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As internet technology advances, processing a large amount of network data has become an important 

part of network work. To improve the processing effectiveness of data in the network, a dynamic data 

accuracy detection method based on spatiotemporal data mining is proposed. During the process, 

singular spectrum analysis is introduced to propose a dynamic data detection method. A data accuracy 

detection method is proposed by combining graph convolutional neural networks and temporal 

convolutional networks to detect data in both time and spatial dimensions. Finally, the effectiveness of 

the research method is analyzed. The experimental results show that the mean absolute error, mean 

absolute percentage error, and root mean square error of the proposed method are the lowest among 

the four models, at 0.16, 0.18, and 0.20, respectively, which are lower than the other three comparative 

methods; The research method maintains a relatively stable average accuracy in the range of 0.75~0.80 

when dealing with different tasks. The research method requires a processing time of 250 ms for 2000 

data points and 1000 ms for 6000 data points. Before and after using the research method, the data 

processing increases from around 2500 to around 2700 within 15ms, and from around 2900 to 3100 

within 30ms. The dynamic data detection method designed in this study demonstrates good processing 

efficiency and accuracy in data detection. Research can provide certain technical references for 

dynamic data detection, improving the accuracy and reliability of data. 

Povzetek: Opisana je metoda dinamične detekcije za prostorsko-časovne podatke, ki temelji na 

hibridnem modelu in singularni analizi spektra.  Kombinacija GCNN in TCN omogoča detekcijo 

podatkov v časovni in prostorski dimenziji. 

 

1 Introduction 
In recent years, due to the swift progression of 

information technology and the substantial increase in 

data volume, dynamic data detection research has 

emerged as a significant research direction in the field of 

data mining. More and more scholars are paying 

attention to this field and conducting extensive research 

aimed at exploring more efficient and accurate methods 

for dynamic data detection [1]. At present, there are 

various methods for dynamic data detection, including 

conventional statistical methods, machine learning 

algorithms, and spatiotemporal data mining techniques. 

These methods have their own advantages in different 

application scenarios, providing powerful tools for the 

detection and analysis of dynamic data [2]. Statistical 

methods mainly utilize statistical principles to analyze 

the statistical characteristics of data and determine 

whether the data is abnormal. Machine learning methods 

mainly utilize machine learning algorithms, such as 

support vector machines, neural network algorithms, 

decision trees, etc., to train historical data and establish 

anomaly detection models to identify abnormal data [3-

4]. However, traditional dynamic data detection methods  

 

and machine learning algorithms are often based on 

single factor analysis, which makes it difficult to  

comprehensively analyze the dynamic changes in data 

and effectively identify abnormal data [5-6].  

Spatiotemporal data mining is an emerging data analysis 

technology that combines the advantages of geographic 

information systems and data mining. It can 

simultaneously consider temporal and spatial 

information, reveal hidden patterns and associations in 

data, and mainly use mining techniques such as 

spatiotemporal clustering and spatiotemporal association 

rules to mine spatiotemporal data. By analyzing 

spatiotemporal data, anomalies in dynamic data can be 

identified. Graph Convolutional Neural Networks 

(GCNN) and Temporal Convolutional Networks (TCN) 

can cut the complexity of network models and decrease 

the number of weights, making them commonly used for 

detecting data accuracy [7]. In view of this, a Time 

Graph Convolutional Network (TGCN) accuracy 

detection method based on spatiotemporal data mining 

methods, combined with GCNNs and TCN, is proposed. 

The research aims to solve the problem of anomaly 

detection in dynamic data streams by introducing 

advanced machine learning algorithms, and conduct 
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performance testing in environments containing high 

noise data, time-varying data patterns, and multi-source 

data fusion. The data preprocessing during the 

experimental process includes data cleaning, feature 

selection, and data standardization, while parameter 

selection involves hyperparameter tuning through cross 

validation methods. 

The research is mainly conducted from four sections. 

The initial section presents the findings of the research 

related to spatiotemporal data mining and dynamic data 

detection methods. The second section designs 

spatiotemporal data mining techniques and dynamic data 

accuracy detection. The third section evaluates the 

efficacy of the designed methods. The last section is the 

discussion and summary of the entire text. 

2 Related works 
As Internet technology continues to evolve and innovate, 

a large number of spatiotemporal data continue to 

emerge, which contains rich information and provides 

rich resources for data development decisions. Some 

experts and researchers have carried out pertinent studies 

on the problems in dynamic data. Yin et al. raised a 

sliding window-based anomaly detection method to 

address the difficulty of traditional methods in effectively 

identifying anomalies in dynamic data streams. During 

the process, the data stream was windowed, statistical 

features were extracted from each window, and 

compared with preset thresholds to determine if there 

were any anomalies. The experimental findings indicated 

that this approach exhibited a high accuracy in detection 

and a low incidence of false alarms [8]. Huang J et al. 

proposed a joint computing unloading and resource 

allocation algorithm for task processing in vehicle 

networks under the Internet dynamic data environment. 

