
https://doi.org/10.31449/inf.v49i13.7576 Informatica 49 (2025) 175–188 175

SDN-DRLTE Algorithm Based on DRL in Computer Network

Traffic Control

Cuijie Yang, Biyan Li*

School of Automotive and Information Engineering, Guangxi Eco-Engineering Vocational & Technical College

Liuzhou 545004, China

E-mail: yangcuijie1982@163.com, xxgclby@163.com

*Corresponding author

Keywords: deep reinforcement learning, software-defined network, markov decision, traffic control, off policy

Received: November 12, 2024

Affected by mobile Internet, big data and cloud computing, network traffic load is gradually increasing,

and deep reinforcement learning algorithm has been widely used. To solve the uneven and congested

computer network traffic, a software-defined network algorithm on the basis of deep reinforcement

learning is designed, and a computer network traffic control technology is built. On the basis of

traditional deep reinforcement learning algorithms, the optimal performance policy is obtained by

combining Markov decision. Simultaneously, the Off Policy is introduced to establish a software-defined

network traffic control model, ultimately designing a software-defined network algorithm based on deep

reinforcement learning. The experimental results showed that compared with other algorithms, the

designed algorithm increased the average reward value by 12.2%, 18.6%, and 6.8%, optimized by an

average of 10%, and significantly increased the reward value at 3000 iterations. The average speed was

higher, and the latency was significantly reduced to 6.3%. This indicated that the designed algorithm

achieved the expected goals in terms of computational efficiency and network scheduling control

performance. The research findings were of great significance for computer network traffic control.

Povzetek: Izboljšani algoritem SDN-DRLTE temelji na globokem ojačitvenem učenju (DRL) za nadzor

prometa v računalniških omrežjih. Z uporabo Markovih odločitvenih procesov algoritem izboljšuje

uravnoteženost prometa in zmanjšuje zakasnitve.

1 Introduction
Affected by Internet of Things and big data, the number

and scale of network users are growing rapidly, while

network services are becoming increasingly diversified

and network structures are becoming more complex.

Cisco's annual VNI report provides detailed forecasts and

historical data on global Internet traffic. According to

Cisco's 2020 VNI report, global Internet traffic is

expected to grow from 122 exabytes per second in 2019

to 185 exabytes per second in 2024 [1]. In the context of

explosive growth in network traffic, achieving efficient

network traffic load balancing, avoiding congestion, and

ensuring network service quality is crucial. Although

traditional traffic scheduling and congestion solutions

can control traffic to a certain extent, they are often

limited by different network environments and difficult

to be widely applied to complex network environment

structures. In recent years, some researchers have begun

to attempt to explore Deep Learning (DL) technology,

providing new ideas for computer traffic control with its

excellent learning and training capabilities [2]. However,

the existing DL techniques have a wide range of

applications and cannot provide good computational

efficiency and practical application effects. Moreover,

they do not consider continuous action response and

cannot meet the applicability requirements in new

network structures and traffic patterns [3]. Deep

Reinforcement Learning (DRL) is an advanced

technology in artificial intelligence, which has shown

great potential in intelligent control. It cleverly combines

the powerful perception ability of DL with the decision

optimization ability of Reinforcement Learning (RL),

providing a new way for computer network traffic

control. The Software-Defined Network (SDN) has made

traffic control more efficient. With the increasingly close

relationship between the information society, electronics,

and artificial intelligence, the complex interactions and

technological advancements between these fields are

becoming increasingly apparent. Gams and Kolenik

explored the relationship between the laws of the

information society and electronics, AI, and

environmental intelligence in their research. How these

technological advancements shape civilization and social

structures was analyzed [4]. In this context, the research

attempts to innovatively design a SDN algorithm based

on DRL. Big data provides rich network usage patterns

and traffic characteristics. SDN-DRLTE algorithm can

use this data to optimize network traffic control strategies

and achieve more accurate decisions. At the same time,

SDN-DRLTE algorithm can predict the trend of network

traffic, adjust the network configuration in advance,

reduce congestion and improve efficiency by analyzing

Internet of Things devices and big data models [5].

Combining DRL policy optimization with SDN model

construction, it is aimed to optimize the control

mailto:yangcuijie1982@163.com
mailto:xxgclby@163.com

176 Informatica 49 (2025) 175–188 C. Yang et al.

efficiency and its practicality for different topology

networks, laying a solid foundation for computer

network traffic control.

2 Related work
With the growing popularity of Internet technology,

network traffic is also showing a high growth trend.

Traditional network traffic control methods cannot adapt

to the current network environment. Therefore, some

scholars have conducted relevant research on computer

network traffic control methods. Aberkane et al.

proposed a novel anomaly detection method based on

DRL. The priority dual deep Q-network was optimized to

adapt to anomaly detection problems. Video level labels

were used to learn and evaluate anomalies in video clips,

thereby improving detection accuracy. The experiment

showed that the proposed method had higher accuracy

[6]. He proposed an intelligent network traffic scheduling

algorithm based on DRL and graph neural network

innovation for the traffic scheduling problem in large-

scale dynamic network environments. The ability of

DRL in decision optimization and the advantages of

graph neural networks in processing graph structured

data were combined. The hierarchical RL framework

enabled efficient decision-making processes from macro

policies to micro-operations. The experimental results

showed that the proposed algorithm significantly

improved key performance indicators such as average

latency, throughput, and resource utilization compared

with traditional algorithms [7]. Morimoto M et al. built a

neural network training model to solve practical network

traffic estimation problems. The machine learning results

were analyzed and the training data were expanded.

Experiments showed that training neural networks could

accurately estimate network traffic [8]. Dalal S et al.

proposed a cloud-based Adhoc mobile model for load

balancing of network traffic. The model combined

alternative paths between two nodes to solve the load

congestion by calculating the link and traffic load. The

proposed model had a positive effect on extending the

lifespan of the system [9]. Leng J et al. proposed a

blockchain intelligent autonomous process control

method for network personalized control problems.

Through blockchain intelligent pyramid and a series of

decentralized control modes, personalized demand

scheduling could be achieved. The experiment showed

that the proposed method had good applicability for flow

control [10].

Computer network traffic control methods often

incorporate artificial intelligence technology for research.

Some scholars have conducted research on DRL and

SDN algorithms. Mahmood T et al. built a smart fault

detection routing technology based on RL to develop

energy-saving routing protocols for learning in wireless

networks. This method overcame the energy loss of

transmitting data by reducing the remaining energy of

cluster nodes in the network. The method could

effectively improve the robustness of the network [11].

