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In the current context of industrial automation, with the rapid development of the Internet, artificial 

intelligence and other technologies, intelligent mechanical manufacturing technology has received 

widespread attention. The study builds an intelligent manufacturing optimization model using methods 

based on self-supervised learning and graph neural networks to address the issue of insufficient 

efficiency and accuracy in mechanical manufacturing. Based on the traditional manufacturing method, 

the comparison self-supervised learning model is utilized to mine the available data and monitor the 

quality of mechanical equipment by constructing pre-training tasks to improve the efficiency of 

equipment production. Then it is fused with graph neural networks to design intelligent manufacturing 

optimization model based on self-supervised learning and graph neural networks intelligent 

manufacturing. The experimental results indicated that the comprehensive performance and practical 

application of the research model were good on both. Compared to the three performance types of 

multi-behavior models on different datasets, the model improved by 10.8%, 8.5%, and 6.3%, 

respectively. The noise robustness of the research model improved by 5.36% and 6.27% compared to the 

NGCF and EHCF models, respectively. The performance of the research model reached its optimal 

state when the selected parameters were β=0.01, K=30, and L=2. The results demonstrate that the 

designed optimization model based on self-supervised learning and graph neural networks intelligent 

manufacturing has advantages in terms of operational efficiency and index performance. The research 

results are of great significance for intelligent mechanical manufacturing. 

Povzetek: V članku je opisan inovativen optimizacijski model inteligentne mehanske proizvodnje na 

osnovi samonadzorovanega učenja in grafovskih nevronskih mrež (GNN), ki izboljša učinkovitost in 

robustnost proizvodnje (do 10,8 %). 

 

1  Introduction 
Today, with the continuous development of information 

network and artificial intelligence (AI), automation 

technology is silently penetrating and changing people's 

way of life at an unprecedented speed. Intelligent 

mechanical manufacturing, as a necessary path for 

industrial automation, has been increasing in market 

demand, and the traditional manufacturing methods are 

no longer able to meet the demand [1-2]. This 

phenomenon not only originates from the surge of 

market demand for product personalization and 

customization, but also because of the increasingly 

fierce competition in the global market, which requires 

enterprises to be able to respond to market changes more 

quickly and realize product iteration and upgrade [3]. 

With its strong automatic recognition capability, 

machine learning (ML) approaches have drawn the 

attention of several researchers in recent years who are 

attempting to predict possible equipment failures of 

machinery. However, the existing ML techniques are 

still insufficient in terms of recognition efficiency and 

accuracy, and the wide range of applications cannot 

meet the basic requirements of intelligent mechanical 

manufacturing [4]. The primary concerns have centered 

on the utilization of self-supervised learning (SSL) and 

graph neural networks (GNNs) technologies to enhance 

the accuracy and efficiency of intelligent 

recommendation systems in mechanical manufacturing 

processes, with a focus on improving anomaly detection 

and fault prediction. SSL is one of the most classical 

techniques in ML technology. By analyzing the data 

generated during the operation of mechanical equipment 

to identify abnormal patterns, the effect of quality 

detection can be achieved. Moreover, GNN, as a tool for 

information aggregation (IA) and transfer, can capture 

the complex relationship between users and equipment 

for the recommendation of relevant mechanical parts [5]. 

In this context, to improve the efficiency and accuracy 

of mechanical manufacturing, the study attempts to 
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innovatively design an optimization model based on 

SSL and GNN intelligent manufacturing. The novelty of 

the research lies in the introduction of heterogeneous 

graphs and meta-paths to combine SSL with GNN to 

innovatively improve anomaly detection and failure 

prediction capabilities in intelligent mechanical 

manufacturing. This integration not only improves the 

model performance, but also enhances the adaptability 

and generalizability to complex industrial scenarios. It 

aims to provide a technical foundation for intelligent 

mechanical manufacturing that can improve production 

efficiency and quality. 

2  Related works 
With the intelligent and automated development of the 

manufacturing industry, the traditional manufacturing 

methods have been unable to meet the production needs, 

while intelligent mechanical manufacturing has become 

an important trend in the development of the 

manufacturing industry. As a result, numerous 

academics have studied intelligent mechanical 

manufacturing techniques in related fields. He H 

combines deep reinforcement learning with graph neural 

networks (GNN) to propose an intelligent network 

traffic scheduling algorithm to solve traffic scheduling 

problems in large-scale dynamic network environments. 

This algorithm leverages the decision-making 

capabilities of deep reinforcement learning and the 

advantages of GNNs in processing graph structured data 

to achieve an efficient decision-making process from 

macro strategy formulation to micro-operation execution 

through a hierarchical reinforcement learning 

framework. The experimental results show that the 

algorithm exhibits excellent robustness and 

generalization ability [6]. Sharma T et al. constructed 

fuzzy ensemble technology based on mathematical 

analysis of trust scores and deep neural networks to 

promote the research of automatic ALSC. The proposed 

method can correct the misclassification of basic deep 

learners through reward and punishment strategies. The 

experimental results conducted on five benchmark 

datasets show that this method has advantages over 

component-based deep neural networks and other 

important benchmarks [7]. Yao X et al. proposed a 

blockchain-based value-added industrial meta-universe 

solution for intelligent manufacturing based on 

cyber-physical systems. The study used intelligent 

manufacturing social technology, enhanced intelligent 

manufacturing architecture and framework to achieve 

high resource utilization. The results indicated that the 

proposed scheme was intelligently resilient and 

sustainable [8]. Aldrini J et al. proposed intelligent fault 

diagnosis and self-healing conceptual model architecture 

for intelligent manufacturing system to overcome the 

performance and safety issues of intelligent 

manufacturing. The approach improved the performance 

of intelligent manufacturing systems through fault 

detection as well as self-healing fault-tolerant strategies. 

