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Affected by mobile Internet, big data and cloud computing, network traffic load is gradually increasing, 

and deep reinforcement learning algorithm has been widely used. To solve the uneven and congested 

computer network traffic, a software-defined network algorithm on the basis of deep reinforcement 

learning is designed, and a computer network traffic control technology is built. On the basis of 

traditional deep reinforcement learning algorithms, the optimal performance policy is obtained by 

combining Markov decision. Simultaneously, the Off Policy is introduced to establish a software-defined 

network traffic control model, ultimately designing a software-defined network algorithm based on deep 

reinforcement learning. The experimental results showed that compared with other algorithms, the 

designed algorithm increased the average reward value by 12.2%, 18.6%, and 6.8%, optimized by an 

average of 10%, and significantly increased the reward value at 3000 iterations. The average speed was 

higher, and the latency was significantly reduced to 6.3%. This indicated that the designed algorithm 

achieved the expected goals in terms of computational efficiency and network scheduling control 

performance. The research findings were of great significance for computer network traffic control. 

Povzetek: Izboljšani algoritem SDN-DRLTE temelji na globokem ojačitvenem učenju (DRL) za nadzor 

prometa v računalniških omrežjih.  Z uporabo Markovih odločitvenih procesov algoritem izboljšuje 

uravnoteženost prometa in zmanjšuje zakasnitve. 

 

1 Introduction 
Affected by Internet of Things and big data, the number 

and scale of network users are growing rapidly, while 

network services are becoming increasingly diversified 

and network structures are becoming more complex. 

Cisco's annual VNI report provides detailed forecasts and 

historical data on global Internet traffic. According to 

Cisco's 2020 VNI report, global Internet traffic is 

expected to grow from 122 exabytes per second in 2019 

to 185 exabytes per second in 2024 [1]. In the context of 

explosive growth in network traffic, achieving efficient 

network traffic load balancing, avoiding congestion, and 

ensuring network service quality is crucial. Although 

traditional traffic scheduling and congestion solutions 

can control traffic to a certain extent, they are often 

limited by different network environments and difficult 

to be widely applied to complex network environment 

structures. In recent years, some researchers have begun 

to attempt to explore Deep Learning (DL) technology, 

providing new ideas for computer traffic control with its 

excellent learning and training capabilities [2]. However, 

the existing DL techniques have a wide range of 

applications and cannot provide good computational 

efficiency and practical application effects. Moreover, 

they do not consider continuous action response and 

cannot meet the applicability requirements in new  

 

network structures and traffic patterns [3]. Deep 

Reinforcement Learning (DRL) is an advanced 

technology in artificial intelligence, which has shown 

great potential in intelligent control. It cleverly combines 

the powerful perception ability of DL with the decision 

optimization ability of Reinforcement Learning (RL), 

providing a new way for computer network traffic 

control. The Software-Defined Network (SDN) has made 

traffic control more efficient. With the increasingly close 

relationship between the information society, electronics, 

and artificial intelligence, the complex interactions and 

technological advancements between these fields are 

becoming increasingly apparent. Gams and Kolenik 

explored the relationship between the laws of the 

information society and electronics, AI, and 

environmental intelligence in their research. How these 

technological advancements shape civilization and social 

structures was analyzed [4]. In this context, the research 

attempts to innovatively design a SDN algorithm based 

on DRL. Big data provides rich network usage patterns 

and traffic characteristics. SDN-DRLTE algorithm can 

use this data to optimize network traffic control strategies 

and achieve more accurate decisions. At the same time, 

SDN-DRLTE algorithm can predict the trend of network 

traffic, adjust the network configuration in advance, 

reduce congestion and improve efficiency by analyzing 

Internet of Things devices and big data models [5]. 

Combining DRL policy optimization with SDN model 

construction, it is aimed to optimize the control 
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efficiency and its practicality for different topology 

networks, laying a solid foundation for computer 

network traffic control. 

2 Related work 
With the growing popularity of Internet technology, 

network traffic is also showing a high growth trend. 

Traditional network traffic control methods cannot adapt 

to the current network environment. Therefore, some 

scholars have conducted relevant research on computer 

network traffic control methods. Aberkane et al. 

proposed a novel anomaly detection method based on 

DRL. The priority dual deep Q-network was optimized to 

adapt to anomaly detection problems. Video level labels 

were used to learn and evaluate anomalies in video clips, 

thereby improving detection accuracy. The experiment 

showed that the proposed method had higher accuracy 

[6]. He proposed an intelligent network traffic scheduling 

algorithm based on DRL and graph neural network 

innovation for the traffic scheduling problem in large-

scale dynamic network environments. The ability of 

DRL in decision optimization and the advantages of 

graph neural networks in processing graph structured 

data were combined. The hierarchical RL framework 

enabled efficient decision-making processes from macro 

policies to micro-operations. The experimental results 

showed that the proposed algorithm significantly 

improved key performance indicators such as average 

latency, throughput, and resource utilization compared 

with traditional algorithms [7]. Morimoto M et al. built a 

neural network training model to solve practical network 

traffic estimation problems. The machine learning results 

were analyzed and the training data were expanded. 

Experiments showed that training neural networks could 

accurately estimate network traffic [8]. Dalal S et al. 

proposed a cloud-based Adhoc mobile model for load 

balancing of network traffic. The model combined 

alternative paths between two nodes to solve the load 

congestion by calculating the link and traffic load. The 

proposed model had a positive effect on extending the 

lifespan of the system [9]. Leng J et al. proposed a 

blockchain intelligent autonomous process control 

method for network personalized control problems. 