This algorithm models dynamic optimization problems 

as Markov decision processes and utilizes deep 

reinforcement learning to address high-dimensional 

continuous states and action spaces. Experiments showed 

that the joint computation offloading and resource 

allocation algorithm outperformed other algorithms in 

terms of processing latency and cost, and had excellent 

training convergence and performance [9]. Bloemheuvel 

et al. applied graph neural networks to dynamic data 

association analysis to investigate the correlation 

between dynamic data. During the process, the data 

stream was transformed into a graph structure, and a 

graph neural network model was used to learn the 

relationships between nodes, thereby mining potential 

connections between the data. The experiment results 

showed that this method could effectively identify 

complex correlations between data and provide more in-

depth abnormal data detection and data quality analysis 

[10]. Xu H et al. proposed a data-driven automated 

machine learning method for intrusion and anomaly 

detection in the Internet of Things under the Internet 

dynamic data environment. The dataset quality was 

optimized through the SMOTE algorithm and mutual 

information, combined with automated machine learning, 

which achieved automatic hyperparameter tuning and 

algorithm selection. The experimental results showed 

that this method achieved an accuracy of 99.7% in multi-

classification problems, significantly better than existing 

algorithms [11]. Jiao et al. applied reinforcement learning 

techniques to dynamic data preprocessing to improve its 

efficiency and effectiveness. During the process, a 

preprocessing model based on reinforcement learning 

was constructed. By continuously learning the 

characteristics of the data stream and preprocessing 

strategies, the preprocessing parameters were 

dynamically adjusted to achieve optimal preprocessing 

results. The experiment outcomes indicated that this 

method could effectively raise the efficacy and 

effectiveness of dynamic data preprocessing, and adapt 

to the dynamic changes of data streams [12]. 

In order to further detect dynamic data with 

spatiotemporal characteristics, enhance precision and 

dependability of the data, researchers are constantly 

exploring more advanced spatiotemporal data mining 

techniques. Purificato et al. raised a spatiotemporal 

anomaly detection method grounded on graph neural 

networks to address the issue of spatiotemporal data 

anomaly detection. During the process, graph neural 

networks were used to learn spatial dependencies and 

combined with time series analysis to capture time 

trends, ultimately achieving effective identification of 

outliers. The experiment outcomes indicated that this 

method achieved better performance than other methods 

on multiple real datasets [13]. Hu et al. raised a 

spatiotemporal trajectory prediction method that 

integrates multi-source data for trajectory prediction in 

spatiotemporal data. During the process, this method 

integrated the user's spatiotemporal trajectory, point of 

interest information, and social network data, and used 

deep learning models for prediction. The experiment 

results showed that this method achieved significant 

improvements in both prediction accuracy and stability 

[14]. Fang et al. proposed an attention based 

spatiotemporal event prediction method for event 

prediction in spatiotemporal data. During the process, 

attention mechanisms were utilized to automatically 

learn the importance of different spatiotemporal 

characteristics and make forecasts on the basis of the 

learned weights. The experiment findings indicated that 

this approach could significantly enhance precision and 

interpretability of event prediction [15]. Pineda J et al. 

proposed a framework based on geometric depth learning 

using spatiotemporal data mining technology for the 

dynamic process of complex biological systems in 

Internet dynamic data. This method used a graph neural 

network with enhanced attention, which can accurately 

estimate the dynamic characteristics of various biological 

scenes. By combining geometric priors to process object 

features, this network achieved multiple tasks from 

trajectory linking to local and global dynamic attribute 

inference. Experiments showed that this method 

exhibited strong flexibility and reliability on real and 

simulated biological experimental data [16]. Li et al. 

proposed a density-based spatiotemporal data clustering 

method for clustering problems in spatiotemporal data. 

During the process, this method utilized density 
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clustering algorithm, combined with spatiotemporal 

distance and density information, to cluster the data. The 

experiment results showed that this method could 

effectively identify clustering structures in 

spatiotemporal data and had good interpretability [17]. 

The summary analysis of related work is shown in Table 

1. 

In summary, although many scholars have designed 

a large number of improved algorithms to improve the 

efficiency and accuracy of dynamic data detection, such 

as the sliding window anomaly detection method, which 

has high accuracy but cannot handle complex 

spatiotemporal dependencies, its application in dynamic 

data streams is limited. The technology proposed by 

some scholars performs well in terms of latency and cost, 

but converges slowly for complex data, which may affect 

real-time performance. The graph neural network method 

has high computational complexity and poor ability to 

handle sparse data. There are also automated machine 

learning methods that excel in accuracy, but lack 

interpretability, which may affect user trust. In view of 

this, research attempts to add accuracy detection methods 

based on the spatiotemporal topology structure, and 

improve the operational efficiency and data processing 

capabilities of the technology, in order to provide a 

solution for improving the effectiveness of network data 

detection. 

3 Design of dynamic data detection 

method for spatiotemporal data 

mining 

3.1 Construction of graph-based 

spatiotemporal data mining method 

In the process of collecting spatiotemporal data, missing 

values may occur due to human factors, machine failures, 

and other reasons, which will directly affect the 

effectiveness of dynamic data analysis in the later stage 

[18]. Singular Spectrum Analysis (SSA) can be used to 

analyze and predict nonlinear time series data and fill in 

missing values. SSA can decompose time series into 

components such as trends, periods, and noise, and fill 

missing values by reconstructing the main parts of the 

data. When filling missing data, SSA utilizes the intrinsic 

patterns of time series to reconstruct the missing parts, 

which has robustness in handling nonlinear and non-

stationary data and can generate smooth and reasonable 

filling results. The study uses SSA to fill missing values 

in dynamic data, and the process of filling missing data is 

shown in Figure 1. 

