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Abstract: With the rapid development of Internet technology, the complexity and diversity of network 

traffic have increased significantly, and traditional network traffic classification and anomaly detection 

methods are unable to deal with current network threats. To solve this problem, this paper proposes a 

network traffic classification and anomaly detection technology based on deep learning. Through the 

analysis and experiment of a large number of network traffic data, this paper constructs a convolutional 

neural network model to accurately identify and classify normal traffic and abnormal traffic. The 

experimental results show that the accuracy of the proposed model on the test dataset reaches 98.7%, 

excellent performance was achieved on the CIC-IDS2017 and ISCX VPN NOVPN datasets, with 

accuracies of 98.5% and 99.2%, respectively, significantly improving recall and F1 score, and effectively 

reducing error rates, outperforming traditional methods. In addition, this paper further optimizes the 

model by comparing and analyzing the performance of different network structures, and finally reduces 

the false alarm rate to 1.5%. This research provides effective technical support for improving network 

security, deeply analyzes the influence of different network structures and parameters on the performance 

of the model, and finally optimizes the best model, which shows strong robustness and adaptability in 

multiple real network environments. 

Povzetek: Predlagano je optimizirano konvolucijsko nevronsko omrežje za klasifikacijo omrežnega 

prometa in odkrivanje anomalij, ki dosega visoko natančnost na nizih primerjalnih podatkov, izboljšuje 

priklic in rezultate F1 ter zmanjšuje lažne alarme. 

 

1 Introduction 
In recent years, given the rapid progress of science 

and technology and the rapid increase of Internet traffic 

demand, classifying network traffic has become 

particularly critical in managing network resources and 

ensuring network security [1]. By finely classifying 

network traffic, we can ensure that users enjoy the best 

quality network services and that the core element of 

efficient management of traffic resources is achieved. Due 

to the widespread use of software encryption tools such as 

HTTPS, SSH, SSL, and Tor, traditional traffic 

classification technologies are facing challenges. At the 

same time, detecting malicious traffic has become more 

complex [2]. Therefore, we must conduct an exhaustive 

classification and segmentation of internet traffic 

generated by the application. This will help us more 

accurately identify various network protocols and 

distinguish different types of application traffic to achieve 

more efficient network resource management, prevent 

malicious programs, and provide a convenient way for 

Internet service providers to diagnose faults. 

 

At present, the classification of network traffic mainly 

depends on port technology, inspection of deep packets, 

and the adoption of characteristic-based statistical 

methods. However, due to the different port usage 

methods, the accuracy of port-based classification 

technology has yet to reach the preset standard [3]. Deep 

Packet Inspection (DPI) technology does not perform well 

when processing encrypted data streams and may threaten 

users' privacy and security. The current situation makes 

researchers increasingly biased toward adopting statistical 

and behavioral-based analytical methods. However, these 

tools require the manual creation of functionality related 

to the initial data flow, increasing operational and 

subsequent maintenance costs. 

With the rapid popularization of 5G technology, the 

number of related devices continues to rise. According to 

the Report on the Development of China's Internet 

Network, the number of Internet users in China has 

climbed to 1.067 billion [4]. However, the penetration rate 

of the Internet is only 75.6%. Among these users, as many 

as 99.8% use mobile phones as their Internet tools. At the 

same time, the types of mobile Internet applications in 

China have reached an astonishing 2.52 million. This kind 
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of application has brought unprecedented tests to the 

quality of network services. In the field of communication 

networks, hierarchical management of traffic is critical, 

including but not limited to firewall functions, slice 

management of 5G networks, and integration and 

distribution of QoS resources. Packet classifiers are 

increasingly widely used in enterprises, cloud, and 

Internet service providers. Its primary function is to 

monitor and regulate network traffic to ensure the security 

and efficiency of the network. By identifying and filtering 

malicious network traffic and spam, the packet classifier 

can improve the efficiency of network resource usage and 

slow down network delay and data loss [5]. This further 

improves the overall stability and performance of the 

network. 

Simply put, the classification of network traffic plays 

a crucial role in enhancing the security protection and 

overall performance of the network [6]. This system 

allows network administrators to identify and deal with 

non-traditional traffic and attacks quickly. Furthermore, 

the system optimizes the network architecture and traffic 

scheduling strategy, thus significantly improving the 

overall performance and reliability of the network [7]. 

Among the issues related to network security, traffic 

classification constitutes the critical link between 

intrusion detection, protective measures, and security 

management. 

This article discusses the challenges faced by 

traditional network traffic classification methods, such as 

deep packet inspection (DPI) and port-based methods. 

DPI performs poorly in handling encrypted and mixed 

traffic, while port-based methods cannot effectively cope 

with dynamic port allocation and multi-port 

communication scenarios. These traditional methods 

perform poorly in modern complex network environments, 

leading to misjudgments and omissions. Deep learning 

methods overcome these limitations by automatically 

learning and extracting traffic features, improving the 

accuracy and robustness of classification and detection. 

2 Introduction to related theories 

2.1 Deep learning 

As a branch of machine learning, deep learning 

employs multi-level nonlinear transformation techniques 

to perform advanced abstraction and descriptive learning 

of input data to reveal complex patterns and laws [8, 9]. 

The core idea of this method is that it can automatically 

extract features from data, thus avoiding manual design 

steps, and it can adapt to many data types, such as images, 

speech, and natural language. The neural network input 

formula is shown in (1). 

 1 2[ , , , ]nX x x x=   (1) 

Where X represents the input feature vector, xi 

represents a certain attribute of the traffic data, and n 

represents the dimension of the input feature [10]. The 

initial stage of the convolutional neural network is 

specially designed for processing image data. It has a 

complex structure, mainly composed of three core parts: 

the input, hidden, and output layers [11]. During the 

training process, each node begins to assign weights and 

updates the parameters when passed in reverse. Given the 

high complexity of image data, Convolutional Neural 

Networks (CNN) successfully identifies the core 

characteristics of images through its unique organizational 

structure. The linear transformation formula is shown in 

(2). 

