
https://doi.org/10.31449/inf.v49i21.7580 Informatica 49 (2025) 15–28 15

Research on Time Series Forecasting Models Based on Hybrid

Attention Mechanism and Graph Neural Networks

Yirui Cheng, Guo Li*, Xu Zhou, Shuhui Ye

School of Artificial Intelligence and Software Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China

E-mail: airforce1980@126.com
*Corresponding author

Keywords: multivariate time series forecasting, transformer, attention mechanism, multi-scale features, convolutional

neural networks, graph convolution

Received: November 12, 2024

In wireless data transmission, packet loss and missing data caused by environmental interference and
network congestion significantly impact the stability of time series. To address these challenges, this study
proposes a time series forecasting model named FGDLNet. FGDLNet is based on the Transformer
architecture and integrates Graph Neural Networks (GNN) to enhance the performance of long sequence
predictions, particularly in handling complex time series patterns. The model simplifies its structure and
reduces computational complexity by removing the Decoder module from the traditional Transformer and
replacing it with a linear layer for direct connection and prediction. To enhance the feature extraction
capability of time series data, FGDLNet incorporates a multi-scale feature extraction module that extracts
features at different temporal scales using multiple convolution kernels in parallel. Specifically, the model
employs a single-channel processing approach to reduce interference between features and improve
prediction accuracy. The introduced GNN module enables feature propagation and enhancement within
the single channel, better capturing short-term fluctuations and long-term trends. In terms of the attention
mechanism, this study designs a hybrid attention mechanism that combines global linear attention and
local window attention. The global linear attention optimizes the computation to improve the efficiency of
capturing global contextual information, while the local window attention strengthens the model’s ability
to handle short-term dependencies. To evaluate the effectiveness of the model, we selected a dataset
recorded during the flight of a specific aircraft, which includes longitude, latitude, and inertial navigation
parameters, and conducted long-term trend forecasting. In the experiments, we used MAE (Mean Absolute
Error), MSE (Mean Squared Error), and training time to assess the model’s performance. The
experimental results show that FGDLNet outperforms traditional models such as Autoformer, Transformer,
Informer, Reformer, DLinear, and ITransformer in long-term forecasting tasks. Specifically, FGDLNet
achieves the following MAE values: 0.1400, 0.0595, 0.0092, 0.0324, 0.0493, and 0.122, which are
significantly lower than those of the other models. In terms of MSE, FGDLNet also demonstrates lower
errors: 0.0231, 0.0584, 0.0987, 0.0825, 0.0798, and 0.1925. Additionally, FGDLNet’s training time per
epoch is 1156.47 seconds, which is about 7% faster than the Transformer model (1243.14 seconds).

Povzetek:Predstavljen je FGDLNet model za napovedovanje časovnih vrst, ki združuje transformersko
arhitekturo, grafne nevronske mreže in hibridni mehanizem pozornosti za izboljšano napovedovanje
dolgih zaporedij.

1 Introduction

In recent years, time series forecasting has gained

increasing importance across various fields, particularly

in wireless data transmission. Accurate long-term

forecasting in time series remains a challenging task due

to several inherent difficulties, such as capturing both

long-term dependencies and short-term fluctuations, and

handling noise and missing data in real-world scenarios.

In wireless data transmission, issues like packet loss,

network congestion, and signal interference often result

in missing data or inaccuracies in measurements,

complicating the forecasting process. These challenges

are particularly critical in scenarios where accurate,

real-time predictions are needed to ensure reliable system

performance. Furthermore, traditional time series models

often struggle with efficiently capturing complex,

high-dimensional data patterns, especially when

multiple dependencies across time steps need to be

modeled.

To address these issues, this paper introduces FGDLNet,

a novel long-sequence time series forecasting model. In

this paper, we introduce FGDLNet, a novel time series

forecasting model designed to handle long sequences

while addressing the challenges of capturing both global

and local dependencies. The name FGDLNet reflects the

core design principles of the model:

F stands for Feature Extraction, emphasizing the model

multi-scale feature extraction module that captures key

features at different temporal scales.

https://doi.org/10.31449/inf.v49i21.7580

16 Informatica 49 (2025) 15–28 Y. Cheng et al.

G represents Graph Neural Networks, which enhance

the model ability to capture complex dependencies

between time steps and improve performance,

particularly in noisy or high-dimensional settings.

D refers to Decoder Removal, signifying the

simplification of the Transformer architecture by

removing the decoder, reducing computational

complexity.

L stands for Local and Global Attention, highlighting
the hybrid attention mechanism that combines local
window attention and global linear attention to
effectively model both short-term fluctuations and
long-term trends.

Net indicates that it is a Network, emphasizing the use
of a deep learning framework based on Transformer
architecture.

2 Related works

Time series forecasting has long been a critical research
area, with numerous methods proposed to model
temporal dependencies in data. The Transformer model,
due to its ability to effectively capture long-range
dependencies through attention mechanisms, has
become a key advancement in sequence modeling tasks
[1]. However, its computational complexity grows
quadratically with sequence length, limiting its
scalability and efficiency in handling long sequences.
Several modified Transformer-based models have been
proposed in recent years to address this issue, aiming to
reduce computational costs while improving the
modeling capability of time series data.

For example, Informer introduces the ProbSparse
attention mechanism to improve computational
efficiency in long-sequence prediction tasks [2]. While
it enhances computational efficiency, it struggles with
capturing fine-grained local features, especially when
short-term dependencies are critical. Reformer further
reduces computational complexity by using
locality-sensitive hashing and reversible residual
networks [3]. However, it still struggles with handling
highly non-linear patterns, common in real-world time
series data.

Autoformer and DLinear have also contributed to trend
prediction. Autoformer uses a recursive mechanism to
enhance its ability to capture long-term trends but faces
limitations in modeling short-term dependencies,
especially in environments with high volatility and noise
[4]. DLinear, using linear decomposition, handles time
series data but lacks flexibility in dealing with complex
non-linear trends or abrupt changes [5].

Despite these advancements, existing models still face
challenges in effectively capturing both long-term
global dependencies and short-term local patterns in
time series data. Additionally, they often struggle with
computational efficiency, particularly when processing
high-dimensional, noisy, and large-scale data. To
address these limitations, this paper proposes the
FGDLNet model, integrating global linear attention for

capturing long-term trends, local window attention for
short-term fluctuations, a multi-scale feature extraction
module for richer feature representation, and a Graph
Neural Network module to enhance the model’s ability
to learn complex dependencies. Through these
innovations, FGDLNet not only addresses the
limitations of long-sequence forecasting but also
demonstrates significant advantages in capturing
complex dependencies within time series data. The
comparison between algorithms is shown in Table 1.

Table 1: Comparison of the different types of protocols
involved.

Algorithm Vantage Drawbacks

Autoformer

Automatically captures

periodic changes in time

series.