Kosanoglu F et al. built a combination algorithm relying

on DRL and simulated annealing to improve asset

reliability and reduce maintenance costs. The optimal

neighbor structure was selected by transmitting the

optimal solution to the simulated annealing algorithm as

the initial solution. The results indicated that the

proposed algorithm had superiority in finding solutions

[12]. Li H proposed a secure DRL method to optimize

the operation of distribution networks. The Markov

decision process was formalized and constrained. A

constraint strategy was adopted to optimize the training

network and achieve cost minimization. The results

showed that DRL methods had good stability [13].

Bhardwaj S proposed the SDN approach to improve

network resource utilization. This strategy improved the

efficient traffic routing by controlling open-source

controllers. The method could achieve good network

performance [14]. Zhang D et al. designed a dynamic

task offloading approach on the ground of DRL to

achieve offloading computation with low task latency

and low energy consumption. On the basis of improving

traditional Q-learning algorithms, DL and RL were

combined. This algorithm had better performance in

energy consumption [15]. The summary and analysis of

existing research methods are shown in Table 1.

Table 1: Summary and analysis of existing research methods.

Reference Method Main Results Limitations
Advantages of SDN-

DRLTE

Aberkane et al. [6]

Priority Duel Deep Q

Network Anomaly

Detection

Accurate detection
Video level labels

are required

No need for a large

amount of annotated data

He [7]
DRL and GNN traffic

scheduling

Improve latency,

throughput, and

utilization efficiency

Environmental

adaptability to be

verified

Excellent robustness

Morimoto M et al.

[8]

Neural network

traffic estimation
Accurate estimation Data dependency

Automatic strategy

optimization

Dalal S et al. [9]
Cloud Adhoc load

balancing
Resolve congestion Fixed path

Dynamic traffic

adjustment

Leng J et al. [10]
Blockchain

intelligent control

Personalized demand

scheduling

Distributed

control is

complex

Simplify control

processes and improve

applicability

SDN-DRLTE Algorithm Based on DRL in Computer Network… Informatica 49 (2025) 175–188 177

Mahmood T et al.

[11]

RL fault detection

routing

Energy saving

routing

Wireless network

limitations

Widely applicable in

various environments

Kosanoglu F et al.

[12]

DRL+simulated

annealing
Asset optimization

Computationally

intensive

Improve computational

efficiency

Li H [13]
Safe DRL

distribution network
Cost minimization

Distribution

network limit
Wide flow control

Bhardwaj S [14]
SDN resource

utilization

SDN resource

utilization

Lack of

performance

analysis

In depth analysis of

performance

Zhang D et al. [15]
DRL task

uninstallation

Low latency energy

consumption

Internet of Things

Limitations

Widely applicable to the

internet

In summary, although some scholars have conducted

relevant research on computer network traffic control,

the powerful ability of DRL in decision optimization and

the flexibility of SDN in network traffic management

have not been fully utilized. Therefore, a SDN algorithm

based on DRL is proposed to automatically learn and

optimize decision strategies, adapt to dynamic changes in

network traffic, and demonstrate performance beyond

existing technologies in practical applications to provide

assistance in improving computer network performance.

3 SDN-DRLTE algorithm based on

DRL in computer network traffic

control

3.1. Traffic control model architecture based

on DRL and SDN

Faced with the rapidly growing traffic in computer

networks, achieving network load balance through

reasonable control and scheduling has become an

increasingly vital research topic in computer networks.

Due to the constantly changing network structures and

traffic patterns, traditional traffic scheduling solutions are

becoming increasingly inadequate. Therefore, a widely

applicable intelligent network traffic control scheme is

necessary [16]. In recent years, DRL algorithm has made

breakthrough progress in multiple fields, especially in

computer science. It combines the feature representation

capability of DL with the decision-making capability of

RL to form a powerful machine learning paradigm. DRL

can optimize decision strategies through automatic

exploration and learning by agents in the environment

without making clear rules and guidance. It also indicates

that DRL can provide opportunities for achieving more

complex network traffic control. The DRL algorithm

process is shown in Figure 1.

In Figure 1, the process first sets up the environment,

defines the environment in which the agent is located

such as the state space reward function. Then, the deep

neural network is initialized. The intelligent agent

retrieves states from the environment. After selecting and

executing actions on the basis of the state, the

environment transitions to a new state and corresponding

reward values are given. Finally, the state, actions, and

reward data of the interaction process are recorded to

form a training dataset. This process is repeated until the

training is completed. The study sets the environment as

a finite Markov Decision Process (MDP) decision. When

the policy rules are uncertain, DRL selects the optimal

performance policy from them. The optimal performance

policy is shown in equation (1).

* arg max ()J = (1)

In equation (1),
* signifies the performance of the

maximum policy. signifies action policy. ()J

represents the expected return of the policy. The updated

policy parameter is shown in equation (2).

1 ()
kk k J + = + (2)

In equation (2),
1k +

 represents the updated policy

parameter.
k signifies the parameter of the original

policy. ()J signifies the gradient of policy

performance.
 represents the form of action policy.

represents a constant. To apply the algorithm in practical,

it is necessary to transform the gradient representation of

the policy. The policy performance gradient is displayed

in equation (3).

178 Informatica 49 (2025) 175–188 C. Yang et al.

Action

Reward value

State

Environment
Intelligent agent

Spatial state

Define

Record the formation of a dataset

Move in circles

Figure 1: DRL algorithm flowchart.

at

Stochastic process

Sampling

OU noise

Behavior policy：β

st

Online Policy Network

Figure 2: Exploration of random actions in off policy.

0 0 0 1() () (,) ()T

t t t t t tP s P s s a a s = += (3)

In equation (3),
0 0 1(, , ,)Ts a s += represents the

sequence of state actions obtained by executing the

policy once. T represents the time step of operation. t

signifies the times that the policy is executed.
0

represents the initial state distribution. s represents the

state. a represents the action. ()P represents the

probability of executing policy
 to generate . At this

time, the transition state of MDP needs to be independent

of the previous state and only linked with the current

state action. The gradient of parameter ()P with

respect to is displayed in equation (4).

() () ()logP P P = (4)

In equation (4), ()P signifies the gradient of

the probability of generating the execution policy with

respect to the parameter. The logarithm of equation (3)

obtains (5).

() 0log log ()T

t t tP a s = = (5)

After simplification, equation (6) is obtained.

