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In wireless data transmission, packet loss and missing data caused by environmental interference and 
network congestion significantly impact the stability of time series. To address these challenges, this study 
proposes a time series forecasting model named FGDLNet. FGDLNet is based on the Transformer 
architecture and integrates Graph Neural Networks (GNN) to enhance the performance of long sequence 
predictions, particularly in handling complex time series patterns. The model simplifies its structure and 
reduces computational complexity by removing the Decoder module from the traditional Transformer and 
replacing it with a linear layer for direct connection and prediction. To enhance the feature extraction 
capability of time series data, FGDLNet incorporates a multi-scale feature extraction module that extracts 
features at different temporal scales using multiple convolution kernels in parallel. Specifically, the model 
employs a single-channel processing approach to reduce interference between features and improve 
prediction accuracy. The introduced GNN module enables feature propagation and enhancement within 
the single channel, better capturing short-term fluctuations and long-term trends. In terms of the attention 
mechanism, this study designs a hybrid attention mechanism that combines global linear attention and 
local window attention. The global linear attention optimizes the computation to improve the efficiency of 
capturing global contextual information, while the local window attention strengthens the model’s ability 
to handle short-term dependencies. To evaluate the effectiveness of the model, we selected a dataset 
recorded during the flight of a specific aircraft, which includes longitude, latitude, and inertial navigation 
parameters, and conducted long-term trend forecasting. In the experiments, we used MAE (Mean Absolute 
Error), MSE (Mean Squared Error), and training time to assess the model’s performance. The 
experimental results show that FGDLNet outperforms traditional models such as Autoformer, Transformer, 
Informer, Reformer, DLinear, and ITransformer in long-term forecasting tasks. Specifically, FGDLNet 
achieves the following MAE values: 0.1400, 0.0595, 0.0092, 0.0324, 0.0493, and 0.122, which are 
significantly lower than those of the other models. In terms of MSE, FGDLNet also demonstrates lower 
errors: 0.0231, 0.0584, 0.0987, 0.0825, 0.0798, and 0.1925. Additionally, FGDLNet’s training time per 
epoch is 1156.47 seconds, which is about 7% faster than the Transformer model (1243.14 seconds). 

Povzetek:Predstavljen je FGDLNet model za napovedovanje časovnih vrst, ki združuje transformersko 
arhitekturo, grafne nevronske mreže in hibridni mehanizem pozornosti za izboljšano napovedovanje 
dolgih zaporedij. 

 

1 Introduction  

In recent years, time series forecasting has gained 

increasing importance across various fields, particularly 

in wireless data transmission. Accurate long-term 

forecasting in time series remains a challenging task due 

to several inherent difficulties, such as capturing both 

long-term dependencies and short-term fluctuations, and 

handling noise and missing data in real-world scenarios. 

In wireless data transmission, issues like packet loss, 

network congestion, and signal interference often result 

in missing data or inaccuracies in measurements, 

complicating the forecasting process. These challenges 

are particularly critical in scenarios where accurate, 

real-time predictions are needed to ensure reliable system 

performance. Furthermore, traditional time series models 

often struggle with efficiently capturing complex, 

high-dimensional data patterns, especially when 

multiple dependencies across time steps need to be 

modeled. 

To address these issues, this paper introduces FGDLNet, 

a novel long-sequence time series forecasting model. In 

this paper, we introduce FGDLNet, a novel time series 

forecasting model designed to handle long sequences 

while addressing the challenges of capturing both global 

and local dependencies. The name FGDLNet reflects the 

core design principles of the model: 

F stands for Feature Extraction, emphasizing the model 

multi-scale feature extraction module that captures key 

features at different temporal scales. 
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G represents Graph Neural Networks, which enhance 

the model ability to capture complex dependencies 

between time steps and improve performance, 

particularly in noisy or high-dimensional settings. 

D refers to Decoder Removal, signifying the 

simplification of the Transformer architecture by 

removing the decoder, reducing computational 

complexity. 

L stands for Local and Global Attention, highlighting 
the hybrid attention mechanism that combines local 
window attention and global linear attention to 
effectively model both short-term fluctuations and 
long-term trends. 

Net indicates that it is a Network, emphasizing the use 
of a deep learning framework based on Transformer 
architecture. 

 

2 Related works 

Time series forecasting has long been a critical research 
area, with numerous methods proposed to model 
temporal dependencies in data. The Transformer model, 
due to its ability to effectively capture long-range 
dependencies through attention mechanisms, has 
become a key advancement in sequence modeling tasks 
[1]. However, its computational complexity grows 
quadratically with sequence length, limiting its 
scalability and efficiency in handling long sequences. 
Several modified Transformer-based models have been 
proposed in recent years to address this issue, aiming to 
reduce computational costs while improving the 
modeling capability of time series data. 

For example, Informer introduces the ProbSparse 
attention mechanism to improve computational 
efficiency in long-sequence prediction tasks [2]. While 
it enhances computational efficiency, it struggles with 
capturing fine-grained local features, especially when 
short-term dependencies are critical. Reformer further 
reduces computational complexity by using 
locality-sensitive hashing and reversible residual 
networks [3]. However, it still struggles with handling 
highly non-linear patterns, common in real-world time 
series data. 

Autoformer and DLinear have also contributed to trend 
prediction. Autoformer uses a recursive mechanism to 
enhance its ability to capture long-term trends but faces 
limitations in modeling short-term dependencies, 
especially in environments with high volatility and noise 
[4]. DLinear, using linear decomposition, handles time 
series data but lacks flexibility in dealing with complex 
non-linear trends or abrupt changes [5]. 

Despite these advancements, existing models still face 
challenges in effectively capturing both long-term 
global dependencies and short-term local patterns in 
time series data. Additionally, they often struggle with 
computational efficiency, particularly when processing 
high-dimensional, noisy, and large-scale data. To 
address these limitations, this paper proposes the 
FGDLNet model, integrating global linear attention for 

capturing long-term trends, local window attention for 
short-term fluctuations, a multi-scale feature extraction 
module for richer feature representation, and a Graph 
Neural Network module to enhance the model’s ability 
to learn complex dependencies. Through these 
innovations, FGDLNet not only addresses the 
limitations of long-sequence forecasting but also 
demonstrates significant advantages in capturing 
complex dependencies within time series data. The 
comparison between algorithms is shown in Table 1. 

