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To address the challenges associated with large planar workpieces, such as the side window glass of a 

train, this paper proposes a practical, intelligent robotic assembly method that utilizes laser 

displacement sensors (LDSs) and monocular vision. The laser point cloud data is fitted to the equation 

of the plane of the side window optimally, allowing for the calculation of its plane coefficients and unit 

normal vector (UNV) using the Lagrange multiplier method. The robot's end flange is adjusted to ensure 

the camera imaging plane is along with the window plane at a specified distance. Monocular vision is 

employed to capture the pose features of the upper right corner of the window, facilitating a 

compensation method for precise assembly. The experimental results show that the robot achieved a 

positioning accuracy of less than 0.5mm and an orientation accuracy within 1 degree, confirming the 

effectiveness of the proposed method. In the experiment, the maximum displacement deviation in the X 

direction is about ± 0.4mm, the maximum offset in the Y and Z directions is about ± 0.3mm, the 

maximum rotation deviation in the X axis is about 0.6 °, and the minimum rotation deviation in the Y 

axis is about 0.8 °. All deviations meet the requirements of ± 1 ° attitude correction and ± 0.5mm 

displacement accuracy, and have good reliability. This method solves the practical problem of 

assembling large planar workpieces with integrated LDS and monocular vision. This technology 

involves using laser point cloud data to fit the precise plane equation of the window, determining 

alignment parameters through Lagrange multiplier method, and adjusting the posture of the end flange 

of the robot. Monocular vision further assists in extracting positional features, achieving precise real-

time posture correction and alignment. This system proposes an effective and low-cost automation that 

reduces manual intervention and alleviates typical problems of remote processing of large workpieces. 

Povzetek: Predstavljen je nizkocenovni robotski način sestavljanja velikih ravnih delov, ki združuje 

laserske merilnike premika in monokularni vid za natančno prilagajanje položaja in orientacije. 

1 Introduction 
Automatic assembly technology is extensively utilized in 

the automotive, marine, aerospace, and other 

manufacturing sectors to reduce labor costs and enhance 

production efficiency. The profound integration of 

machine vision technology with assembly technology 

represents a significant trend and a critical characteristic 

of the current evolution in assembly technology. 

Numerous advancements have been achieved in both 

theoretical research and practical applications [1], [2], 

[3]. With the rapid development of global manufacturing 

and continuous technological progress, automatic 

assembly technology has become an important means to 

improve production efficiency and reduce labor costs. In 

manufacturing industries such as automobiles, ships, and 

aerospace, automatic assembly technology not only 

improves product quality and consistency but also 

significantly enhances the competitiveness of enterprises. 

Especially in the train manufacturing industry, with the 

popularization of high-speed trains and urban rail transit,  

 

higher requirements have been put forward for the 

assembly accuracy and efficiency of train components. 

As an important component of the train, the assembly 

quality of the side window glass directly affects the 

safety and comfort of the train. Therefore, researching an 

efficient and accurate method for assembling train side 

window glass is of great significance. 

Laser displacement sensors, as a high-precision and non-

contact measurement tool, have also been widely used in 

the manufacturing industry. By emitting a laser beam and 

receiving reflected light, laser displacement sensors can 

achieve accurate measurements of the surface 

displacement of objects. During the assembly process of 

train side window glass, laser displacement sensors can 

monitor the gap between the glass and the window frame 

in real-time, ensuring the tightness and stability of the 

assembly. In addition, laser displacement sensors have 

the advantages of wide measurement range, high 

measurement accuracy, and fast response speed, which 
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can meet various measurement needs during the 

assembly process of train side window glass. 

Combining machine vision technology with laser 

displacement sensors can achieve comprehensive 

monitoring and control of the assembly process of train 

side window glass. By using machine vision technology 

to obtain image information of glass and window frames, 

and using image processing algorithms to process and 

analyze the images, the position, shape, size, and other 

information of the glass and window frames can be 

obtained. At the same time, real-time displacement data 

during the assembly process can be obtained by 

measuring the gap between the glass and the window 

frame through a laser displacement sensor. Combining 

these two technologies can achieve precise control over 

the assembly process of train side window glass, 

improving the accuracy and efficiency of assembly. 

Since the side window glass is a large flat workpiece, its 

assembly process faces many challenges, such as high 

positioning accuracy requirements and difficulty in 

ensuring surface flatness. To address these challenges, 

this article will focus on the deep integration of machine 

vision technology and assembly technology, particularly 

the combination of laser displacement sensors (LDS) and 

monocular vision. LDS, as a high-precision, non-contact 

measuring tool, can obtain real-time three-dimensional 

coordinate information on the workpiece surface. During 

the assembly process of train side window glass, LDS 

can accurately measure the displacement changes on the 

glass surface, providing reliable data support for 

subsequent assembly work. Meanwhile, monocular 

vision, as an economical and efficient image processing 

technique, can capture the pose features of the upper 

right corner of the window, providing necessary 

compensation information for precise assembly. 

Although machine vision technology has been widely 

applied in the field of assembly, there are still many 

urgent problems to be solved for the assembly of large 

flat workpieces such as train side window glass. For 

example, how to effectively integrate data from LDS and 

monocular vision to achieve high-precision assembly 

positioning and how to adjust the robot's motion 

trajectory based on measurement data to ensure the 

stability and accuracy of the assembly process. 

Therefore, this article aims to propose a practical 

intelligent robot assembly method through in-depth 

research on the combination of LDS and monocular 

vision to solve the challenges in the assembly process of 

train side window glass. 

1.1 Literature review 

A precision assembly system for tiny components was 

created by Ma et al. [4] using a force sensor, three 

cameras, and an industrial robot. They proposed a pose 

alignment strategy based on binocular coordination and 

employed the differential principle to compensate for 

actuator position offsets. Experimental results 

demonstrated a high level of pose assembly accuracy for 

the system. Using real-time visual servoing, Wen-Chung 

Chang [5] created an automated method for assembling 

the shell of smartphones. This system utilized binocular 

vision technology to ascertain the position and 

orientation of the workpiece from a distance, 

subsequently applying monocular visual servoing control 

to complete the assembly task at close range 

autonomously. Experimental results indicated that the 

system provided high efficiency, flexibility, and 

reliability. However, this assembly approach necessitated 

that the entire assembly space remains fully visible, 

making it suitable for small workpieces but challenging 

to implement for larger workpieces with long-distance 

and expansive requirements. Su et al. [6] proposed a 

method for designing orientation strategies for locating 

irregular parts based on constraints formed by fixtures. 

Therefore, only through the squeezing action of robots 

can irregular parts such as motors be accurately located. 

Then, we developed a bolt hole insertion strategy using 

force constraints formed by the environment, which 

requires less robot action to insert the bolt, thereby 

achieving efficient and accurate bolt hole insertion. In 

contrast, Jinzhou et al. [7] developed a monocular vision-

based alignment technology for an industrial robot. It 

estimates the target pose of the workpiece with the 

Perspective-N-Point (PNP) method by leveraging some 

feature points on a dedicated calibration board. 

