overview of each algorithm and explaining 

the methods employed for their implementation in the 

research context.  This study employs machine learning 

techniques to forecast energy generation from solar 

sources. Initially, the available data undergoes 

preprocessing using various methods. A crucial 

secondary analysis assesses the impact of input features 

on the output by examining correlations among 

parameters with the Pearson Correlation Coefficient. 

Following this, the dataset is split into training and 

testing subsets to enable accurate energy consumption 

prediction. Pearson Correlation Coefficient was selected 

as the feature selector because it is simple, interpretable, 

and computationally fast. The method is efficient at 

detecting linear associations between the input features 

and target variable and hence qualifies as an appropriate 

first-line approach to filtering out the relevant features in 

the structured numerical data set employed in this 

research. CatBoost, AdaBoost, and Light GBM 

algorithms are individually and collectively employed for 

training and prediction to improve model accuracy. The 

hyperparameters of these algorithms are optimized using 

the War SO optimizer. Performance comparison between 

single algorithms and hybrid models is conducted using 

various statistical indicators to identify the most effective 

approach for energy generation prediction. The focus of 

the present study is on CatBoost, LightGBM, and 

AdaBoost because of their proven performance and 

efficiency in renewable energy prediction tasks. The 

algorithms are all gradient-boosting methods with the 

ability to process structured datasets, prevent overfitting, 

and identify complex non-linear variable relationships. 

Specifically, CatBoost is effective in processing 

categorical features and removing prediction bias, while 

LightGBM and AdaBoost are known for scalability and 

iterative learning, respectively. 

 The entire modeling process is depicted in Fig 1. 

Figure 1: Flowchart diagram of the current investigation 

1. Data

For this study, data collection involved the procurement 

of solar generation data from various on-site renewable 

energy stations situated across China. Specifically, 

information was gathered from two solar stations. Over a 

period spanning two years, from 2019 to 2020, data was 

meticulously recorded at 15-minute intervals. This 

dataset, comprising power generation data alongside 

weather-related parameters, was subsequently utilized in 

the Renewable Energy Generation Forecasting 

Competition hosted by the Chinese State Grid in 2021 

[33]. Table 2 summarizes all data columns along with 

their respective descriptions. 
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Table 2: The input variables and their statistical details in the farm with a capacity of 30(MW) 

count mean std min 
25

% 
50% 75% max 

Year 20352 2019 0 
201

9 

201

9 
2019 2019 2019 

Day 20352 
15.66037

736 

8.76752904

4 
1 8 16 23 31 

Month 20352 
4.018867

925 
2.00467189 1 2 4 6 7 

Hour 20352 11.5 6.92235662 0 5.75 11.5 17.25 23 

Minute 20352 22.5 
16.7709218

6 
0 

11.2

5 
22.5 33.75 45 

Total solar irradiance (W/m2) 20352 
198.8134

336 

294.579144

1 
0 0 0 338.25 1117 

Direct normal irradiance 

(W/m2) 
20352 

100.7295

597 
185.090418 0 0 0 112 760 

Global horizontal irradiance 

(W/m2) 
20352 

69.30508

058 

101.877256

6 
0 0 0 111 656 

Atmosphere (hpa) 20352 
1016.013

768 

9.32341549

4 

994.

8 

100

8.3 
1014.7 1024 1038.6 

Relative humidity (%) 20352 
58.24924

332 

13.1588007

5 
14.1 50.9 61 68.6 80.5 

Power (MW) 20352 
5.449246

788 

8.25866246

1 
0 0 

0.1151

01 

9.038321

25 

29.91133

95 

Table 3: The input variables and their statistical details in the farm with a capacity of 130(MW) 

coun

t 
mean std min 25% 50% 75% max 

Year 
7017

6 

2019.5006

84 

0.5000030

95 
2019 2019 2020 2020 2020 

Day 
7017

6 

15.738714

09 

8.8039835

06 
1 8 16 23 31 

Month 
7017

6 

6.5198358

41 

3.4495754

68 
1 4 7 10 12 

Hour 
7017

6 
11.5 

6.9222358

73 
0 5.75 11.5 17.25 23 

Minute 
7017

6 
22.5 

16.770629

32 
0 11.25 22.5 33.75 45 

Total solar irradiance (W/m2) 
7017

6 

169.30336

65 

248.07763

81 
0 0 0 305.7575 

1041.9

3 

Direct normal irradiance 

(W/m2) 

7017

6 

122.15239

55 

178.98802

44 
0 0 0 220.6025 751.75 

Global horizontal irradiance 

(W/m2) 

7017

6 

78.299281

52 

117.58734

35 
0 0 0 129.57 561.8 

Air temperature (°C) 
7017

6 

13.695107

59 

12.035800

36 

-

13.92 
3.19 15.46 23.57 40.47 

Atmosphere (hpa) 
7017

6 

861.03626

24 

6.1476447

63 

844.5

1 

856.21

75 

860.8

7 
865.35 881.67 

Power (MW) 
7017

6 

19.567488

45 
27.939605 0 

0.2410

33 

0.326

9 

36.82174

85 

109.36

03 

The difference in parameter scales shown in Tables 2 and 

3 reflects the importance of location factors in 

determining solar energy output. In particular, the mean 

total solar irradiance measured for the 130 MW farm is 

higher than that of the 30 MW farm due to its larger 

geographic area and changing environmental conditions. 

These variations were adjusted for while training the 

models by normalizing the datasets individually for each 

farm, such that the models could learn to adapt to site-

specific trends. 

The 15-minute, high-resolution datasets also provided 

valuable detail for short-duration solar irradiance 

changes and other variables. The time resolution of the 

data enabled the models to detect rapid weather changes, 

increasing the accuracy of energy prediction. We 

appreciate that summary statistics in Tables 2 and 3 are 
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unable to capture the full richness of temporal data 

variation. Graphical representations, such as time series 

plots, would be an asset in future research to better 

present the dynamics measured at this scale level. 