0() log () ()T

t t tJ E a s R

 =
 = (6)

In equation (6), ()R represents the state action

sequence obtained by executing the policy. The gradient

of policy performance is an expectation, indicating that

the sample mean value is used for estimation calculation.

The sample mean of the strategy performance gradient is

shown in equation (7).

0

1
ˆ log () ()T

D t t tg a s R
D

 == (7)

In equation (7), ĝ represents the estimated value of

the policy performance gradient. D represents the size

of the collected dataset D . An offline policy training

method called Off Policy random action exploration is

adopted, as shown in Figure 2.

In Figure 2,
ta represents exploration data.

ts

represents online data. represents strategic behavior.

Off policy training obtains random processes through

data sampling as introduced random noise, and then uses

a policy network for training to obtain the optimal policy

in the dataset and improve the temporal correlation of

each data. Meanwhile, SDN has made network traffic

control more efficient and convenient [17].

SDN is a new network architecture, which enhances

the network flexibility and manageability by separating

the control plane from the data forwarding plane and

introducing programmability. The SDN is displayed in

Figure 3.

SDN-DRLTE Algorithm Based on DRL in Computer Network… Informatica 49 (2025) 175–188 179

application layer

Controller

Infrastructure

Layer

Business Application A Business Application B

SDN Northbound Interface

SDN Data Control Plane Interface

SDN controller

Figure 3: SDN architecture diagram.

In Figure 3, the SDN has three layers: infrastructure

layer, control layer, and application layer. The complex

application layer communicates with business

applications through the SDN northern interface.

Management personnel can dynamically adjust network

behavior through flat interfaces, convert application layer

commands into rules, and send them to devices. The

control layer, namely the control plane, undertakes

centralized management of decision-making processes

such as policies, routing, and traffic control in the

network. The infrastructure layer, that is, the data

forwarding plane, undertakes actual packet forwarding

and processing. This design allows forwarding devices to

focus more on high-speed and low latency data

transmission, while delegating complex control logic to

the control plane for processing. The SDN architecture

provides flexibility and programmability for network

traffic control by separating the control plane and data

plane. In control plane integration, SDN controllers act

as the brain of intelligent agents, making decisions and

dynamically adjusting network traffic based on network

status. Combining the learning mechanism of DRL with

the programmability and dynamic suitability of SDN, it

is possible to quickly adjust traffic control strategies

when dealing with large and complex network traffic.

3.2. Design of SDN-DRLTE intelligent traffic

control based on DRL

When conducting computer network traffic control,

continuous action reactions are required. Deep

Deterministic Policy Gradient (DDPG) is a policy-based

DRL algorithm widely used to solve decision problems

in continuous action spaces [18]. Therefore, the study

uses the DDPG to solve continuous control problems in

computer networks. In the DDPG, the experience replay

mechanism of deep Q-networks is borrowed, which can

significantly enhance the stability and learning

efficiency. Meanwhile, the experience replay mechanism

stores the experience samples generated by the agent

during the exploration of the environment. These

samples are randomly sampled during the training to

update the network, achieving efficient sampling and

utilization of samples, which can effectively improve the

learning performance and stability. The DDPG algorithm

is displayed in Figure 4.

In Figure 4, the DDPG algorithm consists of two

networks, the Actor network and the Critic network. The

Actor network is responsible for selecting actions. The

Critic network evaluates the value of these actions. The

algorithm stores the experience of the intelligent agent in

the replay buffer for training the network, which helps to

improve sample efficiency and break down correlations

between samples. For stable training, the DDPG

algorithm obtains data from the SDN network

environment and inputs it into the Actor network. Then,

the output data is stored in the replay buffer as

experience for sampling. The Actor network inputs data

into the Critic network by selecting actions, and the data

is processed and returned. In practical applications,

DDPG typically explores the environment by adding

noise to discover better strategies. The Actor network

consists of an input layer, two hidden layers, and an

output layer. The hidden layer has 128 and 64 neurons in

each layer, with ReLU as the activation function, and

Tanh as the activation function for the output layer. The

Critic network accepts a combination of states and

actions, consisting of two hidden layers and an output

layer without an activation function. Important

hyperparameters include learning rate, where Actor is

0.001, Critic is 0.002, discount factor is 0.9~0.9,

experience replay buffer size is (1,000,000), and batch

size is 32~128. The update frequency of the target

network is 100 iterations. These settings ensure that the

model can effectively learn and optimize traffic control

strategies in dynamic network environments. The

parameter of the policy network is shown in equation (8).

, ()(,) ()
t t ta s s a s s sJ E Q s a s = = =

 =

 (8)

180 Informatica 49 (2025) 175–188 C. Yang et al.

SDN network

environment

OU noise

Obtain dataset

Actor

Update

policy

network

parameters

Policy

Network

Target

network

Action gradient

Select action

Update Q

network

parameters

Q

Network

Target

network

Select action

Replay

buffer

Experience

sampleSamplingDeposit data

Critic

Figure 4: DDPG algorithm structure diagram.

In equation (8), J represents the differentiation

between the expected cumulative reward J and the

parameter in the policy network. (,)Q s a represents

the evaluation network. ()s represents the policy

network. ts signifies the state at moment t. ()ts

signifies the action taken at t. The evaluation network is

updated using the time difference method, which updates

and optimizes relevant parameters by comparing the

differences between two-time steps or states before and

after, in order to approximate the optimal policy.

Traditional DDPG algorithms often rely on simple

random noise during the exploration phase to ensure

sufficient exploration. However, in complex flow control

environments, this random exploration is inefficient and

hard to quickly adapt to dynamic changes in the

environment [19-20]. Therefore, the study introduces an

exploration policy based on Traffic Engineering (TE)

perception, which utilizes real-time state information of

the traffic environment to dynamically adjust the

exploration intensity or direction. At the same time, in

order to solve the neglected important experience and

single step benefits, a priority-based experience replay

pool is adopted and a multi-step benefit prediction

mechanism is introduced to jointly improve the

applicability and training efficiency of the DDPG

algorithm in traffic control. Standard DDPG mainly

focuses on single step returns, which may lead to

algorithms overly focusing on short-term benefits and

neglecting long-term benefits. The multi-step benefit

prediction mechanism predicts long-term benefits by

considering the cumulative returns of multiple future

time steps, enabling the algorithm to better balance short-

term and long-term goals. When facing complex and

dynamic network environments. This mechanism

enhances the foresight and adaptability of the algorithm,

enabling it to more effectively handle long-term

optimization problems of network traffic. The differential

error of event experience is prioritized, as defined in

equation (9).

