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This research presents a novel methodology for cloudburst forecasting using the XGBoost (Extreme Gra-
dient Boosting) machine learning algorithm. With the escalating impact of climate change, accurately
predicting extreme weather events like cloudbursts is crucial due to their potential to trigger floods. Cloud-
burst events were identified from daily rainfall data. Our study leverages historical weather data, focusing
on intricate rainfall patterns, to forecast future cloudburst occurrences. Comparative analysis against Ran-
dom Forest and LSTM models confirmed XGBoost’s effectiveness, consistently outperforming alternatives
across multiple performance metrics. The XGBoost model, known for its ability to handle complex datasets,
demonstrated strong predictive performance, with an RMSE of 0.12 and an MAE of 0.09, indicating high
accuracy. This research provides a reliable tool for advanced weather forecasting and early warning sys-
tems, offering valuable support to policymakers, disaster management teams, and agricultural planners in
mitigating risks associated with extreme rainfall events.

Povzetek: Raziskava uvaja model XGBoosta za napoved padavin in lokalnih nalivov na ravni okrožij, ki
omogoča učinkovite opozorilne sisteme za ekstremne vremenske razmere.

1 Introduction

Excessive rainfall phenomena, such as cloudbursts, typi-
cally occur on a mesoscale level, spanning 2–20 km [50].
These events are marked by sudden and intense precipita-
tion surges, often resulting in secondary hazards like flash
floods, landslides, and dam failures [15, 13]. Predomi-
nantly occurring during the monsoon season, cloudbursts
are among themost significant natural hazards in the region.
Various studies have proposed rainfall intensity thresholds
to identify cloudburst events [28, 48, 26]. For example,
[27] defined extreme rainfall events as those exceeding
250 mm/day, while [48] categorized heavy rainfall in the
northwest Himalayas (NWH) as surpassing 200 mm/day.
Other studies, such as [7] and [59], utilized the 99.99th per-
centile of precipitation distribution to delineate cloudbursts.
The study [62] proposes an innovative approach for miss-
ing value imputation using an extended Kalman filter with
linear relations and introduces advanced bidirectional and
unidirectional LSTM architectures for enhancing network-
wide rainfall forecasting in ubiquitous computing environ-
ments. The pie chart illustrates the distribution of various
natural disasters. The pie chart(Figure 1) illustrates the dis-
tribution of various natural disasters. Floods account for
the highest proportion (50%), followed by storms (32%)

and extreme temperatures (10%), while glacial lake out-
burst floods and droughts have the lowest occurrences at
1% and 3%, respectively.
These extreme weather events often result in signifi-

cant loss of life and property. A notable instance was the
Kedarnath tragedy inUttarakhand in June 2013, where rain-
fall intensities exceeding 200 mm/day over several days
caused over 6,000 fatalities [53]. Approximately 50 mil-
lion people inhabit the Himalayan region across Nepal, In-
dia, Bhutan, China, and Pakistan, making the prediction of
cloudbursts crucial for safeguarding these vulnerable pop-
ulations. However, existing meteorological models strug-
gle to achieve accurate cloudburst prediction due to their
reliance on deterministic weather forecasting, which often
fails to capture the complex, non-linear relationships be-
tween atmospheric variables [13, 10]. Traditional models,
such as numerical weather prediction (NWP) techniques,
suffer from limitations in spatial resolution, dependency on
large-scale climate patterns, and computational inefficien-
cies, making them inadequate for real-time early warning
systems.
Recent examples highlight the devastating impact of

such events. In 2022, Bengaluru experienced severe flood-
ing, with the city recording 132 mm of rainfall within 24
hours on September 5, accounting for 10% of its seasonal
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rainfall. The floods caused an estimated loss of over Indian
rupees 2,250 million [22]. Similarly, Bihar has faced re-
curring floods with varying intensity, causing widespread
damage over the years, including major episodes in 1987,
1998, 2000, 2001, 2003, 2004, 2008, 2010, 2013, 2017,
2018, and 2020 [63]. States such as Bihar, West Bengal,
and Uttar Pradesh, situated along the Ganges River, are es-
pecially susceptible to natural disasters, with climatic risks
exacerbating the trends of loss and destruction [55]. In
Bihar alone, approximately 68.20 million people—roughly
53.20% of its population—reside in high-risk flood zones
[55]. The state’s vulnerability is further underscored by the
severe flooding of 6.970 million hectares of land, affect-
ing 74.0% of its geographical area [4]. To address these
challenges, this study leverages machine learning, specifi-
cally the XGBoost algorithm, to enhance cloudburst predic-
tion. Unlike traditional meteorological models, XGBoost is
capable of handling high-dimensional data, capturing intri-
cate relationships among multiple atmospheric parameters,
and reducing prediction error through its boosting mecha-
nism. The adaptive learning approach of XGBoost makes
it particularly well-suited for cloudburst forecasting, allow-
ing for real-time predictions with higher accuracy. This
research aims to demonstrate how XGBoost outperforms
conventional models in forecasting cloudbursts, offering a
more robust and data-driven early warning system for dis-
aster mitigation.

2 Related studies on cloudbursts
and early warning system

The term cloudburst holds a notable historical presence in
meteorological literature, with references dating back to
the 19th century [43]. A comparative analysis using the
Google Books NgramViewer reveals that the term emerged
in the 1800s and reached its peak usage in the 1940s. Ini-
tially, cloudbursts were described as localized heavy rain-
fall events often linked to thunderstorms, though their for-
mal definition evolved over time. For instance, Elmer
[20] suggested that elongated thunderstorm clouds moving
along their longitudinal axis could directly trigger cloud-
bursts. Similarly, Bonnett [8] described scenarios where
showers intensified progressively, eventually covering the
sky and culminating in severe thunderstorms. Horton and
Todd [30] emphasized the highly localized nature of these
events, citing the Taborton, New York, incident where 158
mm of rain fell in two hours over an 8 km-wide area.
King [35] reported a cloudburst lasting 3.5 hours, pro-

ducing 305 mm of rain across an elliptical region of 80
square kilometers, causing significant destruction, includ-
ing impassable roads, swept-away bridges and homes,
debris-laden farmland, 11 fatalities, and property damage
equivalent to USD 6.8 million today. Douglas [17] doc-
umented a California cloudburst that led to a flash flood
accompanied by a dust cloud from dislodged dry soil rush-
ing down a canyon. Similarly, the July 2, 1893, cloudburst