 ( ) ( ) ( 1) ( )l l l lZ W X b−= +  (2) 

Among, Z(l) represents the linear combination result, 

X(l−1) represents the activation output, W(l) represents the 

weight matrix, and b(l) represents the bias vector. The 

convolutional layer has apparent advantages in parameter 

sharing and local connection, dramatically reducing the 

number of required parameters and improving the 

generalization performance and computational efficiency 

of the model. Furthermore, the translation invariance of 

this convolutional layer ensures that it can adapt to data 

such as images, speech, etc., with spatial or temporal 

layout [12]. Generally, the convolution of images is done 

by employing a 3 × 3 filtering technique. This technique 

is based on calculating the weighted product of input 

pixels and various pigments in the filtering device, 

generating activation maps or feature maps containing 

critical information extracted from the image. The 

activation function formula is shown in (3). Where A(l) 

denotes the activation output and f(Z(l)) denotes the 

activation function. 

 ( ) ( )( )l lA f Z=  (3) 

The F1 score has been selected as one of the key 

indicators for evaluating model performance, with priority 

given to its ability to better balance precision and recall, 

especially when dealing with imbalanced datasets. 

Compared with the AUC-ROC curve, the F1 score can 

more accurately reflect the comprehensive performance of 

the model in classification tasks, especially in the field of 

anomaly detection. Positive class samples (abnormal 

traffic) are usually much fewer than negative class 

samples (normal traffic), which makes the traditional 

AUC-ROC curve vulnerable to data imbalance and leads 

to more optimistic evaluation results. The AUC-ROC 

curve mainly measures the overall classification 

performance of the model at all thresholds, but it does not 

directly consider the sensitivity to false positives (false 

alarms) and false negatives in practical applications. In the 

practical application of network traffic classification and 

anomaly detection, false positives and false negatives 

have a more direct impact on security and performance. 

Therefore, F1 score can provide a more balanced and 

practical evaluation standard by comprehensively 

considering accuracy and recall rate. Therefore, F1 score 

is considered more suitable than AUC-ROC in this study 

to evaluate the actual performance of network traffic 

classification and anomaly detection models. 

2.2 Types of learning 

Fully supervised learning, as an innovative 

technology in machine learning, has the core goal of 

identifying the interdependencies between input and 

output data [13]. By training on labeled data with known 
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inputs and corresponding outputs, the technique can learn 

and generate a model that accurately feeds input data into 

output data. The formula of the cross-entropy loss function 

is shown in (4). 

  
1

1
log( ) (1 ) log(1 )ˆ ˆ

N

i i i i
i

L y y y y
N =

= −  + − −  (4) 

Where L denotes the loss value, N denotes the total 

number of samples, and yi denotes the true label. Fully 

supervised learning systems generally adopt models such 

as neural networks, decision trees, and support vector 

machines to realize the orderly transformation between 

input and output data [14]. In order to maintain excellent 

performance when dealing with ambiguous information, 

this type of model usually requires a lot of labeling 

information during its training process. Fully supervised 

learning methods have been widely used and practiced in 

many fields, such as image recognition, language 

recognition, and natural language processing, especially in 

predicting and deeply analyzing input data, where it plays 

a crucial role. The formula of the mean square error loss 

function is shown in (5). 

 
2
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( )ˆ
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MSE i i
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Where, LMSE denotes the mean square error, N denotes 

the total number of samples, and yi denotes the true label 

[16]. Unsupervised learning aims to find and lock hidden 

architectures and patterns in unlabeled datasets. There are 

pronounced differences in content between unsupervised 

learning and fully supervised learning: the former does not 

include labels or classification data, requiring the 

algorithm to identify various data patterns independently. 

Commonly used techniques, such as clustering, 

dimensionality reduction, and association rules mining, 

are often accepted methods. We used the clustering 

method to classify the data, subdivide it into multiple 

unique categories or groups, and determine these 

categories according to the similarity between data points 

or the distance between them [16]. By adopting 

dimensionality reduction technology, we successfully 

converted high-dimensional data into low-dimensional 

data, which helped us have a deeper understanding of the 

data structure and significantly improved the operating 

efficiency of the model. By applying the association rule 

analysis method, we can identify universal patterns or 

corresponding rules from the data set and further explain 

the interrelationship between these characteristics. The 

Softmax function formula is shown in (6). Where yi 

denotes the prediction probability, zi denotes the category 

score, and k denotes the total number of categories. 
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2.3 Model carving performance index 

Traditional classification techniques use a specific 

threshold to classify prediction results into positive or 

negative categories, but adjusting this threshold may 

impact the distribution of prediction labels [17]. When we 

try to reduce the proportion of one type of error, it often 

leads to the increase of another type of error. Therefore, 

finding a balance between accuracy and recall becomes 

significant. A perfect accuracy means that no false 

positive results will be produced, and the accuracy of the 

recall also ensures that false negatives will not occur. In 

most cases, balancing recall and accuracy is particularly 

critical compared with meager error rates. Considering 

both performances, the F1 score is the harmonic average 

of accuracy and recall.  

Accuracy and recall are two important indicators for 

evaluating the performance of classification models. 

Accuracy focuses on how many samples predicted as 

positive by the model are truly positive, while recall 

focuses on whether the model can recognize all positive 

samples. In practical applications of network traffic 

classification and anomaly detection, there is often a trade-

off between accuracy and recall, especially when facing 

imbalanced datasets. Overoptimizing accuracy may lead 

to a large number of false negatives (missed reports), 

while optimizing recall may result in higher false positives 

(false alarms). Therefore, it is crucial to find a balance 

between F1 score as a harmonic mean of accuracy and 

recall. However, there is no clear explanation in the 

current discussion on how to balance these two indicators 

based on the specific characteristics of the dataset, or how 

to adjust the weights of accuracy and recall according to 

the requirements of practical applications when facing 

specific types of network traffic and anomaly detection 

needs. For different application scenarios, it may be 

necessary to select priority optimization indicators based 

on actual risks and needs to ensure that the actual 

performance of the model meets expectations. The 

convolution operation formula is shown in (7). 
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=   +  (7) 

Among them, M, N represent the size of the 

convolution kernel, Z represents the combination result, 

W(l) represents the weight matrix, b(l) represents the bias 

vector, and X represents the number. Before determining 

how to integrate and evaluate the combination of 

"category a and category b," you first need to obtain a copy 

of the dataset containing only these two categories and 

eliminate the data of other categories. If the actual 

classification we observe is a, then this classification will 

be identified as a positive class. When the actual class we 

observe is b, we usually label such classes unfavorable. 