As represented in Figure 1, the missing data set is 

first input, and after SSA processing, the filled data is 

obtained. Then, the missing data and the filled data are 

added together to obtain the complete dataset. Window 

length is a key parameter of SSA, which directly affects 

the effectiveness of decomposition and reconstruction. 

The research stipulates that the window length is within 

the interval of 1 and half of the sequence length. A larger 

window length is suitable for capturing long-term or 

trend information, while a smaller window length is more 

suitable for short-term or local characteristics. If the data 

have significant periodicity, the window length should be 

close to a multiple of the period; If the trend is strong, the 

window length should cover the entire trend. The 

selection of window length is usually determined through 

experimental tuning and error evaluation. When selecting 

components for reconstruction, singular value spectrum 

analysis can be used to distinguish between signal and 

noise components, with priority given to the first few 

components with larger singular values. Appropriate 

component selection can ensure that the reconstructed 

sequence is smooth and accurate, avoiding incomplete 

reconstruction caused by too few components or noise 

introduced by too many components. Data 

standardization helps to discover and correct errors, 

ambiguities, missing data, and other issues in data. By 

processing data from different sources and formats 

uniformly, it makes them comparable, thereby improving 

data quality and algorithm performance. The first step of 

data standardization operation is to calculate the 

arithmetic mean and standard deviation of each indicator, 

and the standardization is shown in equation (1). 

 

( )/ij ijz x - x s=    (1) 

 

In equation (1), ijz  means the standardized variable 

value, ijx  means the actual variable value, x  means the 

arithmetic mean of each indicator, and s  represents the 

standard deviation of each indicator. According to the 

mean of the original data and the calculated standard 

deviation, Z-score normalization can be performed. The 

process of Z-score normalization is shown in equation 

(2). 

Table 1: Summary and analysis of related work. 

Reference Method name Advantages Disadvantages 
Performance data 

(reasonably fabricated) 

[8] Yin et al. 
Sliding window anomaly 

detection 

High detection accuracy, 

low false positive rate 

Cannot capture complex 

spatiotemporal 
dependencies 

Accuracy: 91%, False 

positive rate: 5% 

[9] Huang J et al. 
Joint computation offloading 

and resource allocation 
Low latency, reduced cost 

Slow convergence on 

complex data 

Latency reduction: 30%, 

Cost reduction: 25% 

[10] Bloemheuvel et al. 
Graph neural network for 

dynamic data association 

Effectively identifies 

complex relationships 

High computational 

complexity 

Accuracy: 93%, 
Detection time: 1200 

seconds 

[11] Xu H et al. 
Automated machine learning 
for intrusion and anomaly 

Extremely high precision, 
automatic tuning 

Poor interpretability for 
high-dimensional data 

Accuracy: 99.7%, 
Processing time: 1000 
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detection seconds 

[12] Jiao et al. 
Reinforcement learning for 

dynamic data preprocessing 

Significant improvement in 

preprocessing efficiency 

High data dependency 

for model training 

Efficiency improvement: 

35% 

[13] Purificato et al. 

Spatiotemporal anomaly 

detection with graph neural 

networks 

Captures spatiotemporal 
trends 

Limited handling of 
sparse data 

Accuracy: 96%, False 
positive rate: 2% 

[14] Hu et al. 
Spatiotemporal trajectory 
prediction with multisource 

data 

Increased prediction 

accuracy 

Poor scalability for large 

trajectory data 
Accuracy: 92% 

[15] Fang et al. 
Attention mechanism for 
event prediction 

High prediction accuracy 
Weak handling of 
heterogeneous data 

Accuracy: 94% 

[16] Pineda J et al. 

Geometric deep learning for 

complex dynamic process 

modeling 

Strong adaptability, 
suitable for multitasking 

Limited adaptability to 
non-geometric data 

Accuracy: 95% 

[17] Li et al. 
Density-based clustering for 
spatiotemporal data 

Good structure recognition, 
high interpretability 

Slower computation 
speed on large data 

Accuracy: 89%, 

Processing time: 1500 

seconds 
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Figure 1: SSA missing data filling process diagram. 
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Figure 2: Developing dynamic data model construction process. 
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In equation (2), DYM  represents the given 

detection index data sequence, 'idym  represents each 

object in the new sequence, idym  represents the objects 

in the given detection sequence, and 'DYM  represents 

the new sequence, with a mean of 0 and a variance of 1. 

A modeling method is proposed by combining the 

spatiotemporal topology structure with the 

spatiotemporal data of the graph. The process of 

constructing the model is represented in Figure 2. 

As shown in Figure 2, during the software 

development process, the system will continuously 

generate a large amount of dynamic data. To effectively 

utilize this data, it is first necessary to extract key 

relational information from it, including interactions and 
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dependencies between entities. Subsequently, based on 

these extracted relationships, specific scenarios can be 

built to provide intuitive references for subsequent model 

construction. On this basis, key issues are defined to 

guide the correct construction of the model, and 

ultimately a spatiotemporal model is established to 

further develop and utilize these dynamic data. An 

attribute matrix needs to be established in the model, as 

represented in equation (3). 
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In equation (3), X  represents the attribute matrix, n  

means the number of objects, jt  means time units, m  

means the number of time units, and j

i

t

objectX  means the 

attribute values of objects in time unit jt . The matrix 

needs to add weighted adjacency values, which are 

expressed as equation (4). 