Table 1: Comparison of the different types of protocols 
involved. 

Algorithm Vantage Drawbacks 

Autoformer 

Automatically captures 

periodic changes in time 

series.  

Improves prediction accuracy. 

May require a large amount 

of data for training.  

May not perform well with 

non-periodic data. 

Transformer 

Efficient parallel computing 

capability.  

Strong ability to handle long 

sequences.  

Self-attention mechanism 

captures complex 

dependencies. 

High computational 

resource consumption.  

May encounter efficiency 

issues with very long 

sequences. 

Informer 

Designed for long sequence 

time series forecasting.  

ProbSparse self-attention 

mechanism reduces 

computational complexity. 

May not be as effective for 

short sequences compared 

to traditional Transformer.  

Higher implementation 

complexity. 

Reformer 

Reduces computational 

complexity with LSH attention 

mechanism.  

Reversible network reduces 

memory consumption. 

LSH may introduce 

approximation errors.  

May not be flexible enough 

for some tasks. 

DLinear 

Simple and efficient time 

series forecasting model.  

O(1) maximum signal 

traversal path length.  

Consumes less memory and 

parameters. 

May not be suitable for all 

types of time series data.  

Limited ability to capture 

complex patterns. 

 

3 Methodology 

In this paper, we introduce FGDLNet, a time series 
prediction model based on the Transformer architecture. 
The input time series data is first processed through an 
embedding layer, which maps the data to a 
high-dimensional feature space to capture temporal 
features more effectively. This embedding process is 
similar to the embedding operation in a standard 
Transformer. 
To handle time series data with multi-scale features, we 
designed a multi-scale feature extraction module. This 
module applies multiple sets of one-dimensional 
convolution operations to extract features at different 
temporal scales. Each convolutional kernel captures 
dependencies within a specific temporal range, resulting 
in multi-scale feature representations. These features are 
then combined and fed into the attention mechanism 
module. 
The attention mechanism includes a global linear 
attention mechanism to optimize computation, 
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significantly reducing complexity and enabling efficient 
handling of long-sequence data while retaining global 
contextual information. This helps the model understand 
overall trends in the data. To capture local patterns more 
effectively, we introduced a local window attention 
mechanism, which focuses on sequence segments within 
a fixed-size window. This approach reduces 
computational complexity and enhances the model’s 
ability to capture local features. 

We also integrated a Graph Neural Network module to 
enhance FGDLNet’s ability to capture non-linear 
dependencies in time series data, improving accuracy, 
especially in noisy scenarios. Additionally, by using a 
single-channel processing approach, we reduce feature 
interference and avoid the complexity of multi-channel 
processing, ensuring better feature representation and 
improving the model's stability and accuracy in time 
series forecasting. 

At the core of FGDLNet are multiple stacked encoder 
layers, each comprising a global linear attention module, 
a local window attention module, and a GNN module. 
By stacking these layers, the encoder captures both 
long- and short-term dependencies in the time series 
data. The GNN module further enhances the handling of 
complex dependencies within the data, improving 
predictive capability. The feature representations output 
by the encoder layers are transformed through a linear 
transformation layer to produce the final prediction 
result. The output layer design ensures that the model 
can generate accurate time series predictions based on 
the captured global and local features and node 
dependencies. The FGDLNet framework is illustrated in 
Figure 1. 

Figure 1: Network structure model. 

 
3.1 Feature engineering 

In this study, we propose a time-stamp-based feature 
extraction method to enhance the model's ability to 
capture periodic and seasonal patterns in time series data. 
Compared to traditional methods, we further enrich the 

diversity and granularity of time features, particularly 
when handling high-frequency time series data with 
second-level resolution. Specifically, we dynamically 
generate corresponding time features based on the time 
frequency of the input data (such as seconds, minutes, 
hours, etc.), and encode them by combining multiple 
time units [6]. 

Unlike traditional time features (such as seconds, 
minutes, hours, and dates), our method extends to more 
refined features, such as decomposing minutes into 
different time intervals (e.g., 2 minutes, 10 minutes, and 
20 minutes) for feature encoding. These interval-based 
features capture micro-level time variations within the 
time series, which are particularly useful for 
high-frequency data (e.g., per-second time series) as 
they help identify finer-grained periodic patterns. To 
ensure that all time features are within a unified scale, 
we normalize their values to the range of [−0.5, 0.5], 
avoiding training instability caused by scale differences. 
Ultimately, all of these time features are stacked into a 
feature matrix, serving as the model's input. This 
multi-level, multi-granular approach to time features 
helps the model better capture the periodicity and 
regularity in time series data, thus improving prediction 
performance [7-9]. 

In summary, compared to traditional time feature 
extraction methods, our extended approach refines time 
units and adds multiple time interval features, enabling 
the model to comprehensively capture various time 
scales and periodic patterns in the data. This 
significantly enhances the model's performance, 
particularly when handling high-frequency time series 
data. 
 

3.2 Multiscale feature extraction 

In the time series forecasting model, the multi-scale 
feature extraction module is designed to capture 
information across various temporal scales, aiming to 
provide enriched feature representations for more 
accurate predictions. The data is recorded every second, 
with four feature values that capture periodic behavior 
and patterns in the time series. By encoding the minute 
values in various ways, the model can recognize and 
leverage cyclical patterns effectively. Time features are 
extracted at scales of every hour, every minute, every 
second, two-minute intervals, ten-minute intervals, and 
twenty-minute intervals. 

Before feature extraction, the time series data's distinct 
features are separated into individual channels. This 
feature separation approach ensures that convolution 
operations within each channel focus on a specific 
feature, preventing interference among features. As a 
result, the model can more accurately capture the 
independent patterns of each feature [10-12]. 