Experimental results indicated that the proposed 

structure had a good robustness [9]. To facilitate 

intelligent decision-making in dynamic scheduling and 

reconfiguration, Yang S. suggested a mathematical 

model of intelligent scheduling based on deep 

reinforcement learning. According to test results, the 

suggested model has good scheduling efficiency [10]. 

Intelligent mechanical manufacturing often introduces 

artificial networks and ML methods for research, and 

several scholars have conducted research on SSL and 

GNN. Krishnan R proposed self-supervised methods 

and models for medicine and healthcare in response to 

the problem of medical AI development. The study 

investigated SSL's benefits and drawbacks while 

creating models with multimodal datasets. The 

suggested approach could hasten the development of 

medical AI, according to the findings [11]. Rani V et al. 

proposed SSL detection for image processing problems. 

The study used unstructured and unlabeled data to 

develop an AI system to perform downstream computer 

vision tasks. The findings indicated that this method had 

good applicability [12]. Kumar P incorporated contrast 

learning into SSL to investigate the conditions of 

application in different domains. The findings indicated 

that this method has positive significance for 

complementary contrast learning [13]. To address the 

issue of information overload, Wu S. et al. presented a 

recommendation model based on GNN. The method 

provided information categorization based on the type of 

information used and the recommendation task, and 

extracted content from the interaction information. 

Numerous experiments indicated that the proposed 

method had a good stability [14]. Zhou Y proposed a 

new classification method to overcome the limitations of 

GNN. The study categorized the GNN into the 

corresponding categories after showing the full picture 

of the GNN. The test results indicated the superiority of 

the proposed approach in categorization [15]. The 

summary and analysis of existing research methods are 

shown in Table 1. 

 

Table 1: Summary and analysis of currently available research methods 

Methodologies 
Performance 

indicators 
Gaps Limitations Unique requirement 

He H [6] 
Network traffic 

scheduling efficiency 

Traffic scheduling 

problem in 

large-scale dynamic 

network environment 

The efficiency and 

robustness of 

traditional algorithms 

in handling 

large-scale dynamic 

networks 

Improve scheduling 

efficiency and 

robustness 

Sharma T et al. [7] Automatic ALSC Integrated Error classification Improve the 
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performance technology of 

mathematical 

analysis based on 

trust scores and deep 

neural networks 

of basic deep 

learners 

accuracy and 

robustness of 

automatic ALSC 

Yao X et al [8] 

Speed of 

redeployment of 

resources 

Slow to respond to 

market changes 
Lack of real time 

Real-time resource 

allocation 

Aldrini J et al [9] Self-healing time 
Slow response of 

self-healing systems 

Limited ability to 

self-heal 

Rapid self-healing 

ability 

Yang S. [10] 
Movement control 

accuracy 

Poor adaptation of 

highly dynamic 

scheduling 

Inadequate 

adaptation 

Dynamic Scheduling 

Adaptation 

Krishnan R [11] 
generalization 

capability 

Inadequate ability to 

generalize medical 

data 

Limitations of 

multimodal data 

processing 

Multimodal data 

processing 

Rani V et al [12] Outlier detection rate 

Poor handling of 

image processing 

outliers 

lack of robustness Enhanced robustness 

Kumar P [13] 
Cross-domain 

accuracy 

Insufficient 

flexibility in 

cross-cutting 

applications 

Poor cross-cutting 

adaptation 

Cross-cutting 

adaptability 

Wu S. et al. [14] processing speed 

Poor stability of 

massive data 

processing 

information overload 
Information 

processing efficiency 

Zhou Y [15] 
Classification 

accuracy 

Poor classification of 

complex network 

structures 

Insufficient 

classification 

accuracy 

Improvement of 

classification 

accuracy 

 

To summarize, although many experts and scholars have 

carried out related research on intelligent mechanical 

manufacturing, there has not been an approach that 

combines with SSL and GNN. In view of this, the study 

proposes an intelligent mechanical manufacturing model 

based on SSL and GNN. The study combines the data 

characteristics and technological advantages of 

real-world application scenarios to construct a 

supervised networked intelligent manufacturing 

innovation approach. This can improve production 

efficiency and quality and contribute to expanding the 

innovative applications of intelligent mechanical 

manufacturing. 