Since this problem belongs to the category of binary 

classification, we can decide to adopt this binary 

classification method [18]. There are differences between 

a and b and a, so we should consider these two scenarios 

separately. In three different datasets, we got six one-to-

one scores, while in four, we got twelve one-to-one scores 

each. Ultimately, we evenly assigned weights to each 

metric to ensure that the final average metric proportion 

can be accurately calculated. The weighted average 

classification evaluation formula is shown in (8). 

 
1
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Among them, Avg Score represents the final average 

evaluation score, N represents the number of datasets, wi 

represents the weight of the i indicator, and Scorei 

represents the score of the i-th one-on-one comparison. 

This covers precisely interpreting the network dataset and 

its structural design within the organization [19]. The 

network flow and session are clearly defined, and their 

similarities and differences are discussed. In deep learning, 

the core concepts of convolutional neural networks, 

capsule neural networks, and autonomous attention 

mechanisms are fundamental. Different types of machine 

learning are described. When discussing the classification 

problem, the criteria of model evaluation and other related 

elements play a crucial role. The classification output 

formula of network traffic is shown in (9). Among them, 

y represents the classification output, Wo represents the 

output layer weight matrix, ht represents the hidden layer 

state, and bo represents the reconstruction error. 

 max( )o t oy soft W h b= +  (9) 

3 Traffic classification algorithm for deep 

learning 

3.1 Problem analysis 

In the two-layer structure of TCP/IP, the network 

traffic data presents a precise time series distribution, 

which is constructed by different levels of headers and 

information [20]. When analyzing the network traffic data 

in detail, we observe that the bytes inside it show a precise 

time series relationship, which performs uniquely in 

various traffic types. We can use this ordered data to 

classify traffic in various categories through the sequential 

model we built. The performance comparison table of 

network traffic classification and anomaly detection 

model based on deep learning is shown in Table 1. 

Table 1: Performance comparison table of network traffic classification and anomaly detection model based on deep 

learning 

Model/Method Accuracy Precision Recall F1-Score 

CNN 98.3% 97.8% 98.1% 97.95% 

RNN 96.7% 96.2% 95.9% 96.05% 

LSTM 97.5% 97.0% 96.8% 96.90% 

GRU 97.2% 96.8% 96.5% 96.65% 

Autoencoder 94.8% 94.1% 94.4% 94.25% 

Random Forest 95.6% 95.3% 95.0% 95.15% 

SVM 93.4% 92.8% 93.0% 92.90% 

K-Nearest Neighbors 90.5% 89.9% 90.1% 90.00% 

To evaluate the performance of the model, we 

conducted experiments on the CIC-IDS2017 and ISCX 

VPN NOVPN datasets, using a dataset partitioning ratio 

of 80% -10% -10%. The experimental results compared 

the performance of deep learning models with traditional 

methods through indicators such as accuracy, recall, and 

F1 score, ensuring fair comparison. All experiments were 

conducted under the same hardware configuration to 

verify the advantages of deep learning models in traffic 

classification and anomaly detection, especially in terms 

of accuracy and anomaly detection capabilities. 

In this study, a deep learning-based network traffic 

classification and anomaly detection method was 

proposed, and compared and evaluated with the current 

state-of-the-art technology (SOTA). The latest SOTA 

method performs well in key indicators such as accuracy, 

precision, recall, and F1 score, but the method proposed in 

this study has achieved significant improvements in 

multiple evaluation indicators. For example, the proposed 

model achieved an accuracy of 98.7%, significantly higher 

than traditional methods such as port-based detection 

methods and DPI (Deep Packet Inspection) techniques, 

which often face challenges of high false alarm rates and 

low detection accuracy in traffic classification. In terms of 

recall and precision, the proposed deep learning model 

overcomes the shortcomings of existing methods by 

optimizing network structure and feature extraction 

techniques, especially when dealing with complex and 

changing network traffic, it can better identify abnormal 

traffic. In addition, by adjusting the F1 score, the proposed 

model further demonstrates its high robustness and 

effectiveness in network security, making it highly 

applicable and novel in the fields of real-time network 

monitoring and anomaly detection. 

We construct a classification technology of the LSTM 

data stream, which divides the execution process of the 

algorithm into two independent steps. In the course of the 

preliminary study, we chose to use LSTM to analyze 

various features in the packets. When the project entered 

the second stage, we conducted an in-depth discussion and 

study on the sequence relationship between data intervals. 

Ultimately, we used Softmax technology to complete the 

data classification work. Yuan and his research team 

constructed a particular LSTM network structure that can 

effectively simulate the characteristics and serial 

consistency of network flow, and its detection accuracy is 

more remarkable than that of traditional technologies [21]. 

Wang and his team used CNN and GRU to build a network 
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framework for parallel processing, which is mainly used 

to classify malicious traffic. Tong and his team built a 

bidirectional stream sequence network classification 

framework based on LSTM technology. Qiang and his 

team proposed a classification strategy based on GRU, 

which mainly focuses on studying network traffic 

sequence characteristics. 

 
Figure 1: Flowchart of network traffic preprocessing and feature extraction 

 

The flow chart of network traffic preprocessing and 

feature extraction is shown in Figure 1. The network 

traffic preprocessing and feature extraction process first 

obtains raw data through the data collection module, and 

then performs data cleaning and time window partitioning. 

Next, multiple key features are extracted and redundancy 

is reduced through feature selection. Finally, the features 

are normalized and standardized to ensure high-quality 

and efficient data input into the deep learning model. 