To capture features across multiple temporal scales, the 
multi-scale feature extraction module applies various 
convolutional kernels in parallel. Specifically, different 
kernel sizes (such as 3, 5, and 7) are used to convolve 
each channel's data. Smaller kernels (e.g., 3x3) are adept 
at capturing short-term dependencies, while larger 
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kernels (e.g., 7x7) cover broader context, capturing 
long-term dependencies. This multi-scale convolution 

operation enables the model to extract layered feature 
representations from the time series, enriching the 

information available for subsequent processing. These 
time features are then processed and fed into the model, 

as shown in the data processing flow in Figure 2.

Because different kernel sizes generate feature maps of 
varying lengths, it’s necessary to align these feature 
maps before integration. To achieve this, the module 
pads each feature map to a uniform length, ensuring 
consistent shapes for concatenation. After alignment, 
feature maps from all channels are concatenated along 
the feature dimension, forming a composite feature 
representation. 

An embedding layer then transforms the concatenated 
features, enhancing the representational capacity. This 
embedding layer acts as a linear transformation, 
mapping the multi-scale features into a unified feature 
space for processing by subsequent encoder layers. 

Finally, the integrated multi-scale features are processed 
through a fully connected layer to form the model’s final 
input. Although each channel processes different 
features independently, the fusion process allows the 
model to capture interrelationships among these 
features.  

In summary, the multi-scale feature extraction module 
leverages feature separation, multi-scale convolution, 
feature alignment and concatenation, and embedding 
transformation to extract and integrate rich information 
across different temporal scales in the time series. This 
design improves the model’s capacity to capture both 
short-term and long-term dependencies, enhancing 
FGDLNet's predictive performance on complex time 
series data. 

Given an input time series 𝑋 ∈ ℝ𝐵×𝐿×𝐷, where B is 
the batch size, L is the sequence length, and D is the 
feature dimension, each feature 𝑥𝑑 ∈ ℝ𝐵×𝐿is separated 
into individual channels and then input into multi-scale 
convolutional layers: 

𝑋1
(𝑑)

= Conv1d(𝑥𝑑 , 𝑘1) + ReLU + BN (1) 

𝑋2
(𝑑)

= Conv1d(𝑥𝑑 , 𝑘2) + ReLU + BN (2) 

𝑋3
(𝑑)

= Conv1d(𝑥𝑑 , 𝑘3) + ReLU + BN (3) 

where k1,k2,k3 represent different kernel sizes used for 
capturing features across various temporal scales. 

The output of these convolutional layers can be denoted 
as: 

𝑋(𝑑) = Concat([𝑋1
(𝑑)

, 𝑋2
(𝑑)

, 𝑋3
(𝑑)

]) (4) 

The final integrated features are further processed 
through a linear layer: 

𝑋′(𝑑) = Linear(𝑋(𝑑))  (5) 

where 𝑋′(𝑑)is the final integrated output, which serves 
as the input to the subsequent attention mechanism. This 
enables FGDLNet to capture multi-scale feature 
information, enhancing both the accuracy and stability 
of its predictions. 

 

3.3 Global linear attention 

In the time series prediction model proposed in this 
paper, the global linear attention mechanism is one of 
the key components, aimed at capturing global 
contextual information in time series data while 
maintaining efficient computation. Traditional 
self-attention mechanisms perform well in handling long 
sequence data, but their computational complexity is 
𝑂(𝑁2), where 𝑁 represents the sequence length. When 
processing large-scale long sequence data, this  

high computational complexity leads to a sharp increase 
in computational and memory overhead, which impacts 
the efficiency and scalability of the model. To address 
this issue, this paper introduces the global linear 
attention mechanism. 

The core idea of global linear attention is to capture 
global contextual information while using a more 
computationally efficient attention calculation method. 

Figure 2: Data processing procedure 
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Specifically, global linear attention replaces the 
dot-product operation in the traditional self-attention 
mechanism with an operation that has linear time 
complexity [13]. This allows the global linear attention 
mechanism to maintain high computational efficiency 
when handling long sequences. 

In the global linear attention mechanism, the attention 
calculation at each time step no longer depends on all 
other time steps. Instead, it aggregates the information 
from all-time steps in the sequence through a linear 
combination. This approach enables FGDLNet to 
capture the overall patterns of the sequence during the 
attention calculation and avoids the high complexity of 
calculating attention scores for each time step, as in 
traditional self-attention mechanisms [14]. 

After the input sequence passes through the embedding 
layer, it is mapped to a high-dimensional feature space. 
Each time step in the time series is represented as a 
feature vector, Q

i
 , Ki , Vi with the query (Query), 

key (Key), and value (Value) corresponding to the 
respective components. 

In the global linear attention mechanism, the calculation 
of attention weights no longer depends on all time steps. 
Instead, it aggregates the information from the entire 
sequence through a linear computation. Specifically, this 
can be expressed by the following formula: 

𝑄𝐾 =
𝑄⋅𝐾𝑇

√𝑑𝑘
 (6) 

In this context, 𝑄 ∈ ℝ𝐵×𝐿×𝐻×𝐸 , and 𝐾 ∈
ℝ𝐵×𝑆×𝐻×𝐸represent feature dimensions, and 𝑑𝑘 is the 
scaling factor. The computed QK is then passed to the 
SoftMax layer to generate the attention weights 𝐴: 

𝐴 = Softmax (
𝑄𝐾

√𝑑𝑘
)     (7) 

The global linear attention mechanism captures global 
information efficiently through the formula above. The 
attention weights 𝐴 reflect the similarity between the 
query and the key, thereby capturing global patterns in 
the sequence. Next, by multiplying these weights with 
the values𝑉, new feature representations are generated: 

Output = 𝐴 ⋅ 𝑉 (8) 

By using a linear time complexity calculation method, 
the global linear attention mechanism avoids 
computational and memory bottlenecks when processing 
long sequences, allowing the model to handle longer 
sequences and significantly improving computational 
efficiency. 

 

3.4 Local window attention 

The core idea of local window attention is to divide the 
time series into fixed-size windows and calculate 
attention weights within each window. This approach 
avoids the pairwise computation of attention scores for 
all time steps in the sequence, as in global attention 

mechanisms, significantly reducing the computational 
complexity. It is particularly well-suited for handling 
long sequence data [15-16]. 