Improves prediction accuracy.

May require a large amount

of data for training.

May not perform well with

non-periodic data.

Transformer

Efficient parallel computing

capability.

Strong ability to handle long

sequences.

Self-attention mechanism

captures complex

dependencies.

High computational

resource consumption.

May encounter efficiency

issues with very long

sequences.

Informer

Designed for long sequence

time series forecasting.

ProbSparse self-attention

mechanism reduces

computational complexity.

May not be as effective for

short sequences compared

to traditional Transformer.

Higher implementation

complexity.

Reformer

Reduces computational

complexity with LSH attention

mechanism.

Reversible network reduces

memory consumption.

LSH may introduce

approximation errors.

May not be flexible enough

for some tasks.

DLinear

Simple and efficient time

series forecasting model.

O(1) maximum signal

traversal path length.

Consumes less memory and

parameters.

May not be suitable for all

types of time series data.

Limited ability to capture

complex patterns.

3 Methodology

In this paper, we introduce FGDLNet, a time series
prediction model based on the Transformer architecture.
The input time series data is first processed through an
embedding layer, which maps the data to a
high-dimensional feature space to capture temporal
features more effectively. This embedding process is
similar to the embedding operation in a standard
Transformer.
To handle time series data with multi-scale features, we
designed a multi-scale feature extraction module. This
module applies multiple sets of one-dimensional
convolution operations to extract features at different
temporal scales. Each convolutional kernel captures
dependencies within a specific temporal range, resulting
in multi-scale feature representations. These features are
then combined and fed into the attention mechanism
module.
The attention mechanism includes a global linear
attention mechanism to optimize computation,

Research on Time Series Forecasting Models Based on Hybrid… Informatica 49 (2025) 15–28 17

significantly reducing complexity and enabling efficient
handling of long-sequence data while retaining global
contextual information. This helps the model understand
overall trends in the data. To capture local patterns more
effectively, we introduced a local window attention
mechanism, which focuses on sequence segments within
a fixed-size window. This approach reduces
computational complexity and enhances the model’s
ability to capture local features.

We also integrated a Graph Neural Network module to
enhance FGDLNet’s ability to capture non-linear
dependencies in time series data, improving accuracy,
especially in noisy scenarios. Additionally, by using a
single-channel processing approach, we reduce feature
interference and avoid the complexity of multi-channel
processing, ensuring better feature representation and
improving the model's stability and accuracy in time
series forecasting.

At the core of FGDLNet are multiple stacked encoder
layers, each comprising a global linear attention module,
a local window attention module, and a GNN module.
By stacking these layers, the encoder captures both
long- and short-term dependencies in the time series
data. The GNN module further enhances the handling of
complex dependencies within the data, improving
predictive capability. The feature representations output
by the encoder layers are transformed through a linear
transformation layer to produce the final prediction
result. The output layer design ensures that the model
can generate accurate time series predictions based on
the captured global and local features and node
dependencies. The FGDLNet framework is illustrated in
Figure 1.

Figure 1: Network structure model.

3.1 Feature engineering

In this study, we propose a time-stamp-based feature
extraction method to enhance the model's ability to
capture periodic and seasonal patterns in time series data.
Compared to traditional methods, we further enrich the

diversity and granularity of time features, particularly
when handling high-frequency time series data with
second-level resolution. Specifically, we dynamically
generate corresponding time features based on the time
frequency of the input data (such as seconds, minutes,
hours, etc.), and encode them by combining multiple
time units [6].

Unlike traditional time features (such as seconds,
minutes, hours, and dates), our method extends to more
refined features, such as decomposing minutes into
different time intervals (e.g., 2 minutes, 10 minutes, and
20 minutes) for feature encoding. These interval-based
features capture micro-level time variations within the
time series, which are particularly useful for
high-frequency data (e.g., per-second time series) as
they help identify finer-grained periodic patterns. To
ensure that all time features are within a unified scale,
we normalize their values to the range of [−0.5, 0.5],
avoiding training instability caused by scale differences.
Ultimately, all of these time features are stacked into a
feature matrix, serving as the model's input. This
multi-level, multi-granular approach to time features
helps the model better capture the periodicity and
regularity in time series data, thus improving prediction
performance [7-9].

In summary, compared to traditional time feature
extraction methods, our extended approach refines time
units and adds multiple time interval features, enabling
the model to comprehensively capture various time
scales and periodic patterns in the data. This
significantly enhances the model's performance,
particularly when handling high-frequency time series
data.

3.2 Multiscale feature extraction

In the time series forecasting model, the multi-scale
feature extraction module is designed to capture
information across various temporal scales, aiming to
provide enriched feature representations for more
accurate predictions. The data is recorded every second,
with four feature values that capture periodic behavior
and patterns in the time series. By encoding the minute
values in various ways, the model can recognize and
leverage cyclical patterns effectively. Time features are
extracted at scales of every hour, every minute, every
second, two-minute intervals, ten-minute intervals, and
twenty-minute intervals.

Before feature extraction, the time series data's distinct
features are separated into individual channels. This
feature separation approach ensures that convolution
operations within each channel focus on a specific
feature, preventing interference among features. As a
result, the model can more accurately capture the
independent patterns of each feature [10-12].

To capture features across multiple temporal scales, the
multi-scale feature extraction module applies various
convolutional kernels in parallel. Specifically, different
kernel sizes (such as 3, 5, and 7) are used to convolve
each channel's data. Smaller kernels (e.g., 3x3) are adept
at capturing short-term dependencies, while larger

18 Informatica 49 (2025) 15–28 Y. Cheng et al.

kernels (e.g., 7x7) cover broader context, capturing
long-term dependencies. This multi-scale convolution

operation enables the model to extract layered feature
representations from the time series, enriching the

information available for subsequent processing. These
time features are then processed and fed into the model,

as shown in the data processing flow in Figure 2.

Because different kernel sizes generate feature maps of
varying lengths, it’s necessary to align these feature
maps before integration. To achieve this, the module
pads each feature map to a uniform length, ensuring
consistent shapes for concatenation. After alignment,
feature maps from all channels are concatenated along
the feature dimension, forming a composite feature
representation.

An embedding layer then transforms the concatenated
features, enhancing the representational capacity. This
embedding layer acts as a linear transformation,
mapping the multi-scale features into a unified feature
space for processing by subsequent encoder layers.

Finally, the integrated multi-scale features are processed
through a fully connected layer to form the model’s final
input. Although each channel processes different
features independently, the fusion process allows the
model to capture interrelationships among these
features.

In summary, the multi-scale feature extraction module
leverages feature separation, multi-scale convolution,
feature alignment and concatenation, and embedding
transformation to extract and integrate rich information
across different temporal scales in the time series. This
design improves the model’s capacity to capture both
short-term and long-term dependencies, enhancing
FGDLNet's predictive performance on complex time
series data.