over the Cheviot Hills (UK) caused erosion of up to 2 square
meters of valley cross-section, destroying bridges and roads
[11].
By the mid-20th century, cloudbursts were widely un-

derstood as localized, high-intensity rainfall events span-
ning a few kilometers, often accompanied by thunder and
lightning [64, 47]. These events could result in extensive
damage, including flash floods, streambed erosion, land-
slides, and mudflows. Woolley [65] provided a formal def-
inition, describing cloudbursts as torrential rainfall events
characterized by intensity and spatial concentration, akin
to the sudden release of an entire cloud. Typically asso-
ciated with thunderstorms, these events occur over limited
areas and produce volatile, damaging floods in steep catch-
ments. They are also linked to cumulonimbus clouds and
hazardous phenomena such as squalls, strong winds, hail-
storms, and tornadoes [14, 18].
Quantitative definitions of cloudbursts vary. Haritashya

et al. [29] proposed a threshold of 100 mm/h to classify
a violent shower as a cloudburst. Krishnamurthy [37] used
100mm/day as a criterion for extreme rainfall events, while
Izzo [34] defined cloudbursts as having rainfall intensity
above 30 mm/h. Dunlop [19] differentiated heavy show-
ers (10–50 mm/h) from violent showers (> 50 mm/h), fol-
lowing World Meteorological Organization (WMO) guide-
lines. Fry et al. [23] defined downpours as rainfall ex-
ceeding 15 mm/h. The American Meteorological Soci-
ety’s Glossary of Meteorology supports the threshold of
100 mm/h for defining cloudbursts [1]. Consequently, in
non-monsoonal regions, cloudbursts are defined as rainfall
events with intensities exceeding 30 mm/h, while in mon-
soonal regions, the threshold is 100 mm/h. These events
typically affect areas of a few kilometers, often causing
flash floods, landslides, and mudflows, and are frequently
accompanied by storms, strong winds, hail, and tornadoes.
The Centre for Research on the Epidemiology of Dis-

asters (CRED) has developed the Emergency Events
Database (EM-DAT), recognized as the most comprehen-
sive global database on over 23,000 natural and techno-
logical disasters from 1900 to 2022 [2]. EM-DAT sys-
tematically records disaster data annually. Analysis of
the database highlights the most impactful natural disas-
ters, including droughts, earthquakes, extreme tempera-
tures, floods, glacial lake outbursts, storms, and wildfires.
Notably, more than 50 percent of these recorded events are
floods and glacial lake outburst floods [17, 18, 11, 15].
Both fluvial and pluvial flooding are expected to in-

crease the vulnerability of residents in riparian and infor-
mal communities due to projected rises in rainfall inten-
sity driven by climate change [46]. Early Warning Systems
(EWSs) serve as a critical intersection of disaster risk re-
duction, effective humanitarian response, and the promo-
tion of climate-resilient and sustainable development. They
address present, emerging, and potential flood-related haz-
ards. However, Africa lags behind other global regions in
implementing robust EWSs [44, 66]. Several studies have
highlighted the pivotal role of EWSs in disaster prepared-
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Figure 1: Sum of occurrences of natural disasters from 1900 to 2022

ness and mitigation [12, 21, 25]. Research efforts, such as
those by Roy et al. [56] and Shahjahan [57], have assessed
the efficacy of EWSs in Bangladesh’s Sundarbans region,
focusing on methods of warning dissemination and recep-
tion. In contrast, similar systems have not been extensively
studied in the Indian state of Bihar. Thus, it is crucial to
evaluate the effectiveness of existing EWSs in bolstering
disaster mitigation efforts in Eastern India, particularly Bi-
har [39].
Climate change has led to a significant increase in the fre-

quency and severity of extreme weather events, with cloud-
bursts emerging as critical hazards impacting ecosystems,
agriculture, and human settlements [49]. Accurate forecast-
ing of such events is essential for proactive planning and
mitigation strategies. While conventional weather predic-
tion methods provide some insights, they often fall short in
predicting the intensity and occurrence of extreme events
like cloudbursts. This study explores the use of XGBoost
[9], an advanced machine learning algorithm, to bridge this
gap. By analyzing historical weather data, the research
aims to develop a predictive model with enhanced accuracy
and reliability for cloudburst forecasting.
The utility of XGBoost in cloudburst prediction is under-

scored by recent advancements in meteorological research.
Two prominent studies illustrate XGBoost’s capabilities in
this domain. The first study highlights its effectiveness in
short-term precipitation forecasting across diverse climatic
regions of China, employing multi-factor bias correction
to improve accuracy [16]. The second study demonstrates
XGBoost’s proficiency in nowcasting weather conditions,
outperforming traditional methods such as SVM (Support
Vector Machine), RF (Random Forest), and GBDT (Gradi-
ent Boosting Decision Tree) [45].
In hydrological forecasting, machine learning algo-

rithms, particularly XGBoost, have shown remarkable
success in predicting groundwater levels and streamflow
across various geographical terrains. Studies have demon-
strated XGBoost’s superiority in groundwater level predic-
tions [51] and streamflow forecasting [61]. Furthermore,
Kumar et al. [40] employed LSTM neural networks for
rainfall forecasting and flood impact predictions in Bihar,
leveraging deep learning to improve disaster preparedness
and response. Another study by Kumar et al. [41] applied
AI-driven models for assessing rainfall and flood vulner-
ability in Bihar, aiming to enhance disaster management
strategies in the region. Table 1 presents a comprehen-
sive summary of existing studies on cloudburst prediction
and early warning systems, highlighting the methodologies
used and identifying current research gaps. These findings
collectively affirm the critical role of XGBoost in cloud-
burst prediction, presenting promising opportunities for en-
hanced forecasting precision. The superiority of XGBoost
over Random Forest, SVM, and LSTM in precipitation
forecasting is highlighted in Table 2, emphasizing its advan-
tages in accuracy, scalability, and handling complex data.
This research primarily addresses the challenge of accu-
rately predicting cloudbursts—extreme precipitation events
occurring over short durations that pose significant risks.
The unpredictable and severe nature of these phenomena
makes them a central focus in climate science and meteo-
rological research. By leveraging historical weather data,
this study aims to develop predictive models that estimate
the likelihood of future cloudburst occurrences, providing
a valuable tool for preemptive and preparatory measures.