(,)i t tp y Q s a= − (9)

In equation (9), ip represents the priority of

experience i . (,)t tQ s a represents the evaluation

network at a certain moment. y represents the target

value for evaluating the network, as shown in equation

(10).

* *

1 1(, ())t ty r Q s s + += +

 (10)

In equation (10), r signifies the reward function.

represents the discount coefficient. The probability of

obtaining experience from the experience pool is shown

in equation (11).
0

0

() i

k k

p
P i

p

=

 (11)

In equation (11), ()P i signifies the probability of

obtaining experience i from the experience pool. 0

represents the degree to which control priority is used for

probability calculation. k represents a constant. When

the control priority is not used for calculation, the

algorithm has a unified sampling operation. The multi-

step return is equation (12).

() 1 ()

0 1

n n k

t k t t kR R−

= + +=

 (12)

In equation (12),
()n

tR represents multi-step returns.

n represents the number of steps for multi-step returns.

After achieving the effect of accelerating reward

feedback, the Critic network is updated. First, the

network target value is shown in equation (13).

() () *(, ())n n

t t t n t ny R Q s s + += +

 (13)

In equation (13), ty represents the final evaluation

network objective. In the DDPG algorithm, the design of

the reward function needs to reflect the key performance

SDN-DRLTE Algorithm Based on DRL in Computer Network… Informatica 49 (2025) 175–188 181

indicators of network traffic control, while considering

fairness and priority processing. First, it is necessary to

ensure fair resource allocation and traffic balance.

Primary network

application layer

Controller

Infrastructure Layer

SDN controller
Path weight

adjustment

Performance

data

REST API

State

Actor Critic

Target network

Experience

storage

Path allocation

ratio

Renew

Storage

Renew

Figure 5: SND flow control model based on DRL.

SDN-DRLTE

C1: actor networklearning rate n", critic network learning rate n,target

network learning rate t, mini-batch size b, replay size N, episode step M, time

step T.

C2: Initialize the parameter actor network and critic network respectively.

C3: Initialize prioritized replay buffer R with size N.

C4: Initialize a random process N for action exploration.

C5: for episode =1 to M do

C6: if size of R≥b then

C7: Update the parameter of critic network

C8: end if

C9: end for

C10: Update the parameter of target network

C11: end for

Figure 6: SDN-DRLTE traffic control algorithm.

Therefore, all users or services can receive reasonable

bandwidth allocation and avoid unfair treatment of

certain users or services due to resource competition. A

reward function is used to encourage balanced traffic

distribution in the network. Some links can be

overloaded while others are idle, thereby improving

overall network efficiency. In terms of priority

processing, for applications that require high service

quality, the reward function can provide higher rewards

for traffic allocation that meets specific requirements.

When dealing with emergency traffic in the network, the

reward function can provide additional positive rewards

for prioritizing the processing of these traffic.

Meanwhile, the reward function can dynamically adjust

weights based on network status and external conditions

to adapt to constantly changing network demands and

business priorities. The SND flow control model based

on DRL is shown in Figure 5.

In Figure 5, the flow control model is based on the

architecture of these two algorithms. The decision-

making layer interacts with other layers using the DRL

flow control algorithm. The performance data

information output from the forwarding layer is input at

different times, processed by the policy network to

output actions, and then transmitted to the SDN

controller. The control layer mainly accepts actions

issued by the decision-making layer, adjusts path

weights, and inputs them to the forwarding layer. The

forwarding layer is responsible for transmitting the

performance data of each business flow to the decision

layer, completing the SND traffic control architecture

based on DRL. The designed model selects the global

optimal policy for computing the network through DRL

algorithm. The SDN controller is used to provide

corresponding network traffic information for traffic

scheduling decisions, achieving traffic scheduling and

control. The SDN-DRLTE traffic control algorithm is

shown in Figure 6.

In Figure 6, at the beginning of each training round,

an initial state is obtained. After obtaining variables for

182 Informatica 49 (2025) 175–188 C. Yang et al.

input, the main network is copied to obtain a target

network. Then, the probability selection is performed at

each time step. After receiving rewards and status, multi-

step returns are calculated and the experience is finally

stored in the experience pool. By carefully selecting

model parameters, the SDN-DRLTE algorithm

demonstrates better learning performance and faster

convergence speed. Learning rate is a key parameter in

DRL algorithm, which affects the convergence speed and

stability of the algorithm. A moderate learning rate is

selected to ensure that the algorithm can strike a balance

between exploration and utilization. A high learning rate

may lead to algorithm instability, while a low learning

rate may result in slow convergence speed. The selection

of network architecture is based on the characteristics of

the DDPG algorithm, which needs to handle continuous

action spaces. The study introduces a structure that

includes an Actor Network and a Critic Network, each of

which contains multiple layers of neural networks. This

architecture can capture complex network state

characteristics and provide effective decision-making for

network traffic control. The exploration strategy is

crucial for DRL algorithms, as it determines how the

algorithm explores in unknown environments. The study

incorporates an exploration strategy based on traffic

engineering perception, which can dynamically adjust the

exploration intensity according to real-time network

status to improve the adaptability and efficiency. This

strategy is selected based on the practical needs of

network traffic control to ensure that the algorithm can

remain effective in the constantly changing network

environment. Experience replay is a commonly used

technique in DRL algorithms to improve the sample

utilization efficiency. The study selects a priority

experience replay pool, which can adjust the sampling

probability based on the importance of experience,

thereby improving learning efficiency. When deploying

the SDN-DRLTE algorithm in practical systems, DL and

RL techniques may require high computational resources

during training and inference processes. In real-time

network traffic control, high computational overhead

may affect the response speed and scalability of

algorithms. The research aims to improve the algorithm

efficiency through hardware accelerators such as GPUs

or TPUs to handle computationally intensive tasks. Then,

distributed computing is used to distribute computing

tasks to multiple servers or edge computing is used to

reduce the burden on the central node. The SDN-DRLTE

algorithm obtained can achieve parallel utilization of

resources while controlling network traffic policies, and

improve the learning speed.

4 Validity analysis of SDN-DRLTE

algorithm in computer network

traffic control

4.1 Performance analysis experiment of

computer network traffic control based

on SDN-DRLTE

To analyze the effectiveness of the designed SDN-

DRLTE, the focus is on the convergence rate and latency

effect of the algorithm. The study forms a policy network

consisting of two fully connected layers, with 28 and 14

neurons in each layer. Simultaneously, a fully connected

layer is used to process the state of the evaluation

network and a fully connected layer is taken to process

the actions of the evaluation network, with 14 neurons

set. The experimental environment is shown in Table 2.