Following that, it repeatedly modifies the end effector's 

position until the workpiece and robot's alignment axis 

are precisely aligned. However, this method requires 

setting a special calibration board on the target 

workpiece, which to some extent constrains its 

generality. Wang et al. [8] presented a holistic robotic 

assembly system including two vision sensors and three 

one-dimensional laser sensors. They have presented a 

method that includes multiple sensors to achieve precise 

step-by-step alignment and positioning. Experimental 

findings showed that this approach offered high accuracy 

and efficiency but, on the other hand, is associated with 

the assembly scheme having high costs and involving a 

complex algorithm. Hu et al. [9] studied side window 

glass designs using the Large Eddy Simulation (LES) 

model, computational fluid dynamics (CFD) simulation, 

and acoustic finite element analyses to investigate its 

impact on in-vehicle noise. They found that polyvinyl 

butyral (PVB) laminated glass effectively reduces noise 

transmission caused by low-frequency turbulence, with 

the inner and outer thicknesses varying in their effects 

across different frequency bands; however, low 

frequencies were found to be the most influential. 

Furthermore, material properties and geometric design 

are critical factors in noise control. Zhang et al. [10] have 

studied the application of an external circular array of 

LDSs which detect membrane penetration to enhance the 

precision of the volume change as well as pore pressure 

in triaxial gravelly sandy soils. The results indicated that 

unit membrane compliance increases linearly with 

effective confining pressure on a semi-logarithmic scale. 

Additionally, it was demonstrated that increased gravel 

content leads to greater membrane penetration; however, 

this effect diminishes at higher relative densities. It was 

also observed that broadly graded soils exhibit higher 

membrane penetration. The errors associated with 
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membrane thickness increased as the diameter-to-

thickness ratio decreased, highlighting the importance of 

sensors in detecting subtle variations to provide 

consistent measurements. Shao et al. [11] proposed a 

monocular vision-based system for vibration 

displacement measurement in civil structures to solve 

several of the major problems associated with multiple 

cameras used in structural health monitoring (SHM) 

systems. Deep neural networks have been utilized to 

enable substantial reduction of costs and ease in 

estimating depth information from images captured by a 

single camera. Laboratory tests verified the accuracy of 

the system output that provided three-dimensional 

displacement measurements and demonstrated the 

potential of the system for practical applications in SHM. 

Chen et al. [12] developed an algorithm for applying 

monocular vision to quantify construction and demolition 

waste from individually taken images. The results of the 

research were promising: in this system, highly accurate 

identification was realized for truckloads of materials 

like rock, gravel, and wood. Accompanied by a 

comparative error of 0.065 for truck bucket 

measurements and 0.169 in approximating material 

volume, the algorithm analyzes an image in only 3.3 

seconds, which enables fast and non-intrusive 

assessments. The methods were adopted for over 2,900 

truckloads in a facility in Hong Kong to estimate that the 

daily intake of construction and demolition waste (CDW) 

was at 800.0 m³, along with identifying rejected loads 

containing non-inert materials. Thus, this algorithm will 

be able to work effectively on different industrial 

challenges in the quantification of waste. Sun et al. [13] 

present a monocular vision-based approach for 

measuring 3D movement regarding enabling single-

camera SHM applications. This high-level method 

captures data from 3D displacement with high accuracy 

by merging deep learning techniques through pose 

estimation from the Dense Pose Object Detector. It 

doesn't require multi-view systems or sophisticated 

targets, so it would be quite in line with urban 

surveillance cameras. The experimental validation 

showed that it is effective for detecting 3D displacement 

and principal frequencies. It has also been proven to be 

workable regarding the applicability of the method as a 

reachable SHM tool. Sleaman et al. [14] developed an 

algorithm that allowed a mobile robot to move around in 

an unfamiliar environment, leveraging the power of only 

monocular vision and low-cost cameras for depth 

perception. This system combined convolutional neural 

network (CNN) layers with decision-making processes 

that modulate real-valued, kinematic movement control 

without any preprocessing or pre-mapping. It was 

capable of training on a set of diverse data and achieved 

an accuracy indoor setting of up to 77%. This model 

proved effective enough to facilitate efficient navigation 

of the robot compared to more expensive sensor systems. 

Sun et al. [15] proposed an algorithm that developed a 

monocular vision-based method, which allowed a mobile 

robot to navigate an unknown environment 

autonomously by low-cost depth camera data. They have 

introduced the integration of CNN layers with decision-

making processes to guide robot movement without any 

pre-mapping. The system has been trained on various 

datasets and showed an accuracy of 77% during indoor 

tests to prove that the technique can be as effective in 

allowing efficient navigation by the robot as compared to 

more expensive sensor systems. Gao et al. [16] proposed 

an algorithm, Perspective 3-Point Rammer Pose 

Estimation (P3P-RPE), derived from monocular vision 

for real-time ramming settlement monitoring in dynamic 

compaction construction. This approach overcomes the 

substantial limitations that can compromise efficiency 

and safety in the construction process through manual 

monitoring. The use of the P3P-RPE algorithm will allow 

for simultaneous construction and monitoring of 

processes without disrupting the ongoing operations. Lou 

et al. [17] proposed a SLAM solution using monocular 

vision, integrated with LiDAR, which could afford better 

placement of unmanned vehicles. They integrated 

semantic images with LiDAR point clouds to give dense 

depth mapping and improved positioning accuracy with 

in-depth embedded ORB（Oriented FAST and Rotated 

BRIEF） features. When their proposed approach was 

tested on CityScapes and KITTI datasets, it could reduce 

the positioning error by 87% compared with other 

approaches in the SLAM category. Results showed the 

huge impact monocular vision could have when applied 

to applications involving autonomous vehicles. A self-

calibration method based on monocular vision was 

introduced by Li et al. [18] for the accurate assessment of 

3D displacement in structures. In this regard, the 

approach is based on a personalized marker to accurately 

recognize images for the automatic estimation of the 

object's 3D position and orientation with the purpose of 

solving problems arising in calibration for long-term 

monitoring. Monte Carlo simulations and experiments 

were carried out for verification, obtaining that the 

system achieved an accuracy of about 0.049 mm. It 

follows that 3D displacement measurements may be 

efficiently carried out in fully automated ways for 

applications like structural tests. Ahn et al. [19] propose a 

robotic assembly that fuses both force and visual 

information over large position and orientation errors. 

This is realized through the use of dual neural networks 

that process both force and image inputs, optimized 

through deep reinforcement learning, thus giving 

adaptive assembly capabilities to a variety of shapes. By 

this approach, an assembly can be effectively realized 

despite the initial misalignment. The experimental 

validation is performed for peg-in-hole tasks and 

provides a general approach to a wide range of robotic 

assembly applications. A robotic assembly system for 

precision drilling and fastening in aircraft assembly has 

been proposed by Mei et al. [20]. Optimum hand-eye 

configuration and on-machine calibration are considered 

to minimize positioning errors in the system. The 

maximum error of 0.08 mm was obtained, hence meeting 

the strict accuracy criteria required in aircraft assembly. 

Zhang et al. [21] presented the residual reinforcement 

learning approach for robotic autonomous assembly, in 

which policy visualization and force-based methods are 
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well integrated. The approach makes it possible to be 

adaptive in an unstructured environment without prior 

data. Efficiency is pointed out in multiple assembly tasks 

and configurations verified by simulations and real-world 

tests. Champatiray et al. [22] developed a methodology 

of robotic assembly planning that comprises the 

development of assembly interference matrices" and an 

axis-aligned bounding box" to assess any interference 

and determine the optimized assembly sequences of the 

assemblies. This will enhance feasibility and efficiency 

in industrial applications by taking into consideration 

geometry from the involved tools and parts, hence saving 

time and costs. Machine vision technology is a technique 

that uses computer vision and image processing 

algorithms to simulate human visual functions. In the 

experiment of X-ray free electron laser, machine vision 

technology can monitor the stability of sample 

transportation by real-time acquisition and processing of 

images of liquid jet samples [23]. The collected images 

need to undergo a series of image processing algorithms, 

including image filtering, edge detection, feature 

extraction, etc. These algorithms can help us identify key 

information such as the shape, velocity, and position of 

liquid jet samples. By further analyzing the processed 

images, we can calculate the stability indicators of the 

liquid jet sample, such as fluctuations in jet velocity and 

deviations in jet direction. These indicators can be fed 

back to the control system in real time to adjust and 

optimize the parameters of sample delivery promptly 

[24]. 