2.2   Machine learning methods 

This study employed advanced machine learning 

algorithms, including Cat Boost, AdaBoost, and Light 

GBM, for energy generation forecasting]34[. To improve 

accuracy and adaptability, a hybrid model was developed 

by incorporating War SO optimizers. This section 

provides a concise summary of the mathematical 

formulations and fundamental principles underlying each 

of these techniques. 

2.2.1 Categorical gradient boosting (cat boost) 

The Cat Boost [35] model  is a boosting-based algorithm 

that constructs trees in a level-wise manner. While the 

overall boosting process resembles existing methods, 

there are notable distinctions. Instead of performing 

residual calculations on all training data collectively, Cat 

Boost selects a subset of the data for residual calculations 

to build a model. Subsequently, it utilizes the predicted 

values from this model to process the residual of 

subsequent data. Moreover, Cat Boost employs Random 

Permutation to randomly select data, thereby promoting 

diversity in tree creation and preventing Overfitting [36]. 

�̂�𝑘
𝑖 =

∑ [𝑥𝑗
𝑖 = 𝑥𝑘

𝑗
]𝑦𝑗 + 𝛼𝑝𝑛

𝑗=1

∑ [𝑥𝑗
𝑖 = 𝑥𝑘

𝑗
] + 𝛼𝑛

𝑗=1

(

1) 

Here, α represents the corresponding weight, P 

denotes a prior value, xk = (𝑥𝑘
1, ..., 𝑥𝑘

𝑚) signifies the

random vector of m features and yk INR den . 

2.2.2 Adaptive boosting (AdaBoost) 

Initially designed as a feature classification algorithm in 

machine learning, AdaBoost has expanded its application 

to regression problems  [37]. Currently, it finds 

widespread use in load forecasting and short-term wind 

speed forecasting, yielding promising results. The core 

concept involves training multiple weak learners within 

the same sample space and subsequently adjusting their 

weights to construct a robust learner based on the 

prediction outcomes of each weak learner [38]. 

The specific steps of the AdaBoost algorithm are 

delineated as follows: 

1. Selection of Basic Learner and Data: Initially, the

weak learning algorithm and sample space (xi, yi) are 

determined. The sample data is denoted as group M, and 

the sample data is normalized with a mean of 0 and a 

variance of 1, where xi ∈ Rn and yi ∈ Rn. 

2. Network Initialization: Assuming a uniform

sample distribution, the weight of the test data's uniform 

distribution, Dt(i), is set to 1/M. The neural network 

structure is configured based on the characteristics of the 

sample data, followed by the initialization of weights and 

thresholds for the neural network. Finally, the number of 

iterations is set. 

(3) Weak Predictor Prediction: The t-th weak

predictor undergoes training using the training data, 

resulting in the prediction output for the training data. 

Following this, the error ei and average error et of the 

weak learner are computed for each sample using the 

calculation formula. 

𝑒𝑡 =
1

𝑀
∑ 𝑒𝑖, 𝑖 = 1,2, . . . , 𝑀𝑀

𝑖=1  (2) 
)

(4) Computing the Weight of Weak Learner: Based

on the average error et of the prediction sequence f(t), the 

weight of the weak learner is determined accordingly. 

𝑎𝑡 =
1

2
𝑙𝑛(

1−𝑒𝑡

𝑒𝑡
)  (3) 

(5) Updating Sample Weights: Adjusting the weights

of the next round of training samples is based on the 

current weight ta
. The formula for updating sample 

weights can be expressed as: 

𝐷𝑡(𝑖) =
𝐷𝑡−1(𝑖)

𝐵𝑡
∗ 𝑒𝑥𝑝[ − 𝑎𝑡𝑦𝑖𝑓𝑡(𝑥𝑖)] (4) (

Here, Bt represents the normalization factor, which 

ensures that the sum of distribution weights equals 1 

while maintaining the weight proportion unchanged. 

ft(xi) refers to a weak predictor acquired after training 

the data. 

(6) Strong Predictor Formation: Following t rounds

of training, t sets of weak predictor functions are 

acquired. Subsequently, strong predictors are constructed 

by amalgamating these t sets of weak predictor functions, 

as expressed below: 

𝐹(𝑥) = ∑ 𝑎𝑡 . 𝑓𝑡(𝑥)𝑇
𝑡=1     (5) 

In this context, T symbolizes the total count of weak 

learners. 

2.2.3 Light gradient boosting machine (Light 

GBM) 

Light GBM [39] stands out as a boosting-based 

algorithm recognized for its speed and precision in 

forecasting, surpassing other boosting and bagging 

algorithms. It leverages a gradient-boosting decision tree 

(GBDT) framework, incorporating gradient-based one-

sided sampling and exclusive feature-bundling 

techniques. Unlike traditional gradient boosting machine 

(GBM) tree splitting methods, Light GBM adopts a leaf-

wise approach, which enhances accuracy through more 

intricate modeling, particularly advantageous for time 

series forecasting. This method, combined with gradient 

boosting decision tree (GBDT) and leaf techniques, leads 

to low memory usage and rapid training. Light GBM 

encompasses several hyperparameters, with learning rate, 

number of iterations, and number of leaves being crucial 

for forecasting accuracy. Additionally, Light GBM 

addresses overfitting by adjusting Col sample by tree and 
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subsample hyperparameters. Proven effective in various 

time series forecasting domains such as electricity load 

and solar power forecasting, Light GBM's single-output 

forecasting demonstrates both rapidity and precision. 

Given the need for a fast and precise forecasting model 

with a single output, Light GBM is chosen for 

construction. 