In the hardware configuration of the experiment, the

service is an Intel Xeon Gold 6148 processor, 2.4 GHz,

20 cores, 256 GB DDR4 memory, 4 TB NVMe SSD

storage, and 100 Gbps network interface card. In the

software configuration, the operating system is Ubuntu

20.04 LTS, the SDN controller is Ryu SDN Framework,

the network simulator is Mininet 3.0.0, the DL

framework is TensorFlow 2.0, and the programming

language is Python 3.8. The important parameters set in

the study are N=1200, b=52, n=4, and T=12. α=0.6. This

value usually strikes a balance between exploration and

utilization, neither converging too quickly to suboptimal

strategies nor being too conservative. β=0.5. This value is

selected based on experimental results and the

characteristics of network traffic control problems,

aiming to balance short-term and long-term rewards. The

model is simulated on two network topologies, namely

the Network Simulation Framework for ET (NSFNET)

and the Particle Experiment Network Topology. 18

OllyDbg (OD) pairs for selecting the shortest path in

each topology, and 100 different streams for computer

ports are set. The initial traffic window is [15, 35]Mbps.

Three commonly used methods are compared with the

SDN-DRLTE traffic control algorithm based on DRL, as

shown in Table 3.

Table 2: Computer network traffic control experimental environment.

 Decision-making Controller Forwarding layer

Host configuration

Memory: 300GB

Hard drive: 15T

Cores: 8

Memory: 300GB

Hard drive: 15T

Cores: 8

Memory: 300GB

Hard drive: 15T

Number of cores: 8

Simulation Select Ryu Mininet

Number of neurons N/A 42 14

Activation function / / sigmod

Table 3: Experimental comparison method.

SDN-DRLTE Algorithm Based on DRL in Computer Network… Informatica 49 (2025) 175–188 183

Experimental methods Algorithm description Advantage Disadvantages

Shortest Path (SP)

Each OD pair uses the

shortest path to transmit

traffic

The algorithm is simple,

the computational cost is

low, and it performs well

in static network

environments.

Not considering link load

may result in some links

being overloaded while

others are idle.

Load Balance (LB)

Each OD evenly transmits

traffic on a transportable

path

Effectively avoiding single

link overload and

improving overall network

throughput. It performs

well in multipath

environments.

For rapidly changing

network environments,

dynamic adjustments may

have delays and responses

may not be timely enough.

DDPG Based on TE

(DDPG-TE)

Each OD is generated

using the original DDPG

algorithm

The TE scheme controls

traffic. The parameters and

network structure are the

same as SDN-DRLTE

Capable of handling

complex network

environments, with strong

adaptability and the ability

to adjust strategies in real-

time.

A large amount of

computing resources are

required, and there may be

delays in environments

with high real-time

response requirements.

(a) End to end average rate on NSFNET topology (b) End to end average velocity on particle topology

R
at

e
(M

b
p
s)

Rate Demand (Mbps)

SP

LB

DDPG_TE

SDN_DRLTE

3000

2500

2000

1500

1000

25 30 35 40 45 50
Rate Demand (Mbps)

SP

LB

DDPG_TE

SDN_DRLTE

3000

2500

2000

1500

1000

R
at

e
(M

b
p
s) 3500

4000

3200 4500

30 35 40 45 5025

Figure 7: Average end-to-end rate on different topologies.

The reason for choosing SP as the baseline is that it

represents the most fundamental method in network

routing. It is easy to implement, and has low

computational costs. The network topology node is set to

14, with a link capacity between 100 Mbps and 1 Gbps,

and a traffic demand between 10 Mbps and 100 Mbps.

LB is chosen as the baseline because it represents a

simple traffic allocation strategy that reduces network

congestion by evenly distributing traffic. The network

topology is the same as SP, with a fixed traffic

requirement of 50 Mbps for each node pair. DDPG-TE

combines deep deterministic policy gradients and traffic

engineering, providing a RL solution similar to SDN-

DRLTE but not fully optimized. The network topology

remains the same, with traffic requirements ranging from

10 Mbps to 200 Mbps. When evaluating the performance

of various methods, two key performance indicators are

used: the sum of the rate and latency of all OD pairs

within a single time step, and the sum of the accumulated

rewards for all time steps throughout the entire turn.

After training the policy network, the experimental

results are obtained by running it for 10 rounds and

calculating the average. This helps to visually display the

applicability and performance of various methods in

different network environments, ensuring the stability

and reliability of the evaluation.

The end-to-end average rates of the four algorithms

obtained from the experiment on NSFNET and particle

experiment network topology are shown in Figure 7.

In Figure 7, when the demand for each OD rate

increased, the overall average transmission rate showed a

downward trend. From Figure 7 (a), when using the

NSFNET topology, the SP algorithm had the fastest rate

drop, followed by the LB, DDPG-TE, and SDN-DRLTE

algorithms, all of which had the lowest average rate drop

when the rate requirement reached 50 Mbps. The SDN-

DRLTE algorithm has a higher average network rate

compared with other algorithms. It is because the SP

algorithm only considers the shortest path and ignores

the current load condition of the link, which may cause

some links to overload under high load, thereby

significantly reducing the overall speed. From Figure 7

(b), the performance of each algorithm on the particle

experiment network topology is roughly the same as on

the NSFNET topology, but with a higher starting rate.

The results indicate that the rate reduction of SDN-

DRLTE is significantly smaller than other methods. This

is because SDN-DRLTE can dynamically adjust traffic

184 Informatica 49 (2025) 175–188 C. Yang et al.

allocation strategies based on real-time network

environments, thereby reducing performance degradation

caused by resource bottlenecks. In actual data center

networks, faced with high-density traffic and complex

traffic patterns, SDN-DRLTE algorithm can adjust traffic

allocation in real-time, optimize network resource

utilization, reduce congestion points within data centers,

and improve overall network efficiency. In the context of

the Internet of Things, SDN-DRLTE improves the

utilization efficiency of network resources, reduces the

need for additional hardware, and lowers deployment and

operational costs. The end-to-end average latency of the

four algorithms on NSFNET and particle experiment

network topology is shown in Figure 8.