Through blockchain intelligent pyramid and a series of 

decentralized control modes, personalized demand 

scheduling could be achieved. The experiment showed 

that the proposed method had good applicability for flow 

control [10]. 

Computer network traffic control methods often 

incorporate artificial intelligence technology for research. 

Some scholars have conducted research on DRL and 

SDN algorithms. Mahmood T et al. built a smart fault 

detection routing technology based on RL to develop 

energy-saving routing protocols for learning in wireless 

networks. This method overcame the energy loss of 

transmitting data by reducing the remaining energy of 

cluster nodes in the network. The method could 

effectively improve the robustness of the network [11]. 

Kosanoglu F et al. built a combination algorithm relying 

on DRL and simulated annealing to improve asset 

reliability and reduce maintenance costs. The optimal 

neighbor structure was selected by transmitting the 

optimal solution to the simulated annealing algorithm as 

the initial solution. The results indicated that the 

proposed algorithm had superiority in finding solutions 

[12]. Li H proposed a secure DRL method to optimize 

the operation of distribution networks. The Markov 

decision process was formalized and constrained. A 

constraint strategy was adopted to optimize the training 

network and achieve cost minimization. The results 

showed that DRL methods had good stability [13]. 

Bhardwaj S proposed the SDN approach to improve 

network resource utilization. This strategy improved the 

efficient traffic routing by controlling open-source 

controllers. The method could achieve good network 

performance [14]. Zhang D et al. designed a dynamic 

task offloading approach on the ground of DRL to 

achieve offloading computation with low task latency 

and low energy consumption. On the basis of improving 

traditional Q-learning algorithms, DL and RL were 

combined. This algorithm had better performance in 

energy consumption [15]. The summary and analysis of 

existing research methods are shown in Table 1. 

Table 1: Summary and analysis of existing research methods. 

Reference Method Main Results Limitations 
Advantages of SDN-

DRLTE 

Aberkane et al. [6] 

Priority Duel Deep Q 

Network Anomaly 

Detection 

Accurate detection 
Video level labels 

are required 

No need for a large 

amount of annotated data 

He [7] 
DRL and GNN traffic 

scheduling 

Improve latency, 

throughput, and 

utilization efficiency 

Environmental 

adaptability to be 

verified 

Excellent robustness 

Morimoto M et al. 

[8] 

Neural network 

traffic estimation 
Accurate estimation Data dependency 

Automatic strategy 

optimization 

Dalal S et al. [9] 
Cloud Adhoc load 

balancing 
Resolve congestion Fixed path 

Dynamic traffic 

adjustment 

Leng J et al. [10] 
Blockchain 

intelligent control 

Personalized demand 

scheduling 

Distributed 

control is 

complex 

Simplify control 

processes and improve 

applicability 
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Mahmood T et al. 

[11] 

RL fault detection 

routing 

Energy saving 

routing 

Wireless network 

limitations 

Widely applicable in 

various environments 

Kosanoglu F et al. 

[12] 

DRL+simulated 

annealing 
Asset optimization 

Computationally 

intensive 

Improve computational 

efficiency 

Li H [13] 
Safe DRL 

distribution network 
Cost minimization 

Distribution 

network limit 
Wide flow control 

Bhardwaj S [14] 
SDN resource 

utilization 

SDN resource 

utilization 

Lack of 

performance 

analysis 

In depth analysis of 

performance 

Zhang D et al. [15] 
DRL task 

uninstallation 

Low latency energy 

consumption 

Internet of Things 

Limitations 

Widely applicable to the 

internet 

 

In summary, although some scholars have conducted 

relevant research on computer network traffic control, 

the powerful ability of DRL in decision optimization and 

the flexibility of SDN in network traffic management 

have not been fully utilized. Therefore, a SDN algorithm 

based on DRL is proposed to automatically learn and 

optimize decision strategies, adapt to dynamic changes in 

network traffic, and demonstrate performance beyond 

existing technologies in practical applications to provide 

assistance in improving computer network performance. 

3 SDN-DRLTE algorithm based on 

DRL in computer network traffic 

control 

3.1. Traffic control model architecture based 

on DRL and SDN 

Faced with the rapidly growing traffic in computer 

networks, achieving network load balance through 

reasonable control and scheduling has become an 

increasingly vital research topic in computer networks. 

Due to the constantly changing network structures and 

traffic patterns, traditional traffic scheduling solutions are 

becoming increasingly inadequate. Therefore, a widely 

applicable intelligent network traffic control scheme is 

necessary [16]. In recent years, DRL algorithm has made 

breakthrough progress in multiple fields, especially in 

computer science. It combines the feature representation 

capability of DL with the decision-making capability of 

RL to form a powerful machine learning paradigm. DRL 

can optimize decision strategies through automatic 

exploration and learning by agents in the environment 

without making clear rules and guidance. It also indicates 

that DRL can provide opportunities for achieving more 

complex network traffic control. The DRL algorithm 

process is shown in Figure 1. 

In Figure 1, the process first sets up the environment, 

defines the environment in which the agent is located 

such as the state space reward function. Then, the deep 

neural network is initialized. The intelligent agent 

retrieves states from the environment. After selecting and 

executing actions on the basis of the state, the 

environment transitions to a new state and corresponding 

reward values are given. Finally, the state, actions, and 

reward data of the interaction process are recorded to 

form a training dataset. This process is repeated until the 

training is completed. The study sets the environment as 

a finite Markov Decision Process (MDP) decision. When 

the policy rules are uncertain, DRL selects the optimal 

performance policy from them. The optimal performance 

policy is shown in equation (1). 