2.2.4 War strategy optimizer (War SO) 

In the strategy of warfare, there are three primary 

factions: the King (K), the Commander (C), and the 

soldiers. Both the Commander and the King serve as 

leaders on the battlefield, overseeing the actions of the 

soldiers. Each soldier has an equal chance of rising to the 

ranks of Commander or King based on their combat 

effectiveness, which is measured by a cost function. 

However, there is a possibility that the Commander or 

King may face tough opposition from rival soldiers, 

representing a local optimum. These adversarial soldiers 

wield sufficient power to potentially ensnare the leaders. 

To avert such scenarios, the soldiers are managed in their 

coordinated tactics and maneuvers, guided by the status 

of the Commander or King [40] 

Figure 2: Renewing the attack model mechanism [41] 

2.2.4.1 Attack tactic 

Attack tactics are crucial components of war strategies, 

and this paper models two distinct policies. In the first 

strategy, each soldier updates their own status based on 

the current situation of the Commander and King. Figure 

(2) illustrates the procedure for updating the attack

model. A favorable circumstance triggers the King to

initiate a significant attack, with the soldier possessing

the highest attack force or cost being appointed as the

King. Initially, at the commencement of the war, all

soldiers are endowed with equal weight and rank.

However, their rank escalates as they effectively execute

tactics. It's noteworthy that soldiers' weight and rank may

be adjusted based on the success of tactics during the

war's progression. As the war nears its end, the

circumstances of the soldiers, Commander, and King

converge as they move towards achieving the goal

outlined in equation (6).

𝑦𝑖(𝑡 + 1) = 𝑦𝑖(𝑡) + 2𝑝(𝑦𝑐 − 𝑦𝑘) + 𝑟𝑎𝑛𝑑(𝑦𝑘

∗ 𝑤𝑖 − 𝑦𝑖(𝑡))
(6) 

In this context, yi(t+1) and yi(t) denote the current 

and preceding statuses of the soldier, respectively. yK 

and yC denote the situations of the King and the 

Commander, while Wi represents the weight. 

2.2.4.2 Renewing weight and rank 

The renewal of each individual's situation is correlated 

with the status of the King, the location of the 

Commander, and the ranking of the soldiers. Soldiers' 

rankings are determined by their past performance in the 

war, which in turn influences the Wi factor. The ranking 

of each soldier signifies their proximity to achieving the 

goal (cost value). If the attack force (cost) in the previous 

situation (Fper) is significantly higher than that in the 

new situation (Fnew), the soldier opts to retain the 

previous situation, as depicted in equation (7). 

𝑦𝑖(𝑡 + 1) = 𝑦𝑖(𝑡) × (𝐹𝑛𝑒𝑤 < 𝐹𝑝𝑒𝑟) + 𝑦𝑖(𝑡 +

1) × (𝐹𝑛𝑒𝑤 ≥ 𝐹𝑝𝑒𝑟)   (7) 

If soldiers successfully renew their situation, their 

ranking (Rai) will be upgraded, as shown in equation (8). 

Using this ranking, the updated weighting can be 

computed as described in Equation 9. 

𝑅𝑎𝑖 = 𝑅𝑎𝑖 × (𝐹𝑛𝑒𝑤 < 𝐹𝑝𝑒𝑟) + (𝑅𝑎𝑖 +

1) × (𝐹𝑛𝑒𝑤 ≥ 𝐹𝑝𝑒𝑟)  (8) 

𝑤𝑖 = 𝑤𝑖 × (1 −
𝑅𝑎𝑖

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)𝛽     (9) 

2.2.4.3 Defense strategy 

Another approach to updating the situation involves 

the King, a randomly selected soldier, and the 

Commander's status. However, the adjustment of weight 

and ranking remains consistent, as illustrated in equation 

(7). 

𝑦𝑖(𝑡 + 1) = 𝑦𝑖(𝑡) + 2𝑝(𝑦𝑘 − 𝑦𝑟𝑎𝑛𝑑(𝑡)) +
𝑟𝑎𝑛𝑑 ∗ 𝑤𝑖 ∗ (𝑦𝑐 − 𝑦𝑖(𝑡))  (10) 

Unlike the prior policy, this military strategy 

ventures into broader territories when incorporating the 

status of the randomly selected soldier. Soldiers make 
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substantial strides in updating their situation when larger 

Wi values are present. Conversely, when Wi amounts are 

small, the opposite occurs. 

2.2.4.4 Substituting the vulnerable soldier 

Throughout the duration of the conflict, the weakest 

soldier, distinguished by the lowest value of the cost 

function, is singled out for replacement. This study 

investigates multiple strategies for substitution in such 

instances.  The simplest approach involves replacing the 

weak soldier with a randomly chosen one, as determined 

by the formula below [equation (11)]: 

𝑦𝑤(𝑡 + 1) = 𝐿𝐿 + 𝑟𝑎𝑛𝑑 × 𝑊𝑖 × (𝐻𝐿 − 𝐿𝐿)
(11) 

The second approach involves substituting the 

weakest soldier with one in close proximity to the 

average of the entire army in the field, as represented by 

the following formula. This tactic is aimed at enhancing 

the convergence of the optimizer [equation (12)]: 

𝑦𝑤(𝑡 + 1) = 𝑦𝑘 − (1 − 𝑟𝑎𝑛𝑑) × (𝑦𝑤(𝑡)
− 𝑚𝑒𝑑𝑖𝑎𝑛(𝑦))

(12) 

2.2.4.5 Key features of the provided optimizer 

The proposed optimizer possesses several important 

features that enhance the optimization process. Firstly, it 

achieves a satisfactory balance between the exploitation 

and exploration phases. Each individual (soldier) in this 

optimizer is assigned a unique weight based on their 

ranking. Moreover, weight adjustment only takes place if 

there is an enhancement in the individual's cost value 

during the updating phase, and this adjustment is tied to 

the particle's position in relation to the positions of the 

Commander and King. The fluctuation in weights 

follows a nonlinear pattern, with substantial alterations 

happening in the initial epochs and diminishing ones 

towards the conclusion, aiding in quicker convergence to 

the global optimum. Moreover, the situation updating 

involves two steps, enhancing exploration capabilities 

towards the global optimum. This optimizer is 

recognized for its simplicity, requiring fewer 

computations. 