In Figure 8, as the demand for network speed

increased, the overall latency also increased. From Figure

8 (a), under the NSFNET topology, the overall latency

increase of LB was the highest, the average latency

difference between LB and DDPG-TE was not

significant. The latency increase of SDN-DRLTE was

the least, only at 6.3%. The reason is that the LB

algorithm may not be able to respond quickly to changes

in link state when facing network attacks, resulting in

delayed traffic reallocation and increased latency. From

Figure 8 (b), the overall performance trend on the

topology of the particle experimental network was also

roughly the same. Compared with other algorithms,

SDN-DRLTE significantly reduced the average end-to-

end latency. This indicates that SDN-DRLTE effectively

alleviates network congestion and reduces packet waiting

time through its intelligent decision-making and traffic

optimization mechanism, thereby achieving excellent

performance with low latency even under high rate

requirements. In data center environments, low latency is

crucial for maintaining service responsiveness and

reliability. SDN-DRLTE algorithm reduces network

latency through intelligent decision-making, which is

particularly important for applications that require fast

data transmission. In the context of the Internet of

Things, data security and transmission reliability are

crucial.

(a) End to end average latency on NSFNET topology (b) End to end average latency on particle topology

D
el

ay
 (

m
s)

Rate Demand (Mbps)

2500

2000

1500

1000

500

Rate Demand (Mbps)

2500

2000

1500

1000

500

3000

3500

D
el

ay
 (

m
s)

SP

LB

DDPG_TE

SDN_DRLTE

SP

LB

DDPG_TE

SDN_DRLTE

2700 4000

25 30 35 40 45 50 25 30 35 40 45 50

Figure 8: Average end-to-end latency on topology.

SDN-DRLTE algorithm optimizes traffic control latency,

reduces potential attack surfaces, and ensures the

stability and reliability of critical communication. Then,

the algorithm performance is tested under different traffic

loads of low, medium, and high to evaluate its

adaptability and efficiency under different load

conditions. The performance of SDN-DRLTE algorithm

under different traffic loads is shown in Table 4.

According to Table 4, SDN-DRLTE algorithm

exhibited excellent performance and stability under

different traffic load conditions. Under low load

conditions, the network achieved the highest average

throughput and lowest latency, with extremely low

packet loss rate and moderate network utilization. This

demonstrates that the algorithm can effectively utilize

network resources without causing overload. With the

increase of traffic load, although the throughput slightly

decreases and the latency and packet loss rate increase,

SDN-DRLTE algorithm can still maintain high network

utilization and excellent algorithm adaptability. This

indicates that the algorithm can adapt to different load

conditions, maintain efficient network operation, and

maintain good performance even under high load

conditions. Then, the network simulation tool NS-3 is

used to create a dynamically changing network

environment. The performance evaluation of the DN-

DRLTE algorithm under dynamic network changes is

shown in Table 5.

In Table 5 the SDN-DRLTE algorithm exhibited

good robustness in dynamic network changes. Whether it

is link failures, sudden traffic, changes in user behavior,

or network attack simulations, algorithms can quickly

adapt to these changes, maintaining high throughput and

low latency. Although the packet loss rate has increased

in some cases, the network utilization rate still remains at

a high level. This indicates that the algorithm can

effectively manage and allocate network resources to

cope with emergencies. The rapid recovery of adaptation

time demonstrates the algorithm's ability to respond

quickly in emergency situations such as network attacks

and link failures. Overall, the performance of SDN-

DRLTE algorithm under dynamic network changes

demonstrates its practicality and reliability in practical

network environments, ensuring stable and efficient

operation of the network in various unexpected events.

SDN-DRLTE Algorithm Based on DRL in Computer Network… Informatica 49 (2025) 175–188 185

Table 4: Performance under different traffic loads.

Traffic load
Average throughput

(Mbps)

Average latency

(ms)

Packet loss rate

(%)

Network

utilization rate (%)

Algorithm

adaptability

Low load 950 2 0.1 50 Excellent

Medium load 890 5 0.3 60 Excellent

High load 780 10 0.5 75 Excellent

Table 5: Performance under dynamic network changes.

Network

dynamics

Average

throughput

(Mbps)

Average

latency (ms)

Packet loss

rate (%)

Network

utilization rate

(%)

Adaptation

time (s)

Algorithm

robustness

Link failure 950 5 0.20 65 10 Excellent

Sudden traffic 980 4 0.10 70 8 Excellent

Changes in

user behavior
960 3 0.15 68 12 Excellent

Network attack

simulation
920 6 0.25 60 15 Excellent

(a) Sum of one round rewards on NSFNET topology

T
o
ta

l
re

w
ar

d
s

Rate demand (Mbps)

SP

LB

DDPG-TE

SDN-DRLTE

3000

2500

2000

1500

1000

3200

25 30 35 40 45 50

(b) Sum of one round rewards on particle

experiment network topology

Rate demand (Mbps)

SP

LB

DDPG-TE

SDN-DRLTE

3000

2500

2000

1500

1000

T
o
ta

l
re

w
ar

d
s 3500

4000

4500

25 30 35 40 45 50

Figure 9: Sum of rewards for one round on topology.

4.2 Actual improvement results of traffic

control based on SDN-DRLTE

After analyzing the effectiveness of the SDN-DRLTE

algorithm, to further verify its performance and

advantages in practical applications, a series of

experimental tests and improvement result analysis are

conducted. This process is crucial to ensure that the

algorithm can achieve the expected results in actual

deployments. The experiment collects various

performance indicators data during the experimental

process using network analysis tools, log systems, and

specialized testing tools. The reward results and

algorithm improvement results of each algorithm are

analyzed. Firstly, Confidence interval estimation is

performed. Under the same conditions, each algorithm is

subjected to multiple experiments to collect sufficient

data points. Then, their average reward value and

standard deviation are calculated. A normal distribution

is used to construct a confidence interval for the average

reward value. The sum of one round rewards for four

algorithms on NSFNET and particle experiment network

topology is shown in Figure 9.

From Figure 9, in the reward values of each round, all

algorithms decreased as the rate increased. From Figure 9

(a), under the NSFNET topology, the reward values of all

algorithms showed a downward trend, with SP

decreasing the fastest. SDN-DRLTE was more stable

compared with other algorithms. From Figure 9 (b), the

downward trend on the particle experimental network

topology was similar to that under the NSFNET

topology. Each algorithm had a faster descent rate and a

higher initial reward value. The average reward value of

SDN-DRLTE was 12.2%, 18.6%, and 6.8% better than

LB, SP, and DDPG-TE. The confidence interval was

[6.5%, 18.9%]. At a 95% confidence level, the p-value of

the t-test was 0.03. From the reward results, with the

dynamic changes in traffic demand, the adjustment of

SDN-DRLTE appeared relatively slow. SDN-DRL could

actively learn and adapt to changes in the network

environment, making decisions through its built-in policy

186 Informatica 49 (2025) 175–188 C. Yang et al.

network. This process not only involves a deep

understanding of the current network state, but also

involves predicting future traffic trends and generating

corresponding optimization strategies. The training

process of DRL algorithm on NSFNET and particle

experiment network topology is shown in Figure 10.