Given an input time series 𝑋 ∈ ℝ𝐵×𝐿×𝐷, where B is
the batch size, L is the sequence length, and D is the
feature dimension, each feature 𝑥𝑑 ∈ ℝ𝐵×𝐿is separated
into individual channels and then input into multi-scale
convolutional layers:

𝑋1
(𝑑)

= Conv1d(𝑥𝑑 , 𝑘1) + ReLU + BN (1)

𝑋2
(𝑑)

= Conv1d(𝑥𝑑 , 𝑘2) + ReLU + BN (2)

𝑋3
(𝑑)

= Conv1d(𝑥𝑑 , 𝑘3) + ReLU + BN (3)

where k1,k2,k3 represent different kernel sizes used for
capturing features across various temporal scales.

The output of these convolutional layers can be denoted
as:

𝑋(𝑑) = Concat([𝑋1
(𝑑)

, 𝑋2
(𝑑)

, 𝑋3
(𝑑)

]) (4)

The final integrated features are further processed
through a linear layer:

𝑋′(𝑑) = Linear(𝑋(𝑑)) (5)

where 𝑋′(𝑑)is the final integrated output, which serves
as the input to the subsequent attention mechanism. This
enables FGDLNet to capture multi-scale feature
information, enhancing both the accuracy and stability
of its predictions.

3.3 Global linear attention

In the time series prediction model proposed in this
paper, the global linear attention mechanism is one of
the key components, aimed at capturing global
contextual information in time series data while
maintaining efficient computation. Traditional
self-attention mechanisms perform well in handling long
sequence data, but their computational complexity is
𝑂(𝑁2), where 𝑁 represents the sequence length. When
processing large-scale long sequence data, this

high computational complexity leads to a sharp increase
in computational and memory overhead, which impacts
the efficiency and scalability of the model. To address
this issue, this paper introduces the global linear
attention mechanism.

The core idea of global linear attention is to capture
global contextual information while using a more
computationally efficient attention calculation method.

Figure 2: Data processing procedure

Research on Time Series Forecasting Models Based on Hybrid… Informatica 49 (2025) 15–28 19

Specifically, global linear attention replaces the
dot-product operation in the traditional self-attention
mechanism with an operation that has linear time
complexity [13]. This allows the global linear attention
mechanism to maintain high computational efficiency
when handling long sequences.

In the global linear attention mechanism, the attention
calculation at each time step no longer depends on all
other time steps. Instead, it aggregates the information
from all-time steps in the sequence through a linear
combination. This approach enables FGDLNet to
capture the overall patterns of the sequence during the
attention calculation and avoids the high complexity of
calculating attention scores for each time step, as in
traditional self-attention mechanisms [14].

After the input sequence passes through the embedding
layer, it is mapped to a high-dimensional feature space.
Each time step in the time series is represented as a
feature vector, Q

i
 , Ki , Vi with the query (Query),

key (Key), and value (Value) corresponding to the
respective components.

In the global linear attention mechanism, the calculation
of attention weights no longer depends on all time steps.
Instead, it aggregates the information from the entire
sequence through a linear computation. Specifically, this
can be expressed by the following formula:

𝑄𝐾 =
𝑄⋅𝐾𝑇

√𝑑𝑘
 (6)

In this context, 𝑄 ∈ ℝ𝐵×𝐿×𝐻×𝐸 , and 𝐾 ∈
ℝ𝐵×𝑆×𝐻×𝐸represent feature dimensions, and 𝑑𝑘 is the
scaling factor. The computed QK is then passed to the
SoftMax layer to generate the attention weights 𝐴:

𝐴 = Softmax (
𝑄𝐾

√𝑑𝑘
) (7)

The global linear attention mechanism captures global
information efficiently through the formula above. The
attention weights 𝐴 reflect the similarity between the
query and the key, thereby capturing global patterns in
the sequence. Next, by multiplying these weights with
the values𝑉, new feature representations are generated:

Output = 𝐴 ⋅ 𝑉 (8)

By using a linear time complexity calculation method,
the global linear attention mechanism avoids
computational and memory bottlenecks when processing
long sequences, allowing the model to handle longer
sequences and significantly improving computational
efficiency.

3.4 Local window attention

The core idea of local window attention is to divide the
time series into fixed-size windows and calculate
attention weights within each window. This approach
avoids the pairwise computation of attention scores for
all time steps in the sequence, as in global attention

mechanisms, significantly reducing the computational
complexity. It is particularly well-suited for handling
long sequence data [15-16].

The length of the input sequence is L and the feature
dimension is d with a window size of W . In each
window, the specific calculation steps for local window
attention are as follows:

First, the input sequence is divided into windows of size
W Each window contains W time steps, and the
feature at each time step is represented as a vector.

Attention Weight Calculation, for each time step 𝑖 and
𝑗 within the window (where 𝑖, 𝑗 ∈ [1, 𝑊] represents
the range of time steps in the window), the dot product
between the query Q and the key K is computed to
obtain the attention score matrix:

QK𝑖,𝑗 = 𝑄𝑖 × 𝐾𝑗
𝑇 (9)

Where 𝑄𝑖 and 𝐾𝑗 represent the query and key vectors
of the 𝑖 and 𝑗 time steps within the window,
respectively.

Scaling and Normalization, the attention score matrix is
scaled by the feature dimension d and then the
SoftMax operation is applied to the results:

𝐴𝑖,𝑗 = softmax (
QK𝑖,𝑗

√𝑑
) (10)

Where 𝐴𝑖,𝑗 represents the attention weight between the
𝑖 and 𝑗 time steps within the window.

The attention weight matrix 𝐴 is then used to perform a
weighted sum on the value matrix 𝑉 to generate the
output features within the window:

Output𝑖 = ∑ 𝐴𝑖,𝑗
𝑊

𝑗=1
× 𝑉𝑗 (11)

Where 𝑉𝑗 is the value vector of the 𝑗 time step within
the window.

The output features of all windows are concatenated
sequentially to form the final output sequence. For the
entire sequence, the output of the local window attention
mechanism 𝑂 can be represented as:

𝑂 = Concat ([∑ softmax𝑊
𝑗=1 (

𝑄𝑖×𝐾𝑗
𝑇

√𝑑
) × 𝑉𝑗]

𝑖=1

𝑊

, … , [∑ softmax𝑊
𝑗=1 (

𝑄𝑖×𝐾𝑗
𝑇

√𝑑
) × 𝑉𝑗]

𝑖=𝐿−𝑊+1

𝐿

)

（12）

Where concatenate indicates the concatenation of the
output features of all windows in sequence order.

The window size W plays a decisive role in the local
window attention mechanism as it limits the range of
time steps considered during each attention weight
calculation. By selecting W appropriately, local
patterns in the time series can be captured while
ensuring computational efficiency. This mechanism is
particularly well-suited for processing long sequence
data, effectively balancing the capture of both global
and local information.