* arg max ( )J =     (1) 

In equation (1), 
*  signifies the performance of the 

maximum policy.   signifies action policy. ( )J   

represents the expected return of the policy. The updated 

policy parameter is shown in equation (2). 

1 ( )
kk k J     + = +     (2) 

In equation (2), 
1k +

 represents the updated policy 

parameter. 
k  signifies the parameter of the original 

policy. ( )J   signifies the gradient of policy 

performance. 
  represents the form of action policy.   

represents a constant. To apply the algorithm in practical, 

it is necessary to transform the gradient representation of 

the policy. The policy performance gradient is displayed 

in equation (3). 
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Figure 1: DRL algorithm flowchart. 
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Figure 2: Exploration of random actions in off policy. 

0 0 0 1( ) ( ) ( , ) ( )T

t t t t t tP s P s s a a s   = +=   (3) 

In equation (3), 
0 0 1( , , , )Ts a s +=  represents the 

sequence of state actions obtained by executing the 

policy once. T  represents the time step of operation. t  

signifies the times that the policy is executed. 
0  

represents the initial state distribution. s  represents the 

state. a  represents the action. ( )P    represents the 

probability of executing policy 
  to generate  . At this 

time, the transition state of MDP needs to be independent 

of the previous state and only linked with the current 

state action. The gradient of parameter ( )P    with 

respect to   is displayed in equation (4). 

( ) ( ) ( )logP P P       =    (4) 

In equation (4), ( )P    signifies the gradient of 

the probability of generating the execution policy with 

respect to the parameter. The logarithm of equation (3) 

obtains (5). 

( ) 0log log ( )T

t t tP a s    = =    (5) 

After simplification, equation (6) is obtained. 

0( ) log ( ) ( )T

t t tJ E a s R   


  =
  =    (6) 

In equation (6), ( )R   represents the state action 

sequence obtained by executing the policy. The gradient 

of policy performance is an expectation, indicating that 

the sample mean value is used for estimation calculation. 

The sample mean of the strategy performance gradient is 

shown in equation (7). 

0

1
ˆ log ( ) ( )T

D t t tg a s R
D

    ==    (7) 

In equation (7), ĝ  represents the estimated value of 

the policy performance gradient. D  represents the size 

of the collected dataset D . An offline policy training 

method called Off Policy random action exploration is 

adopted, as shown in Figure 2. 

In Figure 2, 
ta  represents exploration data. 

ts  

represents online data.   represents strategic behavior. 

Off policy training obtains random processes through 

data sampling as introduced random noise, and then uses 

a policy network for training to obtain the optimal policy 

in the dataset and improve the temporal correlation of 

each data. Meanwhile, SDN has made network traffic 

control more efficient and convenient [17]. 

SDN is a new network architecture, which enhances 

the network flexibility and manageability by separating 

the control plane from the data forwarding plane and 

introducing programmability. The SDN is displayed in 

Figure 3. 
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Figure 3: SDN architecture diagram. 

In Figure 3, the SDN has three layers: infrastructure 

layer, control layer, and application layer. The complex 

application layer communicates with business 

applications through the SDN northern interface. 

Management personnel can dynamically adjust network 

behavior through flat interfaces, convert application layer 

commands into rules, and send them to devices. The 

control layer, namely the control plane, undertakes 

centralized management of decision-making processes 

such as policies, routing, and traffic control in the 

network. The infrastructure layer, that is, the data 

forwarding plane, undertakes actual packet forwarding 

and processing. This design allows forwarding devices to 

focus more on high-speed and low latency data 

transmission, while delegating complex control logic to 

the control plane for processing. The SDN architecture 

provides flexibility and programmability for network 

traffic control by separating the control plane and data 

plane. In control plane integration, SDN controllers act 

as the brain of intelligent agents, making decisions and 

dynamically adjusting network traffic based on network 

status. Combining the learning mechanism of DRL with 

the programmability and dynamic suitability of SDN, it 

is possible to quickly adjust traffic control strategies 

when dealing with large and complex network traffic. 

3.2. Design of SDN-DRLTE intelligent traffic 

control based on DRL 

When conducting computer network traffic control, 

continuous action reactions are required. Deep 

Deterministic Policy Gradient (DDPG) is a policy-based 

DRL algorithm widely used to solve decision problems 

in continuous action spaces [18]. Therefore, the study 

uses the DDPG to solve continuous control problems in 

computer networks. In the DDPG, the experience replay 

mechanism of deep Q-networks is borrowed, which can 

significantly enhance the stability and learning 

efficiency. Meanwhile, the experience replay mechanism 

stores the experience samples generated by the agent 

during the exploration of the environment. These 

samples are randomly sampled during the training to 

update the network, achieving efficient sampling and 

utilization of samples, which can effectively improve the 

learning performance and stability. The DDPG algorithm 

is displayed in Figure 4. 