The length of the input sequence is L and the feature 
dimension is d with a window size of W . In each 
window, the specific calculation steps for local window 
attention are as follows:  

First, the input sequence is divided into windows of size 
W  Each window contains W  time steps, and the 
feature at each time step is represented as a vector. 

Attention Weight Calculation, for each time step 𝑖 and 
𝑗  within the window (where 𝑖, 𝑗 ∈ [1, 𝑊]  represents 
the range of time steps in the window), the dot product 
between the query Q and the key K is computed to 
obtain the attention score matrix: 

QK𝑖,𝑗 = 𝑄𝑖 × 𝐾𝑗
𝑇 (9) 

Where 𝑄𝑖  and 𝐾𝑗 represent the query and key vectors 
of the 𝑖  and 𝑗  time steps within the window, 
respectively. 

Scaling and Normalization, the attention score matrix is 
scaled by the feature dimension d  and then the 
SoftMax operation is applied to the results: 

𝐴𝑖,𝑗 = softmax (
QK𝑖,𝑗

√𝑑
) (10) 

Where 𝐴𝑖,𝑗 represents the attention weight between the 
𝑖 and 𝑗 time steps within the window. 

The attention weight matrix 𝐴 is then used to perform a 
weighted sum on the value matrix 𝑉 to generate the 
output features within the window: 

Output𝑖 = ∑ 𝐴𝑖,𝑗
𝑊

𝑗=1
× 𝑉𝑗  (11) 

Where 𝑉𝑗 is the value vector of the 𝑗 time step within 
the window. 

The output features of all windows are concatenated 
sequentially to form the final output sequence. For the 
entire sequence, the output of the local window attention 
mechanism 𝑂 can be represented as: 

𝑂 = Concat ([∑ softmax𝑊
𝑗=1 (

𝑄𝑖×𝐾𝑗
𝑇

√𝑑
) × 𝑉𝑗]

𝑖=1

𝑊

, … , [∑ softmax𝑊
𝑗=1 (

𝑄𝑖×𝐾𝑗
𝑇

√𝑑
) × 𝑉𝑗]

𝑖=𝐿−𝑊+1

𝐿

)  

（12） 

Where concatenate indicates the concatenation of the 
output features of all windows in sequence order. 

The window size W plays a decisive role in the local 
window attention mechanism as it limits the range of 
time steps considered during each attention weight 
calculation. By selecting W  appropriately, local 
patterns in the time series can be captured while 
ensuring computational efficiency. This mechanism is 
particularly well-suited for processing long sequence 
data, effectively balancing the capture of both global 
and local information. 
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3.5 Mixed attention mechanism 

In this paper, we propose a hybrid attention mechanism 
designed to effectively combine global and local 
attention to capture both long-range and short-range 
dependencies in time series data. The aim of this 
mechanism is to balance the model's ability to 
understand global temporal patterns while maintaining 
computational efficiency. In traditional attention 
mechanisms, global dependencies are captured by 
attending to all time steps across the entire sequence, 
while local dependencies are often overlooked or poorly 
represented [17]. To overcome this challenge, we 
introduce a mechanism that integrates both types of 
attention, ensuring that the model can simultaneously 
focus on local interactions and global temporal 
relationships. 

The key idea behind this hybrid approach is to decouple 
the computations of global and local attention, which are 
then performed in parallel and combined afterward. To 
integrate these two types of attention, we apply them to 
different layers or parallel branches of the model. The 
global attention mechanism operates over the entire 
sequence, aggregating information from all-time steps to 
capture long-term trends, while the local attention 
mechanism focuses on a sliding window of time steps to 
capture local patterns. 

The outputs of these two attention mechanisms are then 
integrated through a weighted summation. This process 
can be formulated as follows: 

The global linear attention mechanism generates feature 
representations that capture sequence-level temporal 
dependencies. This is represented as: 

Global Output = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) ⋅ 𝑉 (13) 

where 𝑄  represents the queries, 𝐾  the keys, and 𝑉 
the values, with 𝑑𝑘  being the dimensionality of the 
keys (and queries). 

The local window attention mechanism generates 
feature representations focused on specific time 
windows. This can be expressed as: 

 Local Output = ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑖𝐾𝑖

𝑇

√𝑑𝑘
) ⋅ 𝑉𝑖

𝑀

𝑖=1
 (14) 

where 𝑄𝑖 , 𝑘𝑖, and 𝑉𝑖  refer to the queries, keys, and 
values within the 𝑖 window of the sliding window, and 
𝑀 is the total number of windows. 

Finally, the outputs of the global and local attention 
mechanisms are combined. This integration is 
performed through weighted summation: 

Combined Output = Global Output + Local Output

 (15) 

This approach enables the model to balance the capture 
of global patterns and local details, ensuring a more 
comprehensive understanding of the time series data 

while maintaining computational efficiency. 

3.6 Graph convolution module 

This paper proposes the introduction of a Graph Neural 
Network module in time series forecasting models. 
GNN leverages graph structures to represent the 
relationships between nodes in time series data and 
learns complex dependencies in the sequence through 
information propagation between nodes [17]. 
Specifically, we treat each time step or feature in the 
time series data as a node in the graph, where the 
connections between the nodes represent the 
dependencies between these time steps or features. The 
GNN module uses multi-layer graph convolution 
operations to map these node features into a new feature 
space, capturing both global and local dependencies. 

The input time series data is represented as a 
three-dimensional tensor 𝑋 ∈ ℝ𝐵×𝐿×𝐹 , where B 
represents the batch size, L represents the sequence 
length, and F represents the feature dimension.  

Another input is the adjacency matrix 𝐴 ∈ ℝ𝐿×𝐿  or 
edge list E, which represents the connections between 
nodes. For each graph convolution layer, the feature 
update of node 𝑙 in the 𝑖 layer is expressed as: 

ℎ𝑖
(𝑙)

= 𝜎 (∑
1

√|𝒩(𝑖)|⋅|𝒩(𝑗)|𝑗∈𝒩(𝑖)
𝑊(𝑙)ℎ𝑗

(𝑙−1)
+ 𝑏(𝑙)) (16) 

Here, ℎ𝑖
(𝑙)

is the feature representation of node 𝑙 in the 

𝑖 layer, 𝒩(𝑖)is the set of neighboring nodes of node𝑖, 

c𝑖𝑗 is the normalization coefficient used for scaling, 

𝑤(𝑙) and 𝑏(𝑙)  are the weight matrix and bias term, 

respectively, and 𝜎(⋅)  is the activation function. 