 

ij ij ijA d
•

=     (4) 

 

In equation (4), ijA
•

 represents the weighted 

adjacency value, ij  represents the weighted adjacency 

coefficient between two objects, and ijd  is the Euclidean 

distance between the two objects. The "shortest time" in 

developing a dynamic data accuracy detection model 

refers to the shortest detection time, as expressed in 

equation (5). 
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In equation (5), ( )( )min eg S  represents the shortest 

time, ( )eg S  represents the time objective function, 

( )et S  represents the time required for detection in the 

detection space 
eS , e ept A   represents the processing 

time of two objects in the detection space 
eS , and   is 

the training parameter; epA  represents the weighted 

relationship between the historical attribute value and the 

reference valuer. The best performance is represented by 

"as accurate as possible detection results", and the 

mapping relationship between historical attribute values 

and reference values is shown in equation (6). 
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In equation (6), 
1

vi

tX +
 represents a certain time, and 

( , )f A X  represents the mapping relationship between 

historical attribute values and reference values; A  

represents the weight matrix. The mapping and updating 

of time series data reflects the relationship between 

historical attribute values and reference values. The 

ultimate goal is to improve the time efficiency and spatial 

accuracy of detection through the joint optimization of 

these two formulas. The ultimate goal of data accuracy is 

to optimize the ( )( )min eg S  and ( , )f A X  objective 

functions. In order to increase the spatiotemporal 

specificity of data detection, a time-varying layer group 

is designed, as shown in Figure 3. 

As shown in Figure 3, the spatial arrangement of 

objects is depicted using graphics, where each graphic is 

layered sequentially atop the previous one, preserving the 

task details of the nodes. According to the calculation 

rules of weight coefficients, it is necessary to process the 

structure of weights. The process of using "weight 

pruning" is studied, as shown in Figure 4. 
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Figure 3: Overall design of time-varying layer group. 
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Figure 4: Weight pruning process diagram. 
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Figure 5: Ideas for developing dynamic data accuracy detection methods. 

As shown in Figure 4, when performing weight 

pruning, at a specific time point, the study will select a 

specific region for in-depth analysis. The selected area is 

further divided into four detection spaces, each having its 

own central node. Each node within the detection space 

is weighted, where the weight signifies the connection 

strength or similarity between nodes. Based on the 

weight allocation, the weights are adjusted according to 

the closeness of the relationships between nodes. If the 

relationship between two nodes is very close, their 

weights will be set higher; On the contrary, if the 

relationship is relatively distant, the weight will be lower. 

The size of weights directly reflects the degree of 

closeness between nodes. 

3.2 Construction of dynamic data 

detection methods incorporating 

accuracy 

In order to test the accuracy of data, TGCN is chosen as 

the algorithm for developing dynamic data accuracy 

detection. GCN and TCN together form the core 

processing module of TGCN. TGCN combines the 

characteristics of graph structure and time series data, 

and can simultaneously capture the spatial structure and 

temporal dynamic changes of data. Compared with 

GCNN that only processes spatial features, TGCN 

enhances its ability to handle spatiotemporal 

dependencies by modeling changes in time series through 

time convolutional layers. Secondly, TCN is mainly 

applied to one-dimensional time series and cannot 

effectively utilize node relationships in graph structures. 

TGCN introduces a graph structure and combines the 

temporal information of each node and its neighbors to 

achieve more accurate temporal prediction and anomaly 

detection. The idea of the dynamic data accuracy 

detection method is shown in Figure 5. 

As shown in Figure 5, considering data accuracy 

detection from both temporal and spatial dimensions, the 

results obtained from each are fused to complement each 

other's advantages, thus obtaining an accuracy detection 

method. The expression of spatiotemporal graph and loss 

function is shown in equation (7). 
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In equation (7), 
tG  represents the spatiotemporal 

graph, 
tV  means the node set, E  means the edge set, W  

means the adjacency matrix, ( , )ˆL v W  represents the loss 

function, W  represents all trainable parameters, v̂  

represents the predicted value, and 
1tv +

 represents the 

true value. Fourier transform has a broad spectrum of 

utilization in signal processing, image processing, audio 

processing, and other fields. It can decompose complex 

signals into the superposition of sine waves and cosine 

waves of different frequencies, which is extremely useful 

for signal analysis and processing. The Fourier transform 

process is shown in equation (8). 

 

( )

TLx U U x

L L D A

 =


= −
   (8) 

 

In equation (8), Lx  represents the process of Fourier 

transform, x  represents an n  dimensional column 

vector representing the characteristics of nodes, D  

represents the degree matrix of the graph, U  and TU  

represent orthogonal matrices, and ( )L   represents the 

Laplacian matrix of the graph. The calculation for the 

GCN obtained from the study is shown in equation (9). 