Based on the automatic assembly task for the side 

window glass of a subway train, this study investigates 

the low-cost spatial assembly problem of large planar 

workpieces. A monocular vision-guided assembly 

method is proposed, assisted by a LDS. An experiment 

uses a specific case to provide a reference for designing 

automatic assembly schemes for similar workpieces. 

1.2 Research gaps and novelties 

 

Table 1: Method comparison table 

Method Accuracy Complexity Cost Limitations 

Multi camera setup Medium to high high high Requires complex 

calibration and 

synchronization, and 

is sensitive to lighting 

conditions 

Specialized sensors high Medium to high high High cost and may not 

be suitable in certain 

environments (such as 

outdoor or complex 

industrial 

environments) 

Manual monitoring Low to moderate low low Dependent on the 

operator's experience 

and skills, not suitable 

for high-precision or 

long-distance work 

Visual based method 

(sensorless) 

Low to moderate secondary Low to moderate Highly affected by 

lighting, shadows, and 

occlusion, with 

limited accuracy 

Hybrid method 

(multi-sensor fusion) 

high high high Although accuracy 

has been improved, 

system complexity 

and cost remain high 

The proposed method 

(LDS+monocular 

vision) 

high secondary Low to moderate Relying on the fusion 

quality of LDS and 

visual data, but 

reducing system 

complexity and cost 
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The main innovation of this study lies in proposing a 

hybrid approach that combines LDS and monocular 

vision for robust real-time pose correction and 

component alignment. Compared with multi-sensor 

systems, this method reduces system complexity and cost 

through integration. Specifically, this study utilized point 

cloud data generated by LDS to determine alignment 

parameters by fitting the side window plane equation, 

thereby improving assembly accuracy. Meanwhile, 

utilizing monocular vision effectively extracts the pose 

features of the upper right corner of the window, 

providing necessary compensation information for 

precise assembly. This method not only solves the 

research purpose 

The requirement for precise positioning and 

orientation with displacement tolerance of less than 

0.5mm and directional tolerance of less than 1 degree 

also fills a key gap in providing practical and low-cost 

solutions for the assembly of large planar components. 

 

The objective of this study is to validate the 

effectiveness and feasibility of the proposed hybrid 

method in practical industrial environments. Specifically, 

this study aims to demonstrate the following points: 

The proposed hybrid method can reduce system 

complexity and cost while maintaining high accuracy. 

Compared with existing multi-sensor systems, this 

method has higher efficiency and lower cost. 

This method has broad application prospects and can 

be extended to similar tasks in various industries. 

1.3 Paper organization 

The work is categorized in the manner that: Section 2 

offers and discusses the constitution and calibration of 

the empirical system to assemble subway train side 

window glass. Section 3 provides a detailed description 

of the visual alignment method for the LDS. Section 4 

develops an optical positional measuring technique. The 

analysis of defects encountered during assembly and the 

experimental validation of the proposed assembly 

methodology for subway train side window glass are 

outlined in Section 5. Ultimately, Section 6 concludes the 

investigation. 

2 Composition and calibration of 

experimental system for side 

window glass assembly of train 
The automated assembling of glass for windows in trains 

requires an accurately defined experimental setup. This 

section details the basic elements that form the 

experimental setup, their functions, and the necessary 

calibration processes toward achieving maximum 

accuracy in assembling processes. The system includes 

an industrial robot with six axes, an industrial camera, an 

LDS (Laser distance sensor), and an aligning fixture that 

allows accurate placement and alignment. 

2.1 Composition of experimental system and 

definition of coordinate system 

The experimental system for the train-side window glass 

assembly described in this paper comprises a mounting 

bracket, a six-axis industrial robot, an industrial camera, 

an LDS, and a fixture, as illustrated in Fig. 1. This 

experiment uses a high-precision laser displacement 

sensor with a measurement accuracy of micrometers and 

a measurement range of meters. LDS calculates the 

distance between an object and a sensor by emitting a 

laser beam and receiving the reflected light signal. In this 

study, LDS was used to accurately measure the 

displacement changes on the surface of the train side 

window glass, providing key data for subsequent 

assembly work. The fixture is firmly connected to the tail 

flange of the robot, with its plane parallel to the flange 

plane. 
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Figure 1: Schematic diagram of automatic assembly system for side window glass of train. 

Installation bracket: This bracket is the cornerstone 

of the experimental system, used to simulate the structure 

of train carriages and ensure accurate assembly testing of 

glass in real environments. 

Six axis industrial robot: As the core power source of 

the system, the six-axis industrial robot is responsible for 

grasping, moving, and positioning glass. Its flexible six 

axis design enables the robot to execute complex motion 

trajectories in three-dimensional space, thereby achieving 

precise assembly operations. 

Industrial camera: Industrial cameras are installed at 

the edge of fixtures to capture image information of glass 

and side window positions. Through image processing 

algorithms, edge features of glass and side windows can 

be extracted, and their relative positions and orientations 

can be calculated. 

Laser Ranging Sensor (LDS): LDS is also installed 

at the edge of the fixture to measure the precise distance 

between the glass and the side window. The high 

precision and stability of laser ranging enable the system 

to maintain a high degree of accuracy during assembly. 

Fixture: The fixture is firmly connected to the tail 

flange of the robot, with its plane parallel to the flange 

plane. The design of the fixture takes into account the 

size and shape of the glass to ensure that it can be stably 

grasped and positioned. The establishment of the flange 

coordinate system (CS) takes place at the center point of 

the flange end plane, the same as the location of the XH 

OH YH plane. In this case, XH and YH are the flange 

coordinate system principal axes, while OH refers to the 

origin. Coordination by this system is necessary to 

facilitate accuracy in robot assembly processes. These 

same coordinates are specifically referred to in Equation 

(X) when calculating transformations, while being 

indicated by Figure (Y) so as to give an idea of their 

location in three-space. 

The base coordinate system (CS) of the robot is 

defined as 𝑂𝐵𝑋𝐵𝑌𝐵𝑍𝐵 , and that of the workpiece as 

𝑂T𝑋T𝑌T𝑍T. Besides them, other CSs are defined for the 

end flange, camera, and image pixels, as 

𝑂H𝑋H𝑌H𝑍H𝑂C𝑋C𝑌C𝑍C, and 𝑜𝑢𝑣, respectively. The origin 

and axis directions of the base CS of the robot should be 

determined in settings specified by the factory. The 

operator defines a CS for the workpiece at a position 

close to where the work will be done. During an 

assembly operation, this becomes a dynamic reference 

frame that replaces the base frame. The source of the 

flange CS is positioned at the core of the end plane of the 

flange, coincident with the 𝑋𝐻𝑂𝐻𝑌𝐻 plane. In this system, 

the Z-axis points outward and is vertical to the plane of 

the flange. In the picture pixel CS, the u-axis points 

horizontally to the right, the v-axis points vertically 

downward, and the origin of the coordinates is situated in 

the upper-left corner. The axes 𝑋𝐶 and 𝑌𝐶  are parallel to 

the u- and v-axes of the image, respectively; the 𝑍𝐶-axis 

points out of the imaging plane. 