1

√|𝒩(𝑖)|⋅|𝒩(𝑗)|
is the normalization coefficient to ensure 

the numerical stability of the features. 

In the feature extraction module, local features of the 
time series are first extracted through convolutional 
layers: 

𝑋conv = Conv1d(𝑋)  (17) 

Then, the convolved features are combined with the 
adjacency matrix and input into the GNN layer to 
perform graph convolution operations, generating new 
feature representations: 

𝐻𝑔𝑛𝑛 = GNN(𝑋𝑐𝑜𝑛𝑣 , 𝐴)  (18) 

Finally, the features are further processed through a 
fully connected layer to obtain the final feature 
representation: 

𝑋𝑜𝑢𝑡 = Linear(𝐻𝑔𝑛𝑛)  (19) 

Through these formulas, the GNN module can 
effectively model the complex dependencies in time 
series data, especially when the data exhibits network 
structure characteristics. This design enables the model 
to capture both global and local temporal dependencies, 
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thereby improving prediction accuracy. 

In the FGDLNet model presented in this paper, the 
GNN module processes the graph-structured 
representation of the input data through graph 
convolution layers. Specifically, the time series data is 
treated as a graph, where each time step or feature is a 
node, and the connections between nodes represent their 
dependencies. 

3.7 Loss function 

This paper proposes an improved version of the Mean 
Squared Error (MSE) loss function, which aims to 
enhance local dependencies by introducing a penalty 
term, thereby improving the robustness and accuracy of 
time series forecasting [18-20]. The loss function 
consists of two components: the standard MSE loss and 
a penalty term. The penalty term is used to penalize the 
variation in prediction errors between adjacent time 
steps, ensuring the stability of the predictions. 

ℒ1 =
1

𝑁
∑ (pred

𝑖
− true𝑖)

2
𝑁

𝑖=1
 (20) 

The penalty term measures the difference in prediction 
errors between adjacent time steps, penalizing large 
changes in the prediction errors to ensure stability. The 
formula is as follows: 

ℒ2 =
1

𝑁
∑ (|pred

i+1
− pred

𝑖
| − |true𝑖+1 − true𝑖|)2

𝑁

𝑖=1
 (21) 

The total loss is the sum of the MSE loss and the penalty 
term, with the hyperparameter 𝜆  controlling the 
balance between the two: 

ℒ = ℒ1 + 𝜆 · ℒ2 (22) 

Compared to the traditional MSE loss, the penalty term 
introduced in this paper helps reduce the fluctuations in 
prediction errors between adjacent time steps, thereby 
improving prediction stability. 

4 Experimental and data analysis 

4.1 Dataset selection 

The dataset contains recorded information of a specific 
aircraft model during flight, with data recorded once per 
second. The fields in the dataset include time, longitude, 
latitude, true heading (from inertial navigation), and 
groundspeed. The dataset includes flight records from 
four different flights for training and prediction. 80% of 
the dataset is used as the training set, and 20% is used as 
the test set. 

 

4.2 Experimental setup 

Since the performance of deep learning models is highly 
dependent on the choice of hyperparameters, we refer to 
the parameter settings of similar models in the literature 
to define the ranges of the parameters for tuning. The 
goal is to identify the optimal combination of 

hyperparameters that leads to the best model 
performance during training.  

The choice of kernel sizes (3, 5, 7) for the convolutional 
layers is made to capture multi-scale features of the time 
series data. Smaller kernel sizes, like 3, are designed to 
capture fine-grained, local patterns, which are crucial for 
detecting short-term fluctuations in the data. Larger 
kernel sizes, like 5 and 7, allow the model to capture 
more global or longer-term dependencies, which are 
especially important for understanding broader trends 
and periodic behaviors in time series data. By using a 
combination of kernel sizes, the model can 
simultaneously capture both local and global features, 
improving its robustness and prediction accuracy. 

The lookback window size of 384 is chosen to balance 
capturing long-term dependencies and ensuring 
computational efficiency. A window of this size allows 
the model to leverage sufficient historical data (384 
seconds) to recognize important trends and fluctuations 
in the wireless data transmission, without introducing 
excessive noise or increasing computational load. 

The model parameters and their corresponding values 
used in our experiments are shown in Table 2. 

Table 2: Model parameters 

parameter name parameter value 

activation function GELU 

optimizer Adam 

learning rate 0.0001 

loss function MSE 

Dropout 0.05 

sliding window 5 

lookback window size 384 

prediction length 96 

convolutional multi-scale {3,5,7} 

batch size 32 

4.3 Comparative analysis of methods 

A comparison is made between FGDLNet and the time 
series forecasting models Autoformer, Transformer, 
Informer, Reformer, DLinear, and ITransformer. All 
models are tested using the same dataset and evaluation 
criteria. The original dataset undergoes cleaning and 
normalization to ensure data quality and consistency of 
inputs across models. The predictive performance of 
each model is evaluated on the test set, and a unified 
evaluation standard is used for comparison. 

 

4.4 Evaluation metrics 

This study utilizes the following evaluation metrics to 
comprehensively assess the predictive performance of 
the models: Mean Absolute Error (MAE), Mean 
Squared Error (MSE), Coefficient of Determination (R²), 
Mean Absolute Percentage Error (MAPE), p-value, 95% 
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Confidence Interval (CI), and Dynamic Time Warping 
(DTW). 

MAE and MSE measure prediction errors, with MSE 
being more sensitive to outliers. R² evaluates the 
proportion of variance explained by the model, while 
MAPE expresses errors as a percentage, ensuring 
interpretability across datasets. Statistical significance is 
assessed using the p-value and 95% CI, which provide 
insights into reliability and uncertainty. DTW evaluates 
the alignment between predicted and actual time series, 
capturing temporal shifts and dynamic patterns. 
Together, these metrics provide a comprehensive 
framework to evaluate both the accuracy and reliability 
of the models for time series forecasting. 