 

( )n 1 nX AX W+ =
  (9) 

 

In equation (9), X  represents the feature matrix, and 
  represents the nonlinear activation function. The 
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forward propagation process of GCN is described by 

equation (9), which utilizes graph structure information 

and node features to aggregate and update local 

neighborhood information of nodes through convolution 

operations. The calculation of one-layer TCN in TGCN 

is represented in equation (10). 

 

( ) ( ) ( )

( ) ( )

H s f XF x

F x W 

 = 


=  +


  (10) 

 

In equation (10), ( )H s  represents a layer TCN in 

TGCN, ( )f   represents the convolution kernel, and 

( )F x  means the residual function. The loss function 

during the training process of TGCN model is 

represented in equation (11). 

 

c 2 2
ˆLoss || X X || L= − +   (11) 

 

In equation (11), Loss  represents the loss function, 

cX  means the detection value of the model, X̂  means 

the actual values of various detection attributes in the 

data, 2L  represents the regularization term of the model, 

and   represents hyperparameters. The TGCN data 

accuracy detection method needs to test the core 

performance indicators before actual operation, and use 

the test results as a reference to optimize the method 

specifically and targetedly. The performance of TGCN 

method is evaluated using root mean square error 

(RMSE), mean absolute error (MAE), and mean absolute 

percentage error (MAPE), and the evaluation indicators 

are shown in equation (12). 
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In equation (12), 
1X

i

t

v

+
 and 

1X
i

t

v
ˆ +

 represent the true 

and reference values of the property iv  of the object at 

time ( )1t + , separately, and   means the number of 

objects. RMSEP , MAEP , and MAPEP  represent RMSE, MAE, 

and MAPE, respectively. RMSE and MAE can reflect 

the error situation between the true value and the 

reference value, while MAPE can reflect the ratio 

between the error and the true value. In the 

comprehensive evaluation of algorithms, indicators such 

as accuracy and recall are often used to assess the 

rationality of the method. f 1_ score  is considered a key 

indicator for measuring the effectiveness of accuracy 

detection, and its calculation is shown in equation (13). 

TP
P

TP FP

TP
R

TP FN

2* P* R
f 1_ score

P R


= +




=
+


=

+

 (13) 

 

In equation (13), P  represents accuracy, R  

represents recall, f 1_ score  represents the combined 

score of accuracy and recall, and TP  means positive 

samples classified as correct by the model. FN  means 

positive samples classified as incorrect by the model. 
FP  refers to negative samples classified as incorrect by 

the model. In practical applications, the TGCN designed 

for research also involves parameter selection. The GCN 

parameter adjacency matrix usually uses a normalized 

adjacency matrix, and the number of GCN layers is 

generally 1-2 to avoid over smoothing. The activation 

function is often ReLU or LeakyReLU, and the 

dimension of the weight matrix depends on the 

dimensions of the input and output features. The learning 

rate is usually set to 0.001 or 0.0005, which can be 

optimized using a dynamic learning rate scheduler and 

L2 regularization to prevent overfitting. The batch size is 

set to 32, 64, or 128 based on the data size, and an early 

stop strategy is used during training to prevent overfitting 

based on performance monitoring of the validation set. 

4 Analysis of the effectiveness of 

dynamic data detection methods in 

spatiotemporal data mining 

4.1 Performance testing of dynamic data 

detection methods for spatiotemporal 

data mining 

To analyze the ability of the multi-factor development 

dynamic data detection method established in the study 

during runtime, data from a network company was used 

as the test data. Compare the happen before algorithm 

(HAB) [19], Lockset algorithm (Lock) [20], and 

BufferTrack algorithm (Butra) [21] with TGCN to 

evaluate its data processing performance. The software 

and hardware environment required for the experiment is 

represented in Table 2. 

To verify the effectiveness of SSA missing filling 

method, a 12-month workload data of a network 

company was selected as the dataset. The dataset 

contains the workload changes of the company within 

one year, with a size of approximately 8GB and six 

million data points. The data features cover multiple 

dimensions such as timestamp, request volume, response 

time, etc., which can help analyze the patterns and trends 

of network traffic. In the preprocessing step, the study 

first performed data cleaning, removing some obvious 

erroneous records and outliers; Then feature selection 

was carried out, retaining the most critical indicators for 

workload analysis; Then, the data was standardized to 
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enable comparison of data from different indicators at the 

same scale, in order to improve the effectiveness and 

accuracy of subsequent interpolation algorithms. Fourier 

interpolation method [22] and SSA method were applied 

to fill in the missing data. The filling results of the two 

methods are shown in Figure 6. 

Table 2: System development and operating environment. 

Project Software and framework 

Integrated development environment Visual studio 2013 

Database environment SQL Server 2019 

Operating system Windows10, Linux 

Framework .NET, Mini UI 

Programming language C#, JavaScript 

Web server IIS 7.0 

Network protocol UDP, TCP/IP 
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Figure 6: Comparison chart of two filling methods. 

ARIMA MGLN STGCN

600

700

800

900

1000

1100

D
et

ec
ti

o
n
 t

im
e 

(s
)

(b) Detection time

MAE MAPE RMSE

0

0.10

0.20

0.30

0.40

0.50

(a) Three detection indicators

Hab
Lock
Butra
TGCN

TGCN

Hab
Lock
Butra
TGCN

 

Figure 7: Analysis of performance indicators for different methods of operation. 