(a) Training process of DRL algorithm

on NSFNET topology

T
o
ta

l
re

w
ar

d

Decision episode

1200

1150

1100

1050

1000

0 1000 2000 3000 4000 5000

SDN-DRLTE
DDPG-TE

1250

(b) Training process of DRL algorithm on

particle network topology

Decision episode

1300

1250

1200

1150

1100

0 1000 2000 3000 4000 5000

T
o
ta

l
re

w
ar

d 1350

1400
SDN-DRLTE
DDPG-TE

1450

Figure 10: The training process of DRL algorithm on topology.

From Figure 10, the SDN-DRLTE algorithm had a

faster convergence speed and higher reward value

compared with the DDPG-TE. According to Figure 10

(a), as the number of iterations increased, the reward

values of both algorithms showed a relatively stable

fluctuation state within 3000 iterations. The fluctuation

of DDPG-TE algorithm may be a natural phenomenon

that occurs when the algorithm seeks the best balance

between exploration and utilization. The fluctuation of

SDN-DRLTE algorithm may reflect the trade-off

between algorithm exploration and utilization. In the

early stages of training, algorithms may focus more on

exploration to understand the environment and find better

strategies. However, when the number of iterations

reached 3000, there was a significant change in the

reward values. SDN-DRLTE algorithm showed a sudden

increase in reward values. This trend continued to persist

in the subsequent iteration process, ensuring that the

reward value of the SDN-DRLTE algorithm remained at

a higher level. In Figure 10 (b), regardless of how the

iteration increases, the reward value of the DDPG-TE

exhibited a relatively stable fluctuation, with roughly the

same upward and downward trends. The reward value of

the SDN-DRLTE algorithm suddenly increased when the

number of iterations reached around 4,000. With the

flexibility of SDN and the intelligence of DRL, SDN-

DRLTE algorithm can more effectively cope with

complex and changing network environments, achieving

efficient and intelligent traffic engineering optimization.

With the flexibility of SDN and the intelligence of DRL,

the adaptive characteristics of SDN-DRLTE algorithm

can more effectively cope with complex and changing

network environments. Especially in data center

networks and IoT environments, SDN-DRLTE algorithm

can easily adapt to changes in network size and

environment, and automatically adjust traffic control

strategies to maintain network performance.

5 Discussion
The study aims to establish a SDN traffic control model

and design an SDN-DRLTE algorithm based on DRL.

Compared with the DRL combined simulated annealing

algorithm proposed by Kosanoglu F et al [12], this

algorithm can further improve computational efficiency.

The reason is that the proposed algorithm focuses on

network traffic control, which can improve network

performance and resource utilization. Compared with

SDN resource utilization method proposed by Bhardwaj

S [14], the model proposed in this paper can deeply

analyze performance, reduce network latency, and avoid

congestion. The reason is that the model in this article

achieves intelligent control and optimization of network

traffic through DRL technology. The end-to-end

experiments show that as the demand for speed increases

among various ODs, the average network speed of the

SDN-DRLTE algorithm is higher compared with other

algorithms. SDN-DRLTE can dynamically adjust traffic

allocation strategies based on real-time network

environments, thus reducing performance degradation

caused by resource bottlenecks. In the delay experiment,

with the increase of network speed requirements, the

delay of SDN-DRLTE increased the least, only at 6.3%,

effectively alleviating network congestion. The average

reward value of SDN-DRLTE was 12.2%, 18.6%, and

6.8% better than LB, SP, and DDPG-TE algorithms.

SDN-DRLTE can actively learn and adapt to changes in

the network environment. In the comparison of reward

values, when the number of iterations reached 3,000, the

reward value of SDN-DRLTE algorithm suddenly

increased, indicating that the algorithm can more

effectively cope with complex and changing network

environments. In summary, combining the technical

characteristics of DRL and SDN, the computer network

traffic control algorithm has shown significant

performance improvement and advantages in practical

applications. This model is not only suitable for specific

network environments, but also can be extended to

SDN-DRLTE Algorithm Based on DRL in Computer Network… Informatica 49 (2025) 175–188 187

various complex network environments and traffic

patterns due to its adaptive learning ability based on

DRL, providing a more efficient and intelligent network

traffic management solution.

6 Conclusion
A DRL-based SDN-DRLTE algorithm was developed to

address the traffic control in computer networks. The

DRL algorithm process was combined with Markov

stochastic process decision-making. When the form of

policy rules was uncertain, the DRL algorithm was used

to select the optimal performance policy. Meanwhile, the

offline policy training method of Off policy random

action exploration was adopted. SDN was introduced to

build SDN architecture to enhance the flexibility of the

network. The DDPG was taken to solve the continuous

control problem in computer networks, establishing a

DRL-based SND flow control model to achieve flow

scheduling and control. Finally, the SDN-DRLTE flow

control algorithm was obtained. According to the

research results, in terms of algorithm performance, the

rate drop of SDN-DRLTE was significantly smaller than

other methods. The average dropped to the lowest when

the rate requirement reached 50Mbps. Compared with

bother algorithms, SDN-DRLTE significantly reduced

the average end-to-end latency. As for the practical

application effect, the average reward of SDN-DRLTE

was optimized by 10%. When the number of iterations

reached around 2,800, the convergence speed and reward

value increased significantly, and continued to maintain

high reward values in subsequent iterations. The research

results indicate that SDN-DRLTE algorithm far exceeds

traditional algorithms in terms of computational speed,

latency, and practical application effectiveness, and has

stronger learning and adaptability capabilities. However,

there is still a lack of consideration for algorithm training

under changes in algorithm inputs. In the future, fixing

the algorithm inputs can be eliminated to achieve a more

comprehensive flow control effect. Extensive

experimental results in different network environments,

traffic loads, and application scenarios have shown that

the SDN-DRLTE algorithm has stronger learning and

adaptability in terms of computational speed, latency,

and practical application effectiveness. When the input of

the algorithm changes, such as changes in network

topology, traffic patterns, or external environmental

interference, the algorithm performance may be affected.

Subsequently, the robustness of the algorithm can be

enhanced, and its strategy can be quickly adjusted to

cope with the changes to achieve a more comprehensive

traffic control effect.