2.2 System calibration 

First, the system must be calibrated to achieve its pose 

correction and positioning functions. The calibration 

process includes laser sensors, cameras, and hand-eye 

calibrations. 

To calibrate the position of the laser range finder, 

solve for the laser source coordinate matrix in the robot's 

end flange CS, 𝑟, and the unit direction vector matrix of 

the laser line, 𝑙. Planar constraints can be used to resolve 

it. It is then combined with the interval measured by the 

Laser Sensor and the positioning of the robot's end to 

determine the coordinates of the laser point in the 

workpiece CS [25], [26]. 

In experimental systems, calibration is a key step in 

ensuring the precise operation of laser sensors, cameras, 

and hand eye systems. The calibration process includes 

laser sensor calibration, camera calibration, and hand eye 

calibration. 

The calibration of laser sensors is mainly to ensure 

the accuracy of their measurements. The specific 

calibration steps include: 

Installation and preheating: Install the laser sensor on 

the fixture and preheat it to ensure its stable operation. 

Zero-point calibration: Place a reference surface at a 

known distance in front of the sensor, adjust the sensor to 

read zero, and complete the zero-point calibration. 

Linearity calibration: Move points at different 

distances on the reference surface, record the sensor 

readings, compare them with the actual distance, and 

adjust the sensor parameters to ensure linearity. 

A pinhole camera model can be used to represent 

how a camera captures images. Based on a calibration 

process, the internal camera parameters are derived, 

represented as a matrix 𝐴  in terms of radial distortion 

parameters 𝐾1 , 𝐾2 , 𝐾3 , and tangential distortion 

parameters 𝑝1 and 𝑝2, along with the external parameters 

[𝑅 𝑡]. Internal parameters describe the relation of pixel 

coordinates with image coordinates, while external 

parameters describe the relation of the camera's CS with 

the world's CS. Images of the checkerboard calibration 

board are taken by the camera at different angles so that 

both the world coordinates and the corresponding pixel 

coordinates of the checkerboard corners can be obtained. 

Calibration parameters are computed using the Zhang 

Zhengyou method [27]. 

Hand-eye calibration is performed to estimate the 

homogeneous transformation matrix between the 

camera's CS and the robot's end flange CS, denoted by 

𝑇𝐶
𝐻 . Estimates of the parameters of such calibration are 

obtained with the TSAI method [28], which combines the 

extrinsic parameters attained from camera calibration 

with the corresponding pose parameters of the robot's 

end effector. 

To calibrate the position of the laser rangefinder, we 

need to solve the laser source coordinate matrix r and the 

unit direction vector matrix l of the laser line in the end 

flange coordinate system (CS) of the robot. Select a 
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known plane as the reference plane, which intersects the 

laser line at a point. By moving the laser rangefinder to 

multiple known positions and recording the laser 

measurement values and robot posture at each position, a 

series of equations can be established to solve r and l. By 

combining the interval measured by the laser rangefinder 

with the positioning information of the robot end, the 

coordinates of the laser point in the workpiece coordinate 

system (CS) can be further determined. This usually 

involves converting laser measurement values into 

coordinates in the robot coordinate system and then 

converting them into the workpiece coordinate system. 

3 Visual alignment on the basis of 

LDS 
Accurately positioning the side window through visual 

alignment relies on a precise characteristic image of the 

side window. Therefore, the first step is to achieve vision 

alignment 𝑟, ensuring that the camera's imaging plane is 

along with the side window plane to prevent imaging 

distortion. In this study, a laser range finder is employed 

to project a laser point onto the side window plane, and 

the coordinate data of the laser point are utilized to fit the 

equation of the side window plane. The normal vector 

(NV) parameters are then obtained, allowing for the 

establishment of the camera coordinate system (CCS). 

The equation of the axis 𝑍C  and the plane's NV of the 

side window determines the posture correction angle of 

the robot's end flange. The axis 𝑍C  is aligned with the 

NV of the side window plane to achieve visual 

alignment. Additionally, the interval between the 

camera's imaging plane and the side window plane must 

be adjusted using an LDS to meet the preset value, 

ensuring consistency in the imaging scale. Conduct 

visual alignment tests under different environmental 

lighting and reflective surface conditions to verify the 

robustness and accuracy of the alignment algorithm. By 

enhancing the recognition and fitting of laser points, 

improving the alignment between the camera coordinate 

system and the side window plane, optimizing the use 

and adjustment of LDS, and enhancing the robustness 

testing and verification of visual alignment, the 

robustness of LDS based visual alignment can be 

significantly improved under environmental lighting or 

reflective surface changes. 

3.1 Unit normal vector of the side window 

plane 

A laser range finder is used to project multiple laser 

points onto a side window plane 𝑟, and the laser line’s 

unit direction vector coordinate matrix 𝑙. The coordinate 

matrix of the 𝑖-th laser point in the workpiece CS can be 

listed as 𝑃𝑖 . The expression is: 

𝑃𝑖 = 𝑇𝐻
𝑇 (

𝑟 + 𝑑𝑖𝑙
1

)                                                          (1) 

Where 𝑇H
T  is the transformation matrix of the robot 

end flange CS about the workpiece CS, which is 

determined from data transformation of the teaching 

pendant, and 𝑑i is the distance value measured by a laser 

sensor. 

Due to various errors, the coordinates of the 

measured laser points cannot be strictly located in the 

same plane, so applying the coordinate data to fit the 

plane equation of the side window to minimize the 

distance between each laser point and the plane is 

essential. According to the theory of spatial analytic 

geometry, the ideal equation of the side window plane in 

the workpiece CS is:  

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 − 𝐷 = 0 (2) 

In this relation, 𝐴, 𝐵, and 𝐶  are components of the 

UNV of the side window plane in the workpiece CS, and 

𝐷 is the interval between the origin of the workpiece CS 

and the side window plane. Let the overall amount of 

laser points be 𝑛; the components of the 𝑖-th laser point 

in the workpiece CS are 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖, at a interval from the 

side window plane |𝐴𝑥𝑖 + 𝐵𝑦𝑖 + 𝐶𝑧𝑖 − 𝐷|. The problem 

is then reduced to finding the coefficients of the plane 

equation such that: 

{
𝑚𝑖𝑛( 𝑓) = 𝑚𝑖𝑛∑(𝐴𝑥𝑖 + 𝐵𝑦𝑖 + 𝐶𝑧𝑖 − 𝐷)

2

𝑛

i=1

𝐴2 + 𝐵2 + 𝐶2 − 1 = 0

 (3) 

Coefficient A, B, C, D： These are known constants 

that appear in the formula as weights or offsets. Variable 

xi, yi, zi： These are variables that need to be optimized, 

and for each 𝑖  (from 1 to n), there is a set of such 

variables. They represent a point in the problem space. 