3 Intelligent mechanical 

manufacturing method based on SSL 

and GNN 

3.1 Intelligent mechanical manufacturing 

design based on SSL 
With the increasing demand for intelligent mechanical 

manufacturing, the traditional manufacturing methods 

are more and more incompetent in terms of efficiency, 

precision and flexibility [16]. Therefore, it is necessary 

to propose an innovative manufacturing program that 

can improve the production efficiency and product 

quality of mechanical manufacturing. The SSL 

technique has gained a lot of traction in ML in recent 

years. From a vast amount of unlabeled data, it  

 

 

automatically learns usable feature representations by 

using the properties of the data itself as supervised 

information. When compared to conventional 

supervised learning techniques, SSL shows a more 

potent and adaptable approach to data use. Its core 

advantage lies in getting rid of the reliance on external 

labels and utilizing the internal structure and properties 

of the data to automatically generate supervised signals 

[17]. This feature enables SSL to generate the potential 

to effectively mine large-scale data. Fig. 1 depicts the 

SSL model. 

In Fig. 1, the SSL model learns advanced 

representations or features of data by designing 

pre-training tasks. The pre-training task of SSL is 

designed as contrastive learning, which involves data 

encoding, positive and negative sample pair generation, 

and similarity comparison operations in sequence. These 

pre-training tasks help the model extract useful 

information from data without external labels, 

improving the model's ability to detect abnormal 

patterns in mechanical manufacturing processes. 

Therefore, it can be migrated to other related supervised 

learning tasks for efficient and accurate model training. 

The SSL algorithmic models can be categorized into 

three types: adversarial, generative, and comparative 

models. Since intelligent mechanical manufacturing 

requires comparative damage determination, the study 

mainly uses comparative SSL models for learning. Fig. 

2 depicts the contrastive model's structure. 
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Fig. 1 SSL model architecture 
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Figure 2: Comparing the structure of self-supervised learning models 

 

In Fig. 2, the comparative model works by first 

encoding the input data efficiently by training the 

encoder. The encoded data are fed into the discriminator, 

and subsequently these encoded data are used to 

perform similarity comparison operations, contrasting 

losses to maximize mutual information. By analyzing 

the massive amount of data generated during operation, 

the SSL algorithm can automatically identify anomalous 

patterns and predict potential equipment failures. The 

original identification formula is shown in Equation (1). 

 

( , )=r r r rG N M E    (1) 

 

In Equation (1), G  is the graph. N  for the set of 

nodes. r  is the type of relationship. 
rG  is the 

original data (OD) sample. 
rN  

is the set of nodes in 

the data sample. 
rM  represents the original mask 

vector, which is used to randomly discard the edges of 

the OD. 
rE  represents the set of edges in the OD 

sample. Next, the loss identification is performed as 

shown in Equation (2). 

 

( , )=S S S SG N M E    (2) 

 

In Equation (2), S  is the loss generation. 
SG  is the 

processed loss samples. 
SN  represents the node set of 

loss samples. 
SM  represents the loss mask vector. 

SE  

represents the set of edges in the loss sample. Then, 

determine the positive probability of unlabeled data 

features by first calculating the cosine similarity of each 

data point, then calculating the sum of the similarities of 

all data points. Finally, the ratio of these two sums is the 

probability of positive samples, as shown in Equation 

(3). 

max(cos( , ))+ =
r s

i iy Soft e e    (3) 

 

 

 

 

In Equation (3), 
+

r

iy  is the probability that the data i  

in the unlabeled sample set is positive for a given data 

feature. e  is the embedding representation of the data 

in the unlabeled sample set. s

ie  is the feature 

embedding representation of the data. cos( )  
is the 

cosine similarity. Then, it is necessary to obtain the data 

self-supervised signal (SsS) and define a set of SsSs that 

includes all cosine similarity values exceeding the 

threshold. As shown in Equation (4). 

 

 ( ), ~+ +=  −r r

i k i rP e k Top K y E G    (4) 

 

In Equation (4), 
+

r

iP  is the set of SsSs for information 

i  under data information interaction. 
ke  

is the K  

data with the highest value after passing the confidence 

test. k  represents all data of the confidence test. E  is 

the set of edges. E  represents the set of edges in the 

data. These signals are used to train the model to learn 

useful feature representations from the structure of the 

data itself. Similarly, the feature-based SsS for data 

under data information interaction can be obtained as in 

Equation (5). 

 

 ( ), ~+ +=  −s s

i k i sP e k Top K y E G    (5) 

 

In Equation (5), 
+

s

iP  represents the set of SsSs for 

information i  under data information interaction. 
+

s

iy  
represents the probability that the data in the labeled 

sample set is positive for a given data feature. To 

accurately express the structural relationships, path 

lengths and other factors in the intelligent network, the 

study introduces heterogeneous graphs and meta-paths 

shown in Fig. 3. 
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Figure 3: Schematic diagram of heterogeneous graph 

and meta path 

 
In Fig. 3(a), the heterogeneous graph is a complex data 

structure that can accommodate multiple types of nodes 

and relationships. At the same time, nodes can exhibit 

diverse performance characteristics. To explore the 

higher-order relationships between nodes in depth, the 

introduction of meta-paths can effectively portray these 

complex, non-direct inter-node connections. In Fig. 3(b), 

the mechanical network structure constructs a hidden 

relationship between users, items and categories through 

a meta-path. This path not only shows the possible 

connections between the three, but also provides a new 

perspective for understanding the underlying workings 

of the network in great detail. In Fig. 3(c), after 

completing the detailed portrayal of different types of 

node association patterns, the node associations in the 

whole network become clearly visible. This 

visualization provides a solid foundation for the 

subsequent analysis and mining work of intelligent 

mechanical manufacturing. 