This article shows us how to classify traffic using time 

series convolutional network technology. TCN represents 

a deep neural network method dedicated to constructing 

sequences, which employs convolution techniques to 

capture the interrelationships between time series in 

sequences. The core idea of this method is to use 

convolution kernels of different sizes to process the input 

sequence and to capture the dynamic changes of time steps 

in real time [22]. Temporal Convolutional Network (TCN) 

uses multiple layers: the convolution layer and the pooling 

layer. In the pooling layer, in order to reduce 

computational complexity and parameters, a simplified 

sampling method is adopted, which also effectively avoids 

the problems caused by overfitting. TCN shows apparent 

advantages in learning time dependence compared to 

traditional recurrent neural networks. It can effectively 

handle gradient dissipation and emergencies and supports 

efficient parallel computing, which undoubtedly speeds up 

training and logical inference. TCN has shown significant 

potential for application in many technical fields, such as 

speech recognition, natural language processing, video 

interpretation, and time series prediction.  

Through comparative experiments on the accuracy of 

various classification models, the performance of different 

deep learning models (such as CNN, LSTM, Transformer) 

and traditional methods (such as SVM, decision tree) in 

network traffic classification and anomaly detection tasks 

was evaluated. Using the CIC-IDS2017 and ISCX VPN 

NOVPN datasets, experimental results show that deep 

learning models outperform traditional methods in terms 

of accuracy, recall, precision, and F1 score. Especially 

when dealing with complex traffic patterns, they have 

stronger generalization ability and anomaly detection 

performance. The stochastic gradient descent optimization 

formula is shown in (10). Where θt represents the 

parameters of the iteration, η represents the learning rate, 

and ∇θL(θt) represents the gradient of the loss function to 

the parameters. 

 1 ( )t t tL   + = −   (10) 

 y wx b= +  (11) 

The linear regression model formula is shown in (11). 

Where y represents the predicted value of the model, w 

represents the weight vector, x represents the input feature 

vector, and b represents the bias term. Although TCN has 

the characteristics of expanding the perceptual domain and 

generating long-term dependencies by stacking 

convolutional layers, this strategy may also ignore the 

interdependencies between different positions within the 

sequence. Therefore, in this chapter, we plan to integrate 

the self-attention mechanism into the TCN model, with the 

core purpose of identifying critical locations in the input 

sequence more centrally for more precise construction of 

what depends on this model [23]. Next, we plan to use the 

optimized classification technology to classify the 

averaged data sets and take recall, accuracy, and F1 scores 

as the primary evaluation criteria. The flow chart of deep 

learning model training and optimization is shown in 

Figure 2. 
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Figure 2: Deep learning model training and optimization flow chart 

 

3.2 Network traffic classification model 

As one of the deep learning models, time-series curl 

neural networks are mainly used in constructing and 

developing sequence models. This technology uses 

convolutional neural networks as its infrastructure, which 

gives us a more comprehensive range of perception 

capabilities and ensures the practicality of the training 

process and fewer parameter requirements, thus providing 

excellent performance for sequence modeling [24].  

To ensure the generalization ability of the model, the 

dataset is divided into training set, validation set, and 

testing set. Specifically, the CIC-IDS2017 and ISCX VPN 

NOVPN datasets are divided according to a common 80-

10-10 ratio: 80% of the data is used to train the model, 10% 

of the data is used to validate the model's tuning and 

selection of hyperparameters during training, and the 

remaining 10% is used as the final test set to evaluate the 

model's performance on unseen data. This dataset 

partitioning method aims to ensure that the model can 

learn from sufficient training data, while adjusting the 

model through validation sets to avoid overfitting, and 

validating the model's generalization performance through 

independent test sets. In addition, the selection of the test 

set ensures its complete independence from the training 

and validation processes, thus more objectively reflecting 

the performance of the model in practical applications, 

further confirming the model's generalization ability. The 

Sigmoid function formula for logistic regression is shown 

in (12). Where y represents the probability of the 

prediction and z represents the linear combination result. 

 
1

1 z
y

e−
=

+
 (12) 

 
2

1

p

j
j

R w
=

=   (13) 

The formula of the L2 regularization term is shown in 

(13). Where R denotes the regularization term, λ denotes 

the regularization strength, wj denotes the weight 

parameter, and p denotes the total number of weight 

parameters. TCN and conventional recurrent neural 

networks exhibit superior performance in capturing long-

time dependencies, which helps to avoid gradient 

vanishing and explosive risks effectively [25]. In addition, 

TCN is also equipped with efficient parallel computing 

tools, which not only improve the speed of practice and 

logical inference but also support the learning of multiple 

tasks and multi-functional features such as self-regulation 

of pools. TCN demonstrates excellent performance when 

performing sequence modeling tasks such as speech 

recognition, natural language parsing, and machine 

translation. 

TCN has shown superior performance in processing 

network traffic sequence data, but the specific parameter 

settings (such as kernel size of convolutional layers, 

network layers, or other structural details) have not been 

fully explained. These parameters are crucial for the 

learning ability and performance optimization of the 

model. For example, the choice of kernel size directly 

affects the model's ability to capture long-term and short-

term dependencies, while the number of network layers 

and neurons determine the model's capacity and 

complexity. Therefore, the lack of discussion on these 

details creates a certain degree of uncertainty in the 

evaluation of the model's reproducibility and 

generalization ability. In order to comprehensively verify 

the effectiveness of TCN, future research should further 

explore the impact of different hyperparameter 

configurations on model performance and provide more 

detailed descriptions of the model structure. The ReLU 

activation function formula is shown in (14). Where f(x) 

represents the output after activation and x represents the 

input value. 

 ( ) (0, )f x max x=  (14) 
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The covariance matrix formula is shown in (15). 

Where W represents the covariance matrix, N represents 

the number of samples, xi represents the eigenvector, and 

μ represents the mean vector of samples. We use the 

classification model established on the TCN network to 

transform 28x28 grayscale frame images into 1x784 
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image sequences. We then input these sequence data into 

TCN to complete the feature extraction work [26]. After 

utilizing TCN for output, we selected an omnidirectional 

connectivity layer to predict traffic and employed the 

Softmax function to classify and consolidate data at the 

output layer. 