The summation symbol ∑ represents the summation of 

all 𝑖 values from 1 to n. That is to say, function 𝑓 is the 

sum of all n terms. Each term in the square operation is 

squared. This is to make the function 𝑓 non negative, and 

there will be a positive penalty for any deviation from the 

optimal solution. For the minimization problem 

described by Equation (3), the function is constructed 

according to the Lagrange multiplier method: 

𝐹 =∑(𝐴𝑥𝑖 + 𝐵𝑦𝑖 + 𝐶𝑧𝑖 − 𝐷)
2

𝑛

𝑖=1

+ 𝜆(𝐴2 + 𝐵2 + 𝐶2 − 1) 

(4) 

Assuming the objective function is f (x) and the 

constraint condition is g (x)=0 (where x can be a 

multidimensional vector). The basic idea of Lagrange 

multiplier method is to introduce a Lagrange multiplier λ 

and integrate the constraints into the objective function, 

thereby forming a new function - Lagrange function L (x, 

λ). The Lagrange multiplier method is usually very 

effective in dealing with optimization problems with 

simple constraints. However, as the constraints become 

more complex or the number increases, the 

computational complexity may significantly increase. In 

addition, if the objective function or constraint conditions 

are nonlinear, the solving process may involve complex 

numerical methods. For optimization problems with 

complex constraints or nonlinear objective functions, 

other optimization methods such as interior point 

method, penalty function method, or trust region method 
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can be considered. These methods may be more effective 

or easier to implement than the Lagrange multiplier 

method in certain situations. In applications such as 

attitude estimation, noise measurement is a common 

problem. In order to improve the efficiency and 

robustness of eigenvalue calculation, some numerical 

stability techniques can be used, such as regularization 

methods, singular value decomposition (SVD), etc. In 

addition, for large-scale datasets or high-dimensional 

problems, efficient numerical algorithms and parallel 

computing techniques can be considered to accelerate the 

computation process. For a minimal value, there are 
𝜕𝐹

𝜕𝐴
=

𝜕𝐹

𝜕𝐵
=

𝜕𝐹

𝜕𝐶
=

𝜕𝐹

𝜕𝐷
= 0 . After derivation and simplification, 

the following equations are achieved: 

 

 

{
 
 

 
 
∑ 𝑥𝑖(𝐴𝑥𝑖 + 𝐵𝑦𝑖 + 𝐶𝑧𝑖 − 𝐷)
𝑛
𝑖=1 + 𝜆𝐴=0

∑ 𝑦𝑖(𝐴𝑥𝑖 + 𝐵𝑦𝑖 + 𝐶𝑧𝑖 − 𝐷)
𝑛
𝑖=1 + 𝜆𝐵=0

∑ 𝑧𝑖(𝐴𝑥𝑖 + 𝐵𝑦𝑖 + 𝐶𝑧𝑖 − 𝐷)
𝑛
𝑖=1 + 𝜆𝐶=0

𝐷 =
1

𝑛
∑ (𝐴𝑥𝑖 + 𝐵𝑦𝑖 + 𝐶𝑧𝑖)
𝑛
𝑖=1

              (5) 

 

 

[

∑ 𝑥𝑖
𝑛
𝑖=1 𝑣𝑥𝑖 ∑ 𝑥𝑖

𝑛
𝑖=1 𝑣𝑦𝑖 ∑ 𝑥𝑖

𝑛
𝑖=1 𝑣𝑧𝑖

∑ 𝑦𝑖
𝑛
𝑖=1 𝑣𝑥𝑖 ∑ 𝑦𝑖

𝑛
𝑖=1 𝑣𝑦𝑖 ∑ 𝑦𝑖

𝑛
𝑖=1 𝑣𝑧𝑖

∑ 𝑧𝑖
𝑛
𝑖=1 𝑣𝑥𝑖 ∑ 𝑧𝑖

𝑛
𝑖=1 𝑣𝑦𝑖 ∑ 𝑧𝑖

𝑛
𝑖=1 𝑣𝑧𝑖

] [
𝐴
𝐵
𝐶
] =

(−𝜆) [
𝐴
𝐵
𝐶
]                                                                        (6) 

 

 

{
 
 

 
 𝑣𝑥𝑖 = 𝑥𝑖 − 𝑥,  𝑥 =

1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1

𝑣𝑦𝑖 = 𝑦𝑖 − 𝑦,  𝑦 =
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1

𝑣𝑧𝑖 = 𝑧𝑖 − 𝑧,  𝑧 =
1

𝑛
∑ 𝑧𝑖
𝑛
𝑖=1

                              (7) 

 

 

{

∑ 𝑥𝑣𝑥𝑖
𝑛
𝑖=1 = ∑ 𝑥𝑣𝑦𝑖

𝑛
𝑖=1 = ∑ 𝑥𝑣𝑧𝑖

𝑛
𝑖=1 = 0

∑ 𝑦𝑣𝑥𝑖
𝑛
𝑖=1 = ∑ 𝑦𝑣𝑦𝑖

𝑛
𝑖=1 = ∑ 𝑦𝑣𝑧𝑖

𝑛
𝑖=1 = 0

∑ 𝑧𝑣𝑥𝑖
𝑛
𝑖=1 = ∑ 𝑧𝑣𝑦𝑖

𝑛
𝑖=1 = ∑ 𝑧𝑣𝑧𝑖

𝑛
𝑖=1 = 0

              (8) 

 

 

{
 
 
 
 

 
 
 
 ∑(𝑥𝑖 − 𝑣𝑥𝑖)𝑣𝑥𝑖

𝑛

𝑖=1

=∑(𝑥𝑖 − 𝑣𝑥𝑖)𝑣𝑦𝑖

𝑛

𝑖=1

=∑(𝑥𝑖 − 𝑣𝑥𝑖)𝑣𝑧𝑖

𝑛

𝑖=1

= 0

∑(𝑦𝑖 − 𝑣𝑦𝑖)𝑣𝑥𝑖

𝑛

𝑖=1

=∑(𝑦𝑖 − 𝑣𝑦𝑖)𝑣𝑦𝑖

𝑛

𝑖=1

=∑(𝑦𝑖 − 𝑣𝑦𝑖)𝑣𝑧𝑖

𝑛

𝑖=1

= 0

∑(𝑧𝑖 − 𝑣𝑧𝑖)𝑣𝑥𝑖

𝑛

𝑖=1

=∑(𝑧𝑖 − 𝑣𝑧𝑖)𝑣𝑦𝑖

𝑛

𝑖=1

=∑(𝑧𝑖 − 𝑣𝑧𝑖)𝑣𝑧𝑖

𝑛

𝑖=1

= 0

 

 

                                                                                (9) 

 

[

∑ 𝑣𝑥𝑖
𝑛
𝑖=1 𝑣𝑥𝑖 ∑ 𝑣𝑥𝑖

𝑛
𝑖=1 𝑣𝑦𝑖 ∑ 𝑣𝑥𝑖

𝑛
𝑖=1 𝑣𝑧𝑖

∑ 𝑣𝑦𝑖
𝑛
𝑖=1 𝑣𝑥𝑖 ∑ 𝑣𝑦𝑖

𝑛
𝑖=1 𝑣𝑦𝑖 ∑ 𝑣𝑦𝑖

𝑛
𝑖=1 𝑣𝑧𝑖

∑ 𝑣𝑧𝑖
𝑛
𝑖=1 𝑣𝑥𝑖 ∑ 𝑣𝑧𝑖

𝑛
𝑖=1 𝑣𝑦𝑖 ∑ 𝑣𝑧𝑖

𝑛
𝑖=1 𝑣𝑧𝑖

] [
𝐴
𝐵
𝐶
] =

𝜆′ [
𝐴
𝐵
𝐶
]                                                                           (10) 

 

 

 

 

 

 

 