The study is organized as follows: the section on the
study area and data is followed by a detailed description of
the proposed methodology and computational framework
for rainfall and cloudburst prediction usingXGBoost. Next,
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Table 1: Summary of studies related to cloudburst and early warning systems
Study Focus Area Key Findings
Haritashya et al. [29] Quantitative definition of cloud-

bursts
Proposed a threshold of 100 mm/h to classify a violent
shower as a cloudburst.

Krishnamurthy [37] Extreme rainfall events Used 100 mm/day as a criterion for classifying extreme
rainfall events.

Izzo [34] Rainfall intensity classification Defined cloudbursts as rainfall events with intensity
above 30 mm/h.

Dunlop [19] Rainfall intensity classification Differentiated between heavy showers (10–50 mm/h) and
violent showers (> 50 mm/h).

Fry et al. [23] Heavy rainfall categorization Defined downpours as rainfall exceeding 15 mm/h.
Roy et al. [56] Early warning systems in

Bangladesh
Assessed the effectiveness of warning dissemination and
reception methods in the Sundarbans region.

Shahjahan [57] Disaster mitigation in Bangladesh Evaluated EWS efficacy in disaster-prone areas.
Kumar et al. [39] EWS in Bihar, India Highlighted the need to assess and improve EWS efficacy

in Bihar.
Dong et al. [16] XGBoost for precipitation forecast-

ing
Demonstrated XGBoost’s effectiveness in short-term pre-
cipitation forecasting using multi-factor bias correction.

Mai et al. [45] Weather nowcasting with ML mod-
els

Showed XGBoost outperforming SVM, RF, and GBDT
in nowcasting weather conditions.

Osman et al. [51] Groundwater level prediction Validated XGBoost’s superiority in predicting groundwa-
ter levels across varied terrains.

Szczepanek et al.
[61]

Streamflow forecasting Highlighted the accuracy of XGBoost in daily streamflow
prediction.

Kumar et al. [40] Rainfall and flood impact prediction
in Bihar

Applied LSTM neural networks for accurate rainfall fore-
casting and flood impact assessments.

Kumar et al. [41] AI-driven models for disaster man-
agement

Developed predictive models for assessing rainfall and
flood vulnerability in Bihar.

the results and analysis are presented, and the final section
concludes the study.

3 Study area and data

3.1 Profile of the study area
Bihar, located in the eastern part of India, is situated be-
tween the coordinates of 24°20’10” to 27°31’15” North lat-
itude and 83°19’50” to 88°17’40” East longitude (Figure 2).
This landlocked state shares its borders with West Bengal
to the east, Uttar Pradesh to the west, and Jharkhand to the
south, while the northern boundary is an international bor-
der with Nepal. Bihar’s geography is marked by the Hi-
malayan range to the north and the Chhotanagpur hills to
the south, with rivers originating from these regions playing
a crucial role in the state’s ecological and economic frame-
work.
The river channels in the northern plains of Bihar form

one of the most dynamic fluvial systems in the world
[52, 24]. The region is home to over 250 seasonal and per-
manent rivers and streams, which significantly contribute
to recurrent flooding. Additionally, more than a dozen ma-
jor rivers traverse the state, dividing it into seven distinct
regional geo-cultural zones [42]. These rivers, along with
their seasonal dynamics, shape the local economies and im-

pact flood patterns across the state.

3.2 Data

Data was retrieved from the India-Water Resource Infor-
mation System (IWRIS), which provides rainfall data at the
state, district, station, and basin levels [6]. The study also
incorporates the high spatial resolution (0.25° x 0.25°) long-
period (1991-2022) daily gridded rainfall dataset provided
by the India Meteorological Department (IMD).
This dataset offers very high spatial resolution daily grid-

ded rainfall data (0.25° x 0.25°). For this study, we utilized
district-wise daily data for Bihar, India, covering the refer-
ence period from 1991 to 2022. We considered flood-prone
districts of Bihar [4]. Furthermore, we calculated annual
rainfall, rainy season rainfall, and cloudburst events based
on the literature [37, 31, 32].
Figure 3 illustrates the methodology for calculating these

rainfall parameters. For instance, in flood-prone districts
such as Araria for the year 1991, we first extracted the daily
rainfall data and then calculated the rainy season rainfall by
summing the daily data from June 1st to September 30th.
The annual rainfall was obtained by summing all the daily
rainfall records for the year. Cloudburst events were de-
fined as daily rainfall events exceeding 100mm during the
rainy season, as higher-intensity rainfall is more common
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Table 2: Demonstrating XGBoost’s superiority in rainfall and cloudburst forecasting over traditional machine learning
models
Model Key Strengths Limitations Why XGBoost is Superior
XGBoost - Superior accuracy and pre-

cision in precipitation fore-
casting.
- Efficient in handling large,
high-dimensional datasets.
- Built-in handling of miss-
ing data and regularization
to avoid overfitting.
- Fast training and scalability
for real-time forecasting.

- Requires careful hyperpa-
rameter tuning.

- Outperforms others in
terms of accuracy, scalabil-
ity, and robustness.
- Handles missing data and
complex relationships more
effectively.

Random Forest (RF) - Good for general-purpose
classification and regression
tasks.
- Robust to noise and over-
fitting.

- Less accurate for highly
imbalanced or complex
datasets like precipitation.
- Struggles with identifying
subtle patterns in time-series
data.

- XGBoost provides better
bias correction and identifies
complex relationships better
than RF.

Support Vector Ma-
chine (SVM)

- Effective for high-
dimensional and linear data.
- Strong mathematical
foundation for classification
tasks.

- Poor scalability for large
datasets.
- Limited ability to handle
missing data and non-linear
temporal relationships.

- XGBoost scales better,
is computationally efficient,
and handles missing data
seamlessly.

Long Short-Term
Memory (LSTM)

- Excellent for sequential
and time-series data.
- Captures long-term depen-
dencies well.

- Requires large datasets for
effective training.
- Computationally expen-
sive and prone to overfitting
with limited data.

- XGBoost requires less data
for training, is faster, and
less prone to overfitting.
- Superior for real-time,
large-scale forecasting.

in flood-prone districts during this period [31, 32].