 

4.5 Experimental results and analysis 

The true heading (from inertial navigation) is selected as 
the feature for long-term forecasting. A comparison of 
the predicted values and the true values is shown in 
Figure 3. 

From the fitting plot, it can be observed that the 
Autoformer model exhibits significant fluctuations 
throughout the time series. Although it captures some 
early trends, it deviates considerably from the true 
values in the later stages, especially with a noticeable 
overestimation in its predictions. The DLinear model 
shows relatively stable performance in the early stages, 
with some consistency with the true values. However, it 
exhibits a clear downward trend in the middle phase and 
fails to capture the rebound in the true values. The 
Transformer model’s predictions remain relatively 
stable but fall within the range of 0.2 to 0.4, which is 
largely unrelated to the actual downward trend. Similar 
to Transformer, the Informer model shows stable 
predictions in the early phase, but then sharply declines, 
missing the later recovery in the true values. Its overall 
trend is significantly different from the actual data. The 
Reformer model’s predictions remain high with slight 
fluctuations throughout the time period, failing to 
capture the clear downward trend in the true data. 
FGDLNet successfully identifies the downward trend 
and fits the predicted data accordingly, achieving lower 

error for long-term forecasts. This demonstrates the 
effectiveness of the proposed method, though further 
model adjustments are needed to balance trend 
recognition with accuracy in trend amplitude. 

The analysis of the MAE, MSE, R², and MAPE metrics 
for the Autoformer, Transformer, Informer, Reformer, 
DLinear, ITransformer, and FGDLNet models is shown 
in Table 3. 

Table 3: Model evaluation 

Model MAE MSE R² MAPE 

Autoformer 0.2655 0.2723 0.5219 1.7205 

Transformer 0.1255 0.1029 0.3208 0.7599 

Informer 0.1850 0.1382 0.3717 0.8061 

Reformer 0.1942 0.1785 0.4225 1.3307 

DLinear 0.1618 0.1623 0.4028 0.3988 

ITransformer 0.2111 0.1596 0.3995 1.3346 

FGDLNet 0.0885 0.0798 0.2825 0.5396 

 

Based on the results in Table 3, this paper analyzes the 
performance of seven different models in signal 
prediction, comparing their performance across various 
metrics including Mean Absolute Error, Mean Squared 
Error, Coefficient of Determination, and Mean Absolute 
Percentage Error. 

The Transformer model performs well in terms of MAE, 
with a value of 0.1255, and also shows reasonable 
performance in MSE, with a value of 0.1029. Its R² 
value is 0.3208, indicating a certain degree of fitting 
capability. In terms of MAPE, the Transformer achieves 
an error of 0.7599, which is better than some traditional 
models but is still outperformed by the FGDLNet 
model. 

In comparison, the Autoformer model shows relatively 
average performance, with an MAE of 0.2655, an MSE 
of 0.2723, and an R² value of 0.5219, indicating weaker 
fitting ability. Additionally, its MAPE of 1.7205 
highlights its poorer error control performance. The 
Informer model outperforms Autoformer in terms of 
MAE and MSE, with values of 0.1850 and 0.1382, 
respectively, but falls short compared to Transformer. 
Its R² is 0.3717, and its MAPE is 0.8061. The 
performance of the Reformer model is slightly better 
than Informer but still does not match Transformer or 
FGDLNet, with an MAE of 0.1942, an MSE of 0.1785, 
an R² of 0.4225, and a MAPE of 1.3307. 

The DLinear model achieves an MAE of 0.1618, an 
MSE of 0.1623, an R² of 0.4028, and a MAPE of 0.3988, 
demonstrating better performance compared to the 
traditional models mentioned above. However, it still 
lags behind FGDLNet. Additionally, the ITransformer 
model has an MAE of 0.2111, an MSE of 0.1596, an R² 
of 0.3995, and a MAPE of 1.3346. While it performs 
well in terms of the MSE metric, its overall performance 
is still inferior to DLinear and Transformer. 

The proposed FGDLNet prediction model exhibits 

Figure 3: Experimental results 
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significant advantages across all metrics, with an MAE 
of 0.0885, an MSE of 0.0798, an R² of 0.2825, and a 
MAPE of only 0.5396. Compared to other models, 
FGDLNet demonstrates outstanding performance in 
terms of prediction accuracy and error control. Its 
exceptional performance fully demonstrates its practical 
value in addressing issues related to data loss and 
prediction filling in wireless transmission scenarios. 

To evaluate the impact of different prediction horizons 
on the performance of the benchmark and prediction 
models, we choose 384 as the look-back window size L, 
with prediction lengths τ∈{16,32,48,64,80,96}. The 
results indicate that the proposed model outperforms all 
baseline models across all datasets. The MAE and MSE 
prediction results for different prediction horizons are 
shown in Figure 4. 

Based on the results from Figure 4, we analyzed the 
performance of different models under various 
prediction horizons and identified significant 
differences. 

In terms of Mean Absolute Error (MAE), the 
Autoformer model performs well at shorter prediction 
horizons (16 and 32). However, as the prediction length 
increases, the MAE rises significantly, indicating 
instability in long-term predictions. A similar trend is 
observed with Mean Squared Error (MSE), where 
Autoformer shows a substantial increase in error at 
longer prediction horizons (48 and beyond), highlighting 
its limitations for handling long-term predictions. 

The DLinear model shows excellent performance with 
shorter horizons (16 and 32), maintaining low MAE and 
MSE values. Even when the prediction horizon 
increases to 48 and 64, the error remains relatively 
stable. For larger prediction horizons (80 and 96), there 
is a slight increase in error, but overall performance 
remains superior to other traditional models, indicating 
DLinear’s good adaptability for long-term predictions. 

The Informer model exhibits relatively consistent 
performance across all prediction horizons, but with 
higher overall error. At horizons of 48, 64, and beyond, 
the prediction error increases significantly, suggesting 
its struggle with long-term forecasting. The MSE 
follows a similar trend, showing higher error at larger 
horizons, indicating potential limitations for long-term 
predictions. 