The coefficient matrix on the left side of equation 

(10) is a third-order real symmetric matrix, which we 

represent as RC. The elements of this matrix are related 

to the variables in the equation, and some important 

properties, such as eigenvalues and eigenvectors, will 

play a crucial role in subsequent analysis. Specifically, 

we can consider λ, a, B, and C (where a, B, and C may 

represent elements of the eigenvector. However, their 

specific meanings need to be determined based on the 

context, as this was not explicitly stated in your original 

description) as elements related to the eigenvalues and 

eigenvectors of RC. To find the eigenvalues of R C, we 

set the characteristic polynomial to zero, i.e. ∣ R C − λ′ 

I ∣=0 (Equation 11), where I is the identity matrix. In 

this way, we can find all the eigenvalues of R C by 

solving this equation Where 𝜆′=-𝜆 . It is clear that the 

coefficient matrix on the left side of Eq. (10) is a real 

symmetric matrix of order 3, while 𝜆′, 𝐴, 𝐵, and 𝐶 can be 

regarded as the eigenvalues and eigenvector elements of 

the coefficient matrix. This coefficient matrix is denoted 

as 𝑅𝑐, and its eigenvalues can be obtained by Eq. (11) as 

follows: 

 
|𝑹𝑐 − 𝜆

′𝑰| = 0  

(11) 

According to the eigenvalue method [29], when the 

eigenvalue is the smallest, the interval between each laser 

point and the plane is minimized, and the corresponding 

eigenvector is the UNV of the side window plane, thus 

obtaining the values of 𝐴 , 𝐵  and 𝐶 . To satisfy the 

subsequent robot end flange posture adjustment 

requirements, the NV must point to the inside of the side 

window. Considering the bi-directionality of the plane 

NV, if the obtained NV points to the outside of the side 

window, its reverse vector is taken. 

3.2 Pose correction of the robot end flange 

To make the camera imaging plane parallel to the side 

window plane, the pose of the robot end flange needs to 

be adjusted. In this paper, the XYZ fixed angle method is 

used for rotating around the X, Y, and Z axes of the 

workpiece CS, with angles 𝛾, 𝛽, and 𝛼, so that the CCS 

axis 𝑍𝐶 is in the same direction as the side window UNV 

obtained in Section 3.1. In certain fields or applications, 

specific rotation sequences may be widely adopted due to 

historical reasons or conventions. For example, in 

aerospace, the ZYX sequence (also known as yaw pitch 

roll) may be preferred as it corresponds to the natural 

motion of the aircraft. In other fields such as robotics or 

automation, XYZ order may be more common. For 

different rotation orders, even if the rotation angle is the 

same, the resulting rotation matrix will be different. This 

is because each rotation is relative to a different axis. 
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Some rotation sequences are more susceptible to the 

influence of universal joint locks, that is, when two 

rotation axes coincide, one dimension of rotational 

ability will be lost. This requires special attention when 

using Euler angles to represent rotation. In Eq. (12), 

𝐶
𝐻𝑹  refers to the rotation transformation matrix, 

through which the camera coordinate system (C) gets 

transformed into the robot end flange coordinate system 

(H). The matrix depicts the directional correlation 

between the camera and robot end flange, thus providing 

the accurate alignment necessary for successful pose 

correction. Suppose that the rotation transformation 

matrix from the CCS to the robot end flange is as 

follows: 

𝐶
𝐻𝑹 = [

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

]  

(12) 

Then, the 𝑍𝐶  component of the CCSs axis’s unit 

direction vector in the flange CS is [𝑎13 𝑎23 𝑎33]𝑇 . 

The rotation matrix is projected to the workpiece CS 

using the XYZ fixed angle method.

 

 

[
𝐴
𝐵
𝐶
] = [

𝑐 𝛼 𝑐 𝛽 𝑐 𝛼 𝑠 𝛽 𝑠 𝛾 − 𝑠 𝛼 𝑐 𝛾 𝑐 𝛼 𝑠 𝛽 𝑐𝛾 + 𝑠 𝛼 𝑠𝛾
𝑠 𝛼 𝑐 𝛽 𝑠 𝛼 𝑠𝛽 𝑠 𝛾 + 𝑐𝛼 𝑐 𝛾 𝑠𝛼 𝑠 𝛽 𝑐𝛾 − 𝑐𝛼𝑠𝛾
− 𝑠 𝛽 𝑐 𝛽 𝑠𝛾 𝑐 𝛽 𝑐 𝛾

] [

𝑎13
𝑎23
𝑎33

]    (13) 

 

 

Where 𝑐  stands for 𝑐𝑜𝑠  and 𝑠  stands for 𝑠𝑖𝑛 . The 

angle data in the robot teach pendant at the time of 

projecting the last laser point used to fit the plane can be 

used as an initial value 𝛼0 , 𝛽0 , and 𝛾0 . Using the LM 

method for iterative optimization, solve the nonlinear 

equation (13) and finally obtain 𝛼, 𝛽, and 𝛾. Based on 

this, adjust the flange attitude. Construct a nonlinear 

equation based on the rotation angles (α, β, and γ) of the 

robot flange and the actual measured laser point data (or 

other relevant data). This equation may describe the 

difference between the projection of the laser point on 

the fitting plane and the expected position. Use LM 

method to iteratively solve nonlinear equations. In each 

iteration, a new angle value is calculated based on the 

current angle value to reduce errors in the equation. This 

process will continue until a certain stopping criterion is 

met (such as an error less than a certain threshold or 

reaching the maximum number of iterations).  

As mentioned above, after the camera imaging plane 

is aligned with the side window plane, it is essential to 

adjust the robot’s end flange position to keep the interval 

between the camera imaging plane and the side window 

plane at a preset value. The actual interval between the 

two planes can be obtained using the laser range finder, 

and then the difference between the exact interval and the 

preset value, 𝛥𝑑 , can be computed. Using the 

transformation matrix from the CCS to the robot end 

flange C
H𝑅, 𝛥𝑑 is decomposed into the flange CS. The 

displacement correction component in the three-axis 

direction of the flange CS is: 

[

𝛥𝑥𝐻
𝛥𝑦𝐻
𝛥𝑧𝐻

] =𝐶
𝐻 𝑅 [

0
0
𝛥𝑑
]  

(14) 

Calculate the displacement correction of the robot’s 

end flange using formula (14) and adjust the flange's 

position so that the interval between the camera imaging 

plane and the side window plane meets the preset value.  

4 Vision-based positioning 

measurement 
The combination of LDS and monocular vision has 

significant advantages in the assembly of train side 

window glass, such as relatively low cost and easy 

operation. LDS can provide high-precision distance 

measurement, while monocular vision can capture and 

process two-dimensional image information, and the 

combination of the two can achieve a certain degree of 

assembly accuracy. However, this combination also has 

limitations, such as the lack of depth information 

acquisition in monocular vision and the impact of 

lighting conditions on visual processing. 

4.1 Pixel coordinate and physical coordinate 

conversion 

After the alignment function is completed, the 

checkerboard is placed on the assembly plane, the 

camera captures the checkerboard image, and the 

proportional relation between the pixel and physical 

coordinates is computed using the real physical interval 

between the checkerboard corners and the corresponding 

pixel interval. Fig. 2 shows an acquired checkerboard 

image, and the proportional relation between the two CSs 

is: 

𝑠 =
1

𝑛
∑

𝑑𝑥𝑦𝑖

𝑑𝑢𝑣𝑖

𝑛

𝑖=1

 
 

(15) 

In the formula, 𝑑𝑥𝑦𝑖  and 𝑑𝑢𝑣𝑖  are the Euclidean 

intervals of the i-th pair of checkerboard corner points in 

the checkerboard CS and the Euclidean interval in the 

pixel CS, respectively. The accurate proportional 

coefficient between these two CSs can be obtained by 

averaging the proportional relationships of 𝑛  pairs of 

corner points, 𝑠. 
Visual data (usually from industrial cameras) plays a 

crucial role in the assembly process. In order to extract 

useful information from images, this article adopts an 

advanced image processing algorithm. These algorithms 
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can identify and locate the edge features of glass and side 

windows, and then calculate their relative positions and 

orientations. 