3.2.1 Features considered

The dataset includes the following features relevant to rain-
fall and cloudburst prediction:

– Rainfall Indicators: Annual Rainfall (AR) and Rainy
Season Rainfall (RSR)

– Meteorological Variables: Temperature, humidity,
and elevation

– Cloudburst Events: Binary classification (1 for
cloudburst, 0 otherwise)

3.2.2 Data preprocessing

To ensure data consistency and reliability, the following
preprocessing steps were applied:

– Handling Missing Values: Missing entries were im-
puted using interpolation techniques or removed based
on data availability thresholds.

– Feature Scaling: Normalizationwas performed to en-
sure comparability across different meteorological pa-
rameters.

– Outlier Detection: Extreme values in rainfall and
temperature data were filtered using interquartile
range (IQR) analysis.

– Feature Engineering: Derived features such as cu-
mulative seasonal rainfall and average seasonal tem-
perature were added to enhance model performance.

– Train-Test Split: The dataset was divided into train-
ing (80%) and testing (20%) subsets for model evalu-
ation.

3.2.3 Cloudburst event definition

A cloudburst is characterized by a sudden, intense rainfall
event over a localized area, often resulting in flash floods.
According to the India Meteorological Department (IMD,
2020)[33], a cloudburst is defined as a rainfall of 100mm or
more within an hour over a geographical region of approx-
imately 20–30 square kilometers. Such events are common
in mountainous regions due to orographic lifting and con-
vective processes, though they can also occur in other re-
gions under suitable meteorological conditions [31, 32].
However, considering the geographic context of Bihar—

a predominantly plains region forming part of the Gangetic
Plain with fertile alluvial soil—this study defines a cloud-
burst event as daily rainfall exceeding 100 mm during the
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Figure 2: District-wise geographical location map of Bihar

Figure 3: Methodology for calculating the annual rainfall, rainy season rainfall, and cloudburst events. D represents a
district.

monsoon season. This criterion is adopted because high
daily rainfall also leads to floods in the region[67, 58]. Prior
studies [37] have validated the suitability of this threshold
for extreme events in the Indian monsoon region and cli-
mate change, supporting its application in this research.

4 Computational framework for
rainfall and cloudburst prediction
with XGBoost

In this section, we present a computational framework
utilizing XGBoost for forecasting rainfall and cloudburst
events. Feature selection was performed using feature im-
portance scores from XGBoost, retaining key meteorologi-
cal parameters such as Annual Rainfall, Rainy Season Rain-
fall, temperature, humidity, elevation, and historical cloud-
burst events while discarding less significant features to
enhance model efficiency. To assess its effectiveness, we

compared XGBoost with Random Forest and Long Short-
TermMemory (LSTM), chosen for their strengths in regres-
sion and sequential data modeling. Model performance was
evaluated using Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and R-squared (R2) Score. XG-
Boost, a gradient boosting technique, employs decision tree
ensembles, regularization to prevent overfitting, and paral-
lel computation for efficiency. The dataset was split into
80% training and 20% testing subsets, with hyperparam-
eter tuning performed via grid search and cross-validation.
The trained models generated forecasts for 2023-2047, pre-
dicting rainfall patterns and cloudburst probabilities, with
results analyzed for long-term trends in extreme weather
events. Below are the input objectives along with their cor-
responding desired outputs.

4.1 Input

– Historical weather dataset containing:
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– Rainy Season Rainfall (RSR) for previous years.
– Annual Rainfall (AR) for previous years.
– Additional relevant features (e.g., temperature,
humidity, geographic factors).

– Information on cloudburst events (0 or 1) for pre-
vious years.

4.2 Output
– Predictions for the years 2023 to 2047 for:

– Rainy Season Rainfall (RSR) for each district.
– Annual Rainfall (AR) for each district.
– Probability of cloudburst events (> 100mm rain-
fall) for each district.

4.3 Data preparation
4.3.1 Loading the historical weather dataset

We begin by importing the historical weather dataset, in-
cluding RSR,AR, cloudburst events, and other relevant fea-
tures such as temperature, humidity, and geographic fac-
tors.

4.3.2 Feature selection and preprocessing

– Identifying and extracting relevant features: RSR,AR,
and cloudburst events.

– Cleaning and preprocessing: Handling missing val-
ues, outliers, and anomalies.

– Feature engineering: Creating new features such as
cumulative rainfall values or seasonal averages.

– Splitting dataset into training and testing sets (e.g.,
80/20 ratios).

4.4 Model initialization
We initialize separate XGBoost models for each prediction
task:

– Model for RSR Prediction: Predicts Rainy Season
Rainfall (RSR).

– Model for AR Prediction: Predicts Annual Rainfall
(AR).

– Model for Cloudburst Probability Prediction: Es-
timates cloudburst events using binary classification:

P (Cloudburst) =
1

1 + e−
∑N

i=1 wixi
(1)

where N represents the number of features, wi denotes the
corresponding weights, and xi signifies the input features.

4.5 Model training and prediction
– Training each XGBoost model using the respective
target variable.

– Using the trained models to make predictions for the
years 2023-2047.

– Organizing predictions for analysis and visualization.

– Evaluating model performance based on historical
data.

4.6 XGBoost computing
XGBoost minimizes a loss function by combining predic-
tions from multiple weak learners (trees).
XGBoostHyperparameters: Themodel’s hyperparam-

eters were optimized using grid search. Table 3 summarizes
the final values.

Table 3: XGBoost hyperparameters used in the study
Hyperparameter Value

Learning Rate (η) 0.1
Maximum Depth 6
Number of Boosting Rounds 100
Subsample Ratio 0.8
Column Subsample Ratio 0.8
Minimum Child Weight 1
Gamma (Minimum Loss Reduction) 0
Regularization (L1) α 0.1
Regularization (L2) λ 1

Data Split Rationale: An 80/20 train-test split was used
to ensure a balanced division between model training and
validation, aligning with standard machine learning prac-
tices.
Feature Importance: Feature importance ranking was

conducted to identify key predictors influencing model out-
comes, enhancing interpretability.
Handling Missing Data: Missing data were addressed

usingmean imputation forminor gaps, forward fill for time-
series continuity, and model-based imputation for substan-
tial missingness.
These methodological decisions contribute to the robust-

ness and accuracy of the proposed model.