3.2 Optimization strategies for intelligent mechanical 

manufacturing incorporating GNN 

A significant amount of unlabeled data can be 

automatically learned by the model to create valuable 

feature representations through SSL, which are essential 

for ensuing prediction, classification, or optimization 

tasks. GNN can create more precise and thorough 

models of mechanical systems by taking use of the 

intricate interactions that exist between mechanical 

components. GNNs are a subset of neural networks that 

are specifically trained on graph-structured data (GSD). 

By capturing the intricate interrelationships between 

nodes, GNNs are able to learn the properties of the data 

more precisely [18]. Therefore, the research will 

incorporate GNN for the optimization of intelligent 

mechanical manufacturing. Equation (6) illustrates the 

formalization process of the graph learning-based 

recommendation system. 

 

arg ( ( ) )= T Maxf S G    (6) 

 

In Equation (6), T  represents the optimal 

recommendation result. ( )S  represents the 

recommendation model based on graph learning. G  
represents the data structure information of the 

interaction graph.   represents the parameters in the 

interaction graph. Then the complex relationship 

between users or devices is captured by GNN based on 

the demand degree of related parts. The demand degree 

formalization process is shown in Equation (7). 

 

min_
_

max_ min_

−
=

−

i

i

Pop Pop
nor Pop

Pop Pop    (7) 

 

In Equation (7), _ inor Pop  represents the demand 

degree after normalization of the part data. min_ Pop  

and min_ Pop  
represents the maximum and minimum 

value of the part demand degree. Then the difference 

value of demand degree between two parts can be 

obtained, and the formula is as in (8). 

,_ _ _= −i j i jPop Bias nor Pop nor Pop    (8) 

In Equation (8), 
,_ i jPop Bias

 
represents the difference 

in demand degree between parts i  and j . An example 

of the recommended system data graphic is obtained as 

shown in Fig. 4. 

 

Digital Electronics
Computer office 

category

 

Figure 4: Recommended system data graph example 

 
As illustrated in Fig. 4, the nodes represent users and 

projects, while the edges represent the users' preferences 

or interactions with projects. The figure demonstrates a 

variety of interaction modes, encompassing both direct 

user-project interactions and indirect interactions 

through other user nodes, thereby reflecting social 

influence. After changing the basic data of the 

recommender system to GSD, the complex relationship 

between users and items can be captured more clearly 

and the items can be categorized by attributes. 

Meanwhile, the complex interactions between users and 

items can form different types of edges, reflecting the 

preference intensity or interest patterns of different users 

for mechanical engineering parts. These edges link user 

nodes and item nodes, which form the graph structure of 

the recommender system [19]. This graphical 

representation method makes complex user project 

relationships intuitive and easy to understand. The GNN 

learning method based on graph results has advantages 
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in mining the relationship between nodes and improving data utilization. The GNN schematic is shown in Fig. 5. 
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Figure 5: Diagram of neural network 

 
In Fig. 5, each node in the GNN is forced by the learnt 

function mapping to aggregate data from its nearby 

nodes in order to gather the neighboring nodes' feature 

information. The information transfer path in this case 

points from the target node to the neighbor node. The 

representation of the node is then updated based on the 

information obtained from the aggregation and the 

node's own features. During the iteration process, the 

node representations will gradually stabilize, thus 

capturing the structural information of the graph and the 

complex relationships between the nodes. The GNN can 

deeply explore and utilize the complex and high-order 

connectivity information in the user-item interaction 

graph through its unique structural design, and it can 

also mine and disseminate more diversified items for 

users [20]. The propagation rule is shown in Equation 

(9). 

 
1 ( ( ( )) )+ =    +l

i kh W AGG h k N i b    (9) 

 

In Equation (9), 
,_ i jPop Bias  represents the 

propagation of GNN.   represents nonlinear 

activation function. W  and b  are weights and bias 

vectors. ( )AGG  
represents the aggregation function. 

kh  
is the node association information within the 

region. ( )N i  represents the set of nodes within the 

range of node i . In order to mine the data features 

more fully for extraction, the study uses graph encoder 

to extract the data features. Each node is represented as 

a feature vector, and edges represent the relationships 

between nodes. GNN aggregates information from 

neighboring nodes through a message passing 

mechanism. At each layer, nodes collect features from 

their neighbors and integrate this information through 

max-pooling. The aggregated features are transformed 

by nonlinear activation functions to learn advanced 

representations of nodes. Finally, by stacking multiple 

GNN layers, the model can capture the multi-hop 

neighbor information of nodes and learn complex graph 

structural features. The general structural formula of 

graph encoder is Equation (10). 

( ) ( 1)( , )−=l lE H E G    (10) 

 

In Equation (10), 
,_ i jPop Bias  represents the node l  

layer embedding representation. H  represents the 

encoder of IA. G  represents the view after IA. The 

l th layer representation obtained through neighbor node 

layer embedding is Equation (11). 