20 Informatica 49 (2025) 15–28 Y. Cheng et al.

3.5 Mixed attention mechanism

In this paper, we propose a hybrid attention mechanism
designed to effectively combine global and local
attention to capture both long-range and short-range
dependencies in time series data. The aim of this
mechanism is to balance the model's ability to
understand global temporal patterns while maintaining
computational efficiency. In traditional attention
mechanisms, global dependencies are captured by
attending to all time steps across the entire sequence,
while local dependencies are often overlooked or poorly
represented [17]. To overcome this challenge, we
introduce a mechanism that integrates both types of
attention, ensuring that the model can simultaneously
focus on local interactions and global temporal
relationships.

The key idea behind this hybrid approach is to decouple
the computations of global and local attention, which are
then performed in parallel and combined afterward. To
integrate these two types of attention, we apply them to
different layers or parallel branches of the model. The
global attention mechanism operates over the entire
sequence, aggregating information from all-time steps to
capture long-term trends, while the local attention
mechanism focuses on a sliding window of time steps to
capture local patterns.

The outputs of these two attention mechanisms are then
integrated through a weighted summation. This process
can be formulated as follows:

The global linear attention mechanism generates feature
representations that capture sequence-level temporal
dependencies. This is represented as:

Global Output = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) ⋅ 𝑉 (13)

where 𝑄 represents the queries, 𝐾 the keys, and 𝑉
the values, with 𝑑𝑘 being the dimensionality of the
keys (and queries).

The local window attention mechanism generates
feature representations focused on specific time
windows. This can be expressed as:

 Local Output = ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑖𝐾𝑖

𝑇

√𝑑𝑘
) ⋅ 𝑉𝑖

𝑀

𝑖=1
 (14)

where 𝑄𝑖 , 𝑘𝑖, and 𝑉𝑖 refer to the queries, keys, and
values within the 𝑖 window of the sliding window, and
𝑀 is the total number of windows.

Finally, the outputs of the global and local attention
mechanisms are combined. This integration is
performed through weighted summation:

Combined Output = Global Output + Local Output

 (15)

This approach enables the model to balance the capture
of global patterns and local details, ensuring a more
comprehensive understanding of the time series data

while maintaining computational efficiency.

3.6 Graph convolution module

This paper proposes the introduction of a Graph Neural
Network module in time series forecasting models.
GNN leverages graph structures to represent the
relationships between nodes in time series data and
learns complex dependencies in the sequence through
information propagation between nodes [17].
Specifically, we treat each time step or feature in the
time series data as a node in the graph, where the
connections between the nodes represent the
dependencies between these time steps or features. The
GNN module uses multi-layer graph convolution
operations to map these node features into a new feature
space, capturing both global and local dependencies.

The input time series data is represented as a
three-dimensional tensor 𝑋 ∈ ℝ𝐵×𝐿×𝐹 , where B
represents the batch size, L represents the sequence
length, and F represents the feature dimension.

Another input is the adjacency matrix 𝐴 ∈ ℝ𝐿×𝐿 or
edge list E, which represents the connections between
nodes. For each graph convolution layer, the feature
update of node 𝑙 in the 𝑖 layer is expressed as:

ℎ𝑖
(𝑙)

= 𝜎 (∑
1

√|𝒩(𝑖)|⋅|𝒩(𝑗)|𝑗∈𝒩(𝑖)
𝑊(𝑙)ℎ𝑗

(𝑙−1)
+ 𝑏(𝑙)) (16)

Here, ℎ𝑖
(𝑙)

is the feature representation of node 𝑙 in the

𝑖 layer, 𝒩(𝑖)is the set of neighboring nodes of node𝑖,

c𝑖𝑗 is the normalization coefficient used for scaling,

𝑤(𝑙) and 𝑏(𝑙) are the weight matrix and bias term,

respectively, and 𝜎(⋅) is the activation function.

1

√|𝒩(𝑖)|⋅|𝒩(𝑗)|
is the normalization coefficient to ensure

the numerical stability of the features.

In the feature extraction module, local features of the
time series are first extracted through convolutional
layers:

𝑋conv = Conv1d(𝑋) (17)

Then, the convolved features are combined with the
adjacency matrix and input into the GNN layer to
perform graph convolution operations, generating new
feature representations:

𝐻𝑔𝑛𝑛 = GNN(𝑋𝑐𝑜𝑛𝑣 , 𝐴) (18)

Finally, the features are further processed through a
fully connected layer to obtain the final feature
representation:

𝑋𝑜𝑢𝑡 = Linear(𝐻𝑔𝑛𝑛) (19)

Through these formulas, the GNN module can
effectively model the complex dependencies in time
series data, especially when the data exhibits network
structure characteristics. This design enables the model
to capture both global and local temporal dependencies,

Research on Time Series Forecasting Models Based on Hybrid… Informatica 49 (2025) 15–28 21

thereby improving prediction accuracy.

In the FGDLNet model presented in this paper, the
GNN module processes the graph-structured
representation of the input data through graph
convolution layers. Specifically, the time series data is
treated as a graph, where each time step or feature is a
node, and the connections between nodes represent their
dependencies.

3.7 Loss function

This paper proposes an improved version of the Mean
Squared Error (MSE) loss function, which aims to
enhance local dependencies by introducing a penalty
term, thereby improving the robustness and accuracy of
time series forecasting [18-20]. The loss function
consists of two components: the standard MSE loss and
a penalty term. The penalty term is used to penalize the
variation in prediction errors between adjacent time
steps, ensuring the stability of the predictions.

ℒ1 =
1

𝑁
∑ (pred

𝑖
− true𝑖)

2
𝑁

𝑖=1
 (20)

The penalty term measures the difference in prediction
errors between adjacent time steps, penalizing large
changes in the prediction errors to ensure stability. The
formula is as follows:

ℒ2 =
1

𝑁
∑ (|pred

i+1
− pred

𝑖
| − |true𝑖+1 − true𝑖|)2

𝑁

𝑖=1
 (21)

The total loss is the sum of the MSE loss and the penalty
term, with the hyperparameter 𝜆 controlling the
balance between the two:

ℒ = ℒ1 + 𝜆 · ℒ2 (22)

Compared to the traditional MSE loss, the penalty term
introduced in this paper helps reduce the fluctuations in
prediction errors between adjacent time steps, thereby
improving prediction stability.

4 Experimental and data analysis

4.1 Dataset selection

The dataset contains recorded information of a specific
aircraft model during flight, with data recorded once per
second. The fields in the dataset include time, longitude,
latitude, true heading (from inertial navigation), and
groundspeed. The dataset includes flight records from
four different flights for training and prediction. 80% of
the dataset is used as the training set, and 20% is used as
the test set.