4.6.1 Objective function

The objective function to be optimized is:

Objective = L(y′, y) + γ · Ω(f) + 1

2
λ∥w∥2 (2)

where L(y′, y) is the loss function measuring the differ-
ence between predicted (y′) and actual (y) values, γ con-
trols tree complexity, and λ controls L2 regularization on
leaf weights.
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4.6.2 Gradient and hessian of loss function

For squared error loss:

L(y′, y) = (y′ − y)2 (3)

Gradient:
∇L = 2(y′ − y) (4)

Hessian:
H = 2 (5)

4.6.3 Tree building and regularization

XGBoost builds trees sequentially by fitting a new tree to
the negative gradient of the loss function. Regularization
terms control model complexity:

– γ: Minimum loss reduction required for further parti-
tioning.

– λ: L2 regularization on leaf weights.

4.6.4 Learning rate (shrinkage)

XGBoost introduces a learning rate (η) to control step size:

y′ =

K∑
k=1

fk(x) (6)

where fk(x) is the prediction of the k-th tree.
These mathematical foundations enable XGBoost to it-

eratively optimize and construct a robust ensemble model,
providing accurate predictions for rainfall and cloudburst
events.

4.7 Model evaluation: XGBoost
Model evaluation is a critical step to gauge the performance
of predictive models. In the context of XGBoost [54],
commonly used metrics such as Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) [38] offer valu-
able insights into the accuracy and precision of the model
predictions.

4.7.1 Procedure

1. Prepare the Testing Data: After training the XG-
Boost models on the training dataset, we applied the
models to predict the target variables (e.g., Rainy
Season Rainfall and Annual Rainfall) on the testing
dataset.

2. Compute Predictions: Utilized the trained XGBoost
models to predict the target variables for the testing
set.

3. Calculate Residuals: Computed the residuals by sub-
tracting the actual values from the predicted values,
representing the errors made by the model for each
prediction.

4. Compute RMSE: RMSE is calculated as the root
mean square of the residuals, providing a measure of
the average magnitude of errors:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (7)

where n is the number of observations, yi is the actual
value, and ŷi is the predicted value.

5. Compute MAE:MAE is calculated as the average of
the absolute residuals, providing another measure of
the model’s predictive accuracy:

MAE =
1

n

n∑
i=1

|yi − ŷi| (8)

This systematic procedure allows for a comprehensive
assessment of the XGBoost model’s effectiveness in pre-
dicting rainfall and facilitates comparisons with traditional
forecasting models.

4.8 Scientific and methodological
enhancements for model robustness

To enhance the robustness and scientific integrity of the
proposed XGBoost-based rainfall and cloudburst forecast-
ing model, we incorporated multiple methodological re-
finements, detailed as follows:

4.8.1 Uncertainty quantification

To quantify the uncertainty associated with model predic-
tions, we employed the bootstrap resampling technique.
Let ŷi represent the predicted value for the ith observation.
We generated B bootstrap samples {Db}Bb=1, where each
Db is a random sample with replacement from the original
dataset. For each bootstrap sample, the model produced a
prediction ŷ(b)i . The confidence interval (CI) for prediction
was then computed as:

CI95% =
[
ŷ
(B)
i − 1.96 · σ, ŷ(B)

i + 1.96 · σ
]

(9)

where ŷ(B)
i is the mean of bootstrap predictions and σ is

the standard deviation of ŷ(b)i .
Additionally, a sensitivity analysis was performed by

varying key hyperparameters θ ∈ {η, λ, α} (learning rate,
L2 regularization, L1 regularization, respectively) within
specified intervals. The impact on the Root Mean Square
Error (RMSE) was assessed as:

∆RMSE =
∂RMSE

∂θ
·∆θ (10)

ensuring the model’s stability and robustness across dif-
ferent hyperparameter configurations.
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4.8.2 Explainability via SHAP values

Given XGBoost’s black-box nature, we applied SHapley
Additive exPlanations (SHAP) to interpret feature contri-
butions. For a feature set F and feature i, the SHAP value
ϕi was calculated as:

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[f(S ∪ {i})− f(S)]

(11)
where S is a subset of features, and f(S) is the model

prediction based on subset S.

4.8.3 Overfitting mitigation strategies

To mitigate overfitting, we employed k-fold cross-
validation (k = 5), where the dataset D was partitioned
into k equal folds {D1, D2, . . . , Dk}. The model was iter-
atively trained on k−1 folds and validated on the remaining
fold. The cross-validation error ϵcv was calculated as:

ϵcv =
1

k

k∑
i=1

RMSE(Di) (12)

ensuring robustness across different data splits. Early
stopping was implemented by monitoring the validation er-
ror, terminating training if no improvement was observed
after T = 10 iterations.
Regularization parameters (λ, α) were optimized to pe-

nalize model complexity, ensuring minimized overfitting
risk through the objective function:

L =

n∑
i=1

(yi − ŷi)
2 + λ||w||22 + α||w||1 (13)

where w denotes the weight vector.

4.8.4 Comparative analysis with physically-based
models

Traditional physically-based models, denoted as Mphys,
rely on differential equations (such as, derived from hy-
drological principles in existing literature). While accurate
in controlled environments, their complexity and calibra-
tion difficulties limit scalability. Our machine learning ap-
proach,MML, leverages data-driven optimization:

MML = argmin
θ

n∑
i=1

L(yi, ŷi) (14)

where θ represents model parameters. The trade-off
analysis shows that whileMphys ensures theoretical rigor,
MML excels in adaptability and handling large, complex
datasets without explicit parameter calibration.

4.8.5 Computational efficiency and real-time
feasibility

The XGBoost model was trained on the full dataset (1991–
2022) using parallel processing capabilities, which signif-
icantly reduced the training time. On a standard computa-
tional setup (Intel i7 processor, 16 GB RAM), the training
phase took approximately 2.5 hours, while prediction for
new data points was accomplished within seconds. compu-
tational complexity of the XGBoost algorithm is approxi-
mated by O(n · logn), where n is the number of observa-
tions. Given the dataset size spanning from 1991 to 2022,
efficient parallel processing was utilized to optimize run-
time. The average training time, Ttrain, and prediction
time, Tpred, were recorded as:

Ttrain = 2.5±0.1 hours, Tpred = 10±0.5 seconds. (15)

The model’s lightweight structure and rapid inference
time confirm its potential for deployment in real-time oper-
ational forecasting systems. Periodic retraining strategies
were proposed to ensure continued model accuracy over
time.
This rigorous approach ensures the scientific validity,

transparency, and operational feasibility of the proposed
model, addressing critical methodological concerns and
strengthening the reliability of the presented results.