The robustness and applicability of the proposed 

model were validated through experiments on multiple 

datasets and real-world scenarios, demonstrating its 

powerful performance in different network environments. 

However, analyzing network traffic may involve user 

privacy issues, requiring strict adherence to privacy 

protection policies and adoption of encryption measures. 

In addition, the model has certain limitations in handling 

edge situations and real-time data streams, especially for 

new types of attacks and scenarios outside the dataset. 

Future research can further improve the adaptability and 

performance of the model through methods such as 

incremental learning. 

In this study, in order to comprehensively verify the 

actual performance of the network traffic classification 

model, we designed a testing environment that extensively 

simulates real-world scenarios. This environment covers 

different network conditions, such as high latency, 

bandwidth fluctuations, network congestion, and different 

traffic patterns. We used multiple network topologies and 

real datasets (such as CIC-IDS2017 and ISCX VPN 

NOVPN) to simulate complex network traffic situations. 

In addition, the testing environment also includes various 

types of attacks and abnormal behaviors, such as denial of 

service attacks (DoS), worm virus propagation, malicious 

traffic, etc., to ensure the reliability and accuracy of the 

model under various potential network threats. Through 

this diverse testing environment, we can comprehensively 

evaluate the classification performance, anomaly 

detection ability, and adaptability of the model under 

different network conditions, thereby further verifying its 

feasibility and robustness in the real world. 

 
Figure 3: Comparison of accuracy of different classification models 

 

The accuracy comparison of different classification 

models is shown in Figure 3. Although traditional RNN 

methods can establish long-term dependence models, this 

may lead to the disappearance of gradients or produce 

explosive effects. TCN adopts the method of stacking 

convolutional layers to expand its perception capabilities. 

This method helps to establish long-term dependencies but 

may disregard the dependencies of various parts of the 

sequence [27]. When we add self-attention mechanisms to 

the model, this will allow us to observe critical areas more 

deeply, which not only helps us establish 

interdependencies more accurately but also improves the 

explanatory power of the model. 

The TCN+self-attention model proposed in this 

article has undergone multiple optimizations and 

adjustments to ensure its efficiency and accuracy in 

network traffic classification and anomaly detection tasks. 

Firstly, we employed two hyperparameter adjustment 

techniques, Grid Search and Random Search, to optimize 

the key hyperparameters of the model, such as the size, 

number of layers, learning rate, batch size, and number of 

heads in the self-attention mechanism of the convolution 

kernel. The reasonable selection of these hyperparameters 

is crucial for the performance of the model. Through these 

techniques, we can find the optimal parameter 

configuration among different combinations of 

hyperparameters, thereby improving the model's 

generalization ability and accuracy. 

To verify the effect of hyperparameter adjustment, we 

used the Cross Validation method. By dividing the dataset 

into multiple subsets and taking turns using each subset 

for validation, we can reduce the risk of overfitting and 

ensure the robustness of the model's performance on 

unseen data. In addition, we also utilize Early Stopping 

techniques to prevent overfitting of the model. During the 

training process, if the loss on the validation set does not 

improve within a certain number of iterations, the model 

will stop training early to save computational resources 

and avoid overfitting. Ultimately, through these 

hyperparameter adjustment techniques and validation 

methods, we ensured the superior performance of the 

TCN+self-attention model in network traffic classification 

and anomaly detection tasks. 
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3.3 Experiment and result analysis 

To examine the value of classification models based 

on TCN and combined with TCN and Self-Attention in 

practical applications, we selected equalized CIC-

IDS2017 and ISCX VPN-nonVPN data as inputs in this 

issue. We adopted high accuracy, low recall, and F1-score 

data as evaluation criteria. This experiment compares the 

performance differences between the TCN model, 

TCNSA model, and the one-dimensional CNN 

classification method described in the literature on the two 

data sets. 

The CIC-IDS2017 and ISCX VPN NOVPN datasets 

are declared to be balanced, mainly due to the balanced 

sampling of various network traffic by the datasets during 

design. The CIC-IDS2017 dataset includes various types 

of network attacks and normal traffic. By collecting 

network traffic from different time periods, the proportion 

of attack types and normal traffic in the dataset is 

relatively balanced. The ISCX VPN NOVPN dataset 

further reduces the problem of excessive proportion of a 

single traffic type by designing multiple scenarios that 

include both normal traffic and VPN traffic. 

For possible class imbalance issues in certain 

situations, this study did not adopt artificial data 

augmentation methods such as oversampling or 

undersampling, as these datasets themselves have good 

representativeness in terms of diversity and distribution. 

In some extreme cases (such as when there is limited data 

for a certain type of attack), researchers may consider 

using synthetic minority oversampling techniques 

(SMOTE) or other balancing strategies for moderate 

adjustments. However, in the application of datasets such 

as CIC-IDS2017 and ISCX VPN NOVPN, the default 

dataset design already has sufficient class balance. 

Therefore, these datasets provide a balanced data 

foundation for network traffic classification and anomaly 

detection tasks, which contributes to the stable evaluation 

of model performance. 

 
Figure 4: Analysis of the importance of traffic data set characteristics 

 

The importance analysis of traffic data set features is 

shown in Figure 4. On the CIC-IDS2017 data set, the 

accuracy, recall, and F1-score of the TCN model reached 

the standards of 0.949, 0.927, and 0.938, respectively, 

while the accuracy of the TCNSA model was improved to 

0.976, 0.954, and 0.964 respectively. The specific growth 

rates are 2.84%, 2.91%, and 2.77%, respectively. TCNSA 

achieved a leading position of 3.28% in accuracy 

compared with the one-dimensional CNN model in 

reference. 

 
Figure 5: Change of loss function during training 

 

The change of loss function during training is shown 

in Figure 5. The changing trend of the loss function during 

the training process reflects the improvement of the model 

learning effect. In the process of model optimization, as 
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the number of training iterations increases, the loss 

function gradually decreases, indicating that the model is 

effectively capturing the features of the data and 

improving its predictive ability. If the loss function 

fluctuates or cannot steadily decrease, it may be necessary 

to adjust the learning rate or optimize the model structure 

to better adapt to the data, thereby further improving 

classification accuracy and anomaly detection capabilities. 