2.2.4.6 The stages of exploitation and exploration 

The concepts of exploitation and exploration are 

fundamental principles in metaheuristic optimizers and 

are crucial for their effectiveness. The proposed 

optimizer maintains a balanced trade-off between these 

two phases. The attack tactic is representational of the 

exploitation side, whereby the optimizer leverages 

known solutions to its advantage in furthering 

optimization performance. Conversely, the defense tactic 

symbolizes exploration in allowing the optimizer to 

move toward newer areas of the search space and 

hopefully come up with far better solutions than 

previously obtained. This balanced approach ensures 

efficient optimization by leveraging both exploitation 

and exploration strategies. 

2.2.5 Model verification and evaluation 

In the present study, the effectiveness of the forecasting 

model is tested with several error analysis measures. 

These include RMSE, MAE, RAE, JSD, VAF, and R-

squared. These measures test the accuracy of the model 

and differences in values forecasted with the model 

against real ones. The comprehensive evaluation will 

give full insight into the performance of the model and 

indicate if some improvement might be necessary [42]. 

Detailed mathematical expressions for these statistical 

evaluation metrics are provided in Table 4. 

Table 4: Statistical evaluation indexes 

Statistics Criteria Equation 

RMSE Root Mean Squared Error 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

𝑇

MAPE Mean Absolute Error 
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1

𝑛

VAF Variance Accounted For 
1

2

1

( )( )
100%

( )

n

i ii

n

ii

y y f f

y y

=

=

− −


−





JSD Jensen Shannon Divergence 
*1 1

( || ) ( || )
2 2

D P M D Q M+

R2 Coefficient of Determination 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

RAE Relative Absolute Error 

1

2 2

1

1

2 2

1

ˆ[ ( ) ]

[ ( ) ]

n

i ii

n

ii

y y

y

=

=

−


*For more details, refer to Nielsen (2021)[43].
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3 Results 
This section outlines the results and analyses derived 

from the energy generation forecasting process. It begins 

with an introduction to the standalone algorithms 

CatBoost, LightGBM, and AdaBoost, followed by their 

hybrid configurations fine-tuned using the WarSO 

optimizer. A comprehensive array of charts and tables is 

provided to facilitate the assessment of the models. 

Fig 3 depicts the correlation matrix created for the 

selected parameters in energy generation using solar 

energy at the first site considered with a capacity of 30 

megawatts.   Examination of the correlation matrix 

(depicted in Fig 3) indicates that total solar irradiance, 

direct normal irradiance, and global horizontal irradiance 

collectively play a substantial role. Notably, the 

parameter "global horizontal irradiance" exhibits the 

strongest correlation with the target parameter. 

Temperature variables display positive effects and 

correlations, while the impact of other parameters on the 

target parameter is minimal. 

Figure 3: The correlation matrix of features in the farm with a capacity of 30(MW) 

Fig 4 illustrates the correlation matrix generated for 

the selected parameters in solar energy generation at the 

second site under consideration, which has a capacity of 

130 megawatts. Similar to the 30-megawatt case, three 

parameters, namely total solar irradiance, direct normal 

irradiance, and global horizontal irradiance, exhibited a 

very strong correlation with the target parameter. Among 

these, the total solar irradiance parameter demonstrated 

the highest correlation. Additionally, temperature and 

hour parameters showed positive correlations, while the 

remaining parameters exhibited negligible and almost 

neutral correlations. 
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Figure 4: The correlation matrix of features in the farm with a capacity of 130(MW) 

In this study, the Delta Moment independent index 

was used to assess the impact and sensitivity of input 

parameters on the output. The scaled values range 

between 0 and 1. Fig 5 illustrates the impact and 

sensitivity of input parameters at the 30-megawatt site. 

According to this figure, the three primary parameters, 

total solar irradiance, direct normal irradiance, and global 

horizontal irradiance, exhibited very high sensitivity. 

Additionally, the hour parameter also showed significant 

influence based on this index. Other parameters showed 

relatively similar sensitivity to the output. 

Figure 5: Sensitivity analysis of variables based on the DMIM method in the farm with a capacity of 30(MW) 

Fig 6 also illustrates the sensitivity analysis of input 

parameters at the 130-megawatt site. In this case, the 

three parameters, total solar irradiance, direct normal 

irradiance, and global horizontal irradiance, showed 
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higher sensitivity, with total solar irradiance exhibiting 

the greatest sensitivity. Similarly, the hour parameter had 

a significant impact and demonstrated high sensitivity at 

this site. Other parameters, such as temperature, 

humidity, atmospheric pressure, and large-scale time 

parameters, showed relatively similar levels of influence 

and sensitivity. 

Figure 6: Sensitivity analysis of variables based on the DMIM method in the farm with a capacity of 130(MW) 

Fig 7 displays the time series of observational and 

computational data based on single algorithms for 

predicting energy production in the 130-megawatt solar 

farm. In addition to the time series plots, scatter plots for 

each method are also provided. According to Figure 7, 

both the training and testing sections showed better 

overlap between observational and computational data 

for the Cat Boost algorithm, indicating its satisfactory 

performance. Conversely, the AdaBoost algorithm 

exhibited the poorest performance. Furthermore, based 

on the scatter plot, the Cat Boost algorithm demonstrated 

the highest correlation with observational data, with an 

R2 value of 0.8980, making it the most suitable 

algorithm. 

Figure 7: A detailed analysis of the outcomes from employing the AdaBoost, Light GBM, and Cat Boost models in the 

130-megawatt solar farm

Fig 8 also depicts the time series of observational 

and computational data for the 30-megawatt farm. 