 

( ) ( )1



= 
c
i

c l c l

i j
c c

j N
i j

e e

N N    (11) 

 

In Equation (11), ( )c l

ie  and ( )c l

je  represent the 

embedding representations obtained by the neighbor 

nodes. c

iN  represents the set of all neighbors of part i  

in the part similarity graph with de-demand degree. c

jN  

represents the set of all neighbors of part j  in the part 

similarity graph with de-demanded degree. Then the 

final vectors of the parts are obtained using the 

multilayer information propagation aggregation layer as 

in Equation (12). 

 

( )

0


=

=
L

c c l

i l i

l

e e    (12) 

 

In Equation (12), c

ie  represents the final embedding 

vector. L  represents all layers of GNN IA. ( )c l

ie  
is the 

superposition result of the initial embedding.  l
 

represents the embedding representation weight 

parameter of l  layer. The SSL is then combined with 

GNN to further enhance the intelligence of intelligent 

mechanical manufacturing, especially in anomaly 

detection and fault prediction. The derived optimization 

model architecture based on SSL and GNN intelligent 

manufacturing is shown in Fig. 6. 

In Fig. 6, the integration of GNN and SSL began with 

the construction of a multi-behavioral interaction feature 

extraction mechanism. Among them, SSL is used to 

automatically learn feature representations from a large 



Innovative Application of Intelligent Mechanical Manufacturing Based… Informatica 49 (2025) 11–24 17 

amount of unlabeled data from mechanical operations in 

order to identify abnormal patterns. Then, these feature 

representations and SsSs are used as inputs to GNN, 

which updates node representations by aggregating 

neighbor node information, captures high-order 

connectivity relationships between devices, and predicts 

potential failures. Among them, Bayesian personalized 

ranking BPR is a method for learning user preferences, 

while p, q, and n are embedded neural network data. 

Through the information propagation and aggregation 

mechanism of GNN, the model is able to capture 

higher-order connectivity between devices and thus 

identify abnormal behaviors that significantly deviate 

from normal patterns. The model greatly raises the 

degree of equipment intelligence and assists in 

anticipating maintenance needs in order to lessen the 

impact of malfunctions on output. 
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Figure 6: Intelligent manufacturing optimization model 

architecture 

4  Effectiveness analysis of SSL and 

GNN in intelligent mechanical 

manufacturing 
4.1 Comparative experimental analysis of graph SSL 

algorithms based on intelligent manufacturing 

To analyze the effectiveness of the application of 

intelligent mechanical manufacturing based on SSL and 

GNN designed by the study, the superiority and 

reliability of the research methodology is mainly 

verified. The study uses Case Western Reserve 

University (CWRU) and Phm ieee 2012 dataset of 

publicly available datasets as experimental data. The 

CWRU dataset is a well-known dataset used for bearing 

fault diagnosis that contains bearing operating data 

under various operating conditions and can represent the 

reliability of the entire system. However, some types of 

faults have fewer samples, which can lead to data 

imbalance problems. The Phm IEEE 2012 dataset is a 

maintenance prediction and health monitoring dataset 

that contains operational data of various mechanical 

equipment and can reflect various conditions that may 

occur during actual operation of the equipment. 

However, the data dimension is relatively large. Both 

types of data have good representativeness and public 

availability. For the CWRU dataset, the study removed 

all samples containing missing values and standardized 

the features. The PHM IEEE 2012 dataset has been 

normalized to ensure that the eigenvalues are located on 

the same scale. The cross-validation method is used to 

train and test the model effect. There are three graph 

encoder layers and a 40-entity embedding dimension. 

The selection of three GNN layers is based on 

experimental results and provides a good balance 

between model performance and computational 

efficiency. A reduced number of layers might not 

entirely capture the intricacies of the graph structure, 

while an increased number of layers could result in 

overfitting. The 40-dimensional embedding space is 

large enough to capture rich feature representations 

while avoiding the curse of dimensionality. The 

experimental environment is shown in Table 2. 

 

Table 2: Intelligent mechanical manufacturing 

experimental environment 

Environment entry Environmental parameters 

Operating system Linux CentOS7 

Development language Python3.7 

Developing deep learning 

frameworks 
Tensorflow1.14 

Hard disk 1T 

Memory 16G 

GPU 
GeForce RTX 2080 

SUPER 

CPU 
Intel(R) Xeon(R) Silver 

4215R CPU @ 3.20GHz 

 

The GNN layers was set to 4, and the number of 

feature-based part-similar neighbors sampled was set to 

50. The initial data and user embedding are set to 80, 

and the regularization parameter is set to 0.005. The 

initial weight is set to 1/4, and the learning rate is 

adjusted to 0.001. The Top-N recommendation hit rate 

(HR) is used as the evaluation index, and the specific 

comparison of each recommender system is made 

between the cumulative gain (CG), discounted 

cumulative gain (DCG), normalized discounted 

cumulative gain (NDCG) and training time (TT) and 

parallel processing capability (PPC). The 

single-behavior neural graph collaborative filtering 

(NGCF), light graph convolutional network (LGCN), 

multi-behavior model efficient heterogeneous 

collaborative filtering (EHCF) and the proposed model 

of the study are compared for experimental validation. 