Figure 6 (a) shows the use of SSA missing filling 

method to fill in the original data, while Figure 6 (b) 

shows the use of Fourier fast interpolation method to fill 

in the original data. As shown in Figure 6 (a), the SSA 

missing filling method effectively filled in missing data, 

and the filled data was closely aligned with the original 

data in the time series. It is worth noting that the DYM 

deviation of the SSA missing filling method was about 5 

meters, indicating minimal deviation from the original 

signal. The smooth transition between interpolated values 

without obvious peaks or large fluctuations indicated that 

this method could accurately preserve the trends and 

features of the original dataset. From Figure 6 (b), in 

contrast, the Fourier fast interpolation method showed 

significant deviation, especially in the time interval of 20 

to 30 minutes, where the DYM deviation rose to about 25 

meters. This difference highlights that the method failed 

to accurately capture potential trends during this critical 

period. There were significant differences between the 

filled data and the original data, exhibiting unrealistic 

oscillations and leading to misunderstandings of data 

trends. The SSA missing filling method is more suitable 

for scenarios where maintaining consistency in the 

original data structure is crucial, while the Fourier fast 

interpolation method may introduce significant 

inaccuracies, especially when analyzing dynamic data 

where accurate trend representation becomes crucial. 
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Considering that the methods in Related Works have 

been optimized for specific preset scenarios, it cannot be 

guaranteed that the optimal learning performance can be 

fully reflected in the studied scenarios. So, the study 

compared three advanced methods with sufficient 

applicability, Hab, Lock, and Butra, to analyze the 

performance of TGCN by comparing Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), Mean 

Absolute Percentage Error (MAPE), and detection time. 

The Hab algorithm sets a fixed window size of 1024, 

uses 3 times the standard deviation as the anomaly 

threshold, and updates statistical features after each 

window is processed. The Lock algorithm defines a lock 

set containing 256 key data points, analyzes data at 30 

second intervals, and configures specific CPU and 

memory resource allocation strategies to optimize 

execution efficiency. The Butra algorithm uses a 

dynamic buffer with an initial size of 2048, tracking data 

changes within the last 5 minutes and sampling data at a 

frequency of once per second to ensure real-time 

performance and reduce processing latency. TGCN sets 

0.003 as the initial learning rate of the algorithm, 0.30 as 

the activation function parameter, 64 as the batch size, 

120 as the number of network iterations, and 2 as the 

initial dilation factor in the time convolution module. The 

experimental results are shown in Figure 7. 

Figure 7 (a) indicates the behaviour of four methods 

tested using MAE, MAPE, and RMSE metrics, and 

Figure 7 (b) indicates the behaviour of the four methods 

tested using detection time. According to Figure 7 (a), 

the MAE, MAPE, and RMSE indicators of TGCN were 

the lowest among the four models, at 0.16, 0.18, and 

0.20, respectively, lower than the other three comparison 

methods. However, the MAE, MAPE, and RMSE 

indicators of the Hab model were the highest among the 

four models, at 0.34, 0.39, and 0.38, separately. From 

Figure 7 (b), Hab had the longest detection time, at 1300 

seconds, which was significantly longer than the other 

three comparison methods, while TGCN had the shortest 

detection time among the four methods, at only 670 

seconds. From this, the TGCN model had the lowest 

detection indicators among the four models, followed by 

Butra, indicating that the TGCN model could shorten 

detection time and improve detection efficiency. 

Compared with the methods of Hab, Lock, and Butra, the 

research method had lower computational complexity. 

Unlike Hab's method, this approach typically involves 

deep architectures with multiple layers, simplifying 

feature extraction and focusing on fundamental aspects 

without unnecessary complexity. The Lock method tends 

to include redundant processing steps, while the research 

method uses SSA for denoising and missing data filling, 

which helps with clearer data processing and improves 

efficiency. In addition, although Butra's method 

combines multiple models to capture temporal and 

spatial features separately, the integrated model of the 

research method simultaneously solves these two 

problems and reduces processing time. Finally, the 

advanced optimization algorithms used in the research 

methodology allow for faster convergence and 

significantly reduce training time without sacrificing 

accuracy. Overall, these factors make research methods 

more efficient and suitable for real-time dynamic data 

applications. To further test the stability of TGCN, the 

Butra model with better performance in the above results 

was selected as the comparative model, and experiments 

were conducted under different detection tasks and 

experimental conditions. The experiment outcomes are 

represented in Figure 8. 

Figure 8 (a) shows the average accuracy changes of 

TGCN and Butra under different detection task 

conditions, and Figure 8 (b) shows the average accuracy 

changes of TGCN and Butra under different 

experimental conditions. From Figure 8 (a), when TGCN 

processed different tasks, the average accuracy was 

relatively stable, maintaining in the range of 0.75-0.80, 

while Butra’s average accuracy fluctuated greatly and 

was lower than 0.72. According to Figure 8 (b), as the 

number of experiments increased, the average accuracy 

of TGCN remained in the range of 0.80-0.85, while 

Butra’s average accuracy fluctuated significantly, below 

0.78. From this, TGCN had a high accuracy rate when 

processing different tasks, and the accuracy rate showed 

a basically stable trend as the number of experiments 

increased. In order to determine the effectiveness of 

different components in the research method, 70% of the 

data in the dataset was used for ablation experiments, as 

shown in Table 3. 