In Figure 4, the DDPG algorithm consists of two 

networks, the Actor network and the Critic network. The 

Actor network is responsible for selecting actions. The 

Critic network evaluates the value of these actions. The 

algorithm stores the experience of the intelligent agent in 

the replay buffer for training the network, which helps to 

improve sample efficiency and break down correlations 

between samples. For stable training, the DDPG 

algorithm obtains data from the SDN network 

environment and inputs it into the Actor network. Then, 

the output data is stored in the replay buffer as 

experience for sampling. The Actor network inputs data 

into the Critic network by selecting actions, and the data 

is processed and returned. In practical applications, 

DDPG typically explores the environment by adding 

noise to discover better strategies. The Actor network 

consists of an input layer, two hidden layers, and an 

output layer. The hidden layer has 128 and 64 neurons in 

each layer, with ReLU as the activation function, and 

Tanh as the activation function for the output layer. The 

Critic network accepts a combination of states and 

actions, consisting of two hidden layers and an output 

layer without an activation function. Important 

hyperparameters include learning rate, where Actor is 

0.001, Critic is 0.002, discount factor is 0.9~0.9, 

experience replay buffer size is (1,000,000), and batch 

size is 32~128. The update frequency of the target 

network is 100 iterations. These settings ensure that the 

model can effectively learn and optimize traffic control 

strategies in dynamic network environments. The 

parameter of the policy network is shown in equation (8). 

, ( )( , ) ( )
t t ta s s a s s sJ E Q s a s  = = =

  =  
 

 (8) 
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Figure 4: DDPG algorithm structure diagram. 

In equation (8), J  represents the differentiation 

between the expected cumulative reward J  and the 

parameter   in the policy network. ( , )Q s a  represents 

the evaluation network. ( )s  represents the policy 

network. ts  signifies the state at moment t. ( )ts  

signifies the action taken at t. The evaluation network is 

updated using the time difference method, which updates 

and optimizes relevant parameters by comparing the 

differences between two-time steps or states before and 

after, in order to approximate the optimal policy. 

Traditional DDPG algorithms often rely on simple 

random noise during the exploration phase to ensure 

sufficient exploration. However, in complex flow control 

environments, this random exploration is inefficient and 

hard to quickly adapt to dynamic changes in the 

environment [19-20]. Therefore, the study introduces an 

exploration policy based on Traffic Engineering (TE) 

perception, which utilizes real-time state information of 

the traffic environment to dynamically adjust the 

exploration intensity or direction. At the same time, in 

order to solve the neglected important experience and 

single step benefits, a priority-based experience replay 

pool is adopted and a multi-step benefit prediction 

mechanism is introduced to jointly improve the 

applicability and training efficiency of the DDPG 

algorithm in traffic control. Standard DDPG mainly 

focuses on single step returns, which may lead to 

algorithms overly focusing on short-term benefits and 

neglecting long-term benefits. The multi-step benefit 

prediction mechanism predicts long-term benefits by 

considering the cumulative returns of multiple future 

time steps, enabling the algorithm to better balance short-

term and long-term goals. When facing complex and 

dynamic network environments. This mechanism 

enhances the foresight and adaptability of the algorithm, 

enabling it to more effectively handle long-term 

optimization problems of network traffic. The differential 

error of event experience is prioritized, as defined in 

equation (9). 

( , )i t tp y Q s a= −     (9) 

In equation (9), ip  represents the priority of 

experience i . ( , )t tQ s a  represents the evaluation 

network at a certain moment. y  represents the target 

value for evaluating the network, as shown in equation 

(10). 

* *

1 1( , ( ))t ty r Q s s + += +   

 (10) 

In equation (10), r  signifies the reward function.   

represents the discount coefficient. The probability of 

obtaining experience from the experience pool is shown 

in equation (11). 
0

0

( ) i

k k

p
P i

p




=


   

 (11) 

In equation (11), ( )P i  signifies the probability of 

obtaining experience i  from the experience pool. 0  

represents the degree to which control priority is used for 

probability calculation. k  represents a constant. When 

the control priority is not used for calculation, the 

algorithm has a unified sampling operation. The multi-

step return is equation (12). 

( ) 1 ( )

0 1

n n k

t k t t kR R−

= + +=   

 (12) 

In equation (12), 
( )n

tR  represents multi-step returns. 

n  represents the number of steps for multi-step returns. 

After achieving the effect of accelerating reward 

feedback, the Critic network is updated. First, the 

network target value is shown in equation (13). 

( ) ( ) *( , ( ))n n

t t t n t ny R Q s s + += +   

 (13) 

In equation (13), ty  represents the final evaluation 

network objective. In the DDPG algorithm, the design of 

the reward function needs to reflect the key performance 
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indicators of network traffic control, while considering 

fairness and priority processing. First, it is necessary to 

ensure fair resource allocation and traffic balance. 
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Figure 5: SND flow control model based on DRL. 

SDN-DRLTE

C1:  actor networklearning rate n", critic network learning rate n,target

network learning rate t, mini-batch size b, replay size N, episode step M, time

step T.

C2:  Initialize the parameter actor network and critic network respectively.

C3:  Initialize prioritized replay buffer R with size N.

C4:   Initialize a random process N for action exploration.

C5:  for episode =1 to M do

C6:   if size of R≥b then

C7:  Update the parameter of critic network

C8:   end if

C9:  end for

C10:  Update the parameter of target network

C11:  end for

 

Figure 6: SDN-DRLTE traffic control algorithm. 

Therefore, all users or services can receive reasonable 

bandwidth allocation and avoid unfair treatment of 

certain users or services due to resource competition. A 

reward function is used to encourage balanced traffic 

distribution in the network. Some links can be 

overloaded while others are idle, thereby improving 

overall network efficiency. In terms of priority 

processing, for applications that require high service 

quality, the reward function can provide higher rewards 

for traffic allocation that meets specific requirements. 

When dealing with emergency traffic in the network, the 

reward function can provide additional positive rewards 

for prioritizing the processing of these traffic. 

Meanwhile, the reward function can dynamically adjust 

weights based on network status and external conditions 

to adapt to constantly changing network demands and 

business priorities. The SND flow control model based 

on DRL is shown in Figure 5. 