According to the results, the Cat Boost algorithm 

outperformed other algorithms in this case as well, 

exhibiting lower error and higher correlation with 

observational data. Additionally, based on the scatter 

plot, the Cat Boost algorithm demonstrated the best 

performance for energy production prediction, with an 

R2 value of 0.9106. 
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Figure 8: A detailed analysis of the outcomes from employing the AdaBoost, Light GBM, and Cat Boost models in the 

130-megawatt solar farm

To conduct a comprehensive assessment of the 

algorithms' performance and accuracy, various statistical 

indicators were evaluated and compared, as presented in 

the preceding section. The results for these indicators are 

also depicted in Table 5. 

Table 5: Error metrics for proposed Cat Boost, AdaBoost, and Light GBM models 

Farm Optimizer MAE 

(Train) 

RMSE 

(Train) 

R² (Train) JSD(Train) VAF(Train) RAE(Train) 

130 MW AdaBoost 15.575 18.732 0.555 213905.3 55.48413 0.546277 

CatBoost 6.832367 8.875713 0.900052 70437.51 90.00517 0.258847 

LightGBM 10.41079 12.71163 0.794991 125100 79.49912 0.370716 

30 MW AdaBoost 7.691782 9.115634 0.559622 30828.01 55.96231 0.54213 

CatBoost 3.356744 4.144317 0.908976 7841.534 90.89757 0.246473 

LightGBM 5.124735 6.122702 0.801327 14322.59 80.13274 0.364133 

Farm Optimizer MAE 

(Test) 

RMSE 

(Test) 

R² (Test) JSD(Test) VAF(Test) RAE(Test) 

130 MW AdaBoost 15.39225 18.32239 0.556952 71634.8 55.70914 0.54584 

CatBoost 6.778392 8.78999 0.898032 23920.81 89.80388 0.261861 

LightGBM 10.27857 12.40571 0.796891 42103.83 79.69671 0.369577 

30 MW AdaBoost 7.718301 9.029883 0.559829 10024.49 55.98797 0.542413 

CatBoost 3.339026 4.068872 0.910627 2533.42 91.06506 0.244412 

LightGBM 5.146532 6.075019 0.800771 4718.119 80.08289 0.364919 

Hybrid models were devised to boost prediction 

accuracy and benchmark against individual algorithms. 

Employing the War SO algorithm, optimization was 

applied to the Cat Boost, AdaBoost, and Light GBM 

algorithms. Based on Fig 9, both observational and 

computational time series results are presented for both 

farms. According to Figure 8, for Farm 1, the AdaBoost-

War SO hybrid model outperformed its single model 

counterpart, exhibiting the lowest error rate. Similarly, 

for the 30-megawatt Farm 2, the AdaBoost-War SO 

hybrid model proved suitable for prediction purposes.  
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Figure 9: Evolution of Observed and Predicted Values using Hybrid Models of AdaBoost, LightGBM, and CatBoost 

To comprehensively analyze and identify the most 

appropriate prediction algorithms, as well as evaluate 

their performance, scatter plots for each hybrid model are 

displayed in Figure 10. These plots visualize the R2 

index for both the training and testing datasets. Based on 

Figure 10, in the first farm, the hybrid AdaBoost-War SO 

model achieved the highest performance with an R2 

value of 0.9784, while in the second farm, a similar result 

was observed with the hybrid AdaBoost-War SO m 

odel achieving an R2 value of 0.9836. Following 

these models, the hybrid Light GBM-War SO model 

proved to be suitable for prediction in both farms. 

Figure 10: Scatter plot of the observation-prediction for AdaBoost, Light GBM, and Cat Boost hybrid models in 

Farm1 and Farm2 

Fig 11 illustrates the scatter plot of errors in hybrid 

models for both the training and testing phases. 

According to this figure, during the training phase, the 

Cat Boost-War SO model performed the best in both 

farms. However, during the testing phase, although the 

results are close, the AdaBoost-War SO model exhibited 

lower error ranges in both farms, indicating its suitability 

for prediction purposes. 
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Figure 11: plots of error measurements for models during the testing and training phases in Farm1 and Farm2 

Fig 12 displays the error metrics calculated for the 

hybrid models proposed for energy production prediction 

in the first farm. The calculated metrics include RMSE, 

R2, RAE, JSD, MAE, and VAF. Considering the two 

important metrics, RMSE and R2, from the RMSE plot 

in the testing section, it is evident that the AdaBoost-War 

SO hybrid model had the lowest error. Following this 

model, the Light GBM-War SO model proved suitable 

for prediction. Additionally, considering the R2 metric, it 

is evident from the rectangular plot in the testing section 

that the AdaBoost-War SO hybrid model had the highest 

R2. The other metrics also support this trend. 

Figure 12: Performance Metrics Visualization for Proposed Models in Farm 1(130MW) 
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Fig 13 also illustrates the error metrics calculated for 

the hybrid models in the second farm with a capacity of 

30 megawatts. Similar to the first farm, according to the 

presented metrics, the AdaBoost-War SO hybrid model 

has proven to be the best model for prediction in this 

farm as well. Details and numerical values for each of the 

indicators for hybrid models are presented in Table 6. 