Funding
The research is supported by: This paper is a fund project

of Guangxi Eco-Engineering Vocational & Technical

College, "Virtual Simulation Resource Management

Platform Construction and operation and maintenance

Strategy Research" (No. 2024KY32).

References
[1] Cisco. Cisco Visual Networking Index: Forecast and

Trends, 2019-2024, 2020.

https://www.cisco.com/c/en/us/solutions/collateral/s

ervice-provider/visual-networking-index-vni/white-

paper-c11-741490.html

[2] Peter P. Groumpos. A critical historic overview of

artificial intelligence: Issues, challenges,

opportunities, and threats. Artificial Intelligence and

Applications, 1(4):197-213, 2023.

https://doi.org/10.47852/bonviewAIA3202689

[3] Reddy SaiSindhuTheja, and Gopal K. Shyam. A

machine learning based attack detection and

mitigation using a secure SaaS framework. Journal

of King Saud University-Computer and Information

Sciences, 34(7):4047-4061, 2022.

https://doi.org/10.1016/j.jksuci.2020.10.005

[4] Matjaž Gamsd, and Tine Kolenik. Relations between

electronics, artificial intelligence and information

society through information society rules.

Electronics, 10(4):514, 2021.

https://doi.org/10.3390/electronics10040514

[5] Chang Peng, and Chengcheng Xu. Combined variable

speed limit and lane change guidance for secondary

crash prevention using distributed deep

reinforcement learning. Journal of Transportation

Safety & Security, 14(12):2166-2191, 2022.

https://doi.org/10.1080/19439962.2021.2011810

[6] Aberkane, Sabrina, and Mohamed Elarbi-Boudihir.

Deep reinforcement learning-based anomaly

detection for video surveillance. Informatica, 46(2),

2022. https://doi.org/10.31449/inf.v46i2.3603

[7] Huiling He. Automatic network traffic scheduling

algorithm based on deep reinforcement learning.

Informatica, 48(22), 2024.

https://doi.org/10.31449/inf.v48i22.6943

[8] Masaki Morimoto, Kai Fukami, Kai Zhang, and Koji

Fukagata. Generalization techniques of neural

networks for fluid flow estimation. Neural

Computing and Applications, 34(5):3647-3669,

2022. https://doi.org/10.1007/s00521-021-06633-z

[9] Surjeet Dalal, Bijeta Seth, Vivek Jaglan, Meenakshi

Malik, Surbhi, Neeraj Dahiya, Uma Rani, Dac-

Nhuong Le, Yu-Chen HuAuthors Info, and Claims.

An adaptive traffic routing approach toward load

balancing and congestion control in Cloud–

MANET ad hoc networks. Soft Computing,

26(11):5377-5388, 2022.

https://doi.org/10.1007/s00500-022-07099-4

[10] Jiewu Leng, Weinan Sha, Zisheng Lin, Jianbo Jing,

Qiang Liu, and Xin Chen. Blockchained smart

contract pyramid-driven multi-agent autonomous

process control for resilient individualised

manufacturing towards Industry 5.0. International

Journal of Production Research, 61(13):4302-4321,

2023.

https://doi.org/10.1080/00207543.2022.2089929

[11] Tariq Mahmood, Jianqiang Li, Yan Pei, Faheem

Akhtar, Suhail Ashfaq Butt, Allah Ditta, and

Sirajuddin Qureshi. An intelligent fault detection

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

188 Informatica 49 (2025) 175–188 C. Yang et al.

approach based on reinforcement learning system in

wireless sensor network. The Journal of

Supercomputing, 78(3):3646-3675, 2022.

https://doi.org/10.1007/s11227-021-04001-1

[12] Fuat Kosanoglu, Mahir Atmis, and Hasan Hüseyin

Turan. A deep reinforcement learning assisted

simulated annealing algorithm for a maintenance

planning problem. Annals of Operations Research,

339(1):79-110, 2024.

https://doi.org/10.1007/s10479-022-04612-8

[13] Hepeng Li, and Haibo He. Learning to operate

distribution networks with safe deep reinforcement

learning. IEEE Transactions on Smart Grid,

13(3):1860-1872, 2022.

https://doi.org/10.1109/TSG.2022.3142961

[14] Shanu Bhardwaj, and S. N. Panda. Performance

evaluation using RYU SDN controller in software-

defined networking environment. Wireless Personal

Communication, 122(1):701-723, 2022.

https://doi.org/10.1007/s11277-021-08920-3

[15] Degan Zhang, Lixiang Cao, Haoli Zhu, Ting Zhang,

Jinyu Du, and Kaiwen Jiang. Task offloading

method of edge computing in internet of vehicles

based on deep reinforcement learning. Cluster

Computing, 25(2):1175-1187, 2022.

https://doi.org/10.1007/s10586-021-03532-9

[16] José de Jesús Rugeles Uribe, Edward Paul Guillen,

and Leonardo S. Cardoso. A technical review of

wireless security for the internet of things: Software

defined radio perspective. Journal of King Saud

University-Computer and Information Sciences,

34(7):4122-4134, 2022.

https://doi.org/10.1016/j.jksuci.2021.04.003

[17] Song Inseok, Prohim Tam, Seungwoo Kang, Seyha

Ros, and Seokhoon Kim. DRL-based backbone

SDN control methods in UAV-assisted networks for

computational resource efficiency. Electronics,

12(13):2984, 2023.

https://doi.org/10.3390/electronics12132984

[18] Linqiang Huang, Miao Ye, Xingsi Xue, Yong

Wang, Hongbing Qiu, and Xiaofang Deng.

Intelligent routing method based on dueling DQN

reinforcement learning and network traffic state

prediction in SDN. Wireless Networks, 30(5):4507-

4525, 2024. https://doi.org/10.1007/s11276-022-

03066-x

[19] Mohamed Escheikh, and Wiem Taktak. Online

QoS/QoE-driven SFC orchestration leveraging a

DRL approach in SDN/NFV enabled networks.

Wireless Personal Communications, 137(3):1511-

1538, 2024. https://doi.org/10.1007/s11277-024-

11389-5

[20] Hernández-Chulde C, Casellas R, Martínez R,

Martínez R, Vilalta R, and Muñoz R. Experimental

evaluation of a latency-aware routing and spectrum

assignment mechanism based on deep

reinforcement learning. Journal of Optical

Communications and Networking, 15(11):925-937,

2023. https://doi.org/10.1364/JOCN.499343