5 Rainfall predictions

5.1 Algorithm for rainfall predictions

We present Algorithm 1, Rainfall PredictionModel (RPM),
designed for district-wise rainfall prediction, leveraging the
computing power of XGBoost machine learning frame-
work. The proposed methodology incorporates a system-
atic approach, starting with the loading and preparation of
historical rainfall data. Feature selection and the division
of the dataset into training and testing sets are crucial steps
preceding the initialization and training of two distinct XG-
Boost regressor models—one for predicting rainy season
rainfall and the other for annual rainfall. Future predic-
tion data for the years 2023 to 2047 is then prepared, and
the trained models are employed to forecast rainfall for
the upcoming years. The results are structured and pro-
vided a comprehensive district- wise breakdown for each
anticipated year. The algorithm is concluded with a criti-
cal analysis and interpretation of the generated heatmaps,
facilitating the extraction of meaningful insights into the
predicted rainfall patterns across districts over the speci-
fied timeframe. Thismethodology contributes to advancing
our understanding of climatic trends and supports informed
decision-making in various sectors reliant on accurate rain-
fall predictions.



384 Informatica 49 (2025) 375–396 G.D. Kumar et al.

Algorithm 1 Rainfall Prediction Model (RPM)
Require: D = {(xi, yi) | i = 1, . . . , N}, where xi ∈ Rd represents the feature vector and yi ∈ R is the target rainfall

value.
1: Load Dataset:

X, y← Fload(D)

2: Feature Selection:
X′ ← Fselect(X)

3: Dataset Partitioning:
(Xtrain, ytrain), (Xtest, ytest)← Fsplit(X′, y)

4: Initialize Prediction Models:
Ms ← Finit(Θs) (Rainy Season Model)

Ma ← Finit(Θa) (Annual Rainfall Model)

5: Train Models:
Θ∗

s ← argmin
Θs

∑
i

L(Ms(Xtrain,Θs), ys,train)

Θ∗
a ← argmin

Θa

∑
i

L(Ma(Xtrain,Θa), ya,train)

6: Generate Future Data:
Xfuture ← Ffuture(X′, {2023, . . . , 2047})

7: Make Predictions:
ŷs,future ←Ms(Xfuture,Θ

∗
s)

ŷa,future ←Ma(Xfuture,Θ
∗
a)

8: Reshape Predictions:
Y∗ ← Freshape(ŷs,future, ŷa,future)

9: Visualization:
H ← Fheatmap(Y∗)

10: Analysis and Interpretation:
I ← Fanalyze(H)

6 Forecasting cloudbursts and
excessive rainfall scenarios

6.1 Algorithm for cloudburst prediction
In Algorithm 2, Cloudburst and Extreme Rainfall Predic-
tion Model (CERM), we present a comprehensive algo-
rithm for forecasting cloudbursts and excessive rainfall sce-
narios over a designated time-frame. The algorithm unfolds
through a systematic series of steps, commencing with the
meticulous preparation of historical weather data, leverag-
ing libraries such as pandas for data manipulation. Feature
selection becomes imperative, encompassing relevant me-
teorological variables, while target variables include pre-
dictions for rainy season rainfall, annual rainfall, and the
occurrences of cloudbursts. The subsequent data prepro-
cessing stage addresses missing values, anomalies, and out-
liers, fostering a clean and standardized dataset. Feature
engi- neering, though optional, introduces the potential for
enhancing predictive performance through the creation of
new pertinent features. The dataset is then divided into

training and testing sets for model validation. Three dis-
tinct XG- Boost regressors are initialized to specifically ad-
dress the forecast tasks of rainy season rainfall, annual rain-
fall, and cloudbursts. Model training follows, where each
model is trained on its corresponding target variable using
the train- ing dataset. Future data for the years 2023 to 2047
is generated, and the trainedmodels are employed to predict
the occurrences of cloudbursts and rainfall patterns. Post-
processing involves organizing predictions for subsequent
visu- alization, accomplished through heatmaps depicting
district-wise and year-wise forecasts. The final steps en-
compass evaluating the predictive performance against his-
torical data and interpreting the results to discern likely
trends in rain- fall and cloudburst occurrences. This algo-
rithm serves as a robust framework for anticipating extreme
weather events, providing valuable insights for risk miti-
gation and decision-making in regions susceptible to such
climatic phenomena.
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Algorithm 2 Cloudburst and Extreme Rainfall Prediction Model (CERM)
1: Data Preparation:
2: D ← Idata(X) ▷ Import dataset X from file path
3: F,T← Sfeatures(D) ▷ Extract feature set F and target variables T
4: Data Preprocessing:
5: Dc ← C(D) ▷ Clean dataset D to remove inconsistencies
6: Dt ← T (Dc) ▷ Transform data through normalization, scaling, etc.
7: Feature Engineering:
8: F∗ ← E(Dt) ▷ Derive new feature space F∗

9: Splitting the Dataset:
10: (Dtrain,Dtest)← Ssplit(Dt) ▷ Partition into training and test sets
11: Model Initialization:
12: (Mr,Ma,Mc)← Imodels() ▷ Initialize models for rainy season (Mr), annual rainfall (Ma), and cloudbursts (Mc)
13: Train Models:
14: Mr ← Tmodel(Mr,Dtrain,Tr) ▷ Train model for rainy season
15: Ma ← Tmodel(Ma,Dtrain,Ta) ▷ Train model for annual rainfall
16: Mc ← Tmodel(Mc,Dtrain,Tc) ▷ Train model for cloudbursts
17: Generate Future Data:
18: Dfuture ← G(F∗, [2023, 2047]) ▷ Synthesize future feature data for forecasting
19: Make Predictions:
20: P ← Pmodels((Mr,Ma,Mc),Dfuture) ▷ Compute predictions for all models
21: Visualization and Analysis:
22: H ← V(P) ▷ Generate heatmaps based on predictions
23: I ← A(H) ▷ Perform analytical interpretation of results

7 Results and analysis
This section is divided into two subsections: Rainfall Pre-
diction and Visualization, and Forecasting Cloudbursts and
Visualization.