Figure 13: Performance metrics visualization for proposed models in Farm2 (30MW) 

Table 6: Error metrics derived from the application of Cat Boost, AdaBoost, and Light GBM hybrid models 

Optimizer AdaBoost-War SO 
Cat Boost-War 

SO 

Light GBM-

War SO 

AdaBoost-

War SO 

Cat Boost-

War SO 

Light GBM-

War SO 

Farm1(130 MW) Farm2(30 MW) 

Train 

MAE 1.51868 0.884092 1.373611 0.550378 0.214323 0.364667 

RMSE 3.55647 1.735859 3.138754 1.430018 0.391776 0.779854 

R2 0.983952 0.996177 0.987501 0.989162 0.999187 0.996777 

JSD 2956.739 1143.396 2482.084 1001.383 143.2308 388.9295 

VAF 98.39525 99.61771 98.75007 98.91624 99.91866 99.67769 

RAE 0.103719 0.050624 0.091537 0.085047 0.0233 0.04638 

Test 

MAE 1.784966 2.265224 1.853122 0.71745 0.954989 0.870113 

RMSE 4.053808 4.942803 4.187876 1.74971 2.094413 1.96203 

R2 0.978312 0.967757 0.976854 0.983473 0.97632 0.979219 

JSD 1356.879 1951.165 1413.484 555.6971 736.2619 659.5611 

VAF 97.83394 96.77995 97.68843 98.35126 97.63708 97.92325 

RAE 0.120766 0.14725 0.12476 0.105103 0.125809 0.117857 

Fig 14 presents the runtime performance of hybrid 

models over 500 iterations. Based on Fig14, in the first 

farm, the AdaBoost-War SO hybrid model had the 

longest runtime with 3403 seconds, followed by the 

Light GBM-War SO hybrid model. Similarly, in the 

second farm, the AdaBoost-War SO model had the 

longest runtime, totaling 3960 seconds. The Cat Boost-

War SO model had the shortest runtime in both farms. 



F. Pan272   Informatica 49 (2025) 257–278

Although hybrid models, in particular AdaBoost-War 

SO, are more accurate, their usability in the real world is 

diminished by high runtime expenses. As Fig 14 shows, 

the AdaBoost-War SO model is significantly more 

computationally expensive than solo models, with some 

instances requiring over 3960 seconds of runtime. The 

high computational demand stems from the ensemble 

learning iteratively on top of the optimization approach 

being used by the War Strategy Optimizer. 

The extended period of operation might pose challenges 

in real-time operations or scenarios defined by limited 

computing resources. Despite the improvements in 

precision, justification for the use of hybrid models in 

critical forecast scenarios is met, their practicality in the 

context of sparse resources, for instance, in edge devices 

or small-scale microgrids, might be limited. To mitigate 

this trade-off, future work is invited to investigate 

optimization methods, including model parallelization, 

hardware acceleration, or pruning strategies, to minimize 

runtime without compromising accuracy. Furthermore, 

combining hybrid models with distributed computing 

platforms can increase their scalability for large-scale 

deployment. 

This analysis highlights the significance of striking a 

balance between model performance and computational 

efficiency, such that hybrid models are still effective and 

feasible for a broad variety of solar energy forecasting 

applications.

Figure 14: Comparison of runtime for various hybrid models in both Farm1 and Farm2 

Fig 15 illustrates the convergence chart for the 

hybrid models, using the Mean Squared Error (MSE) 

index as the convergence metric with a set number of 

iterations at 300. Based on Figure 15, the values for the 

first farm exhibit higher MSE, whereas for the second 

farm, these values are lower. In the first farm, the hybrid 

AdaBoost-War SO model has the lowest MSE. Similarly, 

in the second farm, as expected, the hybrid AdaBoost-

War SO model has the lowest MSE. 
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Figure 15: The convergence plots of the Cat Boost, AdaBoost, and Light GBM hybrid model

4 Discussion 
The outcome of this study exhibits significant 

improvement in solar power prediction over the SOTA 

benchmarks due mainly to the incorporation of machine 

learning methods in addition to the War SO optimization 

algorithm. Out of the proposed methods, the AdaBoost-

War SO model stood out, with R² = 0.9836 and root 

mean square error (RMSE) = 1.75 MW for the 30 MW 

solar power plant. This performance surpassed the 

performance of single algorithms like CatBoost (R² = 

0.9106, RMSE = 4.06 MW) and even other 

combinations, i.e., CatBoost-War SO and LightGBM-

War SO. 

4.1 Reason for high performance of 

AdaBoost-War SO 

The iterative boosting mechanism of AdaBoost allows it 

to correct errors yielded by weak learners, thereby 

allowing it to effectively model the nonlinear 

relationships that are inherent in solar energy data. The 

model flexibility remains supplemented by the War SO 

optimizer that optimally trades off exploration of new 

parameter spaces and exploitation of already known 

optimum solutions. Through this dual capability, the 

hybrid model is assured of converging to an improved 

global optimum than traditional optimization methods 

like grid search or particle swarm optimization (PSO). 

The AdaBoost-War SO hybrid model that combined both 

of them possessed lower prediction variance, especially 

when testing, which means better generalization power. 

Although CatBoost and LightGBM can be used as 

individual models, their precision was restricted due to 

the absence of an external optimization platform for 

dynamic fine-tuning of the hyperparameters. 

4.2  Importance of high-sensitivity 

parameters 

The sensitivity analysis revealed that global horizontal 

irradiance, direct normal irradiance, and total solar 

irradiance were the most significant parameters used to 

predict solar energy production. These findings have 

very practical applications: 

4.2.1 Improved feature selection 

Models can reduce computational requirements and, 

simultaneously, increase accuracy by concentrating on 

the most sensitive parameters. By giving priority to these 

features, noise caused by unimportant variables is 

reduced. 

4.2.2  Instant predictions 

Continuous real-time monitoring of high-sensitivity 

parameters is essential for forecasting system operation. 

Improved sensors must favor quality solar irradiance 

measurement for input data for forecasting. 

4.2.3  Site-specific calibration 

The high sensitivity of irradiance parameters makes 

location-specific model calibration highly necessary, as 

irradiance behavior varies greatly with climate and 

geography. Region-specific models provide more 

accurate energy forecasting. 
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4.2.4  Supporting grid stability 

Accurate prediction based on high-sensitivity parameters 

enhances the integration of solar power into the 

electricity grid. Reducing prediction errors allows grid 

managers to balance demand and supply, thus ensuring 

stability and avoiding outages. 