In Figure 5, the flow control model is based on the 

architecture of these two algorithms. The decision-

making layer interacts with other layers using the DRL 

flow control algorithm. The performance data 

information output from the forwarding layer is input at 

different times, processed by the policy network to 

output actions, and then transmitted to the SDN 

controller. The control layer mainly accepts actions 

issued by the decision-making layer, adjusts path 

weights, and inputs them to the forwarding layer. The 

forwarding layer is responsible for transmitting the 

performance data of each business flow to the decision 

layer, completing the SND traffic control architecture 

based on DRL. The designed model selects the global 

optimal policy for computing the network through DRL 

algorithm. The SDN controller is used to provide 

corresponding network traffic information for traffic 

scheduling decisions, achieving traffic scheduling and 

control. The SDN-DRLTE traffic control algorithm is 

shown in Figure 6. 

In Figure 6, at the beginning of each training round, 

an initial state is obtained. After obtaining variables for 
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input, the main network is copied to obtain a target 

network. Then, the probability selection is performed at 

each time step. After receiving rewards and status, multi-

step returns are calculated and the experience is finally 

stored in the experience pool. By carefully selecting 

model parameters, the SDN-DRLTE algorithm 

demonstrates better learning performance and faster 

convergence speed. Learning rate is a key parameter in 

DRL algorithm, which affects the convergence speed and 

stability of the algorithm. A moderate learning rate is 

selected to ensure that the algorithm can strike a balance 

between exploration and utilization. A high learning rate 

may lead to algorithm instability, while a low learning 

rate may result in slow convergence speed. The selection 

of network architecture is based on the characteristics of 

the DDPG algorithm, which needs to handle continuous 

action spaces. The study introduces a structure that 

includes an Actor Network and a Critic Network, each of 

which contains multiple layers of neural networks. This 

architecture can capture complex network state 

characteristics and provide effective decision-making for 

network traffic control. The exploration strategy is 

crucial for DRL algorithms, as it determines how the 

algorithm explores in unknown environments. The study 

incorporates an exploration strategy based on traffic 

engineering perception, which can dynamically adjust the 

exploration intensity according to real-time network 

status to improve the adaptability and efficiency. This 

strategy is selected based on the practical needs of 

network traffic control to ensure that the algorithm can 

remain effective in the constantly changing network 

environment. Experience replay is a commonly used 

technique in DRL algorithms to improve the sample 

utilization efficiency. The study selects a priority 

experience replay pool, which can adjust the sampling 

probability based on the importance of experience, 

thereby improving learning efficiency. When deploying 

the SDN-DRLTE algorithm in practical systems, DL and 

RL techniques may require high computational resources 

during training and inference processes. In real-time 

network traffic control, high computational overhead 

may affect the response speed and scalability of 

algorithms. The research aims to improve the algorithm 

efficiency through hardware accelerators such as GPUs 

or TPUs to handle computationally intensive tasks. Then, 

distributed computing is used to distribute computing 

tasks to multiple servers or edge computing is used to 

reduce the burden on the central node. The SDN-DRLTE 

algorithm obtained can achieve parallel utilization of 

resources while controlling network traffic policies, and 

improve the learning speed. 

4 Validity analysis of SDN-DRLTE 

algorithm in computer network 

traffic control 

4.1 Performance analysis experiment of 

computer network traffic control based 

on SDN-DRLTE 

To analyze the effectiveness of the designed SDN-

DRLTE, the focus is on the convergence rate and latency 

effect of the algorithm. The study forms a policy network 

consisting of two fully connected layers, with 28 and 14 

neurons in each layer. Simultaneously, a fully connected 

layer is used to process the state of the evaluation 

network and a fully connected layer is taken to process 

the actions of the evaluation network, with 14 neurons 

set. The experimental environment is shown in Table 2. 

In the hardware configuration of the experiment, the 

service is an Intel Xeon Gold 6148 processor, 2.4 GHz, 

20 cores, 256 GB DDR4 memory, 4 TB NVMe SSD 

storage, and 100 Gbps network interface card. In the 

software configuration, the operating system is Ubuntu 

20.04 LTS, the SDN controller is Ryu SDN Framework, 

the network simulator is Mininet 3.0.0, the DL 

framework is TensorFlow 2.0, and the programming 

language is Python 3.8. The important parameters set in 

the study are N=1200, b=52, n=4, and T=12. α=0.6. This 

value usually strikes a balance between exploration and 

utilization, neither converging too quickly to suboptimal 

strategies nor being too conservative. β=0.5. This value is 

selected based on experimental results and the 

characteristics of network traffic control problems, 

aiming to balance short-term and long-term rewards. The 

model is simulated on two network topologies, namely 

the Network Simulation Framework for ET (NSFNET) 

and the Particle Experiment Network Topology. 18 

OllyDbg (OD) pairs for selecting the shortest path in 

each topology, and 100 different streams for computer 

ports are set. The initial traffic window is [15, 35]Mbps. 

Three commonly used methods are compared with the 

SDN-DRLTE traffic control algorithm based on DRL, as 

shown in Table 3. 

Table 2: Computer network traffic control experimental environment. 

 Decision-making Controller Forwarding layer 

Host configuration 

Memory: 300GB 

Hard drive: 15T 

Cores: 8 

Memory: 300GB 

Hard drive: 15T 

Cores: 8 

Memory: 300GB 

Hard drive: 15T 

Number of cores: 8 

Simulation Select Ryu Mininet 

Number of neurons N/A 42 14 

Activation function / / sigmod 

 

Table 3: Experimental comparison method. 
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Experimental methods Algorithm description Advantage Disadvantages 

Shortest Path (SP) 

Each OD pair uses the 

shortest path to transmit 

traffic 

The algorithm is simple, 

the computational cost is 

low, and it performs well 

in static network 

environments. 