7.1 Rainfall prediction and visualization
Figure 4 illustrates the trend of annual rainfall district-wise.
Based on the results, we observed that districts in Bihar ex-
perience varying levels of rainfall and its intensity. Specif-
ically, Kishanganj stands out as a district with very high
annual rainfall. A closer examination of the trend line for
Kishanganj reveals a dynamic change between 1990 and
2005. Additionally, Siwan appears to have a lower likeli-
hood of experiencing rainfall occurrences and intensity.
Figure 5 presents the district-wise rainy season rainfall,

reinforcing the findings of Figure 4. The rainy season is
particularly significant as it is the primary period for rain-
fall events such as flash floods in Bihar, India, and other
geographical regions worldwide.
Figure 6 depicts the district-wise annual rainfall predic-

tions for the years 2023 to 2047. Districts such as Kis-
hanganj, Araria, Supaul, Paschim Champaran, Samastipur,
and Darbhanga are more likely to experience high levels of
annual rainfall, increasing the risk of floods. Conversely,
districts including Bhagalpur, Lakhisarai, Begusarai, and
Sheikhpura are less likely to be exposed to significant an-
nual rainfall.
Figure 7 reports that districts like Kishanganj, Araria, Su-

paul, Paschim Champaran, Samastipur, Darbhanga, Sheo-

har, and Rohtas are more likely to be exposed to rainy sea-
son rainfall in the upcoming years. Conversely, districts
such as Bhagalpur, Purnea, Katihar, Purba Champaran,
Madhepura, Munger, Lakhisarai, Begusarai, and Sheikh-
pura are less prone to experiencing rainy season rainfall.
Figure 8 illustrates the aggregate level of rainy season

rainfall in Bihar. The rainfall prediction heat map indicates
a continuous increase in rainy season rainfall in the upcom-
ing years. If this trend persists, it will heighten the risk of
flash floods over time.

7.2 Forecasting cloudbursts and
visualization

Figure 9 illustrates the cloudburst heat map of all flood-
affected districts. Districts such as Kishanganj, Araria,
Madhepura, Munger, Paschim Champaran, Sheohar, and
Sitamarhi are the most susceptible to cloudburst events
leading to flash floods.
Figure 10 depicts the number of cloudbursts per year

in the reference period from 1991 to 2022, indicating that
Kishanganj experiences the highest number of cloudburst
events, while Sheikhpura has the lowest number. A closer
examination of Figure 10 reveals that districts like Purnea,
Purba Champaran, Muzaffarpur, and Khagaria have the
same number of cloudburst events.
Figure 11 reports the cloudburst events per year in all

districts of Bihar affected by floods. The results show that
in 1992 and 2015, there were the least number of cloud-
burst events in Bihar, while in 2019, there were the most.
In 1998, significant strain was exerted on embankments in
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Figure 4: District-wise annual rainfall (1991-2022)

Figure 5: District-wise rainy season rainfall (1991-2022)

North Bihar due to peak discharge observed in numerous
rivers during the initial week of July, resulting in damage
and loss of life and infrastructure. Similarly, in 1999, tor-
rential rainfall in Nepal caused flood levels to rise, result-
ing in agricultural and infrastructure losses. Flood condi-
tions remained typical in 2005 and 2006 but escalated sig-
nificantly in 2007 due to heavy rainfall. The impact was
widespread, causing crop damage and losses to infrastruc-
ture. In response to heavy rainfall and flood-like condi-
tions in July, August, and September 2019, twenty teams of
the National Disaster Response Force were deployed across
various districts for rescue and evacuation operations, high-
lighting the profound impact of climate change on Bihar’s
economy [3, 5]. There is a research gap in understanding
the socio-economic ramifications of cloudburst events, and
this study aims to predict their occurrence in the future, con-
tributing to a more comprehensive understanding of their
potential impacts.

Figure 12 illustrates the forecasted numbers of cloud
bursts per year for each district for the reference years
2023 to 2047. Araria experiences the highest number of
cloudburst events starting from 2031 onwards. Sitamarhi

district follows as the second-most affected district after
the year 2044. Districts including Khagaria, Kishanganj,
Munger, Paschim Champaran, Samastipur, Sheohar, and
Supaul are forecasted to experience one cloudburst event
per year. Stern’s perspective underscores the necessity of
acknowledging the diverse vulnerabilities and adaptation
requirements of various regions and countries [60]. A uni-
form ’one size fits all’ approach to climate change adapta-
tion is neither effective nor equitable, as impacts and re-
sponses to climate change are inherently shaped by spe-
cific local conditions [60]. As evidence accumulates over
time through repeated weather observations, it forces indi-
viduals and entities to reassess and refine their understand-
ing of underlying climate distributions. This iterative pro-
cess of belief revision is critical for developing adaptive
strategies that align with the evolving realities of climate
change. Consequently, this revision will induce the agent
to recalibrate their investment strategies and managerial ap-
proaches, aiming to optimize welfare within the framework
of the altered climate distribution [36]. Districts anticipat-
ing cloud- burst events in the upcoming years should pri-
oritize preparedness and well-planned mitigation strategies
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Figure 6: District-wise annual rainfall predictions (2023-2047)

to address the risks of flash floods.

8 Model performance evaluation
We evaluated the performance of our predictive model
using key metrics: Accuracy, Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Mean Squared
Error (MSE). Our analysis revealed promising results, with
an RMSE of 0.12, computed using the formula:

RMSE =
√
MSE, (16)

indicating relatively low error in comparison to the scale of
our data.
Furthermore, the MAE of 0.09, calculated as:

MAE =
1

n

n∑
i=1

|yi − ŷi| , (17)

suggests even smaller absolute errors, underscoring the
model’s effectiveness in capturing the variability of cloud-
bursts and rainfall patterns.
Additionally, theMSE, computed at 0.0144 using the for-

mula:
MSE = 0.122, (18)

provides further validation of the model’s accuracy, empha-
sizing its ability to minimize the squared errors between
predicted and observed values.

To further validate the efficacy of our approach, we com-
pared its performance against Random Forest and Long
Short-Term Memory (LSTM) models. The results, pre-
sented in Table 4, demonstrate that our XGBoost-based
model outperforms the alternatives, achieving the lowest
RMSE, MSE, and MAE while maintaining the highest ac-
curacy.
These findings substantiate the utility of the XGBoost

technique in forecasting weather-related phenomena, offer-
ing valuable insights for future climate modeling and risk
management strategies in Bihar.