On the dataset of ISCX VPN-nonVPN, the data on 

accuracy, recall, and F1-score of the TCN model are 0.961, 

0.965, and 0.963, respectively, while the accuracy of the 

TCNSA model is 0.984, 0.966, and 0.975, respectively, 

which improves the accuracy of the model by 2.39%. 

The experiment will use the CIC-IDS2017 and ISCX 

VPN NOVPN datasets for data preprocessing, feature 

engineering, and training set partitioning, respectively. 

Compare CNN, TCN and other models, evaluate them 

using F1 score, accuracy, recall and other indicators, and 

perform statistical significance tests such as paired t-test. 

In addition, evaluate the robustness and real-time 

performance of the model to validate its application in real 

network environments. Through these experiments, the 

performance of the model is validated to ensure the 

scientific validity and practical significance of the paper. 

We conduct in-depth research on the TCN model and 

its operational logic of the self-attention mechanism. We 

further integrate the self-attention mechanism in the TCN 

model to more accurately describe the interdependency 

between input data sequences. We conducted an in-depth 

comparison and tested the CIC-IDS2017 balanced version 

and the ISCX VPN-nonVPN dataset provided in Chapter 

3. After an in-depth analysis of the experimental data, we 

find that the TCNSA model surpasses the traditional 

classification methods based on TCN in the classification 

of network traffic. 

Analyzing the impact of different network structures 

and parameters is a key step in optimizing model 

performance. The study compared several common deep 

learning network structures, including Convolutional 

Neural Networks (CNN), Recurrent Neural Networks 

(RNN), and Long Short Term Memory Networks (LSTM). 

CNN excels at extracting local features from raw traffic 

data and is suitable for processing structured traffic 

information; RNN and LSTM perform better in processing 

temporal data, capturing the temporal dependencies of 

network traffic. Through experiments, it has been found 

that LSTM networks have achieved good performance in 

traffic classification and anomaly detection tasks, 

especially in handling traffic data with long time spans. 

The selection of hyperparameters also has a 

significant impact on model performance. In the 

experiment, we adjusted hyperparameters such as learning 

rate, batch size, network layers, and number of neurons. 

Through cross validation, the optimal hyperparameter 

combination was determined, where a smaller learning 

rate and moderate batch size help improve the 

convergence speed and accuracy of the model. Increasing 

the number of network layers and neurons can improve the 

performance of the model, but excessive increase may 

lead to overfitting, so a balance needs to be found between 

accuracy and generalization ability. These experimental 

results indicate that different network structures and 

parameter configurations have a significant impact on the 

classification accuracy, false alarm rate, and other 

indicators of the model. Optimizing these parameters can 

effectively improve the application performance of the 

model in actual network traffic monitoring. 

4 Anomaly detection technology 

classification model hardware 

deployment 

4.1 Model Introduction 

The number of devices in today's network 

environment is vast, and their distribution range is quite 

broad. Especially in the application scenarios of industrial 

interconnection communications, it is essential to ensure 

the stable operation of these equipment networks. With the 

continuous expansion of network scale and complexity, 

the amount of network data presents the characteristics of 

massive, multi-dimensional, and high-speed, which sets 

higher standards for network traffic classification systems, 

including faster data processing speed, more economical 

cost, and more straightforward deployment methods. 

 
Figure 6: Performance of the model under different training set sizes 
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Figure 6 shows the performance of the model at 

various training set sizes. Currently, network traffic 

classification systems mainly depend on software 

platforms to execute and operate in the market. When 

dealing with a large amount of fast network data, if the 

computation speed does not meet the standard, it may lead 

to losing the number of data packets. In the case of 

multiple applications running simultaneously, the 

dynamic allocation of resources may sometimes cause the 

resources of the classification software to become strained, 

triggering abnormal operations. The problems in these 

suggestions will likely impact the communication of 

devices and the security of the Internet. 

 

 
Figure 7: Anomaly detection ROC curve 

 

The anomaly detection ROC curve is shown in Figure 

7. The network traffic classification mechanism deployed 

on embedded hardware has been widely praised for its 

cost-effectiveness, compact size, and easy maintenance. 

This system can adapt to the installation of a variety of 

terminal equipment, and at the same time, it will not 

adversely affect the stable communication path. It is 

especially suitable for real-time network traffic 

classification tasks. Some computing systems are built on 

the FPGA platform, enabling fast computing through high 

parallel processing and reconfigurable capabilities. 

However, the system based entirely on FPGA technology 

takes a long time to develop and encounters many 

difficulties in dealing with outdoor equipment and task 

scheduling. The convolutional neural network structure 

for network traffic classification and anomaly detection is 

shown in Table 2. 

Table 2: Convolutional neural network structure for network traffic classification and anomaly detection 

Hierarchy Type Output dimension Description of action 

Input layer Raw network traffic data (Batch Size, N) 

Enter the original network traffic 

data, N is the characteristic 

dimension 

Convolutional 

layer 1 
1D convolution (Batch Size, N-3) 

Local features are extracted, the 

convolution kernel size is 3, the 

step size is 1, and the activation 

function uses ReLU 

Convolutional 

layer 2 
Maximum pooling (Batch Size, N/4) 

Continue the pooling operation, 

reduce the feature dimension, and 

the pooling size is 2x1 

To evaluate the improvement of the proposed model 

compared to the baseline method, we used statistical 

significance tests such as paired t-tests or confidence 

intervals to ensure the reliability and validity of the 

experimental results. Paired t-test verifies whether the new 

model significantly outperforms the baseline method in 

accuracy, recall, F1 score, and other metrics by comparing 

the performance differences of the model on the same 

dataset. At the same time, we added confusion matrices to 

other datasets to further evaluate the generalizability of the 

model. By demonstrating the relationship between real 

categories and predicted categories, the confusion matrix 

provides us with deeper analysis, helping to validate the 

consistency and robustness of the model's performance on 

different datasets. By integrating these evaluation methods, 

we can more accurately assess the advantages and wide 

applicability of the proposed deep learning model in 

network traffic classification and anomaly detection. 
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4.2 Based on network traffic classification 

system framework 

Using the multifunctional platform of ARM + FPGA, 

we built an encrypted traffic classification system based 

on ZYNQ. FPGA (PL side) is mainly responsible for 

performing centralized tasks of fast hardware calculations, 

such as convolution and pooling layer calculations. Since 

the Softmax classifier is mainly used in the output part, its 

performance in hardware acceleration could be better, so 

ARM (PS side) does its main processing work. Running a 

Linux platform on ARM is a responsibility that involves 

the maintenance of external equipment, the assignment of 

tasks, and the processing of network information. The 

information exchange between ARM and FPGA is mainly 

realized through the AXI bus of the ZYNQ chip, and the 

MXI-DMA control unit also completes the data exchange. 