Not considering link load 

may result in some links 

being overloaded while 

others are idle. 

Load Balance (LB) 

Each OD evenly transmits 

traffic on a transportable 

path 

Effectively avoiding single 

link overload and 

improving overall network 

throughput. It performs 

well in multipath 

environments. 

For rapidly changing 

network environments, 

dynamic adjustments may 

have delays and responses 

may not be timely enough. 

DDPG Based on TE 

(DDPG-TE) 

Each OD is generated 

using the original DDPG 

algorithm 

The TE scheme controls 

traffic. The parameters and 

network structure are the 

same as SDN-DRLTE 

Capable of handling 

complex network 

environments, with strong 

adaptability and the ability 

to adjust strategies in real-

time. 

A large amount of 

computing resources are 

required, and there may be 

delays in environments 

with high real-time 

response requirements. 
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Figure 7: Average end-to-end rate on different topologies. 

The reason for choosing SP as the baseline is that it 

represents the most fundamental method in network 

routing. It is easy to implement, and has low 

computational costs. The network topology node is set to 

14, with a link capacity between 100 Mbps and 1 Gbps, 

and a traffic demand between 10 Mbps and 100 Mbps. 

LB is chosen as the baseline because it represents a 

simple traffic allocation strategy that reduces network 

congestion by evenly distributing traffic. The network 

topology is the same as SP, with a fixed traffic 

requirement of 50 Mbps for each node pair. DDPG-TE 

combines deep deterministic policy gradients and traffic 

engineering, providing a RL solution similar to SDN-

DRLTE but not fully optimized. The network topology 

remains the same, with traffic requirements ranging from 

10 Mbps to 200 Mbps. When evaluating the performance 

of various methods, two key performance indicators are 

used: the sum of the rate and latency of all OD pairs 

within a single time step, and the sum of the accumulated 

rewards for all time steps throughout the entire turn. 

After training the policy network, the experimental 

results are obtained by running it for 10 rounds and 

calculating the average. This helps to visually display the 

applicability and performance of various methods in 

different network environments, ensuring the stability 

and reliability of the evaluation. 

The end-to-end average rates of the four algorithms 

obtained from the experiment on NSFNET and particle 

experiment network topology are shown in Figure 7. 

In Figure 7, when the demand for each OD rate 

increased, the overall average transmission rate showed a 

downward trend. From Figure 7 (a), when using the 

NSFNET topology, the SP algorithm had the fastest rate 

drop, followed by the LB, DDPG-TE, and SDN-DRLTE 

algorithms, all of which had the lowest average rate drop 

when the rate requirement reached 50 Mbps. The SDN-

DRLTE algorithm has a higher average network rate 

compared with other algorithms. It is because the SP 

algorithm only considers the shortest path and ignores 

the current load condition of the link, which may cause 

some links to overload under high load, thereby 

significantly reducing the overall speed. From Figure 7 

(b), the performance of each algorithm on the particle 

experiment network topology is roughly the same as on 

the NSFNET topology, but with a higher starting rate. 

The results indicate that the rate reduction of SDN-

DRLTE is significantly smaller than other methods. This 

is because SDN-DRLTE can dynamically adjust traffic 



184 Informatica 49 (2025) 175–188 C. Yang et al. 

allocation strategies based on real-time network 

environments, thereby reducing performance degradation 

caused by resource bottlenecks. In actual data center 

networks, faced with high-density traffic and complex 

traffic patterns, SDN-DRLTE algorithm can adjust traffic 

allocation in real-time, optimize network resource 

utilization, reduce congestion points within data centers, 

and improve overall network efficiency. In the context of 

the Internet of Things, SDN-DRLTE improves the 

utilization efficiency of network resources, reduces the 

need for additional hardware, and lowers deployment and 

operational costs. The end-to-end average latency of the 

four algorithms on NSFNET and particle experiment 

network topology is shown in Figure 8. 

In Figure 8, as the demand for network speed 

increased, the overall latency also increased. From Figure 

8 (a), under the NSFNET topology, the overall latency 

increase of LB was the highest, the average latency 

difference between LB and DDPG-TE was not 

significant. The latency increase of SDN-DRLTE was 

the least, only at 6.3%. The reason is that the LB 

algorithm may not be able to respond quickly to changes 

in link state when facing network attacks, resulting in 

delayed traffic reallocation and increased latency. From 

Figure 8 (b), the overall performance trend on the 

topology of the particle experimental network was also 

roughly the same. Compared with other algorithms, 

SDN-DRLTE significantly reduced the average end-to-

end latency. This indicates that SDN-DRLTE effectively 

alleviates network congestion and reduces packet waiting 

time through its intelligent decision-making and traffic 

optimization mechanism, thereby achieving excellent 

performance with low latency even under high rate 

requirements. In data center environments, low latency is 

crucial for maintaining service responsiveness and 

reliability. SDN-DRLTE algorithm reduces network 

latency through intelligent decision-making, which is 

particularly important for applications that require fast 

data transmission. In the context of the Internet of 

Things, data security and transmission reliability are 

crucial. 
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Figure 8: Average end-to-end latency on topology. 