Among them, CG can intuitively display the 

performance of recommendation systems at different 
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ranking depths. DCG is capable of simulating the user 

experience while browsing recommendation lists in a 

realistic manner. NDCG possesses the capability to 

directly compare the performance of disparate 

recommendation systems or users. TT and PPC are 

capable of evaluating the computational efficiency and 

scalability of the model. The model evaluation 

performance is shown in Fig. 7. 
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Figure 7: Model evaluation performance 

 
Fig 7 compares the performance of different 

recommendation models on two datasets, including HR, 

discount cumulative gain (DCG), normalized discount 

cumulative gain (NDCG), as well as TT and PPC. In Fig. 

7, the research model performs significantly better on 

both CWRU and Phm ieee 2012 datasets. In Fig. 7(a), 

on the CWRU dataset, the research model outperforms 

the single-behavior NGCF model by 5.6%, 6.4%, and 

4.8% for HR, DCG, and NDCG, respectively. It 

demonstrates that the study model is more accurate at 

forecasting objects that users might come into contact 

with later on. It also improves 10.8%, 8.5%, and 6.3% 

over the HR, DCG, and NDCG of the multi-behavioral 

model EHCF, respectively. In Fig. 7(b), the performance 

comparison of the research model on the Phm ieee 2012 

dataset is similar to that on the CWRU dataset. In Fig. 

7(c), the TT of the model decreased by 2.4% and 1.8%, 

respectively, compared to the other two. PPC increased 

by 16.4% and 10.2%, respectively. As the complexity of 

the dataset increases, the performance improvement of 

the research model becomes more significant. It 

indicates its strong robustness in handling complex user 

behavior data. Overall, by combining SSL and GNN, the 

research models can more deeply explore complex 

features and patterns in data, including subtle 

differences in user behavior and complex relationships 

between items, to better understand and predict user 

preferences. Moreover, it performs well in terms of 

computational efficiency and scalability. To further 

evaluate the effect of the model in the practical 

application of intelligent mechanical manufacturing, the 

study selects NGCF and EHCF models and the research 

model to conduct noise robustness anti-interference 

experiments. Adding Gaussian noise with a mean of 0 

and an adjustable standard deviation to the dataset can 

simulate the random error of the sensor readings. Then 

gradually control the noise level and observe the 

performance changes of the system at different noise 

levels. The noise robustness results of intelligent 

mechanical manufacturing practical application are 

shown in Fig. 8. 
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Figure 8: Comparison experiment results of noise robustness 

 
In Fig. 8, the practical application of the model under 

both datasets displays an obvious decreasing trend with 

the increase of the noise intensity during mechanical 

fabrication. In Fig. 8(a), on the CWRU dataset, the 

research model shows a gain of 5.36% and 6.27% in the 

NDCG metrics over the NGCF and EHCF models, 

respectively. In Fig. 8(b), on the Phm ieee 2012 dataset, 

the study model has a gain of 4.26% and 5.85% in 

NDCG metrics over the NGCF and EHCF models, 

respectively. The experimental result data show that the 

research model is more effective in maintaining the 

accuracy and relevance ranking of the recommendation 

results in a complex and variable noise environment. 

This reflects its superior data processing capability and 

feature extraction strategy. It is proved that the research 

model has wide adaptability and stability in dealing with 

different sources and types of noise, which can provide 

more reliable recommendation services in the practical 

application of intelligent mechanical manufacturing. To 

demonstrate the contribution of individual components 

of SSL and GNN to the overall performance, the study 

conducted an ablation experiment analysis. The 

proportion of relevant items in the top 10 items of the 

recommendation list is denoted as Precision@10. The 

proportion of items successfully recommended by the 

recommender system among all relevant items is 

denoted as Recall@10. The reconciled average of 

Precision and Recall is compared with the F1-Score@10 

which measures the overall performance of the model. 

The results are shown in Table 3. 

 

Table 3: Results of ablation experiment table 

Performance 

indicators 

SSL model 

only 

GNN 

model only 

SSL+GNN 

model 

HR@10 0.60 0.65 0.75 

NDCG@10 0.45 0.50 0.60 

Precision@10 0.55 0.60 0.70 

Recall@10 0.50 0.55 0.65 

F1-Score@10 0.52 0.57 0.67 

 

According to Table 3, the complete model outperforms 

models using SSL or GNN alone in all performance 

metrics. The integration of SSL to learn useful feature 

representations of data and GNN to capture and utilize 

complex relationships in graph structured data furnishes 

a potent instrument for intelligent mechanical 

manufacturing. To further validate the superiority of the 

model, the experimental section is expanded to 

benchmark new models beyond NGCF and EHCF. The 

model includes sparse aggregation of graph 

convolutions for inductive learning of node 

representations (GraphSAGE), graph convolutional 

network (GCN), and graph isomorphism network (GIN) 

used for inductive learning of node representations. The 

benchmark test results are shown in Table 4. 