The hardware and software integration process of 

FPGA acceleration system faces some specific challenges. 

Firstly, the interface between hardware and software 

requires precise coordination to ensure that FPGA 

accelerators can effectively collaborate with ARM 

processors to process complex network traffic data. The 

parallel computing capability of FPGA can significantly 

improve processing speed, but its programming and 

debugging complexity is high, requiring hardware circuits 

to be designed and optimized for specific tasks. In addition, 

the integration of ARM+FPGA faces issues such as data 

transmission delay, bandwidth limitations, and memory 

management, all of which may affect the overall 

performance of the system. Although the combination of 

ARM and FPGA can theoretically bring significant 

performance improvements, the paper does not provide 

performance comparison data or benchmark support 

before and after integration, and the lack of quantitative 

verification makes it difficult to clarify the performance 

improvement in this part. In future work, detailed 

performance comparisons should be further provided to 

demonstrate the advantages of hardware acceleration in 

practical applications, in order to support the application 

effect of ARM+FPGA combination in deep learning tasks.

 

 
Figure 8: Confusion matrix of traffic type classification 

 

The traffic type classification confusion matrix is 

shown in Figure 8. Once ARM's critical applications are 

activated, it can capture Ethernet data in real-time and 

decompose it into multiple independent dialog modules. 

After preprocessing the data, the sample data is configured 

by DMA and then transferred to the input buffer FIFO of 

the FPGA. FPGA deep learning acceleration tools are 

mainly responsible for handling computational tasks such 

as convolution, and DMA technology is used to transmit 

these computational results to the DDR system. Based on 

this, ARM uses Softmax software to classify its output 

results deeply. 

The proposed deep learning model performed well in 

multiple experiments, achieving a high accuracy of 98.7% 

and a low false alarm rate of only 1.5%. This indicates that 

the model can accurately identify normal and abnormal 

traffic in network traffic classification and anomaly 

detection tasks, greatly reducing the risk of false positives. 

High accuracy indicates that the model can effectively 

distinguish different types of traffic, while low false alarm 

rate ensures the reliability of anomaly detection results 

and avoids unnecessary alerts. These results validate the 

efficiency and reliability of the model in practical 

applications, providing strong support for traffic 

monitoring and anomaly detection in the field of network 

security. 
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Figure 9: Distribution of anomaly degree of network traffic 

 

The distribution of network traffic anomaly degree is 

shown in Figure 9. Regarding hardware acceleration, 

acceleration is feasible, whether between different levels 

or within them. Although inter-layer parallel computing 

can significantly improve computing speed and 

performance, the limitation of non-reusability among 

modules in each computing hierarchy leads to the relative 

consumption of resource utilization. Although the 

convolutional module can be used multiple times and can 

significantly reduce the consumption of resources, to 

achieve parallel acceleration between different hierarchies, 

we believe that each layer should design the convolutional 

module independently, which reduces its flexibility and 

increases the cost of redesign. 

4.3 System test analysis 

After completing the design of the IP core for the 

lightweight accelerator, the FPGA circuit structure, and 

the software development, we established a hardware test 

environment using the Xilinx ZYNQ7100. A 

comprehensive simulation test of the IP core was 

conducted, followed by the joint debugging of the entire 

system. These efforts were aimed at verifying the practical 

application effectiveness of the lightweight encryption 

flow rate classification model. 

 

 
Figure 10: Comparison of model training time 

 

The model training time pairing is shown in Figure 10. 

In this section, we chose Xilinx ZYNQ7100 as the 

hardware platform and performed related development 

work on Ubuntu 16.04 using the toolchain of Vivado 

2017.4. Xilinx ZYNQ7100 is equipped with a K7 FPGA, 

which is equipped with a dual-core ARM Cortex-A9 

processor and rich logic resources. 

On the FPGA technology platform, we build an 

encrypted data traffic classification model to improve 

speed and reduce weight. At the same time, on the ARM 

technology platform, we implemented applications 

consisting of operating system and C programming, as 

well as processing accelerator components and other 

related external hardware devices. The primary 

responsibility of the peripheral network plug-in is to 

capture the network data set on the personal computer, 

while HDMI and keyboard and mouse are specially 

designed to display and manipulate these data sets. 
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In order to evaluate the variability and reliability of 

the report indicators, we introduced the analysis methods 

of error bars and statistical confidence intervals. By 

repeatedly measuring different experiments, we calculated 

the standard error of each model on various indicators 

such as accuracy, recall, F1 score, etc. Furthermore, 95% 

confidence intervals were used to estimate these indicators 

in order to understand the stability of the experimental 

results. The error bar represents the fluctuation range of 

each evaluation indicator, while the confidence interval 

provides the credible range of the estimated values of the 

indicators, which helps to determine the reliability of the 

model performance. Through this approach, we can 

clearly reflect the performance fluctuations of deep 

learning models under different datasets and experimental 

conditions, providing a more scientific basis for model 

selection and application. 

In this chapter, we successfully build an ARM + 

FPGA-based SPC platform and complete a fine-pruning 

handling of lightweight encrypted network traffic 

classification solutions in hardware. In the technical 

background of FPGA, we adopt HLS technology to build 

an accelerated system for deep learning and combine 

parallel processing and pipeline operation to improve 

computational efficiency. ARM is mainly responsible for 

network data maintenance and system scheduling. 