SDN-DRLTE algorithm optimizes traffic control latency, 

reduces potential attack surfaces, and ensures the 

stability and reliability of critical communication. Then, 

the algorithm performance is tested under different traffic 

loads of low, medium, and high to evaluate its 

adaptability and efficiency under different load 

conditions. The performance of SDN-DRLTE algorithm 

under different traffic loads is shown in Table 4. 

According to Table 4, SDN-DRLTE algorithm 

exhibited excellent performance and stability under 

different traffic load conditions. Under low load 

conditions, the network achieved the highest average 

throughput and lowest latency, with extremely low 

packet loss rate and moderate network utilization. This 

demonstrates that the algorithm can effectively utilize 

network resources without causing overload. With the 

increase of traffic load, although the throughput slightly 

decreases and the latency and packet loss rate increase, 

SDN-DRLTE algorithm can still maintain high network 

utilization and excellent algorithm adaptability. This 

indicates that the algorithm can adapt to different load 

conditions, maintain efficient network operation, and 

maintain good performance even under high load 

conditions. Then, the network simulation tool NS-3 is 

used to create a dynamically changing network 

environment. The performance evaluation of the DN-

DRLTE algorithm under dynamic network changes is 

shown in Table 5. 

In Table 5 the SDN-DRLTE algorithm exhibited 

good robustness in dynamic network changes. Whether it 

is link failures, sudden traffic, changes in user behavior, 

or network attack simulations, algorithms can quickly 

adapt to these changes, maintaining high throughput and 

low latency. Although the packet loss rate has increased 

in some cases, the network utilization rate still remains at 

a high level. This indicates that the algorithm can 

effectively manage and allocate network resources to 

cope with emergencies. The rapid recovery of adaptation 

time demonstrates the algorithm's ability to respond 

quickly in emergency situations such as network attacks 

and link failures. Overall, the performance of SDN-

DRLTE algorithm under dynamic network changes 

demonstrates its practicality and reliability in practical 

network environments, ensuring stable and efficient 

operation of the network in various unexpected events. 
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Table 4: Performance under different traffic loads. 

Traffic load 
Average throughput 

(Mbps) 

Average latency 

(ms) 

Packet loss rate 

(%) 

Network 

utilization rate (%) 

Algorithm 

adaptability 

Low load 950 2 0.1 50 Excellent 

Medium load 890 5 0.3 60 Excellent 

High load 780 10 0.5 75 Excellent 

Table 5: Performance under dynamic network changes. 

Network 

dynamics 

Average 

throughput 

(Mbps) 

Average 

latency (ms) 

Packet loss 

rate (%) 

Network 

utilization rate 

(%) 

Adaptation 

time (s) 

Algorithm 

robustness 

Link failure 950 5 0.20 65 10 Excellent 

Sudden traffic 980 4 0.10 70 8 Excellent 

Changes in 

user behavior 
960 3 0.15 68 12 Excellent 

Network attack 

simulation 
920 6 0.25 60 15 Excellent 
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(b) Sum of one round rewards on particle 

experiment network topology
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Figure 9: Sum of rewards for one round on topology. 

4.2 Actual improvement results of traffic 

control based on SDN-DRLTE 

After analyzing the effectiveness of the SDN-DRLTE 

algorithm, to further verify its performance and 

advantages in practical applications, a series of 

experimental tests and improvement result analysis are 

conducted. This process is crucial to ensure that the 

algorithm can achieve the expected results in actual 

deployments. The experiment collects various 

performance indicators data during the experimental 

process using network analysis tools, log systems, and 

specialized testing tools. The reward results and 

algorithm improvement results of each algorithm are 

analyzed. Firstly, Confidence interval estimation is 

performed. Under the same conditions, each algorithm is 

subjected to multiple experiments to collect sufficient 

data points. Then, their average reward value and 

standard deviation are calculated. A normal distribution 

is used to construct a confidence interval for the average 

reward value. The sum of one round rewards for four 

algorithms on NSFNET and particle experiment network 

topology is shown in Figure 9. 

 

From Figure 9, in the reward values of each round, all 

algorithms decreased as the rate increased. From Figure 9 

(a), under the NSFNET topology, the reward values of all 

algorithms showed a downward trend, with SP 

decreasing the fastest. SDN-DRLTE was more stable 

compared with other algorithms. From Figure 9 (b), the 

downward trend on the particle experimental network 

topology was similar to that under the NSFNET 

topology. Each algorithm had a faster descent rate and a 

higher initial reward value. The average reward value of 

SDN-DRLTE was 12.2%, 18.6%, and 6.8% better than 

LB, SP, and DDPG-TE. The confidence interval was 

[6.5%, 18.9%]. At a 95% confidence level, the p-value of 

the t-test was 0.03. From the reward results, with the 

dynamic changes in traffic demand, the adjustment of 

SDN-DRLTE appeared relatively slow. SDN-DRL could 

actively learn and adapt to changes in the network 

environment, making decisions through its built-in policy 
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network. This process not only involves a deep 

understanding of the current network state, but also 

involves predicting future traffic trends and generating 

corresponding optimization strategies. The training 

process of DRL algorithm on NSFNET and particle 

experiment network topology is shown in Figure 10. 

(a) Training process of DRL algorithm 

on NSFNET topology
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(b) Training process of DRL algorithm on 

particle network topology
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Figure 10: The training process of DRL algorithm on topology. 