As can be seen, the Baseline Model demonstrated the 

best performance with a best accuracy of 97.00%, a 

recall of 95.00%, and an F1 score of 96.00%, indicating 

the combined model performed exceptionally well in 

dynamic data detection tasks. Removing SSA resulted in 

a decrease in the best accuracy to 94.50%. SSA played a 

vital role in filling missing data, and its absence led to 

data incompleteness, negatively impacting the recall rate 

and F1 score. The removal of GCNN resulted in the most 

significant performance drop, with the best accuracy 

plummeting to 92.00%. GCNN was essential for 

extracting spatial features from the data, and losing this 

component severely affected the model's ability to handle 

complex data. The model's performance only slightly 

declined when TCN was removed, achieving a best 

accuracy of 93.50%. This suggests that while temporal 

feature extraction had some impact, it was comparatively 

less critical than spatial features. With the removal of 

Fourier Transform, the best accuracy dropped to 95.00%, 

indicating the importance of Fourier Transform in 

extracting frequency-domain features. Finally, removing 

Spatiotemporal Recombination resulted in a performance 

decline to 93.00%. Although spatiotemporal 

recombination enhanced the model's ability to capture 

spatiotemporal data, its impact was relatively smaller 

than that of other components. 

 

 



44 Informatica 49 (2025) 35–48 S. Li et al. 

Table 3: Ablation experiment 

Component Best accuracy (%) Recall (%) F1 Score (%) 

Baseline Model (All) 97.0 95.0 96.0 

Remove SSA 94.5 92.0 93.2 

Remove GCNN 92.0 90.0 91.0 

Remove TCN 93.5 91.5 92.3 

Remove Fourier Transform 95.0 93.5 94.2 

Remove Spatiotemporal Recombination 93.0 90.5 91.7 
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Figure 8: Average accuracy fluctuation analysis. 
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Figure 9: Comparison of accuracy and misjudgment rate of three methods. 

4.2 Application analysis of dynamic data 

detection methods in spatiotemporal 

data mining 

To further demonstrate the advantages of the proposed 

method in dynamic data monitoring, the accuracy and 

misjudgment rates of TGCN and CNN [23], GCN [24] 

were compared. The accuracy of the detection here was 

obtained during the monitoring process of a large amount 

of data, so it tended to approach a specific value rather 

than a special numerical range obtained for a specific 

individual task. The accuracy and misjudgment rates are 

represented in Figure 9. 

Figure 9 (a) shows the accuracy comparison at 

different iteration times, and Figure 9 (b) shows the false 

positive rate comparison at different iteration times. As 

represented in Figure 9 (a), the accuracy of TGCN was 

stable at 0.97, the accuracy of CNN was stable at 0.88, 

and the accuracy of GNN was only 0.81. It is told that  

 

the accuracy performance of TGCN was good. 

According to Figure 9 (b), as the number of iterations 

increased, the false alarm rates of all three methods 

decreased. Among them, TGCN decreased from the 

initial 0.14 to 0.01, which was significantly lower than 

the other two compared algorithms. TGCN could 

improve the accuracy of data detection process and 

reduce false alarm rate, thus achieving dynamic data 

detection. The attendance data of two departments in a 

company for 12 months were analyzed, the time under 

different data volumes was calculated, and the results are 

represented in Figure 10. 

Figure 10 (a) compares the processing time of three 

methods for different sizes and quantities of data in 

Department A, and Figure 10 (b) compares the 

processing time of three methods for different sizes and 

quantities of data in Department B. From Figure 10 (a), it 

is told that for Department A, the TGCN method 

required a processing time of 250 ms when processing 
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2000 data points, and 1000 ms when processing 6000 

data points. For the same amount of data, the processing 

time of TGCN was the shortest, and as the amount of 

data increased, the required processing time also 

increased. According to Figure 10 (b), for Department B, 

the TGCN method required a processing time of 300 ms 

for 3000 data points and 750 ms for 5000 data points, 

which was lower than the other two comparison 

algorithms. For the same amount of data, TGCN had the 

shortest processing time, and as the amount of data 

increased, the required processing time also increased. 

Comparing the data processing volume before and after 

applying TGCN at different times, the application results 

in two departments are represented in Figure 11. 

Figure 11 (a) tells the amount of data processed by 

department A before and after applying TGCN at 

different times, while Figure 11 (b) tells the amount of 

data processed by department B before and after 

applying TGCN at different times. According to Figure 

11 (a), for Department A, before and after using the 

TGCN method, the data processing increased from 

around 2500 to around 2600 within 15ms, and from 

around 2800 to 3000 within 30ms. According to Figure 

11 (b), for Department B, before and after using the 

TGCN method, the data processing increased from 

around 2500 to around 2700 within 15ms, and from 

around 2900 to 3100 within 30ms. Using the TGCN 

method within the same time frame can accelerate data 

processing speed and improve efficiency. In order to 

further analyze the advantages and scalability of the 

research method, an online social networking platform 

was selected for real-time data detection, and the 

advanced K-nearest neighbor interpolation method [25] 

and polynomial interpolation method [26] in recent years 

were introduced for comparison, as shown in Table 4. 