The ITransformer model performs well for shorter 
horizons (16 and 32), with good MAE and MSE results. 
However, as the prediction horizon increases, 
particularly at 48 and beyond, the error grows 
significantly, revealing poor adaptability to long-term 
predictions. At the 96-step horizon, the error is notably 
higher, indicating significant shortcomings when 

handling longer time spans. 

In contrast, FGDLNet consistently performs excellently 
across all prediction horizons, particularly at longer 
horizons (80 and 96), where its MAE is significantly 

lower than that of other models. FGDLNet also excels in 
MSE, significantly surpassing other models at all 
prediction horizons, especially at 64, 80, and 96 steps. 
These results highlight FGDLNet’s advantage in 
handling long-term prediction tasks. 

The Reformer model performs well at shorter horizons 
(16), with very low MAE. However, as the horizon 
increases, its error grows substantially, particularly at 64 
steps and beyond, showing a clear decline in 
performance. The MSE for Reformer follows a similar 
trend, with significant increases in error at longer 
horizons, indicating poor adaptability for long-term 
predictions. 

The Transformer model exhibits relatively stable 
performance across all horizons. While MAE and MSE 
increase slightly at certain prediction horizons (e.g., 48), 
the overall error remains moderate. Even at larger 
horizons (80 and 96), Transformer maintains relatively 
good performance, showcasing its stability when 
handling predictions at different time steps, but its 
predictive accuracy lags behind FGDLNet. 

In summary, the proposed FGDLNet model 
demonstrates competitive performance in both 
short-term and long-term prediction tasks. Particularly 
in long-term forecasting, its MAE and MSE are 
significantly lower than those of other models. In 
comparison, traditional models generally perform poorly 
with long-term predictions, with errors increasing 
significantly as the prediction horizon expands. These 
results highlight the effectiveness and advantages of 
FGDLNet in wireless data transmission prediction. 

Figure 4: Prediction results 
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4.6 Advanced metrics 

In addition to the commonly used MSE, MAE, and R², 
this study introduces several additional evaluation 
metrics to comprehensively analyze the performance of 
different models. These additional metrics include 
p-value, 95% Confidence Interval, and Dynamic Time 
Warping. These metrics help evaluate the model's 
prediction ability, stability, and adaptability to complex 
time series data, especially when faced with noise, 
interference, and challenges across different time scales. 
Table 4 shows the performance of each model in terms 
of p-value, 95% confidence interval, and dynamic time 
warping: 

Table 4: Model evaluation under high-dimensional 

metrics 

Model p-value 95% CI DTW 

Autoformer 0.0000 [0.4277, 0.5682] 2.2186 

DLinear 0.0000 [0.4336, 0.5799] 5.1743 

FGDLNet 0.0000 [0.0595, 0.1391] 0.4831 

Informer 0.0000 [0.1218, 0.2707] 3.0734 

ITransformer 0.0000 [0.5130, 0.6146] 5.0021 

Reformer 0.0000 [0.5817, 0.7459] 7.2481 

Transformer 0.0077 [0.0121, 0.0989] 1.2221 

4.6.1 p-value and 95% confidence interval analysis 

p-value and 95% Confidence Interval are two key 
metrics for evaluating the significance and stability of 
model predictions. Specifically, p-value is used to test 
whether there is a significant difference between the 
model’s predictions and the actual values. A lower 
p-value indicates stronger predictive power. The 95% 
Confidence Interval reflects the consistency and stability 
of the model's predictions; a narrower interval suggests 
more consistent and reliable predictions. 

In this study, we calculated the p-value and 95% 
Confidence Interval for each model. The results show 

that all models have a p-value close to 0.0000, 
indicating strong predictive power in most cases. 
However, it is noteworthy that the 95% Confidence 
Interval of the FGDLNet model is the narrowest 
([0.0595, 0.1391]), suggesting that its predictions are 
more stable and consistent compared to other models. 

4.6.2 Dynamic time warping metric analysis 

Dynamic Time Warping is a metric used to measure the 
alignment of two time series along the time axis. It is 
commonly used to assess the performance of models in 
time series forecasting tasks. The smaller the DTW 
value, the higher the similarity between the predicted 
and actual time series, indicating better model 
performance. 

From the experimental results, FGDLNet performs the 
best, achieving the lowest DTW value (0.4831) among 
all models. This low value indicates that FGDLNet 
aligns most closely with the actual data’s time series, 
meaning it captures the dynamic patterns of the real data 
with high accuracy. 

4.6.3 Residual plot analysis 

In addition to the p-value, 95% confidence interval, and 
DTW, the residual plot also provides valuable insights 
into the model's prediction accuracy. The residual plot 
visualizes the difference (residuals) between the 
predicted values and the actual observations at different 
time steps. This is crucial for detecting error patterns 
that the model may have failed to capture. 

A model’s residual plot indicates its ability to capture 
the underlying dynamics of the data and whether there 
are any systematic errors. Ideally, the residuals should 
be randomly distributed around zero, suggesting that the 
model has captured all the predictable patterns in the 
data. Figure 5 shows a comparison of the residual plots 
for the FGDLNet model and the Transformer model. By 
comparing the residual plots of the two models, it is 
clear that FGDLNet outperforms the Transformer model 
in terms of prediction accuracy and stability. The 
residual points of FGDLNet are closer to the 
zero-residual line and are more evenly distributed, 
indicating that it better captures the dynamic variations 
in the time series data. While the Transformer model  
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Figure 5: Residual plot 

Figure 6: Ablation study 

 

performs well at certain time steps, its consistency and 
accuracy across the entire time series are inferior to 
those of FGDLNet. 

4.7 Ablation experiments 

The FGDLNet model consists of five core modules: 
linear prediction, single-channel processing, multi-scale 
feature extraction enhanced with Graph Neural 
Networks, hybrid attention mechanism, and an 
improved loss function. To validate the effectiveness of 
each module in the FGDLNet model, six network  

variations were designed: (1) Base, which is the basic 
Transformer model; (2) Base+L, where the Decoder is 
removed and linear direct prediction is applied; (3) 
Base+L+D, where single-channel processing is applied 
for prediction; (4) Base+L+D+G, which incorporates 
multi-scale feature extraction and the GNN module; (5) 
Base+L+D+G+Z, which adds the hybrid attention 
mechanism; (6) FGDLNet, which incorporates the 
improved loss function. The results of the ablation 
experiments for prediction lengths of 48 and 96 steps are 
shown in Figure 6.