4.2 Experimental setup

Since the performance of deep learning models is highly
dependent on the choice of hyperparameters, we refer to
the parameter settings of similar models in the literature
to define the ranges of the parameters for tuning. The
goal is to identify the optimal combination of

hyperparameters that leads to the best model
performance during training.

The choice of kernel sizes (3, 5, 7) for the convolutional
layers is made to capture multi-scale features of the time
series data. Smaller kernel sizes, like 3, are designed to
capture fine-grained, local patterns, which are crucial for
detecting short-term fluctuations in the data. Larger
kernel sizes, like 5 and 7, allow the model to capture
more global or longer-term dependencies, which are
especially important for understanding broader trends
and periodic behaviors in time series data. By using a
combination of kernel sizes, the model can
simultaneously capture both local and global features,
improving its robustness and prediction accuracy.

The lookback window size of 384 is chosen to balance
capturing long-term dependencies and ensuring
computational efficiency. A window of this size allows
the model to leverage sufficient historical data (384
seconds) to recognize important trends and fluctuations
in the wireless data transmission, without introducing
excessive noise or increasing computational load.

The model parameters and their corresponding values
used in our experiments are shown in Table 2.

Table 2: Model parameters

parameter name parameter value

activation function GELU

optimizer Adam

learning rate 0.0001

loss function MSE

Dropout 0.05

sliding window 5

lookback window size 384

prediction length 96

convolutional multi-scale {3,5,7}

batch size 32

4.3 Comparative analysis of methods

A comparison is made between FGDLNet and the time
series forecasting models Autoformer, Transformer,
Informer, Reformer, DLinear, and ITransformer. All
models are tested using the same dataset and evaluation
criteria. The original dataset undergoes cleaning and
normalization to ensure data quality and consistency of
inputs across models. The predictive performance of
each model is evaluated on the test set, and a unified
evaluation standard is used for comparison.

4.4 Evaluation metrics

This study utilizes the following evaluation metrics to
comprehensively assess the predictive performance of
the models: Mean Absolute Error (MAE), Mean
Squared Error (MSE), Coefficient of Determination (R²),
Mean Absolute Percentage Error (MAPE), p-value, 95%

22 Informatica 49 (2025) 15–28 Y. Cheng et al.

Confidence Interval (CI), and Dynamic Time Warping
(DTW).

MAE and MSE measure prediction errors, with MSE
being more sensitive to outliers. R² evaluates the
proportion of variance explained by the model, while
MAPE expresses errors as a percentage, ensuring
interpretability across datasets. Statistical significance is
assessed using the p-value and 95% CI, which provide
insights into reliability and uncertainty. DTW evaluates
the alignment between predicted and actual time series,
capturing temporal shifts and dynamic patterns.
Together, these metrics provide a comprehensive
framework to evaluate both the accuracy and reliability
of the models for time series forecasting.

4.5 Experimental results and analysis

The true heading (from inertial navigation) is selected as
the feature for long-term forecasting. A comparison of
the predicted values and the true values is shown in
Figure 3.

From the fitting plot, it can be observed that the
Autoformer model exhibits significant fluctuations
throughout the time series. Although it captures some
early trends, it deviates considerably from the true
values in the later stages, especially with a noticeable
overestimation in its predictions. The DLinear model
shows relatively stable performance in the early stages,
with some consistency with the true values. However, it
exhibits a clear downward trend in the middle phase and
fails to capture the rebound in the true values. The
Transformer model’s predictions remain relatively
stable but fall within the range of 0.2 to 0.4, which is
largely unrelated to the actual downward trend. Similar
to Transformer, the Informer model shows stable
predictions in the early phase, but then sharply declines,
missing the later recovery in the true values. Its overall
trend is significantly different from the actual data. The
Reformer model’s predictions remain high with slight
fluctuations throughout the time period, failing to
capture the clear downward trend in the true data.
FGDLNet successfully identifies the downward trend
and fits the predicted data accordingly, achieving lower

error for long-term forecasts. This demonstrates the
effectiveness of the proposed method, though further
model adjustments are needed to balance trend
recognition with accuracy in trend amplitude.

The analysis of the MAE, MSE, R², and MAPE metrics
for the Autoformer, Transformer, Informer, Reformer,
DLinear, ITransformer, and FGDLNet models is shown
in Table 3.

Table 3: Model evaluation

Model MAE MSE R² MAPE

Autoformer 0.2655 0.2723 0.5219 1.7205

Transformer 0.1255 0.1029 0.3208 0.7599

Informer 0.1850 0.1382 0.3717 0.8061

Reformer 0.1942 0.1785 0.4225 1.3307

DLinear 0.1618 0.1623 0.4028 0.3988

ITransformer 0.2111 0.1596 0.3995 1.3346

FGDLNet 0.0885 0.0798 0.2825 0.5396

Based on the results in Table 3, this paper analyzes the
performance of seven different models in signal
prediction, comparing their performance across various
metrics including Mean Absolute Error, Mean Squared
Error, Coefficient of Determination, and Mean Absolute
Percentage Error.

The Transformer model performs well in terms of MAE,
with a value of 0.1255, and also shows reasonable
performance in MSE, with a value of 0.1029. Its R²
value is 0.3208, indicating a certain degree of fitting
capability. In terms of MAPE, the Transformer achieves
an error of 0.7599, which is better than some traditional
models but is still outperformed by the FGDLNet
model.

In comparison, the Autoformer model shows relatively
average performance, with an MAE of 0.2655, an MSE
of 0.2723, and an R² value of 0.5219, indicating weaker
fitting ability. Additionally, its MAPE of 1.7205
highlights its poorer error control performance. The
Informer model outperforms Autoformer in terms of
MAE and MSE, with values of 0.1850 and 0.1382,
respectively, but falls short compared to Transformer.
Its R² is 0.3717, and its MAPE is 0.8061. The
performance of the Reformer model is slightly better
than Informer but still does not match Transformer or
FGDLNet, with an MAE of 0.1942, an MSE of 0.1785,
an R² of 0.4225, and a MAPE of 1.3307.

The DLinear model achieves an MAE of 0.1618, an
MSE of 0.1623, an R² of 0.4028, and a MAPE of 0.3988,
demonstrating better performance compared to the
traditional models mentioned above. However, it still
lags behind FGDLNet. Additionally, the ITransformer
model has an MAE of 0.2111, an MSE of 0.1596, an R²
of 0.3995, and a MAPE of 1.3346. While it performs
well in terms of the MSE metric, its overall performance
is still inferior to DLinear and Transformer.

The proposed FGDLNet prediction model exhibits

Figure 3: Experimental results

Research on Time Series Forecasting Models Based on Hybrid… Informatica 49 (2025) 15–28 23

significant advantages across all metrics, with an MAE
of 0.0885, an MSE of 0.0798, an R² of 0.2825, and a
MAPE of only 0.5396. Compared to other models,
FGDLNet demonstrates outstanding performance in
terms of prediction accuracy and error control. Its
exceptional performance fully demonstrates its practical
value in addressing issues related to data loss and
prediction filling in wireless transmission scenarios.