4.2.5  Resource and risk management 

Sensitivity analysis outputs may be used to inform 

resource planning, e.g., investing in high-end 

measurement technologies, and formulating risk 

reduction strategies for solar power plants. 

Understanding the major drivers of variability can allow 

for contingency planning to address outages due to 

weather. 

4.3 Dataset and benchmark comparisons 

Hybrid models, specifically the AdaBoost-War SO 

model, always performed better than single models and 

other hybrid combinations in accuracy metrics. For 

example, the AdaBoost-War SO model had an R² of 

0.9836 and RMSE of 1.75 MW for the 30 MW solar 

farm and did better than the research of previous scholars 

such as Suanpang and Jamjuntr (2024), where LGBM 

had an R² of 0.84 and RMSE of 5.77 W. Likewise, in 

comparison with Singh et al. (2023), whose hybrid model 

using GRU enhanced accuracy for large systems, the 

current research demonstrated improved generalization 

on multi-site datasets. 

The application of the War SO optimizer was significant 

in enhancing the performance of the AdaBoost-War SO 

model. Through its provision of a trade-off between 

exploration and exploitation, War SO allowed for 

efficient hyperparameter adjustment, thus avoiding local 

optima—a limitation that is usually faced with typical 

optimization methods like grid search or genetic 

algorithms used in state-of-the-art models. This further 

strengthened the capability of the hybrid models to 

efficiently capture the non-linear relationships in the 

data. 

4.4  Optimization and computational 

efficiency 

The second significant contribution of this study is its 

consideration of runtime and convergence. Even though 

the AdaBoost-War SO model was the most precise, its 

runtime was comparatively higher because both 

AdaBoost's iterative boosting and War SO's optimization 

are slow processes. However, this is warranted due to the 

substantial improvements in predictive accuracy and 

trustworthiness. Convergence analysis indicated that War 

SO significantly lowered the possibility of trapping in 

local optima, especially in high-dimensional parameter 

spaces, hence making it an apt option for hybrid model 

optimization for renewable energy forecasting. 

4.5 Computational cost: Trade-Offs between 

accuracy and runtime 

Increased accuracy of the hybrid models presented 

here, AdaBoost-War SO, comes with increased 

computational costs, thus a compromise between 

accuracy and computation time. The AdaBoost-War SO 

model was more accurate, achieving R² of 0.9836 and 

RMSE of 1.75 MW for the 30 MW farm but also had the 

highest processing time of approximately 3,960 seconds, 

as shown in Fig 14. Its high computational complexity is 

due to both the iterative approach of AdaBoost with 

training multiple weak learners and dynamic adjustment 

of their weights and the optimization approach of War 

SO that balances exploration and exploitation via 

successive iterations. While the enhanced accuracy 

significantly reduces prediction error and enables great 

generalization on diverse datasets, heightened runtime is 

a scalability problem in large-scale or real-time 

applications, for instance, energy network integration. 

Nevertheless, other hybrid models, for instance, 

CatBoost-War SO with an R² score of 0.9763 and 

considerably lower runtime, offer an acceptable trade-off 

and therefore are viable where computational efficiency 

matters. To mitigate the computational expense of 

AdaBoost-War SO, parallelization, distributed 

computing, and dynamic model selection can be used. 

Such methods can achieve a balance between accuracy 

and execution time, enabling hybrid models for specific 

needs in forecasting. Whereas AdaBoost-War SO is 

appropriate for applications where precision is 

paramount, more speedy options can be adequate for less 

resource-intensive applications, indicating a compromise 

between efficiency and performance. 

4.6 Broader implications 

The study brings into focus the potential of hybrid 

machine learning architectures augmented by innovative 

algorithms such as War SO. The accurate forecasting of 

solar energy generation, as a function of high sensitivity 

parameters and efficient optimization methods, is of 

particular importance to power grid reliability, resource 

planning, and power system integration of renewable 

energies. This work sets the new standard for predicting 

solar energy by overcoming key limitations in current 

best-practice methods, including low data resolution, 

sparse sensitivity testing, and the lack of hybrid 

optimization. 

The fluctuation in the performance measures, i.e., 

RMSE and MAE, from training to test data indicates 

possible overfitting in certain of the models. For 

example, models such as CatBoost performed best during 

training (e.g., R² = 0.608, RMSE = 4.478 W, MAE = 

3.367 W) but significantly declined during test (R² = 

0.46, RMSE = 4.748 W, MAE = 3.583 W). This gap 

indicates that while the model was able to find patterns in 

the training set, it was struggling to generalize to novel, 

unseen data. 
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4.7 Comparative performance across farms 

The performance of the models was extremely 

inconsistent between the 130 MW and 30 MW solar 

farms, showing the role of farm capacity and 

characteristics of data in model performance. For 130 

MW, the models were subjected to higher variability of 

important parameters such as solar irradiance and 

temperature, seemingly due to the higher geographical 

spread of the farm. This greater exposure to more 

variable microclimatic conditions brought more noise 

into the data, and therefore it was more challenging to 

gain precise predictions. Conversely, the smaller 30 MW 

farm provided more consistent conditions, so there was 

less variance and the models could operate better. 

Performance variations can also be accounted for by 

dataset-specific factors. The 130 MW dataset included 

higher variability in solar irradiance, which negatively 

affected the potential of the models to generalize well. 

The 30 MW farm dataset included more uniform 

patterns, and these translated into higher accuracy results 

for most of the models. These findings suggest that site-

specific factors such as farm size, local weather, and 

dataset variability play important roles in the 

effectiveness of forecasting models. 