Specifically, the algorithm first improves image quality 

through preprocessing steps such as denoising and 

contrast enhancement. Then, edge detection algorithms 

such as Canny edge detectors are used to identify the 

edges of the glass and side windows. Next, use feature 

matching algorithms such as SIFT or SURF to find the 

corresponding relationships between these edges. Finally, 

use these corresponding relationships to calculate the 

relative position and orientation between the glass and 

the side windows. 

To demonstrate this process more intuitively, we can 

provide a series of image processing result graphs, 

including the original image, preprocessed image, edge 

detection results, and feature matching results. These 

charts will help readers better understand the working 

principle of the algorithm.

 

Figure 2: Checkerboard image 

4.2 Feature identification 

The arc part in the upper right corner of the side window, 

as seen in Fig. 3, is selected as the target feature to obtain 

the target's pose information. The straight-line equations 

of the two sides of the circular arc are obtained using the 

Hough transform. Hough transform is a classic algorithm 

used to detect specific shapes in images, such as lines, 

circles, arcs, etc. For arc detection, Hough Circle 

Transform or its variants can be used. Although Hough 

Circle Transform is mainly used to detect complete 

circles, it can also be used to detect arc parts by adjusting 

parameters and algorithms. Another method is to first 

detect the endpoints of the arc, then use these points to fit 

the arc, and then derive the equations for the lines on 

both sides based on the geometric properties of the arc,  

 

 

such as center, radius, and tangent direction. RANSAC 

(Random Sample Consensus) is an iterative algorithm 

used to estimate the parameters of a mathematical model 

from data containing a large amount of noise and 

outliers. It fits the model by randomly selecting a subset 

of data and evaluates the quality of the model by 

calculating the error between the remaining data and the 

fitted model. By combining the Hough transform and 

RANSAC least squares method, we can effectively 

identify the curved part of the upper right corner of the 

side window from the image and accurately fit the linear 

equations on both sides of the arc. These linear equations 

can be used for subsequent target pose information 

extraction and robot pose correction. Then, the accurate 

straight-line equation is obtained using the RANSAC 

least squares method [30]. 
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Figure 3: Target feature image 

When the two lines intersect, that point serves as the 

displacement feature parameter for vision positioning, 

and the angle of the u-axis between them is used as a 

rotation characteristic parameter for visual positioning. 

The expected positioning characteristic parameters have 

been obtained by the above image processing method 

during offline teaching, and the positioning deviation can 

be determined by the feature elements of the current 

target image as follows: 

∆𝑢 = 𝑢d − 𝑢 

∆𝑣 = 𝑣d − 𝑣 

∆𝜃z = 𝜃d − 𝜃 

 

(16) 

Where (𝑢d, 𝑣d)  is the image coordinate of the 

intersection of the straight lines during teaching, (𝑢, 𝑣) is 

the coordinate of the linear corner point in the current 

picture, 𝜃d  is the angle of the straight-line during 

teaching, and 𝜃  is the line angle in the current image. 

Then (∆𝑢, ∆𝑣)  is converted into physical coordinates 

using a proportional coefficient, and the offset matrix 𝑻′ 
is obtained by combining ∆𝜃𝑧 as the primary data for the 

subsequent assembly process. 𝜃d and θ are the angle 

of the line in the teaching and the angle of the 

line in the current image, respectively. These 

angles may represent the angle between the line 

and a certain axis of the image coordinate 

system. The change in angle Δ θ=θ - 𝜃dcan be 

used to describe the rotation of a straight line in 

an image. The offset matrix T 'is commonly 

used to describe the translation and rotation of 

an object in three-dimensional space. However, 

in your scenario, we may only be concerned 

with translation and rotation within the two-

dimensional image plane. Therefore, T 'may be 

a 2x2 matrix (if only considering 

transformations within the plane) or a 3x3 

matrix (if considering potential scaling and 

affine transformations, but keeping the z-

coordinate constant). 
 

4.3  Calculation and compensation of 

assembly pose 

Visual positioning is divided into two steps: the 

calibration process and the assembly process. 

(1) Calibration Process 

Establish a workpiece CS 𝑇0 at the upper right corner 

of the side window and record its pose as, 𝑇0. With the 

assistance of the LDS, set the standard shooting pose of 

the camera and record the pose of the flange as 𝐶_𝑃𝑜𝑠0. 

The conversion relationship between 𝐶_𝑃𝑜𝑠0  and 𝑇0  is 

( 𝐻𝐶_𝑃𝑜𝑠0

(𝑇0) ). The collected image of the upper right corner 

of the side window is used as the standard template, and 

a nine-point calibration is carried out to set up the 

mapping relation between the pixel and the workpiece 

CSs. The robot is manually guided to place the glass 

accurately in the workpiece CS 𝑇0, and the flange pose is 

recorded as 𝑔_𝑃𝑜𝑠0 . The mapping relationship between 

pixels and workpiece CS (T0) established through nine-

point calibration should have a certain degree of 

accuracy. This can be evaluated by comparing the 

differences between the standard template images 

collected during the calibration process and the images 

collected during actual installation [31]. The difference 

should be within the preset accuracy threshold, for 

example, the pixel error should not exceed a certain 

amount. If LDS is used to fit the equation of the side 

window plane, the fitting result should be consistent with 

the actual plane. The fitting accuracy can be evaluated by 

comparing the difference between the fitted plane and the 

actual plane [32]. 

(2) Assembly Process 

Adjust the robot flange with the laser sensor to make 

the camera plane along with the side window plane, and 

record the flange pose as 𝐶_𝑃𝑜𝑠1 . Based on the 

transformation relationship ( 𝐻𝐶_𝑃𝑜𝑠0

𝑇0 ) , the pose of the 

workpiece CS 𝑇1  can be calculated as 𝑇1 = 𝐶_𝑃𝑜𝑠1 ∙

(( 𝐻𝐶
𝑇0 )

−1
). Then, the product offset in the 2D plane is 

identified by the camera and the pose of the workpiece 

CS 𝑇2 is calculated using the offset data, where 𝑇2 = 𝑇1 . 
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Execute the installation pose 𝑔_𝑃𝑜𝑠0  in the 𝑇2  CS, and 

the glass can be assembled accurately. 

5 Experimental test and analysis of 

the result 

5.1 Experimental test platform 

Based on the assembly task requirements for the side 

window glass of a subway train in an enterprise, a 

platform for experimental testing was constructed, as 

displayed in Fig. 4. The size of the side window glass is 

2 m × 1.5 m, and the working interval of the vision 

system is 400 mm. The attitude accuracy of the glass 

installation must be controlled within ±1°, and the 

positioning accuracy should be controlled within ±0.5 

mm. The industrial robot is the ABB IRB7600-325, with 

a working range of 3.1 m and a maximum load capacity 

of 325 kg. The accuracy of repetitive positioning is 0.1 

mm. The industrial camera is a CAM-CIC-4000 from 

Cognex, with a resolution of 2048 × 2048. The LDS is 

the LK-G500 from Keyence, with a range of 250 mm to 

450 mm and a linear error of ±0.02%. 