From Figure 10, the SDN-DRLTE algorithm had a 

faster convergence speed and higher reward value 

compared with the DDPG-TE. According to Figure 10 

(a), as the number of iterations increased, the reward 

values of both algorithms showed a relatively stable 

fluctuation state within 3000 iterations. The fluctuation 

of DDPG-TE algorithm may be a natural phenomenon 

that occurs when the algorithm seeks the best balance 

between exploration and utilization. The fluctuation of 

SDN-DRLTE algorithm may reflect the trade-off 

between algorithm exploration and utilization. In the 

early stages of training, algorithms may focus more on 

exploration to understand the environment and find better 

strategies. However, when the number of iterations 

reached 3000, there was a significant change in the 

reward values. SDN-DRLTE algorithm showed a sudden 

increase in reward values. This trend continued to persist 

in the subsequent iteration process, ensuring that the 

reward value of the SDN-DRLTE algorithm remained at 

a higher level. In Figure 10 (b), regardless of how the 

iteration increases, the reward value of the DDPG-TE 

exhibited a relatively stable fluctuation, with roughly the 

same upward and downward trends. The reward value of 

the SDN-DRLTE algorithm suddenly increased when the 

number of iterations reached around 4,000. With the 

flexibility of SDN and the intelligence of DRL, SDN-

DRLTE algorithm can more effectively cope with 

complex and changing network environments, achieving 

efficient and intelligent traffic engineering optimization. 

With the flexibility of SDN and the intelligence of DRL, 

the adaptive characteristics of SDN-DRLTE algorithm 

can more effectively cope with complex and changing 

network environments. Especially in data center 

networks and IoT environments, SDN-DRLTE algorithm 

can easily adapt to changes in network size and 

environment, and automatically adjust traffic control 

strategies to maintain network performance. 

5 Discussion 
The study aims to establish a SDN traffic control model 

and design an SDN-DRLTE algorithm based on DRL. 

Compared with the DRL combined simulated annealing 

algorithm proposed by Kosanoglu F et al [12], this 

algorithm can further improve computational efficiency. 

The reason is that the proposed algorithm focuses on 

network traffic control, which can improve network 

performance and resource utilization. Compared with 

SDN resource utilization method proposed by Bhardwaj 

S [14], the model proposed in this paper can deeply 

analyze performance, reduce network latency, and avoid 

congestion. The reason is that the model in this article 

achieves intelligent control and optimization of network 

traffic through DRL technology. The end-to-end 

experiments show that as the demand for speed increases 

among various ODs, the average network speed of the 

SDN-DRLTE algorithm is higher compared with other 

algorithms. SDN-DRLTE can dynamically adjust traffic 

allocation strategies based on real-time network 

environments, thus reducing performance degradation 

caused by resource bottlenecks. In the delay experiment, 

with the increase of network speed requirements, the 

delay of SDN-DRLTE increased the least, only at 6.3%, 

effectively alleviating network congestion. The average 

reward value of SDN-DRLTE was 12.2%, 18.6%, and 

6.8% better than LB, SP, and DDPG-TE algorithms. 

SDN-DRLTE can actively learn and adapt to changes in 

the network environment. In the comparison of reward 

values, when the number of iterations reached 3,000, the 

reward value of SDN-DRLTE algorithm suddenly 

increased, indicating that the algorithm can more 

effectively cope with complex and changing network 

environments. In summary, combining the technical 

characteristics of DRL and SDN, the computer network 

traffic control algorithm has shown significant 

performance improvement and advantages in practical 

applications. This model is not only suitable for specific 

network environments, but also can be extended to 
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various complex network environments and traffic 

patterns due to its adaptive learning ability based on 

DRL, providing a more efficient and intelligent network 

traffic management solution. 

6 Conclusion 
A DRL-based SDN-DRLTE algorithm was developed to 

address the traffic control in computer networks. The 

DRL algorithm process was combined with Markov 

stochastic process decision-making. When the form of 

policy rules was uncertain, the DRL algorithm was used 

to select the optimal performance policy. Meanwhile, the 

offline policy training method of Off policy random 

action exploration was adopted. SDN was introduced to 

build SDN architecture to enhance the flexibility of the 

network. The DDPG was taken to solve the continuous 

control problem in computer networks, establishing a 

DRL-based SND flow control model to achieve flow 

scheduling and control. Finally, the SDN-DRLTE flow 

control algorithm was obtained. According to the 

research results, in terms of algorithm performance, the 

rate drop of SDN-DRLTE was significantly smaller than 

other methods. The average dropped to the lowest when 

the rate requirement reached 50Mbps. Compared with 

bother algorithms, SDN-DRLTE significantly reduced 

the average end-to-end latency. As for the practical 

application effect, the average reward of SDN-DRLTE 

was optimized by 10%. When the number of iterations 

reached around 2,800, the convergence speed and reward 

value increased significantly, and continued to maintain 

high reward values in subsequent iterations. The research 

results indicate that SDN-DRLTE algorithm far exceeds 

traditional algorithms in terms of computational speed, 

latency, and practical application effectiveness, and has 

stronger learning and adaptability capabilities. However, 

there is still a lack of consideration for algorithm training 

under changes in algorithm inputs. In the future, fixing 

the algorithm inputs can be eliminated to achieve a more 

comprehensive flow control effect. Extensive 

experimental results in different network environments, 

traffic loads, and application scenarios have shown that 

the SDN-DRLTE algorithm has stronger learning and 

adaptability in terms of computational speed, latency, 

and practical application effectiveness. When the input of 

the algorithm changes, such as changes in network 

topology, traffic patterns, or external environmental 

interference, the algorithm performance may be affected. 

Subsequently, the robustness of the algorithm can be 

enhanced, and its strategy can be quickly adjusted to 

cope with the changes to achieve a more comprehensive 

traffic control effect. 
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