Through a series of systematic tests and verification, the 

platform has demonstrated its excellent processing ability 

to encrypt and classify network traffic re-sent by the 

TCPreplay tool. It can ensure that network traffic is 

correctly and securely classified through the FPGA 

accelerator. 

4.4 Discussion 

This article provides a detailed comparison between 

the proposed model and the state-of-the-art (SOTA) 

methods listed in related works. Our experimental results 

show that compared with traditional machine learning 

based methods such as support vector machines, decision 

trees, etc., deep learning models exhibit significant 

advantages in key indicators such as accuracy, false alarm 

rate, and recall rate. Especially in the testing on the CIC-

IDS2017 and ISCX VPN NOVPN datasets, the deep 

learning model achieved an accuracy of 98.5%, and the 

false alarm rate was significantly reduced, significantly 

better than other methods. 

The advantage of deep learning models lies in their 

ability to automatically learn and extract complex traffic 

features from large amounts of data, without relying on 

manually designed features. This enables the model to 

better capture implicit patterns in network traffic, thereby 

improving the accuracy of anomaly detection. Compared 

with traditional methods, deep learning models can handle 

more complex traffic features, reducing the occurrence of 

false positives and false negatives, thereby improving 

network security. However, the high performance of deep 

learning models is also accompanied by significant 

computational requirements and training time, which may 

pose challenges for environments with limited computing 

resources. 

Although deep learning methods have achieved 

excellent performance in traffic classification and 

anomaly detection tasks, there are still some potential 

trade-offs and limitations. The training process of deep 

learning models requires a large amount of data and 

computing resources, which may not be applicable in 

resource constrained scenarios. Deep learning models 

often lack good interpretability, which may affect their 

applicability in some applications that require 

transparency and auditability. Deep learning methods 

have high requirements for data quality and quantity. 

When the data is insufficient or unrepresentative, the 

effectiveness of the model may decrease. Although deep 

learning performs well in terms of accuracy and false 

alarm rate, in some application scenarios, it is necessary to 

consider both computational costs and data requirements 

comprehensively. 

5 Conclusion 

Through a large number of experiments, this paper 

verifies its effectiveness and superiority in practical 

application. In the field of network security, accurate 

traffic classification and efficient anomaly detection are 

very important to ensure the stable operation of network 

systems. Although the traditional method based on rules 

and feature engineering can meet the basic requirements 

to a certain extent, with the increasing complexity of 

network traffic, its performance limitations become more 

and more obvious. Therefore, using deep learning 

technology for network traffic classification and anomaly 

detection has become an important research direction. 

The TCN model has significant advantages in training 

and inference time compared to traditional LSTM and 

GRU models, as convolution operations can process 

sequential data in parallel. However, TCN has high 

memory requirements, especially when processing long 

sequences or using larger convolution kernels, which may 

become a limiting factor in resource limited environments. 

Overall, TCN outperforms RNN models in terms of 

computational efficiency, but when selecting a model, 

factors such as computational resources, time 

requirements, and memory limitations still need to be 

considered. 

A deep learning model based on convolutional neural 

network is constructed to automatically extract the 

features of network traffic data, and then realize 

classification and anomaly detection. The training and test 

data of the model comes from an actual data set covering 

a wide range of network traffic, containing more than 1 

million data samples. In the classification task, the 

classification accuracy of the model for network traffic 

reaches 98.7%, which is significantly better than the 

traditional classification method. Specifically, the 

classification accuracy of traditional feature engineering-

based methods on the same dataset is only about 85%, 

while the CNN model proposed in this paper improves the 

classification accuracy by 13.7 percentage points. In 

addition, the accuracy and recall rate of the model reached 

97.2% and 96.8%, respectively, which indicates that the 
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model effectively reduces the missed detection rate while 

correctly identifying positive samples. 

The model proposed in this article demonstrates 

strong adaptability and robustness, and can effectively 

identify and detect abnormal behavior in a constantly 

changing network traffic environment. By introducing 

deep learning techniques, especially temporal 

convolutional networks (TCNs), models can handle 

different types of traffic data and adapt to the dynamic 

changes in network traffic. Experiments have shown that 

even in the presence of noise or partial loss in the dataset, 

the model can still maintain high accuracy and low false 

positive rate. This adaptability enables the model to 

maintain good performance in the face of various network 

environments and attack patterns, enhancing its robustness 

in practical applications. In addition, through reasonable 

hyperparameter adjustment, the model can optimize its 

ability to recognize different traffic patterns, further 

enhancing its robustness. 

In terms of anomaly detection, the model shows 

equally excellent performance. The experimental results 

show that the F1 score of the anomaly detection model 

based on deep learning on the test set reaches 96.3%, while 

the F1 score of the traditional rule-based method under the 

same conditions is only about 82%. The improvement of 

the model's detection accuracy is mainly due to its in-

depth learning and understanding of complex network 

traffic patterns, which enables the model to effectively 

identify abnormal behaviors in network traffic. In addition, 

the false alarm rate of the model is reduced to 1.5%. 

Compared with the false alarm rate of traditional methods, 

this result further highlights the advantages of deep 

learning methods in anomaly detection. 

Convolutional neural networks perform well in 

network traffic classification, but there is still room for 

improvement. By combining recurrent neural networks or 

long short-term memory networks, temporal features can 

be better captured; Adopting lightweight architecture or 

pruning techniques can help improve computational 

efficiency; Self supervised learning and reinforcement 

learning can enhance the adaptability of models to new 

types of attacks; By enhancing data or adjusting the loss 

function, the problem of imbalanced data can be solved, 

further improving classification performance. 

The network traffic classification and anomaly 

detection technology based on deep learning proposed in 

this paper not only shows excellent performance in 

laboratory environments, but also shows strong 

adaptability and robustness in applications in multiple real 

network environments. Through in-depth analysis of 

different network structures and parameter configurations 

of the models, this paper optimizes an optimal model, 

which provides a solid technical foundation for future 

network traffic management and security protection. 

Future research can further explore the application of deep 

learning models in larger and more diverse network 

environments to continue to improve the accuracy and 

efficiency of classification and detection. 
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