 

Table 4: Model benchmark test table 

Performance 

indicators 

GraphSAG

E 

GC

N 

GI

N 

SSL+GN

N model 

HR@10 0.58 0.62 
0.7

0 
0.75 

NDCG@10 0.48 0.52 
0.5

8 
0.60 

Precision@1

0 
0.52 0.57 

0.6

3 
0.70 

Recall@10 0.48 0.52 
0.6

0 
0.65 

F1-Score@1

0 
0.50 0.54 

0.6

1 
0.67 

 

In Table 4, the SSL+GNN model outperforms other 

baseline models in all key performance indicators. This 

indicates that the SSL+GNN model can more effectively 

support decision-making, optimize resource allocation, 

and improve production efficiency in practical 

applications. 

 

4.2 Experiments on parameter analysis of 

graph SSL algorithms based on intelligent 

manufacturing 
The research model's performance can be better 

understood, its configuration can be optimized, and its 

capacity for generalization can be enhanced by 
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conducting a thorough analysis of its key parameters 

following the conclusion of the model's numerous 

performance comparison trials. Among these are the 

number of GNN coding layers L, the number of SsSs K, 

and the SSL scale weight coefficient β. The L of layers 

2-4 can achieve a good balance, while K needs to be 

determined through experimentation to find the optimal 

value. A smaller beta value emphasizes the importance 

of downstream tasks, while a larger beta value gives 

more weight to self-supervised tasks, usually set at 

0.001. The experiments first set different values of β on 

Movielens-M, Last-FM and Book-Crossing datasets. It 

also keeps K and L constant, both set to 40. The key 

performance metrics such as NDCG, recall, etc. are 

recorded for each β-value. The impact of the obtained 

SSL scale weight coefficient β is shown in Fig. 9. 
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Figure 9: The influence of scale weight coefficient β on SSL 

 
In Fig. 9, the larger the value of β is taken, the NDCG 

and recall performance of the model decreases. In Fig. 

9(a), on the Movielens-M dataset, the model 

performance is best in comparison when the value of β 

is taken at 0.001. Its model performance decreases 

rapidly after taking a value of 0.004, while the recall 

value is always greater than the NDCG. In Fig. 9(b), on 

the Last-FM dataset, the model performance is best 

when β is taken at an initial value, and the model 

performance decreases after the value is increased to 

0.002. In Fig. 9(c), on the Book-Crossing dataset, the 

model performance appears to decrease and then 

rebound as the value of β is increased. However, the 

rebound is small and far from the initial value. The 

results show that the research model is extremely 

sensitive to β, and the performance of the research 

model is close to the ideal state when β takes smaller 

values. In studying the effect of different SsS numbers K 

on the model, the value of L is set constant and β is set 

to 0.001. The obtained effect of SsS number K is shown 

in Fig. 10. 

In Fig. 10, as the value of K grows, the research model 

performance shows a general trend of increasing and 

then declining, and the recall value is always bigger than 

NDCG. In Fig. 10(a), the model performance shows the 

most obvious trend of increasing and then decreasing on 

the Movielens-M dataset, where the optimal K value is 

30. Meanwhile, the model performance is relatively 

stable on the other two datasets. The results show that 

the model performance varies most significantly on the 

Movielens-M dataset, and the characteristics of the 

dataset make the SsSs more sensitive to the model 

performance. Among them, the optimal K value enables 

the model to fully utilize the SsSs to enhance the 

learning effect of the main task. This reflects the 

important role of the model for intelligent mechanical 

manufacturing SSL. In studying the effect of different 

GNN coding layers L on the model performance, β is set 

to take a constant value and K is 30. The effect of GNN 

coding layers L obtained is shown in Fig. 11. 

In Fig. 11, the recall and NDCG performance of the 

research model on all three datasets increases and 

subsequently drops as the value of L increases. In Fig. 

11(a), on the Movielens-M dataset, the model 

performance increases to a maximum at L=2, but 

continues to decrease when L>3 and reaches a steady 

state at L=4. On the other two datasets, the model 

performance also maximizes at L=2 and continues to 

decrease afterward. The results show that the number of 

SsSs has a significant effect on model performance, and 

the right amount of SsSs can help the model learn more 

useful features. However, too many signals may 

introduce noise and lead to a decrease in model 

performance. In summary, the performance of the 

research model in the field of intelligent mechanical 

manufacturing is optimized when the parameters β=0.01, 

K=30, and L=2 is selected. Choosing β=0.01 means that 

the weight of SsSs in the overall objective function is 

low. It helps the model to focus on self-supervised tasks 

without overly relying on these signals, thus maintaining 

sensitivity to the final task. Choosing K=30 means that 

an appropriate amount of SsSs is used in model training. 