To evaluate the impact of different prediction horizons
on the performance of the benchmark and prediction
models, we choose 384 as the look-back window size L,
with prediction lengths τ∈{16,32,48,64,80,96}. The
results indicate that the proposed model outperforms all
baseline models across all datasets. The MAE and MSE
prediction results for different prediction horizons are
shown in Figure 4.

Based on the results from Figure 4, we analyzed the
performance of different models under various
prediction horizons and identified significant
differences.

In terms of Mean Absolute Error (MAE), the
Autoformer model performs well at shorter prediction
horizons (16 and 32). However, as the prediction length
increases, the MAE rises significantly, indicating
instability in long-term predictions. A similar trend is
observed with Mean Squared Error (MSE), where
Autoformer shows a substantial increase in error at
longer prediction horizons (48 and beyond), highlighting
its limitations for handling long-term predictions.

The DLinear model shows excellent performance with
shorter horizons (16 and 32), maintaining low MAE and
MSE values. Even when the prediction horizon
increases to 48 and 64, the error remains relatively
stable. For larger prediction horizons (80 and 96), there
is a slight increase in error, but overall performance
remains superior to other traditional models, indicating
DLinear’s good adaptability for long-term predictions.

The Informer model exhibits relatively consistent
performance across all prediction horizons, but with
higher overall error. At horizons of 48, 64, and beyond,
the prediction error increases significantly, suggesting
its struggle with long-term forecasting. The MSE
follows a similar trend, showing higher error at larger
horizons, indicating potential limitations for long-term
predictions.

The ITransformer model performs well for shorter
horizons (16 and 32), with good MAE and MSE results.
However, as the prediction horizon increases,
particularly at 48 and beyond, the error grows
significantly, revealing poor adaptability to long-term
predictions. At the 96-step horizon, the error is notably
higher, indicating significant shortcomings when

handling longer time spans.

In contrast, FGDLNet consistently performs excellently
across all prediction horizons, particularly at longer
horizons (80 and 96), where its MAE is significantly

lower than that of other models. FGDLNet also excels in
MSE, significantly surpassing other models at all
prediction horizons, especially at 64, 80, and 96 steps.
These results highlight FGDLNet’s advantage in
handling long-term prediction tasks.

The Reformer model performs well at shorter horizons
(16), with very low MAE. However, as the horizon
increases, its error grows substantially, particularly at 64
steps and beyond, showing a clear decline in
performance. The MSE for Reformer follows a similar
trend, with significant increases in error at longer
horizons, indicating poor adaptability for long-term
predictions.

The Transformer model exhibits relatively stable
performance across all horizons. While MAE and MSE
increase slightly at certain prediction horizons (e.g., 48),
the overall error remains moderate. Even at larger
horizons (80 and 96), Transformer maintains relatively
good performance, showcasing its stability when
handling predictions at different time steps, but its
predictive accuracy lags behind FGDLNet.

In summary, the proposed FGDLNet model
demonstrates competitive performance in both
short-term and long-term prediction tasks. Particularly
in long-term forecasting, its MAE and MSE are
significantly lower than those of other models. In
comparison, traditional models generally perform poorly
with long-term predictions, with errors increasing
significantly as the prediction horizon expands. These
results highlight the effectiveness and advantages of
FGDLNet in wireless data transmission prediction.

Figure 4: Prediction results

24 Informatica 49 (2025) 15–28 Y. Cheng et al.

4.6 Advanced metrics

In addition to the commonly used MSE, MAE, and R²,
this study introduces several additional evaluation
metrics to comprehensively analyze the performance of
different models. These additional metrics include
p-value, 95% Confidence Interval, and Dynamic Time
Warping. These metrics help evaluate the model's
prediction ability, stability, and adaptability to complex
time series data, especially when faced with noise,
interference, and challenges across different time scales.
Table 4 shows the performance of each model in terms
of p-value, 95% confidence interval, and dynamic time
warping:

Table 4: Model evaluation under high-dimensional

metrics

Model p-value 95% CI DTW

Autoformer 0.0000 [0.4277, 0.5682] 2.2186

DLinear 0.0000 [0.4336, 0.5799] 5.1743

FGDLNet 0.0000 [0.0595, 0.1391] 0.4831

Informer 0.0000 [0.1218, 0.2707] 3.0734

ITransformer 0.0000 [0.5130, 0.6146] 5.0021

Reformer 0.0000 [0.5817, 0.7459] 7.2481

Transformer 0.0077 [0.0121, 0.0989] 1.2221

4.6.1 p-value and 95% confidence interval analysis

p-value and 95% Confidence Interval are two key
metrics for evaluating the significance and stability of
model predictions. Specifically, p-value is used to test
whether there is a significant difference between the
model’s predictions and the actual values. A lower
p-value indicates stronger predictive power. The 95%
Confidence Interval reflects the consistency and stability
of the model's predictions; a narrower interval suggests
more consistent and reliable predictions.

In this study, we calculated the p-value and 95%
Confidence Interval for each model. The results show

that all models have a p-value close to 0.0000,
indicating strong predictive power in most cases.
However, it is noteworthy that the 95% Confidence
Interval of the FGDLNet model is the narrowest
([0.0595, 0.1391]), suggesting that its predictions are
more stable and consistent compared to other models.

4.6.2 Dynamic time warping metric analysis

Dynamic Time Warping is a metric used to measure the
alignment of two time series along the time axis. It is
commonly used to assess the performance of models in
time series forecasting tasks. The smaller the DTW
value, the higher the similarity between the predicted
and actual time series, indicating better model
performance.

From the experimental results, FGDLNet performs the
best, achieving the lowest DTW value (0.4831) among
all models. This low value indicates that FGDLNet
aligns most closely with the actual data’s time series,
meaning it captures the dynamic patterns of the real data
with high accuracy.

4.6.3 Residual plot analysis

In addition to the p-value, 95% confidence interval, and
DTW, the residual plot also provides valuable insights
into the model's prediction accuracy. The residual plot
visualizes the difference (residuals) between the
predicted values and the actual observations at different
time steps. This is crucial for detecting error patterns
that the model may have failed to capture.

A model’s residual plot indicates its ability to capture
the underlying dynamics of the data and whether there
are any systematic errors. Ideally, the residuals should
be randomly distributed around zero, suggesting that the
model has captured all the predictable patterns in the
data. Figure 5 shows a comparison of the residual plots
for the FGDLNet model and the Transformer model. By
comparing the residual plots of the two models, it is
clear that FGDLNet outperforms the Transformer model
in terms of prediction accuracy and stability. The
residual points of FGDLNet are closer to the
zero-residual line and are more evenly distributed,
indicating that it better captures the dynamic variations
in the time series data. While the Transformer model

Research on Time Series Forecasting Models Based on Hybrid… Informatica 49 (2025) 15–28 25

Figure 5: Residual plot

Figure 6: Ablation study

performs well at certain time steps, its consistency and
accuracy across the entire time series are inferior to
those of FGDLNet.