4.7.1 Efficiency and running time analysis 

In this section, we provide a detailed analysis of the 
efficiency and runtime of the proposed FGDLNet model, 
comparing it with other models from the ablation 
experiments to assess the computational efficiency and 
prediction accuracy. 

We selected three representative models from the 

ablation experiments for this analysis: 

Base: The traditional Transformer model, which serves 
as the baseline for comparison. 

Base+L: This model removes the Decoder and uses 
linear direct prediction, allowing us to isolate the effect 
of linear prediction without the full Transformer 
architecture. 
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FGDLNet: This model includes all core modules, 
including single-channel processing, multi-scale feature 
extraction with GNN, hybrid attention, and the 
improved loss function. 

In this section, we analyze the theoretical time 
complexity of three models: Base, Base+L, and 
FGDLNet. The Base model, which corresponds to the 
original Transformer architecture, has a time complexity 
of 𝑂(𝐿2𝑑), where 𝐿 is the length of the input sequence 
and 𝑑 is the dimensionality of the hidden layer. This 
quadratic complexity arises from the self-attention 
mechanism, which requires pairwise calculations for all 
tokens in the sequence. The Base+L model, which 
removes the Decoder and applies linear direct prediction, 
maintains the same time complexity for the 
self-attention mechanism as Base, i.e., 𝑂(𝐿2𝑑) . 
However, the linear prediction part has a complexity of 
𝑂(𝐿𝑑), which reduces the overall computational burden 
by eliminating the Decoder. In contrast, FGDLNet, 
which incorporates local window attention, global linear 
attention, and a Graph Neural Network for feature 
extraction, offers a more efficient approach. The time 
complexity of FGDLNet for the attention mechanism is 
reduced to 𝑂(𝑤𝐿𝑑) , where 𝑤 is the window size, 
making it more efficient for long sequences compared to 
the quadratic complexity of the original Transformer. 
Additionally, the inclusion of GNN for extracting 
internal features from the single channel increases the 
time complexity to 𝑂(𝑇2𝐷), where 𝑇 represents the 
matrix multiplication for the self-adjacency matrix and 
𝐷 is the feature dimension used in the GNN. This 
theoretical analysis highlights the computational 
efficiency of FGDLNet in processing long sequence 
data, as it reduces the time complexity through hybrid 
attention mechanisms while adding the computational 
cost of GNN feature extraction. Table 5 shows the 
operational efficiency and mean absolute error of three 
models. 

Table 5: Runtime Efficiency and MAE Comparison of 

Models 

model Training time MAE 

Base 1243.14 0.2948 

Base+L 1007.17 0.3677 

FGDLNet 1156.47 0.1701 

Based on the table data, the Base model has the longest 
runtime. The Base+L model improves efficiency but 
with a decrease in accuracy. In contrast, the FGDLNet 
model achieves the best prediction accuracy while 
maintaining a good runtime. Therefore, FGDLNet 
outperforms the other models in terms of both prediction 
accuracy and efficiency. 

5 Discussion 

The Transformer model has achieved significant success 
in traditional time series forecasting, particularly in 
handling long sequences, where it effectively captures 
global dependencies. However, the Transformer model 
suffers from high computational complexity, especially 
with the self-attention mechanism, which has a time 

complexity of 𝑂(𝑛2), where nnn is the sequence length. 
This results in a substantial increase in computational 
burden when the sequence length is large, particularly in 
resource-constrained environments. 

The DLinear model is based on a simple linear 
regression approach for time series forecasting, which 
offers computational efficiency, especially for 
large-scale data. Its advantage lies in its simplicity and 
efficiency, making it suitable for scenarios requiring fast 
computation with relatively simple data patterns. 
However, its drawback is its limited ability to handle 
complex patterns and long-term dependencies in time 
series data, resulting in inferior predictive performance 
compared to more complex models. 

FGDLNet simplifies the model structure by removing 
the Decoder module from the Transformer. Unlike the 
traditional Transformer, which relies on the Decoder 
module for generating the output sequence—requiring 
substantial computation and complex parameter 
adjustments—FGDLNet replaces it with a linear layer, 
directly connecting and predicting the output. This 
modification reduces the computation process and 
lowers the time complexity. Additionally, FGDLNet 
incorporates a Graph Neural Network module, enabling 
it to enhance dependencies between time steps within a 
single channel. This improvement allows FGDLNet to 
capture long-term dependencies and complex patterns 
more effectively than the traditional Transformer and 
DLinear. Consequently, FGDLNet enhances model 
expressiveness and prediction accuracy while 
maintaining relatively low computational complexity. 

 

6 Conclusion 

This paper presents FGDLNet, a time series forecasting 
model based on the Transformer architecture, designed 
to overcome the challenges of long sequence prediction. 
By removing the Decoder module from the traditional 
Transformer, incorporating multi-scale feature 
extraction, and employing a hybrid attention mechanism, 
FGDLNet significantly improves both prediction 
accuracy and computational efficiency. 

FGDLNet addresses the high computational complexity 
of the traditional Transformer model, which arises from 
the self-attention mechanism. By using local window 
attention and global linear attention, FGDLNet reduces 
time complexity, making it more efficient for long 
sequence inputs. Additionally, the hybrid attention 
mechanism captures both local and global dependencies, 
while the integration of Graph Neural Networks for 
multi-scale feature extraction enhances the model's 
ability to capture complex dependencies in time series 
data. 

Experimental results demonstrate that FGDLNet 
outperforms traditional methods in terms of both 
prediction accuracy and computational efficiency. The 
model strikes a good balance between accuracy and 
efficiency, making it suitable for long sequence 
forecasting tasks. Future work could focus on further 
optimizing GNN techniques, integrating multi-modal 
data, and exploring cross-domain applications to further 
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enhance the model's predictive power and generalization 
ability. 
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