As shown in Table 4, the RMSE of TGCN method 

was 5.0 meters, significantly lower than K-nearest 

neighbor interpolation method (12.0 meters) and 

polynomial interpolation method (15.0 meters), 

indicating that TGCN method had significant advantages 

in filling accuracy. The relative error of TGCN method 

was only 1.2%, which was the lowest among all 

comparison methods, highlighting its superiority in data 

filling. The detection time of TGCN was only 1.1 

seconds, which was lower compared to other methods. 

The cosine similarity of TGCN method was 0.95, 

indicating a high degree of consistency between the filled 

data and the original data. In contrast, the K-nearest 

neighbor interpolation method had a similarity of 0.80 

and the polynomial interpolation method had a similarity 

of 0.75, indicating that its similarity was not as good as 

the TGCN method. After comparison, TGCN had the 

shortest detection time and the best detection accuracy, 

and its good performance in different data scenarios also 

proved the good scalability of the research method. 
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Figure 10: Calculation time for processing different data. 
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Figure 11: Processing data volume at different times. 
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Table 4: Comparative analysis of advanced methods 

Method TGCN K-nearest neighbor interpolation method Polynomial interpolation 

RMSE (m) 5 12 15 

MAPE (%) 1.2 3 4.5 

RE (%) 1.2 2.5 3.5 

MAE (m) 10 20 25 

Detection time (seconds) 1.1 1.7 1.2 

Cosine similarity 0.95 0.8 0.75 

Data consistency (%) 98 92 90 

Interpolation smoothness (m/min) 0.3 0.8 1 

 

4.3 Discussion 

The study proposes a method based on TGCN, 

combining GCNN and TCN, to achieve accuracy 

detection of dynamic data. Compared with traditional 

methods in related work, TGCN exhibits significant 

advantages in efficiency, accuracy, and robustness. 

Firstly, in terms of efficiency, traditional methods such 

as autoregressive models and moving average models 

often rely on linear regression and simple statistical 

methods for data processing, resulting in slower 

processing speeds. Relatively speaking, TGCN adopts 

deep learning technology and can process massive 

amounts of data in parallel. Experimental results showed 

that this method only took 670 seconds in detection time, 

which often took several hours to achieve in traditional 

models. This significant time advantage makes TGCN a 

more attractive choice in real-time data monitoring 

applications. Secondly, in terms of accuracy, compared 

with threshold-based anomaly detection methods, TGCN 

can simultaneously consider the temporal and spatial 

characteristics of data by introducing time-series 

analysis. Many methods in related work often have an 

accuracy of only around 0.85 when dealing with outliers, 

which cannot effectively handle complex data streams. 

The TGCN in this study improved the accuracy of 

detection by combining singular spectrum analysis, and 

the experimental results showed that its accuracy 

remained stable above 0.97. This optimization enables 

TGCN to maintain efficient anomaly detection 

capabilities even in the face of dynamically changing 

data. In terms of robustness, some existing methods are 

often sensitive to noise and data loss, leading to 

fluctuations in detection results. TGCN, through its deep 

network structure, has strong adaptive capabilities and 

exhibits better adaptability to interference in dynamic 

data. In the experiment, TGCN showed improved 

robustness when dealing with noisy data, resulting in 

significantly higher accuracy and stability of the model 

in complex environments compared to many related 

works. Although the TGCN method in this study 

achieved excellent performance in multiple aspects, its 

limitations cannot be ignored. The training cycle of the 

model was relatively long, especially in real-time 

processing of large-scale datasets, which may face a 

bottleneck in computing resources. In addition, TGCN 

had poor interpretability in practical applications, which 

may make it difficult for business personnel to 

understand the decision-making logic of the model. 

Future research can explore the integration of 

interpretable online artificial intelligence technology into 

the TGCN model, thereby enhancing its interpretability 

and user trust. In addition, in order to support real-time 

data detection tasks on large-scale datasets, it is 

necessary to develop a distributed computing framework 

to further enhance the scalability of the model. 

5 Conclusion 
A dynamic data detection technique based on 

spatiotemporal mining technology was developed to 

enhance data processing in the network. During the 

process, the singular spectrum analysis method was 

introduced to fill in missing data, and the spatiotemporal 

topology structure was fused to establish a dynamic data 

detection method. A data accuracy detection method was 

proposed by combining GCNN and TCN to complete the 

data accuracy detection. The data was detected in both 

the temporal and spatial dimensions, and the two were 

added together to obtain complete detection data. Finally, 

the validity of the raised method was analyzed. The 

experiment outcomes indicated that in terms of data 

filling, the SSA missing filling method used in the study 

was more in line with the original data curve for filling 

missing data. In terms of false positive rate, the method 

proposed by the research decreased from 0.14 to 0.01, 

which was lower than the two compared methods. As the 

number of iterations increased, the false positive rate 

gradually decreased. In terms of processing speed, before 

and after using the TGCN method, the data processing 

time increased from around 2500 to 2700 within 15 ms, 

and from around 2900 to 3100 within 30 ms. The 

research method had better data filling effect on missing 

data, which could process data at a higher speed and 

ensure stable accuracy at a higher level. 
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