4.7 Ablation experiments

The FGDLNet model consists of five core modules:
linear prediction, single-channel processing, multi-scale
feature extraction enhanced with Graph Neural
Networks, hybrid attention mechanism, and an
improved loss function. To validate the effectiveness of
each module in the FGDLNet model, six network

variations were designed: (1) Base, which is the basic
Transformer model; (2) Base+L, where the Decoder is
removed and linear direct prediction is applied; (3)
Base+L+D, where single-channel processing is applied
for prediction; (4) Base+L+D+G, which incorporates
multi-scale feature extraction and the GNN module; (5)
Base+L+D+G+Z, which adds the hybrid attention
mechanism; (6) FGDLNet, which incorporates the
improved loss function. The results of the ablation
experiments for prediction lengths of 48 and 96 steps are
shown in Figure 6.

4.7.1 Efficiency and running time analysis

In this section, we provide a detailed analysis of the
efficiency and runtime of the proposed FGDLNet model,
comparing it with other models from the ablation
experiments to assess the computational efficiency and
prediction accuracy.

We selected three representative models from the

ablation experiments for this analysis:

Base: The traditional Transformer model, which serves
as the baseline for comparison.

Base+L: This model removes the Decoder and uses
linear direct prediction, allowing us to isolate the effect
of linear prediction without the full Transformer
architecture.

26 Informatica 49 (2025) 15–28 Y. Cheng et al.

FGDLNet: This model includes all core modules,
including single-channel processing, multi-scale feature
extraction with GNN, hybrid attention, and the
improved loss function.

In this section, we analyze the theoretical time
complexity of three models: Base, Base+L, and
FGDLNet. The Base model, which corresponds to the
original Transformer architecture, has a time complexity
of 𝑂(𝐿2𝑑), where 𝐿 is the length of the input sequence
and 𝑑 is the dimensionality of the hidden layer. This
quadratic complexity arises from the self-attention
mechanism, which requires pairwise calculations for all
tokens in the sequence. The Base+L model, which
removes the Decoder and applies linear direct prediction,
maintains the same time complexity for the
self-attention mechanism as Base, i.e., 𝑂(𝐿2𝑑) .
However, the linear prediction part has a complexity of
𝑂(𝐿𝑑), which reduces the overall computational burden
by eliminating the Decoder. In contrast, FGDLNet,
which incorporates local window attention, global linear
attention, and a Graph Neural Network for feature
extraction, offers a more efficient approach. The time
complexity of FGDLNet for the attention mechanism is
reduced to 𝑂(𝑤𝐿𝑑) , where 𝑤 is the window size,
making it more efficient for long sequences compared to
the quadratic complexity of the original Transformer.
Additionally, the inclusion of GNN for extracting
internal features from the single channel increases the
time complexity to 𝑂(𝑇2𝐷), where 𝑇 represents the
matrix multiplication for the self-adjacency matrix and
𝐷 is the feature dimension used in the GNN. This
theoretical analysis highlights the computational
efficiency of FGDLNet in processing long sequence
data, as it reduces the time complexity through hybrid
attention mechanisms while adding the computational
cost of GNN feature extraction. Table 5 shows the
operational efficiency and mean absolute error of three
models.

Table 5: Runtime Efficiency and MAE Comparison of

Models

model Training time MAE

Base 1243.14 0.2948

Base+L 1007.17 0.3677

FGDLNet 1156.47 0.1701

Based on the table data, the Base model has the longest
runtime. The Base+L model improves efficiency but
with a decrease in accuracy. In contrast, the FGDLNet
model achieves the best prediction accuracy while
maintaining a good runtime. Therefore, FGDLNet
outperforms the other models in terms of both prediction
accuracy and efficiency.

5 Discussion

The Transformer model has achieved significant success
in traditional time series forecasting, particularly in
handling long sequences, where it effectively captures
global dependencies. However, the Transformer model
suffers from high computational complexity, especially
with the self-attention mechanism, which has a time

complexity of 𝑂(𝑛2), where nnn is the sequence length.
This results in a substantial increase in computational
burden when the sequence length is large, particularly in
resource-constrained environments.

The DLinear model is based on a simple linear
regression approach for time series forecasting, which
offers computational efficiency, especially for
large-scale data. Its advantage lies in its simplicity and
efficiency, making it suitable for scenarios requiring fast
computation with relatively simple data patterns.
However, its drawback is its limited ability to handle
complex patterns and long-term dependencies in time
series data, resulting in inferior predictive performance
compared to more complex models.

FGDLNet simplifies the model structure by removing
the Decoder module from the Transformer. Unlike the
traditional Transformer, which relies on the Decoder
module for generating the output sequence—requiring
substantial computation and complex parameter
adjustments—FGDLNet replaces it with a linear layer,
directly connecting and predicting the output. This
modification reduces the computation process and
lowers the time complexity. Additionally, FGDLNet
incorporates a Graph Neural Network module, enabling
it to enhance dependencies between time steps within a
single channel. This improvement allows FGDLNet to
capture long-term dependencies and complex patterns
more effectively than the traditional Transformer and
DLinear. Consequently, FGDLNet enhances model
expressiveness and prediction accuracy while
maintaining relatively low computational complexity.

6 Conclusion

This paper presents FGDLNet, a time series forecasting
model based on the Transformer architecture, designed
to overcome the challenges of long sequence prediction.
By removing the Decoder module from the traditional
Transformer, incorporating multi-scale feature
extraction, and employing a hybrid attention mechanism,
FGDLNet significantly improves both prediction
accuracy and computational efficiency.

FGDLNet addresses the high computational complexity
of the traditional Transformer model, which arises from
the self-attention mechanism. By using local window
attention and global linear attention, FGDLNet reduces
time complexity, making it more efficient for long
sequence inputs. Additionally, the hybrid attention
mechanism captures both local and global dependencies,
while the integration of Graph Neural Networks for
multi-scale feature extraction enhances the model's
ability to capture complex dependencies in time series
data.

Experimental results demonstrate that FGDLNet
outperforms traditional methods in terms of both
prediction accuracy and computational efficiency. The
model strikes a good balance between accuracy and
efficiency, making it suitable for long sequence
forecasting tasks. Future work could focus on further
optimizing GNN techniques, integrating multi-modal
data, and exploring cross-domain applications to further

Research on Time Series Forecasting Models Based on Hybrid… Informatica 49 (2025) 15–28 27

enhance the model's predictive power and generalization
ability.

Conflict of Interest

The authors confirm that the content of this article has
no conflict of interest.