9 Comparative analysis

Our approach, to the best of our knowledge, represents the
first attempt to forecast cloudburst events at a district level
in the state of Bihar. To validate our model, we compared
our forecasted rainfall data for the 2023 rainy season with
the actual rainfall data provided by the India Meteorolog-
ical Department [40, 31]. Our approach predicted a total
rainfall of 979.64 mm (Figure 8), closely aligning with the
actual recorded rainfall of 992.2 mm [31]. This high degree
of accuracy underscores the effectiveness of our machine
learning approach, demonstrating its potential for reliable
rainfall forecasting at a district scale.
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Figure 7: District-wise rainy season rainfall predictions (2023-2047)

Table 4: Performance comparison of different models
Model Accuracy (%) RMSE MSE MAE

XGBoost (Proposed) 94.5 0.12 0.0144 0.09
LSTM 91.2 0.18 0.0324 0.14
Random Forest 89.7 0.21 0.0441 0.16

9.1 Performance metrics comparison

This section presents a comprehensive evaluation of our
predictive model, comparing its performance against tra-
ditional approaches. We assess the classification effective-
ness using key metrics such as Accuracy, RMSE, MAE,
MSE, ROC curves, and confusion matrices. Additionally,
we analyze the physical and environmental reasons for tur-
bidity risks and justify why XGBoost outperforms conven-
tional models.

We evaluated ourmodel’s predictive accuracy usingmul-
tiple error metrics, including Root Mean Squared Error
(RMSE), Mean Squared Error (MSE), Mean Absolute Er-
ror (MAE), and Accuracy. The comparative performance
is illustrated in Figure 13 and Table 4.

XGBoost outperformed both LSTM and Random Forest
across all key metrics, achieving the highest accuracy (94.5
percent) and the lowest error values, demonstrating its ro-
bustness in forecasting.

9.2 ROC curves and confusion matrices

To further analyze the classification capabilities of the
models, we computed Receiver Operating Characteristic
(ROC) curves and their corresponding Area Under the
Curve (AUC) scores. AUC values measure a model’s abil-
ity to distinguish between classes, with higher values indi-
cating better performance. The comparative AUC scores
are illustrated in Figure 14.

Additionally, the confusionmatrices in Figure 15 provide
further insight into the models’ classification performance.

XGBoost displayed fewer misclassifications compared
to LSTM and Random Forest, reinforcing its reliability in
making accurate predictions.
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Figure 8: Rainfall prediction heat map (2023-2047)

9.3 Environmental factors contributing to
high turbidity during cloudbursts and
excessive rainfall

Cloudbursts and excessive rainfall significantly influence
turbidity levels in water bodies. Key contributing environ-
mental factors include:

– Soil Composition and Erosion: Intense rainfall
events, such as cloudbursts, lead to rapid soil erosion,
particularly in areas with loose, sandy, or fragile soils.
The displaced sediments significantly elevate turbidity
levels in nearby rivers and streams.

– Surface Runoff and Sediment Inflow: Excessive
rainfall generates high volumes of surface runoff, car-
rying sediments, organic matter, and pollutants into
water bodies, thereby increasing turbidity.

– Agricultural Runoff: Heavy rainfall accelerates the
transport of fertilizers, pesticides, and soil particles
from agricultural lands into aquatic ecosystems, con-
tributing to sudden spikes in turbidity.

– Landslides and Slope Failures: Cloudbursts in hilly
terrains can trigger landslides, introducing large quan-
tities of debris and sediment into rivers, which drasti-
cally raises turbidity levels.

– Industrial Discharge andOverflow: Excessive rain-
fall can overwhelm industrial waste containment sys-

tems, leading to the discharge of particulate-laden ef-
fluents into water bodies, further intensifying turbid-
ity.

Understanding these environmental influences is crucial
for refining predictivemodels and developing effectivemit-
igation strategies to minimize turbidity-related risks during
extreme rainfall events.

9.4 Why XGBoost outperforms traditional
methods

XGBoost surpasses conventional models due to several key
advantages:

– Gradient Boosting Mechanism: XGBoost iteratively
corrects weak predictions, reducing bias and variance
for superior generalization.

– Handling of Missing Data: Unlike Random Forest,
XGBoost efficiently manages incomplete datasets, en-
suring robust predictions.

– Feature Importance and Regularization: XGBoost in-
corporates L1/L2 regularization, preventing overfit-
ting and enhancing model stability.

– Computational Efficiency: Leveraging parallel pro-
cessing and optimized tree learning, XGBoost trains
significantly faster than LSTM.



390 Informatica 49 (2025) 375–396 G.D. Kumar et al.

Figure 9: Cloudburst heat map (1991-2022)

Figure 10: Cloudbursts per district (1991-2022)

These advantages explain why XGBoost achieves the
highest accuracy and lowest error rates, making it the pre-
ferred choice for forecasting in this domain. Our analysis
confirms that XGBoost outperforms both LSTM and Ran-
dom Forest, offering superior accuracy, lower error met-
rics, and higher classification effectiveness. Furthermore,
the discussion on turbidity risk factors highlights the prac-
tical implications of our model’s predictions. These in-
sights contribute to improved climate monitoring, risk as-
sessment, and early warning systems for environmental
hazards.

10 Conclusion

This paper presents a comprehensive framework for fore-
casting rainfall and cloudburst events, focusing on an em-

pirical case study in Bihar, India. The study highlights the
application of XGBoost-driven modeling for spatiotempo-
ral forecasting at the district scale. By addressing these
challenges through tailored social and economic policies,
alongside targeted training and skill development pro-
grams, the study identifies pathways to reduce flood vul-
nerability and improve disaster readiness.
Key findings reveal that Bihar is highly prone to floods,

with rainfall prediction heat maps indicating a continuous
rise in monsoonal rainfall in the coming years, increasing
the risk of flash floods. Araria is projected to face the high-
est number of cloudburst events from 2031 onwards, fol-
lowed by Sitamarhi after 2044. Other vulnerable districts
include Khagaria, Kishanganj, Munger, Paschim Cham-
paran, Samastipur, Sheohar, and Supaul, each expected to
experience one cloudburst event annually.
The findings emphasize the urgent need for govern-
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Figure 11: Cloudbursts per year (1991-2022)

Figure 12: Forecasted numbers of cloudbursts/flash floods per year for each district (2023-2047)

ment intervention to develop adaptive mitigation policies
based on district-level vulnerabilities. A well-coordinated
Early Warning System, integrating institutions, task forces,
and local communities, is essential for informed decision-

making and effective disaster preparedness training.
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Figure 13: Comparative Accuracy,MSE, RMSE and MAE of XGBoost, LSTM, and Random Forest

Figure 14: ROC Curves for XGBoost, LSTM, and Random
Forest
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