It helps the model capture complex structures and 

patterns in the data while avoiding overfitting. Choosing 

L=2 means that the model can capture key information 

about the graph structure while maintaining 

computational efficiency. This finding not only validates 

the effectiveness of SSL and GNN in complex industrial 
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scenarios, but also demonstrates the importance of 

model performance that can be significantly improved 

by fine-tuning the model parameters. 
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Fig. 10 The influence of the number of self-supervised signals K 

 

Recall

NDCG

Recall

NDCG

0.26

0.25

0.24

0.23

0.22

0.30

0.28

0.26

N
u

m
e
ri

c
a
l 

v
a
lu

e

N
u

m
e
ri

c
a
l 

v
a
lu

e

N
u

m
e
ri

c
a
l 

v
a
lu

e
0.24

0.22

0.20

0.18

0.16

0.10

0.09

0.08

0.07

0.06

0.05

1
0.00 0.00

2 3 4 5 1 2 3 4 5 1 2 3 4 5

(a) Movielens-1M (b) Last-FM (c) Book-Crossing

Recall

NDCG

L Value L Value L Value

 

 

Figure 11: The influence of L encoding layers in neural networks 

 

5  Discussion 
The study used a fusion method of SSL and GNN to 

construct an intelligent manufacturing optimization 

model. Compared with the intelligent scheduling model 

obtained by Yang S. [10], this model could capture more 

complex data structures. The reason was that the model 

proposed in this article used a reasonable amount of 

SsSs. Compared with the detection method of Rani V et 

al. [12], the model proposed in this study had better 

robustness. The reason was that the feature extraction 

strategy of the model in this article could maintain the 

accuracy of the results. SSL automatically mined 

patterns from a large amount of unlabeled data through 

contrastive learning, and the test results on the CWRU 

dataset showed that the model's HR, DCG, and NDCG 

have improved by 5.6%, 6.4%, and 4.8%, respectively. 

This indicated that SSL could effectively identify 

potential faults in bearings under different operating 

conditions without relying on external labels for fault 

detection. Meanwhile, GNN enhanced the predictive 

ability of the model by capturing the complex 

interactions between devices. On the Phm IEEE 2012 

dataset, the NDCG metrics of the model improved by 

5.36% and 6.27% compared to the baseline model. It 

reflected the superior performance of GNN in 

processing high-dimensional data and predicted 

maintenance scenarios in real-world scenarios, 

accurately predicting possible equipment failures. 

Through experimental analysis, it was found that the 

model performance reaches its optimum when the 

parameters β=0.01, K=30, and L=2. This discovery 

not only validated the effectiveness of SSL and GNN in 

complex industrial scenarios, but also demonstrated that 

fine-tuning model parameters could significantly 

improve model performance. In the noise robustness 

experiment, the model was able to maintain a high 

NDCG index even after the addition of Gaussian noise, 

indicating that the model could maintain the accuracy 

and relevance ranking of recommendation results in 

noisy environments. In summary, the studied intelligent 

manufacturing optimization model had demonstrated 

significant performance improvement and advantages in 

practical applications by combining the technical 

features of SSL and GNN. The model had the capacity 

to automatically learn data features and capture complex 

relationships between devices. Furthermore, it could 

improve performance through parameter optimization, 

thereby providing an effective technical solution for the 

field of intelligent manufacturing. 
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6  Conclusion 
Aiming at the problem of innovative application of 

intelligent mechanical manufacturing, the research 

conducted a fusion processing based on SSL and GNN 

methods. Among them, considering the comparative 

damage determination of intelligent machinery, a 

comparative SSL model was constructed to utilize the 

data to automatically identify and predict the 

abnormalities of the machinery during operation. 

Meanwhile, heterogeneous graph and meta-path were 

introduced to accurately express the structural 

relationship, path length and other factors in the 

intelligent network. Then on the basis of SSL, it was 

fused with GNN for optimization, and the propagation 

rules of GNN were described to improve the level of 

intelligence to form a recommendation system. Finally, 

the optimization model architecture based on SSL and 

GNN intelligent manufacturing was derived. The results 

indicated that the research model improved HR, DCG 

and NDCG by 5.6%, 6.4%, and 4.8% over the NGCF 

model on both datasets, respectively. It also improved 

each performance by 10.8%, 8.5%, and 6.3% over the 

EHCF model, respectively. In the practical application 

of intelligent mechanical manufacturing, the research 

model exhibited a gain of 5.36% and 6.27% in NDCG 

metrics over the NGCF and EHCF models, respectively. 

There was a gain of 4.26% and 5.85% over the NDCG 

metrics of the NGCF and EHCF models, respectively. 

The enhancement of NDCG exerts a direct influence on 

the efficacy of decision-making processes within the 

production context, facilitating the optimization of 

resource allocation and the mitigation of unanticipated 

downtime. DCG has been shown to enhance the 

efficiency and output of the production line. Improving 

HR performance helps reduce production costs, improve 

user experience, and make products more competitive in 

the marketplace. The results of the study show that the 

research model is superior compared to other models in 

terms of dataset performance and practical application, 

and has good intelligent mechanical manufacturing 

application value. Moreover, it has contributed to the 

performance of user classification and recommendation 

systems. Although the model performed well in 

experiments, its scalability may be limited by data 

quality, computational resources, and model 

generalization ability when implemented in actual 

industrial environments. The incompleteness of 

industrial data, noise, and environmental differences can 

lead to a decrease in model performance. In addition, the 

high computational requirements of GNN and SSL 

models can be a challenge in resource-constrained 

environments. Therefore, the model needs to be adapted 

and optimized in new environments to ensure its 

efficiency and accuracy in different industrial scenarios. 
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