 

Figure 4: Assembly experiment site 

5.2 System calibration results 

Using the calibration method described above, the three 

types of calibration parameters of the system are first 

solved, and the final camera calibration result is as 

follows: 

𝑨=[
5249.574 0 1014.700

0 5248.587 1011.988
0 0 1

] 

k1=-0.158，k2=-0.0249，k3=0.0412， 

p1=-0.0003，p2=0.0004 

(17) 

The hand-eye calibration result is: 

𝑻𝐻
𝐶 = [

0.007 −0.036 −0.999 −54.874
1 0.0074 0.006 −75.193

0.007
0

−0.998
0

0.036 102.960
0 1

]    
(18) 

The calibration results of the LDS are as follows: 

𝒓 = [43.6839, −40.4931,90.1015] 
𝒍 = [0.9977,0.0626,0.0265] (19) 

5.3 Analysis of assembly test results 

The manual method was first used in the experiment to 

guide the robot in accurately installing the glass and 

recording the robot flange pose data. Then, the process 

described above was used to adjust the robot flange 

automatically to perform the installation action under the 

guidance of the laser sensor and the camera. Here, 

'posture' refers to the position and/or orientation of the 

side window glass relative to the robot or assembly 

platform. The robot flange pose data was also recorded. 

Finally, the data obtained through automatic guidance 

were compared with the flange pose data obtained by the 

manual method. Glass installation experiments on side 

windows with different postures were performed 20 

times. The displacement deviation and rotation 

differences between automatic and manual assembly are 

illustrated in Figs. 5 and 6, respectively. 
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(a) Displacement deviation curve in X direction 

 
(b) Displacement deviation curve in the Y direction 

 
(c) Displacement deviation curve in Z direction 

Figure 5: Displacement deviation curve 
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(a) Plot of rotation deviation around the X-axis 

 
(b) Rotation deviation curve around the Y axis 

 

0 2 4 6 8 10 12 14 16 18 20

-0.4

-0.2

0.0

0.2

0.4

0.6

R
o

ta
ti

o
n

 d
ev

ia
ti

o
n

 

ar
o

u
n

d
 t

h
e 

X
 a

x
is

 (
°)

Experiment times

0 2 4 6 8 10 12 14 16 18 20
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
o

ta
ti

o
n

 d
ev

ia
ti

o
n

 

ar
o

u
n

d
 t

h
e 

Y
 a

x
is

 (
°)

Experiment times

0 2 4 6 8 10 12 14 16 18 20
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
o

ta
ti

o
n

 d
ev

ia
ti

o
n

 

ar
o

u
n

d
 t

h
e 

Z
 a

x
is

 (
°)

Experiment times



A Low-Cost Robotic Assembly Method for Large Planar Workpieces…                                    Informatica 49 (2025) 155–172   169                                                                                                                                 

(c) Plot of rotation deviation around the Z-axis 

Figure 6: Rotational deviation curve 

Figs. 5 and 6 show that in 20 experiments, the 

maximum displacement deviation in the X direction is 

about ±0.4 mm, the maximum displacement deviations in 

the Y and Z directions are about ±0.3 mm, the maximum 

rotation deviation of the X axis is about 0.6°, and the 

minimum rotation deviation of the Y axis is about 0.8°. 

All deviations meet the requirements of ±1° attitude 

correction and ±0.5 mm displacement accuracy, showing 

good reliability. Stereoscopic vision technology also 

faces some challenges. For example, the calibration and 

calibration process of a camera is relatively complex, 

requiring high-precision equipment and technical 

support. In addition, stereoscopic vision is sensitive to 

lighting conditions and environmental noise, which may 

lead to a decrease in image quality and a loss of 

computational accuracy. Therefore, when choosing 

stereoscopic vision as an alternative solution, we need to 

balance the relationship between its high accuracy and 

complexity. In addition to LDS, we can also consider 

using additional laser measurement systems to improve 

assembly accuracy. For example, a 3D laser scanner can 

be used to comprehensively scan the assembly area and 

generate accurate 3D point cloud data. These data can be 

used to generate a digital model of the assembly area and 

compare it with the expected model to calculate 

assembly deviations and make corrections. 

6 Conclusion 
It proposes an integrated assembly method guided by 

LDSs and monocular vision for the automatic assembly 

of train-side window glass. The core of the proposed 

approach is that, from the laser-projected point data, the 

plane equation of the window is derived, and its NV is 

used for adjustment of the robot's end flange. The camera 

attached to the robot shares a parallel plane with the 

window pane, and the distance between the two planes is 

adjusted to achieve accurate visual alignment. The 

monocular vision system identifies edge features of the 

side window to estimate the precise pose, which guides 

the robot in completing the glass installation. 

Experimental results have shown that this assembly 

approach consistently meets the required pose accuracy 

for glass installation. It offers the benefits of being 

inexpensive, having a simple structure, and providing 

high precision in positioning and orientation calculation, 

making it suitable for the automatic detection, 

positioning, guidance, and assembly of other large-scale 

planar workpieces. This method is mainly suitable for 

automatic assembly of large flat workpieces. In the 

previously proposed integrated method for automatic 

assembly of train side window glass based on a laser 

ranging system and monocular vision, this article 

emphasizes the close interaction between system 

calibration and assembly accuracy. System calibration is 

a crucial step in ensuring assembly accuracy, as it 

directly affects the accuracy of laser projection point data 

and the recognition ability of monocular vision systems 

for edge features. The calibration of the monocular vision 

system includes both intrinsic and extrinsic calibration of 

the camera. Internal calibration ensures that the 

geometric characteristics of camera imaging, such as 

focal length and distortion, are accurately recorded, while 

external calibration criteria ensure the accurate 

correspondence between the camera and the world 

coordinate system. Through calibration, the recognition 

accuracy of the monocular vision system for side 

window edge features can be improved, thereby more 

accurately estimating the posture of the glass and guiding 

the robot to complete precise installation. 

However, in practical industrial applications, workpieces 

may have more complex geometric shapes. How to 

adjust this method to handle these complex shapes and 

ensure the accuracy and reliability of assembly is a 

challenging task. The monocular vision system relies on 

the recognition of edge features to estimate accurate 

poses. However, in some cases, such as when the edge of 

the side window is obstructed or severely worn, feature 

recognition may become difficult. Prospects include 

adapting the method to handle complex geometries or 

materials, applying advanced image processing 

techniques for better feature recognition, and developing 

fully autonomous assembly lines, particularly in the 

automotive and aerospace industries, where similar 

demands for high accuracy and efficiency exist. We will 

explore the application effects of this method on different 

types of large planar workpieces, and how to improve the 

adaptability and robustness of the method by improving 

the algorithm or adding sensors.  

Nomenclature 

Abbreviations 𝑓 Objective function to be minimized 

CDW Construction and Demolition Waste 𝐹 Function constructed 

CFD Computational Fluid Dynamics 𝐻 Transformation matrix 

CNN Convolutional Neural Network 𝑙 
Laser line’s unit direction vector coordinate 

matrix 

LES Large Eddy Simulation 𝑃 Coordinate matrix 

LM Levenberg-Marquardt method 𝑟 Side window plane 

ORB Oriented FAST and Rotated BRIEF 𝑅 Coefficient matrix 

PnP Perspective-n-Point 𝑠 Proportional coefficient 

PVB Polyvinyl Butyral 𝑥 Components of the 𝑖th 
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SHM Structural Health Monitoring Greek symbol 

SLAM Simultaneous Localization and Mapping 𝛼 Rotation angles 

WRMSD Work-Related Musculoskeletal Disorder 𝛽 Rotation angles 

symbols 𝛾 Rotation angles 

𝐴 Components 𝜆 Lagrange multiplier 

𝐵 Components subscripts 

𝐶 Components 𝐶 the camera coordinate system 

𝐷 Distance 𝐻 the robot end flange coordinate system 

dxyi Euclidean distance 𝑖 Index for each laser point 

duvi Euclidean distance 𝑇 
Transformation from one coordinate system 

to another 

𝑑 Distance measured   
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