To address these issues, model site-specific 

calibration is required. Normalization of the dataset per 

agricultural field aided the models in conforming to 

particular patterns with lesser effort; additional advances 

can be achieved by incorporating additional features, 

including wind speed and cloud cover, to better reflect 

environmental variation. In addition, the creation of 

hybrid approaches that combine localized tuning with 

generalized prediction capability promises improved 

scaling up of such models to farms of varied sizes and 

conditions. 

This research places importance on how one should 

consider the specific nature of every farm while 

forecasting solar power and the need for subsequent 

research with models being tested under different 

geographic and operational conditions. These results add 

to the body of knowledge regarding solar farm capacity 

and dataset attributes and how they influence model 

performance and consequently enable the design of more 

precise and adaptive forecasting models. 

4.8 Limitation 

Overfitting is a result of many different causes, 

including model complexity that is too high, lack of 

diversity in the training data, or weak regularization. 

Combating it is important for maintaining the reliability 

and stability of forecast models in actual usage. Cross-

validation, early stopping, and hyperparameter tuning are 

some of the methods that can reduce overfitting by 

avoiding the model from over-focusing on noise or 

irrelevant patterns in the training data. 

Future research activities can explore the use of 

simpler models or hybrid approaches that balance 

predictive power with the ability to generalize. 

Expanding the dataset to cover a wider variety of diverse 

and representative samples, such as data from various 

geographic regions or seasonal differences, could also 

help increase model performance and reduce the danger 

of overfitting. In addition, the use of methods like 

dropout or L2 regularization in models such as CatBoost 

and LightGBM could potentially increase their 

generalizability to different datasets. 

Through the elimination of such constraints, future 

research can make predictive models perform stably on 

training and testing datasets, thus encouraging their 

application in volatile and uncertain solar energy 

conditions. 

 PCC was able to capture significant features, i.e., 

solar irradiance, temperature, and humidity, but its focus 

on linear relationships could have overlooked non-linear 

relationships that would be useful for model 

performance. More sophisticated approaches, e.g., 

mutual information or machine learning model-based 

feature importance, would provide a more nuanced 

picture of feature importance, particularly for variables 

with complex interactions. Also, the exclusion of 

potentially important meteorological variables such as 

wind speed and cloud cover might have limited the 

model's ability to capture environmental heterogeneity to 

some degree. For example, solar irradiance is highly 

influenced by wind speed and cloud cover under specific 

conditions, which could potentially affect prediction 

under varying weather conditions. These shortcomings 

can be improved in future studies by including more 

variables and using strict imputation protocols, which 

would enable higher generalizability and predictive 

validity of the proposed models. 

4.9  Comparison of solar energy forecasting 

models 

Table 7 provides a concise comparison of key 

performance metrics across different studies, 

highlighting the effectiveness and computational 

considerations of various machine learning approaches in 

solar energy forecasting. Based on the comparison, the 

study method, which employs the AdaBoost-War SO 

hybrid model, demonstrates superior performance in 

solar energy forecasting. 

Table 7: Comparison of solar energy forecasting models 

Aspect Best Model R² Best Model 

RMSE 

This study 

(AdaBoost-War 

SO) 

0.9836 1.75 MW 

Nguyen et al. 

(2025) 

(CatBoost) 

0.608 (Training), 

0.46 (Testing) 

4.478 W 

(Training), 

4.748 W 

(Testing) 

Suanpang and 

Jamjuntr (2024) 

(LightGBM) 

0.84 5.77 
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grid stability necessitate further investigation. The 

findings have specific significance to standalone energy 

management use cases, such as solar energy installation 

operation optimization and policy guidance for storage 

and grid balancing. Future studies should extend on these 

findings through experiments with testing the models 

across different geographical and climatic locations and 

assessing their implementation in actual-time grid 

management systems. 

This study deals with the critical issues of solar 

forecasting, thus making renewable energy systems more 

efficient and reliable. Nevertheless, the findings are 

presented cautiously under the limitations of the study, 

outlining the short-term practical applications and laying 

the ground for further development in the field of 

renewable energy forecasting. 
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5 Conclusion
This study demonstrates the ability of hybrid 

machine learning models, optimized by the War SO 

algorithm, to improve solar power prediction accuracy. 

Using high-resolution data that was recorded every 15 

minutes and advanced feature selection techniques, such 

as the Delta Moment Independent Measure (DMIM), the 

models achieved improved performance compared to 

their separate models. The recognition of solar irradiance 

as the largest contributing factor aligns with earlier 

research; yet, using DMIM in this study is a more 

rigorous sensitivity analysis, therefore further enriching 

knowledge on its effects on energy output. 

The findings indicate the promising prospect of 

improving the accuracy of forecasts, but broader 

implications for large-scale renewables integration and 

Abbreviation 

AdaBoost Adaptive Boosting NWS National Weather Service 

ANN Artificial Neural Network P Prior value 

ARIMA Autoregressive integrated moving 

average 

PI Prediction intervals 

Bt The normalization factor PV Photovoltaic 

C Commander R2 Coefficient of Determination 

Cat Boost Categorical Gradient Boosting Rai The ranking 

DL Deep Learning RAE Relative Absolute Error 

Dt(i) Uniform sample distribution RES Renewable energy sources 

et Average error RF Random forest 

Fper The previous situation RMSE Root means square error 

Fnew The new situation SVM Support vector machines 

ft(xi) A weak predictor 

GBT Gradient boosting tree SVR Support Vector Regression 

JSD Jensen Shannon Divergence VAF Variance Accounted For 

K The King War SO War Strategy Optimizer 

LACE Levelized Avoided Cost of 

Electricity 

α The corresponding weight 

LCOE Levelized Cost of Electricity xk The random vector 

Light GBM Light Gradient Boosting Machine yK and yC The situations of the King and The 

Commander 

LR Linear regression 

MADSR Monthly average daily solar 

radiation 

MAE Mean Absolute Error 

ML Machine Learning 

NWP Numerical weather prediction 
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