Acknowledgement

This research was supported by the Key Scientific and
Technological Project of Henan Province
(242102210058).

References

[1] Vaswani A. Attention is all you need(2023).
Advances in Neural Information Processing
Systems, NIPS'17: Proceedings of the 31st
International Conference on Neural Information
Processing Systems Pages 6000 - 6010.
https://doi.org/10.48550/arXiv.1706.03762

[2] Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J.,
Xiong, H., and Zhang, W. (2021). Informer:
Beyond efficient transformer for long sequence
time-series forecasting. In Proceedings of the AAAI
conference on artificial intelligence Vol. 35, No. 12,
pp. 11106-11115.
https://doi.org/10.1609/aaai.v35i12.17325

[3] Kitaev, Nikita ,Łukasz Kaiser, and Anselm
Levskaya. (2020)."Reformer: The efficient
transformer." arXiv preprint arXiv:2001.04451 .
https://doi.org/10.48550/arXiv.2001.04451

[4] Wu, H., Xu, J., Wang, J., & Long, M. (2021).
Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting.
Advances in neural information processing systems,
Vol.34, 22419-22430.
https://doi.org/10.48550/arXiv.2106.13008

[5] Zeng A, Chen M, Zhang L, et al(2023). Are
Transformers Effective for Time Series Forecasting?
Proceedings of the AAAI Conference on Artificial
Intelligence. Vol.37(9): 11121-11128.
https://doi.org/10.1609/aaai.v37i9.26317

[6] Liu Y, Hu T, Zhang H, et al(2023). iTransformer:
Inverted Transformers are Effective for Time
Series Forecasting. arXiv preprint
arXiv:2310.06625, 2023.
https://doi.org/10.48550/arXiv.2310.06625

[7] Xu, Zhijian, Ailing Zeng, and Qiang Xu (2023).
"FITS: Modeling time series with $10 k
$ parameters." .Montavon G, Orr G B, Müller K R.
Neural Networks: Tricks of the Trade. arxiv
preprint arxiv:2307.03756
https://doi.org/10.48550/arXiv.2307.03756

[8] Cao, D., Jia, F., Arik, S. O., Pfister, T., Zheng, Y.,
Ye, W., & Liu, Y. (2023). Tempo: Prompt-based
generative pre-trained transformer for time series
forecasting. arxiv preprint arxiv:2310.04948.
https://doi.org/10.48550/arXiv.2310.04948

[9] Yitian Zhang, Liheng Ma, Soumyasundar Pal,

Yingxue Zhang, Mark Coates (2023).
Multi-resolution Time-Series Transformer for
Long-term Forecasting. arxiv preprint
arXiv:2311.04147v2
https://doi.org/10.48550/arXiv.2311.04147

[10] Arjun Ashok, Étienne Marcotte, Valentina
Zantedeschi, Nicolas Chapados, Alexandre Drouin
(2023). TACTiS-2: Better, Faster, Simpler
Attentional Copulas for Multivariate Time
Series.arxiv preprint arxiv:2310.01327.
https://doi.org/10.48550/arXiv.2310.01327

[11] Yang, Z., Liu, L., Li, N., & Tian, J. (2022). Time
series forecasting of motor bearing vibration based
on informer. Sensors, 22(15), 5858.
https://doi.org/10.3390/s22155858

[12] Gong, M., Zhao, Y., Sun, J., Han, C., Sun, G., &
Yan, B. (2022). Load forecasting of district heating
system based on Informer. Energy, 253, 124179.
https://doi.org/10.1016/j.energy.2022.124179

[13] Pan, K., Lu, J., Li, J., & Xu, Z. (2023). A Hybrid
Autoformer Network for Air Pollution Forecasting
Based on External Factor Optimization.
Atmosphere, 14(5), 869.
https://doi.org/10.3390/atmos14050869

[14] Feng, H., & Zhang, X. (2023). A novel
encoder-decoder model based on Autoformer for
air quality index prediction. Plos one, 18(4),
e0284293.
https://doi.org/10.1371/journal.pone.0284293

[15] Huang, Y., & Wu, Y. (2023). Short-Term
Photovoltaic Power Forecasting Based on a Novel
Autoformer Model. Symmetry, 15(1), 238.
https://doi.org/10.3390/sym15010238

[16] Ahmed N K, Atiya A F, Gayar N E, et al. An
empirical comparison of machine learning models
for time series forecasting[J]. Econometric reviews,
2010, 29(5-6): 594-621.
https://doi.org/10.1080/07474938.2010.481556

[17] Frissou N, Kimour M T, Selmane S. Optimized
Support Vector Regression for Predicting
Leishmaniasis Incidences[J]. Informatica
(Slovenia), 2021, 45(7).
https://doi.org/10.31449/inf.v45i7.3665

[18] Liu Y, Pan B. Profit estimation model and financial
risk prediction combining multi-scale
convolutional feature extractor and BGRU
model[J]. Informatica (Slovenia), 2024, 48(11).
https://doi.org/10.31449/inf.v48i11.5941

[19] Wang T, Yu J, Cao Y, et al. Fault Prediction of CNC
Machine Tools Based on Gutenberg-Richter Law
and Fuzzy Neural Networks[J]. Informatica
(Slovenia), 2024, 48(18).
https://doi.org/10.31449/inf.v48i18.6292

[20] Flores A, Tito-Chura H. Multi-Step Forecasting of
Guillain Barré Cases using Deep Learning[J].
Informatica (Slovenia), 2024, 48(20).
https://doi.org/10.31449/inf.v48i20.6358

https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1609/aaai.v35i12.17325
https://doi.org/10.48550/arXiv.2001.04451
https://doi.org/10.48550/arXiv.2106.13008
https://doi.org/10.1609/aaai.v37i9.26317
https://doi.org/10.48550/arXiv.2310.06625
https://doi.org/10.48550/arXiv.2307.03756
https://doi.org/10.48550/arXiv.2307.03756
https://doi.org/10.48550/arXiv.2310.04948
https://doi.org/10.48550/arXiv.2311.04147
https://doi.org/10.48550/arXiv.2310.01327
https://doi.org/10.3390/s22155858
https://doi.org/10.1016/j.energy.2022.124179
https://doi.org/10.3390/atmos14050869
https://doi.org/10.3390/atmos14050869
https://doi.org/10.1371/journal.pone.0284293
https://doi.org/10.3390/sym15010238
https://doi.org/10.3390/sym15010238
https://doi.org/10.1080/07474938.2010.481556
https://doi.org/10.31449/inf.v45i7.3665
https://doi.org/10.31449/inf.v48i11.5941
https://doi.org/10.31449/inf.v48i18.6292
https://doi.org/10.31449/inf.v48i18.6292
https://doi.org/10.31449/inf.v48i20.6358
https://doi.org/10.31449/inf.v48i20.6358

28 Informatica 49 (2025) 15–28 Y. Cheng et al.

